Galvin solved the Dinitz conjecture by proving that bipartite graphs are $\Delta$-edge-choosable. We employ Galvin's method to show some further list edge-colouring properties of bipartite graphs. In particular, there exist balanced list edge-colourings for bipartite graphs. In the light of our result, it is a natural question whether a certain generalization of the well-known list colouring conjecture is true.
Bibtex entry:
AUTHOR | = | {Fleiner, Tam{\'a}s and Frank, Andr{\'a}s}, |
TITLE | = | {Balanced list edge-colourings of bipartite graphs}, |
NOTE | = | {{\tt egres.elte.hu}}, |
INSTITUTION | = | {Egerv{\'a}ry Research Group, Budapest}, |
YEAR | = | {2010}, |
NUMBER | = | {TR-2010-01} |