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A geometric proof for the root-independence of the
greedoid polynomial of Eulerian branching greedoids

Lilla Tóthmérész ⋆ ⋆⋆

Abstract

We define the root polytope of a regular oriented matroid, and show that the
greedoid polynomial of an Eulerian branching greedoid rooted at vertex v0 is
equivalent to the h∗-polynomial of the root polytope of the dual of the graphic
matroid.

As the definition of the root polytope is independent of the vertex v0, this
gives a geometric proof for the root-independence of the greedoid polynomial for
Eulerian branching greedoids, a fact which was first proved by Swee Hong Chan,
Kévin Perrot and Trung Van Pham using sandpile models. We also obtain that
the greedoid polynomial does not change if we reverse every edge of an Eulerian
digraph.

1 Introduction

It is a well-known fact that for a connected Eulerian digraph, the number of arbores-
cences rooted at a given vertex v0 is independent of the choice of v0. The branching
greedoid of a (connected) Eulerian digraph rooted at v0 is a set system where the
maximal sets (bases) are the arborescences rooted at v0. The greedoid polynomial
λG,v0(x) is a polynomial invariant of the greedoid, with λG,v0(1) equal to the number
of arborescences rooted at v0. Kévin Perrot and Trung Van Pham [13] and Swee
Hong Chan [3] showed that for an Eulerian digraph G, the polynomial λG,v0(x) does
not depend on the choice of the root v0. (Perrot and Pham do not talk about the
greedoid polynomial, but show the root-independence of a polynomial for Eulerian
digraphs. Chan points out that this polynomial is in fact the greedoid polynomial of
the branching greedoid, and furthermore, gives a root-independent definition for the
polynomial using the sinkless sandpile model.) Here we give an alternative, geometric
proof for the root-independence of λG,v0(x), by expressing it using the h∗-polynomial
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Section 2. Preliminaries 2

of a polytope depending only on G, and not on v0. This geometric proof also implies

that for the Eulerian digraph
←−
G obtained by reversing each edge of G, the greedoid

polynomial λ←−
G,v0

(x) agrees with λG,v0(x).
Our method is the following: We define the root polytope of regular oriented ma-

troids, and show that for the (oriented) dual M∗ of the graphical matroid of G, the
greedoid polynomial λG,v0(x) is a simple transformation of the h∗-polynomial of the
root polytope of M∗. The root polytope of M∗ does not depend on the choice of v0,
hence we obtain the root-independence of λG,v0 . Moreover, the reversal of each edge
of G corresponds to a reflexion of the root polytope of M∗, which does not change
the h∗-polynomial, hence also λG,v0(x) = λ←−

G,v0
(x).

More precisely, we define the root polytope of a regular oriented matroid using
a totally unimodular representing matrix A, but it turns out that the important
geometric properties are all independent of the representing matrix. Let us state our
main theorem explicitly.

Theorem 1.1. Let G = (V,E) be an Eulerian digraph, and v0 a fixed vertex of G. Let
λG,v0 be the greedoid polynomial of the directed branching greedoid of G with root v0.
Let A be any totally unimodular matrix representing the oriented dual of the graphic
matroid of G, and let QA be the root polytope of A. Then

λG,v0 (t) = t|V |−1h∗QA

(
t−1
)
.

We give two different proofs for Theorem 1.1. One of these is based on the defi-
nition of the greedoid polynomial as the h-vector of the (abstract) dual complex of
the greedoid. We show that the complements of arborescences give a unimodular tri-
angulation of the root polytope of the cographic matroid, and this triangulation is a
geometric realization of the abstract dual complex, yielding the relationship between
the h-polynomial and the h∗-polynomial.

Our other proof uses the definition of the greedoid polynomial as a generating
function of greedoid activities. For this proof, we generalize the formula from [10] to
get a formula for the h∗-polynomial of root polytopes of co-Eulerian regular oriented
matroids. Then we show that the activity definition of the greedoid polynomial is a
special case of this formula. This second proof also yields further interesting (though,
probably not very practical) definitions for the greedoid polynomial.

We note that in the special case of planar Eulerian digraphs (where the dual matroid
is also graphic), the relationship of the h∗-polynomial of the dual root polytope and
the greedoid polynomial was proved in [9] by the author and Tamás Kálmán. This
paper is the result of an effort to generalize the result of [9] to all Eulerian digraphs,
which needed the introduction of the root polytope for regular oriented matroids.

2 Preliminaries

2.1 Directed graphs

Let G = (V,E) be a directed graph. A subset C∗ of the edges of G is called a cut if
there is a partition V = V1 ⊔ V2 such that C∗ is the set of edges connecting a vertex
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2.2 Greedoids 3

of V1 and a vertex of V2 (with any orientation). We say that V1 and V2 are the shores
of the cut. If each edge of C∗ is directed from V1 to V2, or each edge of C∗ is directed
from V2 to V1, then we say that the cut C∗ is directed.

A subgraph of G is called a tree, if the underlying unoriented subgraph is connected
and cycle-free. (Hence orientations do not play a role in the definition of a tree.) A
tree is a spanning tree if it contains each vertex of G. For a spanning tree T and edge
e ∈ T , the subgraph T − e has two weak connected components. The cut connecting
vertices of the two components if called the fundamental cut of e with respect to T ,
and is denoted by C∗(T, e). For an edge e /∈ T , T + e has exactly one cycle. This
cycle is called the fundamental cycle of e with respect to T and is denoted by C(T, e).

Let v0 be a fixed vertex. A tree F of G is called an arborescence rooted at v0 if
v0 ∈ F , and each edge e ∈ F is oriented “away from v0”. That is, in the fundamental
cut C∗(F, e), the edge e has its tail in the shore containing v0. A subgraph is called
a spanning arborescence, if it is an arborescence, and a spanning tree.

2.2 Greedoids

Greedoids were introduced by Korte and Lovász as a generalization of matroids where
the greedy algorithm works.

Definition 2.1 (greedoid [11]). A set system F on a finite ground set E is called a
greedoid, if it satisfies the following axioms

(1) ∅ ∈ F ,

(2) for all X ∈ F − {∅} there exists x ∈ X such that X − x ∈ F ,

(3) if X, Y ∈ F and |X| = |Y | + 1, then there exist an x ∈ X − Y such that
Y ∪ x ∈ F .

Elements of F are called accessible sets, and maximal accessible sets are called bases.

For example, matroids are a special class of greedoids, but greedoids are able to
express connectivity properties that matroids cannot. It follows from the axioms that
bases have the same cardinality r, which is called the rank of the greedoid.

Here, we will be interested in the class of directed branching greedoids: Let G =
(V,E) be a directed graph, and let v0 be an arbitrary vertex of G. The directed
branching greedoid with root v0 has groundset E, and its accessible sets are the ar-
borescences rooted at v0. (It is easy to check that this is indeed a greedoid.) If G
is strongly connected (that will always be the case for us), then the bases are the
spanning arborescences rooted at v0.

One important invariant of a greedoid is the greedoid polynomial. It was defined by
Björner, Korte and Lovász [2], and it has many equivalent definitions. One of them is
topological, an uses the (abstract) dual complex of the greedoid. Another definition
uses activities. We will give two proofs for our main theorem, each based on these
two definitions. Hence we repeat here both definitions.
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2.2 Greedoids 4

2.2.1 The definition of the greedoid polynomial via the dual complex

The dual complex of a greedoid is an abstract simplicial complex. By an abstract
simplicial complex, we mean a set system S where X ∈ S, Y ⊆ X implies Y ∈ S.
Elements S ∈ S are called simplices, and |S| − 1 is called the dimension of S. (Hence
the dimension of the empty simplex is −1.)

By definition, the dual complex of a greedoid consists of those subsets of E whose
complement contains a basis, that is, D = {X ⊆ E : ∃F ∈ F s.t. X ⊆ E−F}. This is
indeed an abstract simplicial complex, and its maximal simplices are the complements
of the bases. Hence in particular, the maximal simplices have equal dimension. Such
complexes are called pure.

The h-polynomial of a d-dimensional simplicial complex S is defined as

h(x) = f(x− 1), where f(y) =
∑
F∈S

yd−dimF . (2.1)

The greedoid polynomial is defined as the h-polynomial of the dual complex.

2.2.2 The definition of the greedoid polynomial via activities

There is an alternative definition for the greedoid polynomial, using activities. For a
basis B ∈ F of a greedoid, an ordering B = {b1, . . . br} is called feasible if {b1, . . . bi} ∈
F for each i = 1, . . . r. The axioms guarantee the existence of at least one feasible
ordering for each basis. Let us fix an ordering of the groundset E. Now for any basis
B of the greedoid, one can associate the lexicographically minimal feasible ordering.

Definition 2.2 (external activity for greedoids [2]). Fix an ordering of E. For a basis
B, an element e /∈ B is externally active in B if for any f ∈ B such that B−f+e ∈ F ,
the lexicographically minimal feasible ordering of B is lexicographically smaller than
the lexicographically minimal feasible ordering of B−f +e. We call an element e /∈ B
externally passive in B if it is not externally active in B.

The external activity of a basis B is the number of externally active elements in
B, and it is denoted by e(B). The external passivity of a basis B is the number of
externally passive elements in B, and it is denoted by ē(B).

The greedoid polynomial can also be defined as follows:

Definition 2.3 (greedoid polynomial, [2]).

λ(t) =
∑

B basis

te(B)

Let r be the commom cardinality of the bases. Then ē(B) = r−e(B) for each basis
B. Hence we can also write

λ(t) = tr
∑

B basis

(1/t)ē(B)

For the special case of directed branching greedoids, external activity has a more
explicit description, as noted by Swee Hong Chan [3]. In a different context, this
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2.3 Essentials of regular oriented matroids 5

activity notion also appears in [12] under the name external semi-activity, hence we
use this name here.

Definition 2.4 (external semi-activity in digraphs, [3, 12]). Let G be a digraph with
a fixed ordering of the edges. Let T be a spanning tree in G. An arc e /∈ T is
externally semi-active for T if in the fundamental cycle C(T, e) the maximal edge
(with respect to the fixed ordering) stands in the same cyclic direction as e. An arc
e /∈ T is externally semi-passive for T if it is not externally semi-active.

One can check that external semi-activity with respect to a spanning arborescence
agrees with the greedoid activity in the case of branching greedoids [3].

2.3 Essentials of regular oriented matroids

In this section, we recall the essentials of regular oriented matroids. We try to keep
the introduction to a minimum. For more background, see for example [1].

Definition 2.5 (totally unimodular matrix). A matrix is said to be totally unimod-
ular, if each of its subdeterminants is either 0, −1 or 1.

A regular matroid M can be represented by a totally unimodular matrix. Let A be
a totally unimodular matrix, and let its columns be a1, . . . am ∈ Zn. The elements of
M will be the column indices {1, . . . ,m}. We say that a set of elements {i1 . . . , ij}
is independent, if the corresponding column vectors are independent over Q. We say
that a set {i1 . . . , ij} is a basis, if it is a maximal independent set (equivalently, the
corresponding vectors form a basis of Im(A)). A minimal dependent set is called a
circuit.

Remark 2.6. Note the (well-known) fact, that for a directed graph, the vertex-
edge incidence matrix is totally unimodular. If we take A to be the vertex-edge
incidence matrix in the above definition, we get back the graphic matroid of the
digraph: elements correspond to edges, bases are spanning trees, and circuits are
cycles.

A totally unimodular matrix also gives us an orientation of the matroid. This means
that we can define a sign pattern on the circuits. A signed circuit is a pair (C+, C−)
such that C = C+ ⊔ C− = {i1, . . . ij} is a circuit, and there is a linear dependence∑j

k=1 λkaik = 0 with λk > 0 for ik ∈ C+ and λk < 0 for ik ∈ C−. Note that since a
circuit is a minimal dependent set, the linear dependence is uniquely determined up
to multiplication with a constant. Hence for a circuit C, the subsets C+ and C− can
switch role, but the partition is uniquely determined. This means that we can define
the relation of whether two elements of a circuit are oriented in a parallel or in an
opposite direction: ak, al ∈ C are oriented parallel in C if they are either both in C+

or both in C−, and they are oriented oppositely in C if one of them is in C− and the
other one is in C+. Note that for directed graphs, this definition gives back the usual
definition of “parallel or opposite orientation with respect to a cycle”.

One can define the cocircuits of the matroid in the following way: C∗ = {i1 . . . , ij} is
a cocircuit of the matroid if there is a hyperplane H ⊂ Rn such that ak ∈ H if k /∈ C∗,
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2.3 Essentials of regular oriented matroids 6

and ak /∈ H if k ∈ C∗, moreover, C∗ is minimal with respect to this property. One also
obtains an orientation for cocircuits: If the hyperplane is defined as {x | h(x) = 0}
for the linear functional h, then i ∈ (C∗)+ if h(ai) > 0 and i ∈ (C∗)− if h(ai) < 0..
Again, (C∗)+ and (C∗)− can switch roles, but it is well defined that two elements are
directed in a parallel way (if h(ak) · h(al) > 0) or oppositely (if h(ak) · h(al) < 0) with
respect to a cocircuit.

For digraphs, a cut is called elementary if it is minimal with respect to inclusion.
This is equivalent to each shore inducing a connected subgraph. Elementary cuts
are exactly the cocircuits for matroids coming from digraphs. Indeed, for a cut, the
functional assigning 1 to vertices on one shore and 0 to vertices on the other gives a
hyperplane containing exactly the vectors corresponding to the edges not in the cut.
Moreover, one can show that conversely, hyperplanes correspond to complements of
cuts. Hence elementary cuts are exactly the minimal sets obtainable as the comple-
ment of a hyperplane. The relation of being “parallel or opposite” with respect to an
elementary cut also agrees with the corresponding notion for cocircuits.

Let us say a few words about the totally unimodular matrix A representing a regular
oriented matroid M . It is clear that the removal of dependent rows does not make
a difference in the linear dependencies of the columns (and it also leaves the matrix
totally unimodular). Hence one can suppose that A has linearly independent rows
(say, r of them). Also, one can transform A to a form (Ir, X) where Ir is an r × r
identity matrix, and X is an r ×m− r totally unimodular matrix.

Duality is a very important concept of oriented matroids, that generalizes planar
duality. A signed set is a set together with a partition into positive and negative parts:
S = S+ ⊔ S−. One says that two signed sets S1 = S+

1 ⊔ S−1 and S2 = S+
2 ⊔ S−2 are

orthogonal if either S1 ∩ S2 = ∅ or (S+
1 ∩ S+

2 )∪ (S−1 ∩ S−2 ) and (S+
1 ∩ S−2 )∪ (S−1 ∩ S+

2 )
are both nonempty.

It is known, that for each oriented matroid M on groundset E, there is a unique
dual oriented matroid M∗ on the same groundset E such that the signed circuits of
M and the signed circuits of M∗ are mutually orthogonal. Moreover, in this case
(M∗)∗ = M , the signed circuits of M∗ are exactly the signed cocircuits of M and the
signed cocircuits of M∗ are the signed circuits of M . Also, the bases of M∗ are exactly
the complements of the bases of M .

If M is a regular oriented matroid, and it is represented by the totally unimodular
matrix of the form (Ir, X) where Ir is an r× r identity matrix, and X is an r×m− r
totally unimodular matrix, then M∗ is also a regular (oriented) matroid, and it can
be represented by the matrix (−XT , Im−r).

Note that if M is the graphic matroid of a planar digraph, then M∗ is the graphic
matroid of its planar dual. For a nonplanar graph, M∗ is not a graphic matroid
anymore, but it is still a regular oriented matroid.

Let us point out an important property of circuits and cocircuits that is special
to regular matroids. It is well-known (see for example [5, Lemma 4.3.4]), that for a
totally unimodular matrix, if Ax = 0 for some x ∈ Rm, then there is also a solution
x′ where each x′i ∈ {⌊xi⌋, ⌈xi⌉} for each coordinate. Also, if Ax = 0 for some x, then
by multiplying x by a scalar, we can suppose that −1 ≤ xi ≤ 1 for each i. Hence
for a circuit C = {i1, . . . , ij} of a regular matroid, there is always linear combination
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2.4 Ehrhart theory and computing h∗-polynomials 7

∑j
k=1 λkaik = 0 with λk ∈ {−1, 1} for each k.
Also, for any cocircuit, C∗, there is a linear functional h such that

h(ai) =


0 if i /∈ C∗,
1 if i ∈ (C∗)+,
−1 if i ∈ (C∗)−.

Indeed, suppose that A = (Ir, X). The cocircuit C∗ is a circuit of the matroid M∗

that is represented by (−XT , Im−r). Hence there is a vector λ with coordinates in
{0, 1,−1} such that (−XT , Im−r)λ = 0, and λi = 1 for the coordinates corresponding
to elements of (C∗)+ and λi = −1 for the coordinates corresponding to elements
of (C∗)−. Then, the first r coordinates of λ give a vector λ′ that defines a linear
functional h with the above properties.

2.3.1 Two technical lemmas on circuits of regular oriented matroids

Claim 2.7. If
∑m

i=1 λiai = 0, then there exist signed circuits C1, . . . Ct and coefficients
ν1, . . . , νt such that

λi =
∑

j:i∈C+
j

νj −
∑

j:i∈C−
j

νj.

Claim 2.8. If
∑m

i=1 λiai = 0, then there exists a signed circuit C such that C+ ⊆ {i :
λi > 0} and C− ⊆ {i : λi < 0}

Proof of Claims 2.7 and 2.8. As the elements {i : λi ̸= 0} are dependent, there is
a subset C1 of them which is a circuit. By subtracting the linear combination 0 =∑

i∈C+
1
ai−

∑
i∈C−

1
ai with the appropriate coefficient ν1, one can achieve that at least

one of the coefficients go to zero, while the sign of the other coefficients remain the
same. (We can even achieve ν1 > 0 by taking C+

1 = C−1 and C−1 = C+
1 if necessary.)

After the modification, we once again have a zero linear combination. Hence we can
continue with the procedure, and it is guarateed to end in at most |{i : λi ̸= 0}|
steps. At the end, we have the desired sum. Notice, that for the last circuit Ct,
C+

t ⊆ {i : λi > 0} and C−t ⊆ {i : λi < 0}, as we always maintained that the
remaining part of the linear combination has this property.

2.4 Ehrhart theory and computing h∗-polynomials

Suppose that P ⊂ Rn is a d-dimensional polytope with vertices in Zn (lattice poly-
tope). Its Ehrhart polynomial εP is defined as follows: For t ∈ N, let εP (t) = |t·P∩Zn|.
This is known to be a polynomial in t (which then can be extended for arbitrary reals).
This polynomial is called the Ehrhart polynomial of P , and is also denoted by εP .

It is known that the polynomials Ck(t) =
(
t+d−k

d

)
for k = 0, . . . d give a basis over

Q of the space of at most degree d polynomials with rational coefficients [7, Lemma
3.8]. Hence one can write the Ehrhart polynomial as

εP (t) =
d∑

k=0

akCk(t).
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2.4 Ehrhart theory and computing h∗-polynomials 8

Then the h∗ polynomial of P is defined as h∗(x) =
∑d

k=0 akx
k. (There is another

common way to define the h∗-polynomial, namely, as the numerator of the Ehrhart
series. That definition is equivalent to the one given above.)

We will prove that the greedoid polynomial of a directed branching greedoid is (a
simple transformation of) the h∗-polynomial of a certain polytope. We will have two
proofs for this fact, that correspond to two strategies to compute the h∗-polynomial
of a polytope. Hence let us briefly summarize these two ways for computing an h∗-
polynomial.

Both methods use dissections of the polytope into simplices. For a polytope P , a
dissection into simplices means a set of simplices that are interior disjoint, and their
union is the whole polytope. A triangulation is a dissection into simplices where we
additionally require that the intersection of any two simplices is a common face. The
advantage of triangulations is that one can think of them as simplicial complexes, but
for computing h∗-polynomials, dissections are often just as good as triangulations.

A simplex ∆ = Conv{p0, . . . pd} is said to be unimodular, if p0, . . . pd ∈ Zn, and the
vectors p1 − p0, . . . , pd − p0 generate a lattice that contains each integer point in its
subspace.

The h-polynomial of a triangulation is defined as the h-polynomial of the abstract
simplicial complex. It is well-known (see for example [9]), that if a d-dimensional
polytope P is triangulated into unimodular simplices, then the h∗-polynomial of P
has the following relationship to the h-polynomial of the triangulation:

d∑
i=0

h∗i t
i = td+1h(1/t). (2.2)

Hence one method for computing the h∗-polynomial is via the h-polynomial of
a triangulation. (We note that shellable unimodular dissections also yield the h∗-
polynomial via the same equation, see for example [9].)

Let us recall another method, that uses visibilities from a point. This method was
used in [6], and it was generalized to dissections in [10]. Let P be a d-dimensional
lattice polytope and ∆1, . . .∆s a dissection of P into unimodular simplices. That is,
∆1, . . . ,∆s are interior disjoint unimodular simplices such that P = ∆1 ∪ · · · ∪∆s.

Let q ∈ P be a point of general position with respect to the dissection ∆1, . . . ,∆s.
By this, we mean that q is not contained in any facet-defining hyperplane of any of
the simplices ∆1, . . . ,∆s.

For two points p, q ∈ Rn, let us denote by [p, q] the closed segment connecting them,
and let us denote by (p, q) the relative interior of this segment.

We say that a point p of a simplex ∆i is visible from q if (p, q) is disjoint from ∆i.
We say that a facet of ∆i is visible from q if all points of the facet are visible from q.
Let Visq(∆i) be the set of facets of ∆i visible from q.

Then one has the following formula for the h∗-polynomial:

Proposition 2.9. [6, 10] Let ∆1, . . .∆t be a dissection of the d-dimensional lattice
polytope P into unimodular simplices, and let q ∈ P be a point in general position
with respect to the dissection. Then the h∗-polynomial h∗(x) = h∗dx

d + · · ·+ h∗1x + h∗0
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Section 3. Root polytopes of regular oriented matroids 9

of P can be expressed as

h∗i = |{∆j | |V isq(∆j)| = i}|.

Remark 2.10. Unimodularity of the simplices is a crucial property of the dissection
in the above theorem.

3 Root polytopes of regular oriented matroids

In this section, we introduce root polytopes for regular oriented matroids. Let M
be a regular oriented matroid on the ground set {1, . . . ,m}, and let A be a totally
unimodular matrix representing M . Let a1, . . . am be the columns of A.

Definition 3.1 (Root polytope of a totally unimodular matrix). Let A be a totally
unimodular matrix with columns a1, . . . am. We define the root polytope of A as
QA = Conv{a1, . . . am}.

We show that the important geometric properties of this polytope are in fact in-
dependent of the actual representing matrix A, hence it makes sense to talk about
the root polytope of a regular oriented matroid. (Orientations will play an important
role, though.)

Before showing this, let us remark an important special case: The root polytope of
a directed graph (also called edge polytope) is the convex hull of the columns of the
vertex-edge incidence matrix. Hence the root polytope of a directed graph is precisely
the root polytope of the (oriented) graphical matroid.

Proposition 3.2. If A and A′ are two totally unimodular matrices representing the
regular oriented matroid M , then there exist a linear bijection φ : QA → QA′. More-
over, h∗QA

= h∗QA′ .

Proof. Let a1, . . . am be the columns of A and a′1, . . . , a
′
m be the columns of A′, and

suppose that ai and a′i represent the same element i of M for each i = 1, . . .m.
By definition, any point p ∈ QA can be written as

∑m
i=1 λiai where 0 ≤ λi and∑m

i=1 λi = 1. Then let us define φ(p) =
∑m

i=1 λia
′
i.

We show that even though in general a point p ∈ QA can be written many ways
as a convex combination of the columns, the mapping φ is well-defined. Let p =∑m

i=1 λiai =
∑m

i=1 µiai. Then
∑m

i=1(λi − µi)ai = 0. By Claim 2.7 there are circuits
C1, . . . Ct and coefficients ν1, . . . , νt such that λi−µi =

∑
j:i∈C+

j
νj −

∑
j:i∈C−

j
νj. As A

and A′ represent the same regular oriented matroid, the signed circuits C1, . . . , Ct are
also signed circuits of A′. This implies that

∑m
i=1(λi − µi)a

′
i = 0, hence indeed, the

mapping φ is well-defined. By symmetry of the role of A and A′, φ is also injective
and surjective, hence it is a bijection between the points of QA and QA′ .

Moreover, notice that the same proof implies that φ is also a linear bijection between
t · QA and t · QA′ for any t ∈ R. Also, if t is an integer, then φ takes lattice points
of t · QA into lattice points of t · QA′ , and similarly for φ−1. Indeed, for both t · QA

and t · QA′ , lattice points are exactly the integer linear combinations of the column
vectors. This implies that for any integer t, the number of lattice points in QA and
in QA′ is the same. Hence also the h∗-polynomials are the same.
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Section 3. Root polytopes of regular oriented matroids 10

Remark 3.3. Note that for φ to be well-defined, we needed the signed circuits to
agree. Indeed, keeping the matroid structure, but changing the orientation of the
matroid can alter the h∗-polynomial. (This can already be seen for graphs.)

Definition 3.4. We call a regular oriented matroid Eulerian, if |(C∗)+| = |(C∗)−| for
each cocircuit C∗. The name comes from the fact that for a regular oriented matroid
that comes from a directed graph, being Eulerian is equivalent to the digraph being
Eulerian. We call a regular oriented matroid co-Eulerian if for each circuit C, we have
|C+| = |C−|.

Clearly, a regular oriented matroid M is co-Eulerian if and only if its dual is Eule-
rian. Let us state an important special case.

Claim 3.5. For an Eulerian digraph G, the (oriented) dual M∗ of the graphic matroid
of G is a co-Eulerian regular oriented matroid.

Proof. Graphic matroids are regular, and duals of regular matroids are regular, hence
M∗ is indeed regular. Moreover, the cocircuits of the graphic matroid of G are the
elementary cuts of G. Any elementary cut of an Eulerian digraph contains equal num-
ber of edges going in the two directions, hence the graphic matroid of G is Eulerian.
Thus, M∗ is co-Eulerian.

Proposition 3.6. Let r be the rank of the regular matroid M , and let A be a totally
unimodular matrix representing M .

Then dim(QA) = r if M is not co-Eulerian, and dim(QA) = r − 1 if M is co-
Eulerian.

In the latter case, a set of vectors {ai1 , . . . aij} is affine independent if and only if
it is independent in the matroid.

Proof. The dimension dim(QA) is one less than the maximal cardinality of an affinely
independent subset of the vectors {a1, . . . ar}. As linearly independent vectors are
also affinely independent, the dimension of QA is at least r−1. Moreover, dim(QA) =
r − 1 if and only if each linearly dependent set of vectors {ai1 , . . . aij} is also affinely
dependent. This is equivalent to each circuit being affinely dependent. As each circuit
has linear dependence

∑
i∈C+ ai −

∑
i∈C− ai = 0, this is an affine dependence if and

only if the circuit has |C+| = |C−|. If there is any circuit C with |C+| ̸= |C−|, then
the corresponding linear dependence is not an affine dependence. Any circuit C can
be extended to a set S of size r + 1 such that C is the only circuit within S. Hence if
|C+| ≠ |C−| then S is an affine independent set of size r + 1, thus, dim(QA) = r.

Corollary 3.7. If A is a totally unimodular matrix representing a co-Eulerian regular
matroid, then convex hulls of bases give maximal dimensional simplices in QA.

Let A be a totally unimodular matrix representing a co-Eulerian regular matroid
M . For a basis B, let us denote ∆B = {Conv{ai : i ∈ B}}, which is a maximal
dimensional simplex in QA. We will call a set of bases D of M a dissecting set of
bases if the simplices {∆B | B ∈ D} dissect QA. That is, if QA =

⋃
B∈D∆B, and the

simplices in the union are interior disjoint.
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Section 4. Embedding the dual complex of an Eulerian directed branching greedoid 11

Note that even though we used a representing matrix A for the definition, we
claim that whether a set of bases forms a dissecting set of bases depends only on
the oriented matroid M . That is, we claim that if A and A′ are totally unimodular
matrices representing the oriented matroid M , then D is a dissecting set of bases for
A if and only if it is a dissecting set of bases for A′. Indeed, the bijection φ between
the points of QA and Q′A has the property that p ∈ ∆B if and only if φ(p) ∈ ∆′B
(where by ∆′B we denote the simplex corresponding to B in QA′). Hence indeed the
dissection property is also independent of the representation.

Note the following property, that will ensure that any such dissection is unimodular.

Proposition 3.8. If M is a co-Eulerian regular oriented matroid, then for any basis
B, ∆B is a unimodular simplex.

Proof. Let B = {i1, . . . , ir}. Then ∆B = Conv{ai1 , . . . , air}. We need to show that
the integer linear combinations of ai1 − air , . . . , air−1−air generate each integer lattice
point in their linear span. By Proposition 3.6, it is enough to show that any integer
vector that is a linear combination of the vectors ai1 , . . . , air can be obtained as their
integer linear combination. This is a well-known property of columns of a totally
unimodular matrix (see for example [5, Lemma 4.3.4]).

4 Embedding the dual complex of an Eulerian di-

rected branching greedoid

In this section we show that one can embed the dual complex of an Eulerian directed
branching greedoid as a triangulation of the root polytope of the dual co-Eulerian
matroid. From this, it readily follows that the greedoid polynomial is equivalent to
the h∗-polynomial of the root polytope of the dual matroid.

Theorem 4.1. Let G = (V,E) be an Eulerian digraph, and let A be any totally
unimodular matrix representing the (directed) dual of G. Let v0 be an arbitrary fixed
vertex of G. Let

D = {B ⊂ E | E −B is an arborescence of G rooted at v0}.

Then {∆B | B ∈ D} is a triangulation of QA.

We prove Theorem 4.1 through two lemmas.

Lemma 4.2. Using the notations of Theorem 4.1, {∆B | B ∈ D} is a dissection of
QA into simplices.

Lemma 4.3. Using the notations of Theorem 4.1, any two simplices ∆B1 ,∆B2, B1, B2 ∈
D meet in a common face.

We start with proving Lemma 4.2. We will use as a tool an ordering on the set of all
spanning trees of G. We define this ordering using a fixed ordering of the edges. We
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Figure 1: Eulerian digraph with root s. The non-dashed arcs form a spanning ar-
borescence rooted at s.

note that a similar ordering was introduced in [9, Section 5] using a ribbon structure
instead of a fixed ordering.

Let us fix an ordering of E: E = {e1, . . . em}. We assign an edge list List(T ) to
each spanning tree T of G using a type of burning algorithm [4]: At the first moment,
we say that v0 is the only burning vertex, and no edge is burning. At any moment,
we take the largest edge among the non-burning edges that has at least one burning
endpoint (the orientation of the edge does not matter). We add this edge to List(T )
and burn it. It the edge was in T , then we also burn its non-burning endpoint. It is
easy to see that eventually List(T ) includes all edges of G. (It will not be important
for us, but note that if T is an arborescence, then the restriction of the edge list to
edges of T is a maximal feasible ordering of the edges of T .)

Example 4.4. For the rooted spanning arborescence on Figure 4, the edge-list is
4, 3, 8, 7, 9, 6, 5, 2, 1.

Let us define the labeled edge list of a tree, where we additionally record for each
edge whether it is in the tree or not, and if it is in the tree, whether it points towards
v0 or away from v0 (within the tree). We say that the labeled edge-lists of two trees
agree up to some point, if until that point, the same edges are listed in the same order,
and the status of whether they are in the tree also agrees.

Let us look at how the first difference between the labeled edge-list of two trees
can look like. Let us take the labeled edge-lists of the trees T1 and T2 at the point
before they first differ. Then at this point, the intersection of Ti with the edges of the
edge-list is the same for i = 1, 2, hence the set of burning vertices is the same. Hence
we have to choose the next edge of the list from the same set of edges for T1 and for T2

(namely, among the non-burnt edges incident to the set of burning vertices), and by
the same rule (we choose the largest edge). Hence the next edge is chosen the same
for the two trees. As the two lists start to differ at this point, it can only be because
the next edge is in one of the trees, but not in the other.

Based on this observation, we define the following ordering of trees of G.

Definition 4.5. For any two directed trees T1 and T2, we say that T1 ≺ T2 if their
labeled edge-lists first differ at an edge e such that either

e ∈ T1, e /∈ T2 and e is directed away from v0 in T1, or (4.1)

e ∈ T2, e /∈ T1 and e is directed towards v0 in T2. (4.2)
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Now we are ready to prove Lemma 4.2. Our proof mimics the proof of [9, Theorem
5.8] about the fact that Jaeger trees dissect the root polytope of a semi-balanced
directed graph.

Proof of Lemma 4.2. By Claim 3.5, the dual M∗ of G is a co-Eulerian regular matroid,
hence the maximal affine independent vertex sets inQA correspond to bases of M∗. On
the other hand, bases of M∗ are exactly the complements of (directed) spanning trees
of G. Arborescences are a subclass of directed spanning trees, hence {∆B | B ∈ D}
are simplices of maximal dimension.

We need to prove that for B1, B2 ∈ D, ∆B1 and ∆B2 are interior-disjoint. Moreover,
we need to show that for any p ∈ QA, there is some B ∈ D such that p ∈ ∆B.

First, we show that for any p ∈ QA, there is some B ∈ D such that p ∈ ∆B.
By defintion, any p ∈ QA is in the convex hull of {a1, . . . am}. By Caratheodory’s
theorem, there is a maximal affine independent subset {ai1 , . . . air} such that p is in
their convex hull. Then {i1, . . . , ir} =: B is a basis of M∗, hence its complement
E −B is a directed tree of G. To sum up, p ∈ ∆B where E −B is a directed tree. If
E −B is an arborescence rooted at v0, then we are ready.

We show that if p ∈ ∆B such that T = E −B is not an arborescence rooted at v0,
then there is another basis B′ of M∗ such that for T ′ = E −B′ we have T ′ ≺ T , and
p ∈ ∆B′ .

Let p =
∑m

i=1 λiai, where λi = 0 if i /∈ B and λi ≥ 0,
∑m

i=1 λi = 1. Take the edge
list of T . If T is not an arborescence rooted at v0, then there is at least one edge in
T that is oriented towards v0. Let e be the first edge in the edge list of T with this
property. Take the fundamental cut C∗(T, e). The cut C∗(T, e) is a circuit in the dual
matroid M∗, hence there is a linear combination∑

i∈(C∗(T,e))+

ai −
∑

i∈(C∗(T,e))−

ai = 0.

By symmetry, we can suppose that e ∈ C∗(T, e)+. Take

λ′i =


λi if i /∈ C∗(T, e),

λi + ε if i ∈ (C∗(T, e))+,
λi − ε if i ∈ (C(T, e)∗)−.

Then p =
∑m

i=1 λ
′
iai. Take ε = min{λi : i ∈ (C ∗(T, e))−}. Then the coefficients λ′i are

nonnegative. The vectors where λ′i > 0 are a subset of B + e = E − T + e, moreover,
the coefficient of e became positive, and the coefficient of at least one element from
(C∗(T, e))− became zero. Let f ∈ (C∗(T, e))− be such an element. Then since f is in
C∗(T, e), T ′ = T − e + f is a spanning tree. Also, by the above remark, p ∈ ∆B+e−f .

We claim that T ′ ≺ T . There are two cases. Either f is burnt before e when
building up the edge list of T , or e is burnt before f . If e is burnt before f , then
e is the first difference in the labeled edge lists of T and T ′. Moreover, here e is
directed towards v0 in T by our assumption. Hence indeed, T ′ ≺ T . If f is burnt
before e, then f is the first difference in the labeled edge lists of T and T ′. Note that
C∗(T ′, f) = C∗(T, e). Moreover, since e and f stand opposite in the fundamental cut
C∗(T, e), f is directed away from v0 in T ′. This implies T ′ ≺ T in this case, too.

EGRES Technical Report No. 2022-15



Section 4. Embedding the dual complex of an Eulerian directed branching greedoid 14

Next, we show that for any B1, B2 ∈ D, ∆B1 and ∆B2 are interior-disjoint. For this,
it is enough to show a hyperplane that separates them.

Let F1 = E − B1 and F2 = E − B2 be the two arborescences corresponding to B1

and B2. Take the first place where their labeled edge lists differ. As they are both
arborescences, all their edges are directed away from v0. Hence the first difference
needs to be that an edge e is included into (say) F1, and it is directed away from v0
in F1 and e is not included into F2.

We claim that it is enough to show that for the fundamental cycle C(F2, e), the
edges of C(F2, e)− F1 all stand opposite to e in the cycle C(F2, e). Indeed, the cycle
C(F2, e) is a cocircuit of the dual matroid M , which geometrically is a hyperplane
H containing all vectors of E − C(F2, e), moreover, the vectors of (C(F2, e))

+ are on
one side of the hyperplane, and the vectors of (C(F2, e))

− are on the other side of the
hyperplane.

∆B2 is the convex hull of vectors corresponding to E −F2. As e is the only edge in
(E − F2) ∩ C(F2, e), all the vertices of ∆B2 are in H except for e. For ∆B1 , too, the
vertices corresponding to F1 ∩ C(F2, e) are in H. If all edges of C(F2, e) − F1 stand
opposite to e in the cycle C(F2, e), then we conclude that all vertices of ∆B2 outside
of H fall on the other side of H compared to ∆B1 , hence H separates (the interior of)
∆B1 from ∆B2 .

Now let us prove that indeed the edges of C(F2, e) − F1 all stand opposite to e in
the cycle C(F2, e). The cycle C(F2, e) has the following structure: There is a vertex
u ∈ C(F2, e) that is closest to v0 within F2. Let e = −−→v1v2. Then C(F2, e) consists
of two directed paths from u to v2, and one of them contains e as its last edge. As
the edge list of F2 is built up so that new edges are always incident to the subtree of
F2 built up so far, the edges of the path uv1 are already on the list of F2 before e is
added. As the edge lists of F1 and F2 agree until e, these edges are also in F1. Hence
C(F2, e)−F1 can only contain edges from the other path of C(F2, e), and those edges
all stand opposite to e.

Now we turn to proving Lemma 4.3. We will need a condition on when two simplices
within QA meet in a proper face. The following lemma is a straightforward general-
ization of Postnikov’s lemma [14, Lemma 12.6], that concerns the same question for
root polytopes of bipartite graphs.

Lemma 4.6. Let B1 and B2 be two bases of the co-Eulerian regular oriented matroid
M . Then ∆B1 and ∆B2 meet in a common face if and only if there is no circuit
C = C+ ⊔ C− such that C+ ⊆ B1 and C− ⊆ B2.

Proof. Suppose that ∆B1 and ∆B2 does not meet in a common face. Then there is
a point p ∈ ∆B1 ∩ ∆B2 such that the minimal face ∆S1 of ∆B1 containing p and
the minimal face ∆S2 of ∆B2 containing p does not agree. Hence we can take p =∑

i∈S1
λiai with 0 ≤ λi,

∑
i∈S1

λi = 1 and p =
∑

i∈S2
µiai with 0 ≤ µi,

∑
i∈S2

µi =
1. Subtracting the second equality from the first, we obtain a linear dependence∑

i∈S1∪S2
(λi − µi)ai = 0 (where we use the convention λi = 0 for i /∈ S1 and µi = 0

for i /∈ S2). Clearly, λi − µi > 0 implies i ∈ S1 and λi − µi < 0 implies i ∈ S2. By
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Section 4. Embedding the dual complex of an Eulerian directed branching greedoid 15

Claim 2.8 in this case there is a circuit C with C+ ⊆ {i : λi− µi > 0} ⊆ S1 ⊆ B1 and
C− ⊆ {i : λi − µi < 0} ⊆ S2 ⊆ B2.

Conversely, suppose that there is a circuit C = C+ ⊔ C− such that C+ ⊆ B1 and
C− ⊆ B2. We show that in this case ∆B1 and ∆B2 do not meet in a common face.
If they did then for any point p ∈ ∆B1 ∩ ∆B2 , the minimal faces of ∆B1 and ∆B2 ,
containing p would also coincide. Now by definition,

∑
i∈C+ ai −

∑
i∈C− ai = 0, hence

in particular
∑

i∈C+ ai =
∑

i∈C− ai. As the matroid is co-Euerian, |C+| = |C−|. Hence
1
|C+|

∑
i∈C+ ai = 1

|C−|
∑

i∈C− ai =: p, and both sums are convex combinations. How-
ever, the minimal face containing p in ∆B1 is ∆C+ , while the minimal face containing
p in ∆B2 is ∆C− , which cannot coincide because C+∩C− = ∅. Hence indeed ∆B1 and
∆B2 do not meet in a common face.

Proof of Lemma 4.3. Let F1 and F2 be two arborescences rooted at v0. By Lemma
4.6, it is enough to prove that there is no signed circuit C in the dual M∗ such that
C+ ⊆ E − F1 and C− ⊆ E − F2.

As circuits of the dual are cuts of G, we need to prove that there is no cut C∗ of G
such that (C∗)+ ⊆ E − F1 and (C∗)− ⊆ E − F2.

Let C∗ be any cut of G. Any arborescence contains at least one edge from C∗

that points from the shore containing v0 to the other shore. Hence for any cut C∗,
either (C∗)+ or (C∗)− intersects both F1 and F2. Hence we indeed cannot have a bad
cut.

Proof of Theorem 4.1. The Theorem follows directly from Lemmas 4.2 and 4.3.

Corollary 4.7. The triangulation of the root polytope of M∗ by the complements of
arborescences rooted at v0 is a geometric embedding of the dual complex of the directed
branching greedoid of G rooted at v0.

Now we are ready to give our first proof for Theorem 1.1

First proof of Theorem 1.1. λG,v0 is defined as the h-polynomial of the (abstract) dual
complex. By Theorem 4.1, the dual complex can be realized geometrically, as a
unimodular triangulation of the root polytope QA where A is a totally unimodular
matrix representing the (oriented) dual of G. By Proposition 3.6, QA has dimension
|V | − 2.

Hence by (2.2), the h-polynomial of the abstract simplicial complex can be written
as

λG,v0 (t) = t|V |−1h∗QA

(
t−1
)
.

As QA is independent of v0, we obtain the following corollary, first proved by Swee
Hong Chan [3], using the abelian sandpile model.

Corollary 4.8. The greedoid polynomial of the directed branching greedoid of an
Eulerian digraph is independent of the root vertex.

We can deduce another corollary.
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Theorem 4.9. For an Eulerian digraph G, let
←−
G be the (Eulerian) digraph obtained

by reversing the orientation of each edge. Let v0 be an arbitrary vertex. Then λG,v0 =
λ←−
G,v0

. That is, the greedoid polynomial of an Eulerian directed branching greedoid
does not change if each edge is reversed.

Proof. Let A be a totally unimodular matrix representing the dual of G. Then −A
represents the dual of

−→
G . By Theorem 1.1,

λG,v0 (t) = t|V |−1h∗QA

(
t−1
)
,

and
λ←−
G,v0

(t) = t|V |−1h∗Q−A

(
t−1
)
.

As Q−A is a reflection of QA to the origin, the two polytopes have the same h∗-vector,
hence indeed, the two greedoid polynomials agree.

5 A formula for the h∗-polynomial of the root poly-

tope of a co-Eulerian matroid, using activities

In this section, we give an alternative proof for Theorem 1.1, using the definition of
the greedoid polynomial via activities. Apart from the root-independence of the gree-
doid polynomial, this proof also yields further alternative definitions for the greedoid
polynomial.

We give a formula for the h∗-polynomial of QA for a co-Eulerian matroid. This
formula is the analogue of [10, Theorem 1.4] that considered the special case of root
polytopes of semi-balanced digraphs (that are exactly the graphical co-Eulerian ma-
troids).

For a basis B of a matroid, upon adding an element e /∈ B to B, there is exactly
one circuit that is the subset of B ∪ e. This (signed) circuit is called the fundamental
circuit of e with repsect to B and it is denoted by C(B, e).

For a basis B of a matroid, upon removing an element e ∈ B from B, there is
exactly one cocircuit that is the subset of the complement of B − e. This (signed)
cocircuit is called the fundamental cocircuit of e with repsect to B and it is denoted
by C∗(B, e).

We will need the following activity notions, first appearing in [12, 3, 8]. Note thet
external semi-activity for oriented matroids is a generalizaton of external-semi-activity
for digraphs.

Definition 5.1 (internal semi-activity in oriented matroids). Let M be an oriented
matroid with a fixed ordering of the elements. Let B be a basis of M . An element
e ∈ B is internally semi-active for B if in the fundamental cocircuit C∗(B, e), the
maximal element (with respect to the fixed ordering) stands parallel to e. If the
maximal element stands opposite to e, then we say that e is internally semi-passive
for B.
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Definition 5.2 (external semi-activity in oriented matroids). Let M be an oriented
matroid with a fixed ordering of the elements. Let B be a basis of M . An element
e /∈ B is externally semi-active for B if in the fundamental circuit C(B, e), the maximal
element (with respect to the fixed ordering) stands parallel to e. If the maximal
element stands opposite to e, then we say that e is externally semi-passive for B.

Let us first note the following connection, that follows from the fact that the signed
circuits of M are exactly the signed cocircuits of M∗.

Claim 5.3. Let M be an oriented matroid on the groundset E and M∗ its directed
dual. Fix an ordering on the ground set E. Let B be a basis of M . Then an element
e ∈ B is internally semi-passive in B if and only if e is externally semi-passive in
E −B.

Theorem 5.4. Let M be a co-Eulerian regular matroid with representing matrix A.
Let us denote the h∗-vector of QA by h∗A. Let D be any dissecting set of bases for M ,
and take any fixed ordering of the elements. Then

(h∗A)i = |{B ∈ D | B has exactly i internally semi-passive elements}|.

Corollary 5.5. Let M be a co-Eulerian regular oriented matroid. For any dissecting
set of bases of M and any fixed order on the groundset, the distribution of internal
semi-passivities is the same.

Proof of Theorem 5.4. The proof follows the proof of the special case [10, Theorem
1.4] basically word-by-word.

Let us fix a dissecting set of bases D, and an ordering < of the elements of M . By
renumbering the columns of A, we can suppose that the elements of M are ordered
as a1 < a2 < . . . am. By Proposition 2.9, to prove the theorem, it is enough to find
a point q ∈ QA in general position, such that for each simplex ∆B of the dissection,
the number of facets of ∆B visible from q is equal to the internal semi-passivity of the
basis B.

Let q ∈ Rn be the following point:

q =
m∑
i=1

(
ti∑m
j=1 t

j

)
ai,

where t is sufficiently large. For us, t = 2 is enough.
Then q is by definition a convex combination of points ai, hence by definition,

q ∈ QA.
Next, we show that for any simplex ∆B, the number of facets visible from q is equal

to the internal semi-passivity of the basis B.
Let B ∈ D be a basis. The facets of ∆B are of the form ∆B−k = Conv{ai : i ∈ B−k}

for elements k ∈ B. We show that q is not in the hyperplane of the facet ∆B−k,
furthermore, the facet ∆B−k is visible from q if any only if k is internally semi-passive
in B.

Let H be the hyperplane of ∆B−k, and suppose that H is determined by a linear
functional h (that is, H = {x ∈ Rn | h(x) = 0}). This means that h(ai) = 0 for
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i ∈ B−k, but h(ak) ̸= 0. We can suppose that h(ak) > 0. Let C∗ = {i : h(ai) ̸= 0}. As
B−k is disjoint from C∗, it is necessarily a cocircuit in M . Hence C∗∩B = {k}. Thus,
C∗ is the fundamental cocircuit C∗(B, k). Moreover, by the remark in Section 2.3, we
can suppose that h sends each vector ai into {−1, 0, 1}. Hence (C∗)+ = {i | h(ai) = 1},
while (C∗)− = {i | h(ai) = −1}.

We conclude that h(p) ≥ 0 for each p ∈ ∆B. Hence the facet B − k is visible from
q if and only if h(q) < 0.

By linearity, we have

h(q) =
m∑
i=1

(
ti∑m
j=1 t

j

)
h(ai).

As h(ai) = 0 for i /∈ C∗(B, k), these edges do not contribute to h(q). The edges of
C∗(B, k) standing parallel to k have h(ai) = 1 and the edges of C∗(B, k) standing
opposite to k have h(ai) = −1. Hence the sign of h(q) is determined by the orientation
of the smallest edge of C∗(B, k) with respect to k. We have that h(q) is negative if
and only if the smallest edge of C∗(B, k) according to < stands opposite to k, that
is, if and only if k is internally semi-passive in B.

Second proof of Theorem 1.1. By Lemma 4.2, complements of arborescences give a
dissecting set of bases for the dual matroid M∗. Hence by Theorem 5.4, (h∗QA

)i equals
the number of spanning arborescences F rooted at v0 such that the complement
B = E−F has internal semi-passivity i. By Claim 5.3, if B = E−F has internal semi-
passivity i in M∗ then the arborescence F has external semi-passivity i in G. Hence
indeed, h∗QA

(t) =
∑

F∈Arb(G,v0)
tē(F ). Using the definition of the greedoid polynomial,

we get the formula in the statement of the theorem.

We note that Theorems 5.4 and 1.1 give many exotic ways to compute the greedoid
polynomial λG,v0 . Indeed, based on these theorems, the greedoid polynomial can
be computed as the generating function of external semi-passivities for any set of
spanning trees of G such that the complements of these trees form a dissection of the
dual root polytope.
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