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Polynomial-Time Algorithm for the Regional
SRLG-disjoint Paths Problem

Balázs Vass ⋆, Erika Bérczi-Kovács ⋆⋆, Ábel Barabás ⋆ ⋆ ⋆,
Zsombor László Hajdú, and János Tapolcai

Abstract

The current best practice in survivable routing is to compute link or node
disjoint paths in the network topology graph. It can protect single-point failures;
however, several failure events may cause the interruption of multiple network
elements. The set of network elements subject to potential failure events is
called Shared Risk Link Group (SRLG), identified during network planning.
Unfortunately, for any given list of SRLGs, finding two paths that can survive a
single SRLG failure is NP-Complete. In this paper, we provide a polynomial-time
SRLG-disjoint routing algorithm for planar network topologies and a large set of
SRLGs. Namely, we focus on regional failures, where the failed network elements
must not be far from each other. We use a flexible definition of regional failure,
where the only restrictions are that i) the topology is a planar graph, ii) each
SRLG forms a set of connected edges in the dual of the planar graph, and iii)
for each node v, the links incident to v are part of an SRLG. The proposed
algorithm is based on a max-min theorem. Through extensive simulations, we
show that the algorithm scales well with the network size, and one of the paths
returned by the algorithm is only 4% longer than the shortest path on average.

1 Introduction
Disjoint path computation is the essence of any strategy for networks to survive failures.
The current best practice is to utilize network flow algorithms, such as Suurballe’s
algorithm [37], to efficiently compute link or node disjoint paths in the network topology
graph. However, several papers studied [29, 12, 14, 16, 10, 15, 20, 25, 36] that the
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networks have severe outages when almost every equipment in a vast physical region
gets down as a result of a disaster, such as earthquakes, hurricanes, tsunamis, tornadoes,
etc. These types of failures are called regional failures, which are simultaneous failures
of nodes/links located in specific geographic areas. The set of network elements subject
to potential failure events is called Shared Risk Link Group (SRLG), identified during
network planning [47, 8, 32, 46, 38].

Unfortunately, for any given list of SRLGs and topology graph, finding two paths
that can survive a single SRLG failure is NP-Complete [17, 11]. The proof is a
reduction to 3SAT where each SRLG corresponds to a clause in the formula. Roughly
speaking, a very artificial topology graph and SRLG settings are needed to show
the high computational complexity of the problem, and many believe SRLG-disjoint
routing is a well-solvable problem in practice. For example, Kobayashi-Otsuki provided
[18] a routing algorithm for circular disk failures of fixed radius in a planar graph
topology where the links are straight lines. Circular disk failures of the fixed radius are
the most well studied regional failure model, see [29, 38]. Naturally arises the question:
Is there another set of regional SRLGs for which the SRLG-disjoint routing problem
is solvable in polynomial time? Can we define a simple and general property of the
regional SRLGs to have efficient routing algorithms? The paper provides a positive
and surprisingly simple answer as follows.

This study assumes the network topology is a planar graph. In backbone optical
networks, it is rare that cables cross each other without having an optical cross-connect
at the intersection. Planarity is an essential assumption to have a polynomial-time
algorithm for an otherwise NP-hard problem (see Sec. 6 how to extend our algorithm
for “almost” planar graphs). Apart from that, we adopt a very general model, here
we may consider the network is somehow embedded on the Earth’s surface, the links
are curved lines between the endpoints, and an SRLG is resulting from a connected
disaster area. We assume the list of SRLGs is defined in the service level agreement
(SLA) [35] at network planning. The list of SRLGs typically involves physically close
network nodes and parallel links, might be computed by any regional failure model
[41, 38, 39, 40], or based on historical data of natural disasters, such as earthquakes [42],
tornadoes, tsunamis, electromagnetic pulse (EMP) attacks, etc [26, 16, 34]. Protecting
single network element failures (link or node failures) is the current best practice (e.g.,
Huawei [4, Sec. 4.5.4], Alcatel-Lucent [2, pp. 46-50], Cisco Systems[3, Chpt. 19],
Juniper [5, Chpt. 3], Infinera[33]), so we add all link and node failures to the SRLG
list.

Furthermore, the proposed routing algorithms do not even require knowing the
geometry of the network, such as node coordinates and route of the cables. It is
necessary because the router’s routing engine cannot have such geographic information.
The exact location of the network equipment is sensitive information for military and
economic reasons, which will never be widely distributed on the internet. Note that,
often, the network operators do not have any information about the route of the links
or the physical coordinates of the intermediate routing nodes because the links are
hired as a service from an independent company [1], called the Physical Infrastructure
Provider. After all, information on the routes of the links is not part of any network
protocol so far. So the key idea of our approach is that knowing the dual of the planar
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(a) The US network topology graph (G) with
its dual (G∗). The dual nodes are drawn with
small green, and the outer region is the red dual
node, split on the illustration into multiple nodes.
The dual-edges are drawn with dotted lines and
intersect the corresponding network links. The
duals of two SRLGs, S1 and S2, are highlighted.
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(b) The regional SRLGs (Sregion) are hand drawn
with brush, and colored with the same color of
the path traversed by, otherwise orange. The
full list of SRLGs also include every single link or
node failures as well. Two SRLG-disjoint paths
between the source (s) and the target (t) node
are drawn with red and blue links.

Input: a planar graph G = (V, E), for every node the cyclic order of incident links in a planar
drawing, two distinct nodes s, t ∈ V , and a set S ⊆ 2|E| of dual-connected SRLGs with SV ⊆ S.
Maximum Regional SRLG-disjoint Paths Problem (MRSDP): Find: maximum cardinality set of
pairwise S-disjoint s-t paths.

Figure 1: Illustration of the problem. Dual-edges corresponding to a regional SRLG
are connected in the dual graph, for example, SRLG S1 on (b) is mapped to blue
dual-edges on (a). Note that SRLGs S1 and S2 forms an s-t cut, thus, there can be at
most two SRLG-disjoint s-t paths.

topology graph is sufficient for the routing computations, and also we will define only
combinatorial properties that the SRLGs must meet.

Fig. 1a shows such an example input: a planar topology graph with its dual graph.
The nodes of the dual graph are the faces, and there are edges between the adjacent
faces. Thus, each link e of the topology graph has a corresponding dual-edge, whose
endpoints are the dual vertices corresponding to the faces on either side of e. Therefore,
an SRLG as a set of links can be mapped to a set of dual-edges.

To mitigate the above problem, we assume the routing engine knows the dual
graph of the planar network topology with the mapping between the links and dual-
edges. The only assumption we have for SRLGs, that the corresponding dual-edges
are connected. Note that it is a very loose restriction and covers all SRLGs that
correspond to a connected disaster area. Here the disaster area is the geographic
(connected) region in which the network elements are subject to fail simultaneously. A
regional failure disconnects a link if it contains at least one (possibly end node) point
of that link. For example the SRLGs S1 and S2 shown on Fig. 1b correspond to the
dual-edges colored red and blue on Fig. 1a that are connected in the dual graph.

The main contributions of this paper are the following:

1. We provide a broad definition of ‘regional SRLG,’ where the regional SRLG-
disjoint routing can be efficiently solved. For this, we define a pure combinatorial
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routing problem input, which contains a planar network topology and the
corresponding dual graph. We show that this input is sufficient for efficient
routing computations, and no other information on the geometry of the physical
topology is needed. We have a very flexible definition of regional failure, where we
assume the SRLGs mapped to the dual-edges of the planar graph are connected.
It is important to note that SRLGs must contain single node failures as well,
otherwise the problem is NP-hard [7].

2. We provide an efficient polynomial-time SRLG-disjoint routing algorithm for the
regional SRLG model defined above and planar network topology. Note that the
SRLG-disjoint routing is NP-Complete in general [17, 11]. Our work heavily relies
on the mathematical techniques used in [18] and [22]. The algorithm in [18] can
be extended to solve the problem for circular disk failures, or in general for SRLGs
that meet a complicated Property, see the conclusions of [18]. Unfortunately,
Property of [18] strongly restricts the usability of their algorithm for a more
general SRLG model. Motivated by the above, we have generalized their ideas
into self-content graph-theoretical arguments that cope with a generalized SRLG
model that contains all types of known failure models. We have adopted the
max-min theorem for the regional SRLG-disjoint paths problem. In the special
case of the circular disk failure model, the complexity of our algorithm is an
improvement on those presented in [18, 31, 27, 28], respectively.

3. Through extensive simulation, we have shown that the corresponding routing
problem scales well. We have observed that, after post-processing to shorten the
resulting SRLG-disjoint paths, the shortest among them is just 4% longer than
the absolute shortest path. Selecting it as the working path, the increase in the
delay is negligible, while the other SRLG-disjoint paths can be the backup paths.

The paper is organized as follows. Sec. II provides the problem formulation and
presents a max-min theorem for the regional SRLG-disjoint paths problem. Sec. III
gives a simple upper bound on the number of SRLG-disjoint paths. Sec. IV describes
the proposed algorithm. Sec. V gives a lower bound on the number of SRLG-disjoint
paths. Sec. VI heuristically shortens the paths and deals with non-planar input graphs.
Sec. VI overviews the related works. Sec. VII presents our simulation results. Finally
Sec. VIII concludes the paper.

2 Problem Formulation and Main Results
Let G = (V, E) be a planar network topology graph with a node set V , a link set E, and
two distinct nodes s, t ∈ V . We do not know any geometric embedding of G, instead
we only know the order of incident links at every node in the embedding. Note that
from this information the dual graph G∗ = (V ∗, E∗) can be easily calculated. When it
does not confuse, we identify the faces of G with their dual nodes in G∗ = (V ∗, E∗).
In other words G∗ = (V ∗, E∗) is composed of a face set V ∗ and a dual-edge set E∗, see
Fig. 1a. In what follows, a link is sometimes called an edge.
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(a) The network topology and the
SRLGs (Sregion) are drawn with
brush of unique color.

(b) The dual graph with a closed dual walk C such that
l(C) = 5, w(C) = 3, and hence l(C)/w(C) < 2.

Figure 2: A graph, where the MIN-CUT = 3, but there is no two SRLG-disjoint paths
between s and t, meaning MAX-FLOW = MIN-CUT − 2.

Let Sregion ⊆ 2|E| be a set of link sets representing a set of regional SRLGs. We
assume the set of SRLGs also contains all the single node failures, which ensures the
obtained SRLG-disjoint paths to be node-disjoint. Let Ev denote the set of links in G
incident to a node v and let SV represent the set of SRLGs modeling the node failures,
i.e.,

SV = {Ev|v ∈ V \ {s, t}} .

Let S denote the set of all SRLGs: S = Sregion ∪ SV . Let ρ denote the maximum size
of a regional SRLG: ρ := max{|S|

∣∣∣S ∈ S}, and let µ denote the maximum number of
SRLGs that contain the same edge: µ = max{|T | : T ⊂ S, |∩S∈T S| > 0}. We say that
two paths are (S-)disjoint or SRLG disjoint if there is no SRLG S ∈ S intersecting
both of them1. We may omit S from the notation when the SRLG set is clear from
the context.

Formally, for a link set X ⊆ E, let X∗ be the set of duals of links of X. For an SRLG
S ∈ S, let V ∗(S∗) := {f ∈ V ∗|there is a dual-edge {f, f ′} ∈ S∗ for some f ′}. We de-
note by d the maximal diameter of the dual of an SRLG: d := max {diam(S∗)|S ∈ Sregion},
where diam(S∗) = maxf,f ′∈V ∗(S∗) min{ edge lengths of f-f’ paths in S∗}. We call a set
of links S ⊆ E dual connected, if the edge-induced subgraph of S∗ is connected in
G∗. For example, each Ev ∈ SV is clearly dual connected. We demand S to fulfill the
following property:

Property 1. Each set S ∈ S is dual connected.

Recall we have a second property:

Property 2. All node failures are listed apart from s and t (SV ⊆ S).

Our main goal in this paper is to find the maximum number of S-disjoint s − t
paths in planar graphs and SRLG sets with properties 1, 2, which we call Maximum

1In the related literature, ‘disjointness’ is sometimes called ‘separatedness’.
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Regional SRLG-disjoint Paths Problem (MRSDP). See Figure 1 for the exact
problem definition. Let MAX-FLOW denote the optimal value of the problem. First,
we give a trivial upper bound on MAX-FLOW using the analogy of max-flow min-cut
theorems for network flows. A set of SRLGs from S that disconnect s from t is called
an SRLG cut in this paper, see SRLG S1 and S2 on Fig. 1b as an illustration. It is
easy to see that the size of an SRLG cut is an upper bound for MAX-FLOW, because
two disjoint paths cannot traverse any of these SRLGs simultaneously by definition.
Let MIN-CUT denote the minimum size of an SRLG cut. Fig. 2a shows an example
graph where the MAX-FLOW = 1, while MIN-CUT = 3. Later, we will show that
the gap between the MAX-FLOW and MIN-CUT is at most 2 (see Section 5).

Theorem 2.1. For any instance of the MRSDP problem and its corresponding MAX-
FLOW and MIN-CUT values we have

MAX-FLOW ≤ MIN-CUT ≤ MAX-FLOW + 2.

Although MIN-CUT does not give a sharp upper bound for MAX-FLOW, a min-
max characterization can be given, which is one of the main results of this paper. In
order to state this sharp upper bound, we need a more complex structure than a cut.
Here we intuitively present the necessary notions, which are precisely defined in Sec.
3. A walk is a finite sequence of edges which joins a sequence of vertices. For a closed
walk C in the dual graph G∗, the length l(C) is the minimum number of times one
has to ”switch SRLG” to go around C, while the winding number w(C) of C is the
number of times that C separates s and t. Our main results are the following.

Theorem 2.2. For any instance of the MRSDP problem, we can find a maximum
number of k = MAX-FLOW SRLG disjoint paths in O (n2µ (log k + ρ log d)) , and we
determine closed dual walk C in G∗, for which

⌊
l(C)
w(C)

⌋
= k. For MAX-FLOW ≥ 2 we

also have

MAX-FLOW = min


⌊
l(C)
w(C)

⌋ ∣∣∣C closed dual walk, w(C) ≥ 1
.

3 Upper Bounds on the Number of Maximum Re-
gional SRLG-disjoint Paths

In this section, we will provide another upper bound for MAX-FLOW by gen-
eralizing the approach of [18]. This upper bound will turn out to be tight (cf.
Thm. 2.2). Let C be a closed walk in G∗. We define the winding number
w(C) of C as the number of times that C separates s and t. More precisely,
let us fix an s-t path P in G, and consider the edges of P being oriented to-
wards t. Let us consider a one-way orientation of the dual-edges of dual walk
C. Let w1(C) = {#ed ∈ C|ed crosses an ep ∈ P from left to right}. Similarly,
w2(C) := {#ed ∈ C|ed crosses an ep ∈ P from right to left}. Lastly, we define
w(C) := |w1(C) − w2(C)|. E.g., the (colored) dual walk on Fig. 2b separates s
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and t three times. Note that if C is a closed walk, then w(C) is indifferent to the
choice of P and orientation of C.

Now we define l(C) for a closed dual walk C. Let C = {C1, ..., Ck} be a partition of
the dual-edges such that each Ci consists of consecutive edges of C, and there exists
an SRLG Si ∈ S such that S∗

i contains Ci. Let l(C) be the minimal number for which
there exists such a partition. For example, to cover the dual walk on Fig. 2b we
need at least 5 SRLGs. We note that l(C) ≤ |V ∗| will hold for the closed dual walks
constructed in our proofs.

By using these notations, we can give an upper bound for MAX-FLOW as follows.

Lemma 3.1. Consider an instance of the MRSDP problem. If MAX-FLOW ≥ 2, then

MAX-FLOW ≤ min
 ⌊

l(C)
w(C)

⌋ ∣∣∣C closed dual walk, w(C) ≥ 1
. (1)

Proof. Suppose we have s-t paths P1, . . . , Pk≥2 that are pairwise disjoint and let
C = {C1, ..., Cl(C)} be a closed dual-walk such that each subwalk Cj is contained
by the dual of an SRLG Sj ∈ S. We show that each Pi has to intersect at least
w(C) subwalks Cj. Observe that each Cj adds at most 1 to the value of w(C):
w(Cj) := |w1(Cj) − w2(Cj)| ≤ 1, since paths Pi are vertex disjoint (by Property 2).
Two disjoint paths cannot cross C at the same Cj, so we have l(C) ≥ k · w(C).

4 Polynomial Time Algorithm to Find a Maximum
Number of Regional SRLG-Disjoint Paths

In this section we show that Lemma 3.1 can be extended into exact min-max theorem
for MAX-FLOW, and Eq. (1) holds with equality. If MAX-FLOW = 1, we give a
closed dual walk C with l(C)/w(C) < 2. Our proof generalizes ideas in [18], which shows
a geometric min-max theorem for the special case of the MRSDP problem, where the
disaster regions are circular disks.

The algorithm has two main parts: the base case (4.3) and the inductive part (4.1).
The inductive part decides whether there exist k S-disjoint paths, assuming that k − 1
such paths are given as starting paths.

When searching for k = 2 S-disjoint paths P1 and P2, for algorithmic reasons,
the starting path needs to be ’clockwise far enough’ from itself. We use the term
clockwise S-disjointness to capture the intuition precisely (see definition below). The
goal of the base case is to decide whether there exists a path that is clockwise S-disjoint
from itself.

First we introduce the notion of crossings. We say two s-t paths P1 and P2 are
crossing if, after contracting their common edges, there is a subpath P ′ contained
by both paths such that the links entering/leaving P ′ in P1 and P2 are alternating
according to their incidence to P1 and P2. We note that with this definition, two
non-crossing paths may have common edges, intuitively, the only restriction for them
is not to change their clockwise order along the way from s to t.
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Figure 3: Clockwise part {su, P2t} of SRLG S= {su, sP1, P2t} with respect to path
P= s, P1, P2, t

Now we turn to the definition of clockwise S-disjointness. For an s-t path P in G
and a directed dual path Q∗ in G∗ we say that Q∗ is clockwise to P if it does not
cross P from right to left, that is, w2(C∗) = 0. For an s-t path P and an intersecting
SRLG S we define Sclw(P ) the clockwise part of S with respect to P as the subset
of those links in S \ (S ∩ P ) for which the corresponding dual edge is reachable from
(S ∩ P )∗ on a path clockwise to P . (see Fig. 3).

For two s-t paths P1 and P2 without crossings, an ordered pair (P1, P2) is clockwise
(S-)disjoint if for any SRLG S in S intersecting P1, Sclw(P1) does not intersect P2.
Obviously, paths P1 and P2 are disjoint exactly if both pairs (P1, P2) and (P2, P1) are
clockwise disjoint.

4.1 Induction step
In what follows we show the equality in (1) for MAX-FLOW ≥ 2. First, we assume that
for some k ≥ 2 we have k − 1 pairwise disjoint s-t paths P1, . . . Pk−1 (when k = 2 we
assume that P1 is clockwise disjoint from itself). We will give an algorithm for finding
either k pairwise disjoint s-t paths or a closed dual walk C with ⌊l(C)/w(C)⌋ = k − 1 (see
Algorithm 1). Then applying the algorithm repeatedly for k = 2, . . . , MAX-FLOW,
we get an inductive proof of the equality in Lemma 3.1.

We may assume that the first edges of P1, . . . , Pk−1 occur in this clockwise order at
s. We continue this series of paths by generating new s-t paths Pk, Pk+1, . . .. At each
step, a new path Pl is generated and if Pl−k+1, . . . , Pl are pairwise disjoint, we stop.
Otherwise we generate a new path again. If we do not find k pairwise disjoint paths
after |V ∗| + 1 path generations, then the algorithm stops and we can determine a
closed dual walk C with ⌊l(C)/w(C)⌋ = k − 1 (see Claim 4.2). Our algorithm is described
in Algorithm 1.

When generating a new path Pl we use previous paths Pl−1 and Pl−k. Intuitively,
Pl is the path clockwise ’nearest’ to Pl−k among those that are clockwise-disjoint from
Pl−1.

Now we give the precise definition of ’nearness’ by describing an ordering of the
paths. The clockwise order of the links incident to a node v gives a cyclic ordering of
those links. For a fixed link e incident to v this cyclic ordering induces a complete
ordering <v,e of the links incident to v: for links e1, e2 incident to v we say that
e1 <v,e e2 if e1 is earlier than e2 in the clockwise order starting from e. Given an s − t
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4.2 Computing the next nearest clockwise SRLG-disjoint path 9

Algorithm 1: Search for one more SRLG-disjoint path
Input: MRSDP problem input, P1, . . . , Pk−1 pairwise disjoint s-t paths if k ≥ 3 or

an s-t path P1 that is clockwise disjoint from itself if k = 2.
Output: k pairwise disjoint s-t paths or a closed dual walk C in G∗ with⌊

l(C)
w(C)

⌋
= k − 1

1 P0 := Pk−1
2 for l = k, . . . , k + |V ∗| do
3 Pl := Pnearest(Pl−1, Pl−k) (see Alg. 2)
4 if Pl, Pl−k+1 are S-disjoint then
5 return Pl−k+1, . . . , Pl−1, Pl

6 return a closed dual walk C in G∗ with
⌊

l(C)
w(C)

⌋
= k − 1

path P , these orderings induce an ordering <P on the set of s-t paths the following
way. Let P1 and P2 be s-t paths and let v denote the first node where they enter on
the same link (say e) but continue on different links, say e1 and e2 (if v = s, let e be
the first link of P ). We say that P1 <P P2 if e1 <v,e e2.

Now we are ready to give a precise definition of Pl: it is an s-t path that is clockwise
disjoint from Pl−1, does not cross Pl−k and within these constraints minimum with
respect to <Pl−k

(see Algorithm 2).

4.2 Computing the next nearest clockwise SRLG-disjoint path

In Algorithm 2 we have two non crossing paths Q1, Q2 as input such that Q1 is
clockwise disjoint from itself. We determine a path P that is clockwise-disjoint to
Q1, does not cross Q2 and within these constraints minimum for <Q2 . Note that by
calling the algorithm with Q1 = Pl−1 and Q2 = Pl−k we get the required path Pl in
Algorithm 1.

Algorithm 2 uses DFS on a proper auxiliary graph G′ and explores the nodes in
clockwise order to find the optimal path. In order to avoid path P to cross Q2, we
modify G. We duplicate path Q2 by ’cutting’ it into two along its route, creating a
left and a right copy of Q2: instead of each internal node v on Q2 we add two nodes
vleft and vright to G, and for each internal link uv ∈ Q2 we add two links uleftvleft and
urightvright. For a link uv incident to a node v ∈ Q2 but not on Q2 we create the link
vleftu if uv is on the left side of Q2 and we create vrightu if the link is on the right side
of Q2. Similarly we add two copies of links of the form vu with v on Q2 but u not on
Q2. The first and last links (say sv and ut) have two copies: svleft, svright and uleftt,
urightt, respectively. Let GQ2 denote the resulting graph. Note that GQ2 is also planar,
and there is a bijection between the s-t paths of G not crossing Q2 and the s-t paths
of GQ2 (apart from Q2, which has two copies in GQ2).

Clockwise separation to Q1 can be guaranteed by deleting the clockwise part of all
SRLG-s intersecting Q1 (see line 3). If a link e to be deleted is in Q2, we delete both
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Figure 4: s-t path P that is minimum with respect to <Q2 , clockwise-disjoint to Q1 and
does not cross Q2. (Usually, we call Alg. 2 with P = Pl, Q1 = Pl−1 and Q2 = Pl−k)

Algorithm 2: Nearest clockwise SRLG-disjoint path
Input: Planar graph G(V, E), SRLG set S, non crossing s-t paths Q1, Q2, such that

(Q1, Q1) is clockwise disjoint
Output: An s-t path P that is clockwise-disjoint to Q1, does not cross Q2, and is

minimum with respect to <Q2

1 G′ := GQ2

2 for (v1, v2) ∈ E(Q1) do
3 for S ∈ S : (v1, v2) ∈ S do

E′ := E′ \ Sclw(Q1)

4 DFS-TREE:= DFS tree on E′ rooted at s, exploring nodes in clockwise order (see
<v,e).

Starting link of DFS: sqright, where sq ∈ Q2.
5 return the s-t path in DFS-TREE

the left and right copies of the link (see Fig. 4). The resulting graph is G′. Then an
optimal path with respect to <Q2 can be easily determined by a DFS if we fix the
order of node exploration according to the clockwise order of the links. Since Q1 does
not cross Q2 and is clockwise disjoint from itself, Q1 is in G′. Hence t is reachable
from s in G′ and the DFS finds an s-t path indeed.

Now we show by induction that the last k − 1 paths in the series behave similarly
to the input paths.

Claim 4.1. 1. Paths Pl−k+2, . . . , Pl are pairwise S-disjoint and in this clockwise
order at s if k ≥ 3.

2. Path Pl is clockwise disjoint from itself if k = 2.

Proof. First, we prove part a). It is enough to show that the paths are in this clockwise
order at s and that Pl and Pl−k+2 are S-disjoint. Since by induction Pl−1 and Pl−k+1 are
S-disjoint, they are also clockwise S-disjoint and Pl−k+1 does not cross Pl−k. We know
that Pl is minimum with respect to <Pl−k

among such paths, hence Pl ≤Pl−k
Pl−k+1,

which shows the clockwise order of the paths. All we have to show is that Pl is clockwise
S-disjoint to Pl−k+2. Assume indirectly that there is an SRLG S such that there is
a dual path Q∗ ⊆ Sclw(Pl) connecting dual edges e∗, f ∗ such that e ∈ Pl, f ∈ Pl−k+2.
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e′
i

ei−1

s t
fi

fi−1

Pi

Pi−1

CiSi

Figure 5: Illustration for Claim 4.2

Since path Pl−k+1 is between Pl and Pl−k+2 in the clockwise order, this dual path
would have a dual edge h∗ such that h ∈ Pl−k+1 contradicting that Pl−k+1 and Pl−k+2
are clockwise S-disjoint.

Now we similarly prove the second part of the claim. Assume indirectly that Pl is
not clockwise disjoint and there are (not necessarily different) dual edges e∗, f ∗ such
that there is a dual path connecting e∗ to f ∗ in S∗

clw(Pl). Then this dual path would
have a dual edge h∗ where h ∈ Pl−1, contradicting that Pl−1 and Pl are clockwise
disjoint.

If we find pairwise disjoint paths Pl−k+1, . . . , Pl−1, Pl in line 5 of Algorithm 1, then
we are done. In what follows, we give a procedure for finding a closed dual walk C with
l(C)/w(C) < k (line 6) when such paths do not appear while l = k, k + 1, . . . , k + |V ∗|.
Let N := k + |V ∗|.

Claim 4.2. For i = N, . . . , k, we can compute links ei ∈ E, faces fi ∈ V ∗, SRLGs
Si ∈ S, and paths Ci ⊆ S∗

i such that

• ei is part of Pi \ Pi−k,

• fi is the face left to ei (as we walk on Pi from s to t)

• Ci is a dual path connecting fi−1 to fi starting with e∗
i−1 and then going in

S∗
i clw(Pi−1) .

Proof. By the assumption, (PN−k, PN−k+1) is clockwise disjoint, but (PN , PN−k+1) is
not clockwise disjoint, and hence there exists a link eN ∈ PN \ PN−k (intuitively, PN−k

is not close to PN−k+1, but there is a link eN ∈ PN−k+1 close to PN ). Let the face left
to eN be fN . By replacing eN with other the links of fN we get an s-t path that is
smaller with respect to <PN−k

. Thus there is a link e′
N neighboring fN which is not in

E ′ when the DFS in Algorithm 2 is started. So there is an SRLG SN ∈ S such that
a dual path Q∗ in S∗

Nclw
(PN−1) connects the dual of a link eN−1 ∈ PN−1 and e′

N , see
also Fig. 5. Since PN−1, PN−k, PN do not cross and follow each other in this clockwise
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4.3 Base cases: finding a self-SRLG-disjoint path 12

order, path PN−k intersects Q. Thus eN−1 /∈ PN−k−1, otherwise pair (PN−k−1, PN−k)
would not be clockwise disjoint. By repeating the same argument, we can find ei, fi, Si

and Ci for i = N, . . . , k as prescribed in the statement of the claim.

For i = N, . . . , k, let ei, fi, Si, and Ci be as described in Claim 4.2. By pigeonhole
principle, fi = fj for some k ≤ i ≤ j ≤ N . Let C be the closed dual walk yielding
from the concatenation of Ci+1, . . . , Cj. We will show that C satisfies l(C)/w(C) < k,
which is equivalent to u := ⌊(j−i)/k⌋ < w(C), because l(C) = j − i. If u = 0, then the
inequality is trivial. Otherwise, ej is strictly to the right of Pj−k (by Claim 4.2).

By line 3 of Alg. 1, Pj−(l+1)k is to the left of Pj−lk for all l = 1, . . . , u. Based
on this, we can see that Cj−(l+1)k+1 · . . . · Cj−lk makes at least one turn clockwise.
Concentrating now on path PN , we can see that we have an extra right-to-left crossing
of the path at the last edge of Ci+1, that hitherto was not considered, which means
w(Ci · . . . · Cj) = w(C) ≥ u + 1.

By the above procedure, we can find a closed dual walk C with l(C)/w(C) < k in line 6
of Algorithm 1. Since the input of the Algorithm was a number of k − 1 SRLG-disjoint
paths, we also have k − 1 ≤ l(C)/w(C), thus ⌊l(C)/w(C)⌋ = k − 1.

4.3 Base cases: finding a self-SRLG-disjoint path
What remains is to deal with the base cases (k = 1, 2) of the induction. It is trivial to
decide whether there is an s-t path in G, so we may assume that such a path exists.
Also, we may assume that there is no SRLG separating s and t. We have seen that
Algorithm 1 can be run for an s-t path P if (P, P ) is clockwise disjoint, by choosing
P1 = P2 = P as input (k = 2). For such an input the algorithm either finds a closed
dual walk C in G∗ with ⌊l(C)/w(C)⌋ = 1 or finds two S-disjoint s-t paths. So our aim is
to find an s-t path P such that (P, P ) is clockwise disjoint or if no such path exists to
find a closed dual walk C in G∗ with ⌊l(C)/w(C)⌋ < 2 proving that MAX-FLOW is 1.

In order to find the path above, we will repeatedly use Algorithm 1 for k = 2 with an
expanding series of SRLG sets. The key is to define SRLG sets S0, S1, S2, . . . , S⌈log2(d)⌉ =
S such a way that if two s-t-paths P, R are Si-disjoint then (P, P ) is clockwise Si+1-
disjoint, generalizing the inductive idea applied in [22].

For an SRLG S, a face p∗ ∈ V (S∗) and a positive integer i let S∗
i (p∗) be the set of

dual edges that are part of a path in S∗ that has at most i edges and starts from p∗. It
is easy to see that in the subgraph induced by S∗

i (p∗), there is a path of length at most
2i between any two nodes. Let S∗

0 := S∗
V and S∗

i := S∗
V ∪ {S∗

2i−1(p∗)| S ∈ Sregion, p∗ ∈
V (S∗)} (i = 1...⌈log2(d)⌉). Note that S⌈log2(d)⌉ = S.

Lemma 4.3. Suppose that P and R are s-t paths that are Si−1-disjoint. Then the
pair (P, P ) is clockwise Si-disjoint.

Proof. Assume indirectly that (P, P ) is not clockwise disjoint. Then there is an SRLG
Si ∈ Si and link e ∈ Si ∩ P such that a dual path in S∗

i clw(P ) connects clockwise
the right node of e∗ to the dual of a link f ∈ P ∩ Si. Let Q∗ denote this dual path
extended with dual edge e∗. We assume Q∗ is of minimum length.
Claim 4.4. Path Q∗ is a shortest path from e∗ to f ∗ in S∗

i .
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e fs t

Q∗

Q′∗

Figure 6: Illustration for Claim 4.4

Proof. If there were a shorter dual-path Q′∗ from e∗ to f ∗, it could only cross P from
right to left. Together with the reverse of Q∗, they would form a dual walk separating
s and t, which is a contradiction because we assumed that there is no separating
SRLG.

By Claim 4.4 path Q∗ can be chosen shortest, that is, we may assume it has at
most 2i edges. Since paths P and R are Si−1-disjoint, they are link-disjoint. Hence
path R intersects Q ⊆ Si at a link h ≠ e, f . If i = 1, |Q| ≤ 2 hence there is no such
link and the claim follows. If i ≥ 2, assume that there is such a link h. Dual edge h∗

subdivides path Q∗ into two shorter paths, which are also shortest paths. Observe
that at least one of them has length at most 2i−1 and thus covered by an SRLG in
Si−1, contradicting the assumption that (P, R) are Si−1-disjoint.

Menger’s Theorem [24] characterizes the maximum number of node-disjoint (that is,
S0 = SV -disjoint) s-t paths, which we can find in polynomial time. Since we assumed
that there is no SRLG separating s and t thus, there is no separating node either.
Hence there are two node-disjoint s-t paths P ′

0 and P ′′
0 (that can be found e.g., via

Suurballe’s algorithm [37]). Our algorithm for finding an s-t path P such that (P, P )
is clockwise S-disjoint is the repetition of the following steps, starting with i = 1. First
we call Algorithm 1 with k = 2 for P1 = P2 = P ′

i−1 and SRLG set Si. If the algorithm
finds two Si-disjoint s-t paths P ′

i and P ′′
i , then 1) if Si = S that is i = ⌈log(d)⌉, we

return with the S-disjoint paths P ′
i and P ′′

i , or else, 2) we go to the first step with
path P ′

i and SRLG set Si+1. In the other case, the algorithm finds a closed dual
walk C as in Theorem 2.2 with Si, then we stop the process. Since for every S ∈ Si

(1 ≤ i ≤ ⌈log(d)⌉) there is an SRLG S ′ ∈ S with S ⊆ S ′, for this closed dual walk C
we have ⌊l(C)/w(C)⌋ ≤ 1 for S, too.

4.4 Complexity Analysis
We have just built an algorithm solving the MRSDP problem. Now we turn to its
complexity:

Proof of Thm. 2.2. Suppose for now that we have l − 1 S-disjoint s-t paths (2 ≤ l ≤
MAX-FLOW), and we are searching for one more of them.

First we analyze Algorithm 2. The algorithm has two sections. The second is a
DFS, which runs in O(n).

Turning to the first section, we can observe that, for every set of l −1 consecutive s-t
paths Pi, Pi+1, . . . , Pi+l−2 generated by Algorithm 2 it holds that an SRLG S intersects
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(a) Closed dual walk C
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C1

C2S1
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(b) Uncrossed walks C1 and C2

Figure 7: Closed dual walk C crosses itself along the dual-edges of SRLGs S1 and S2 at a
face f . The dual-edges of C can be reordered such that it results in two closed dual walks C1
and C2, both using the edges of both S1 and S2, switching between S1 and S2 at f , meaning
l(C1) + l(C2) ≤ l(C) + 2.

at most one of them. We argue that the total complexity of l − 1 consecutive first
sections is O(nµ), based on the following. Creating graphs GQ2 and their related SRLG
sets runs in O(nµ), since all SRLGs have O(nµ) edges in total. Then, determining
and deleting from graphs GQ2 the parts of SRLGs clockwise to paths Q1 also runs in
the proposed total complexity.

In Algorithm 1, we call Algorithm 2 at most |V ∗| + 1 = O(n) times, so, for fixed l,
the complexity of Algorithm 1 is O(n2 µ

l
). This gives a running time of O(n2µ log k) for

finding k = MAX-FLOW paths, if we have a single self-S-disjoint path to start with.
In the base case, when we calculate the first self-SRLG-disjoint s-t path, after

calculating two node-disjoint s-t paths (that can be done in O(n2) [37]), for each
i ∈ {1, . . . , ⌈log d⌉}, first we determine SRLG sets Si and then call Algorithm 1. For
a fixed i, Si can be constructed in O(nµρ), since there are O(n) edges, each part of
at most µ SRLGs S ∈ S, each S having O(ρ) nodes. With Si, Algorithm 1 runs in
O(n2µρ). Thus, the runtime of the base case is O(n2µρ log d).

We can conclude that k = MAX-FLOW S-disjoint paths can be found in polynomial
time, in O (n2µ (log k + ρ log d)). Computing the dual-walk at the end of the algorithm
can be done in O(n2) if while executing Algorithm 2 we store for each link visited in
the DFS a link of Pl−1 and an SRLG, that contains them both (if there is any). This
way we can find ei, fi and Ci (described in Claim 4.2) in O(n) time.

5 Lower Bound on the Maximum Number of Re-
gional SRLG-disjoint Paths

By using Theorem 2.2, we prove Theorem 2.1.

Proof. Since MAX-FLOW ≤ MIN-CUT is obvious, we need to prove MIN-CUT ≤
≤ MAX-FLOW + 2. By Theorem 2.2, we can take a closed dual walk C such that
⌊l(C)/w(C)⌋ = MAX-FLOW. Hence it suffices to find an SRLG cut of size ⌊l(c)/w(C)⌋ + 2
(i.e., a set of ⌊l(c)/w(C)⌋ + 2 SRLGs in S that disconnect s and t).
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If w(C) ≥ 2, then C crosses itself at a face. Similarly to the technique in [18] we
can decompose C into two closed dual walks C1 and C2 by the uncrossing procedure
described in Fig. 7. We claim that w(C1) + w(C2) = w(C), since the orientation of
the dual-edges in C1 and C2 can be chosen to be the same as it is in C, inducing
both w1(C1) + w1(C2) = w1(C) and w2(C1) + w2(C2) = w2(C) for any s − t path
P . Furthermore, l(C1) + l(C2) ≤ l(C) + 2. By repeating the uncrossing procedure,
we have closed dual walks C1, C2, . . . , Cw(C) such that w(Ci) = 1 for each i, and∑

i l(Ci) ≤ l(C) + 2 · (w(C) − 1). Since we have

min
i

l(Ci) ≤
⌊

1
w(C)

∑
i

l(Ci)
⌋

≤
⌊

l(C) − 2
w(C)

⌋
+ 2 ≤

⌊
l(C)
w(C)

⌋
+ 2,

there exists a closed dual walk Ci such that w(Ci) = 1 and l(Ci) ≤ ⌊l(C)/w(C)⌋ + 2.
This shows the existence of an SRLG cut of size at most ⌊l(C)/w(C)⌋ + 2, and this can
be found in linear time.

6 Discussion

6.1 Heuristics improving the performance of the algorithm
6.1.1 Additional exit criteria

Similarly to [31], if Pl = Pl−k holds for k − 1 consecutive iterations (in line 3 of
Algorithm 1), then we can stop, since this means that [Pl, . . . , Pl−k+1] will remain the
same set of paths for the rest of the iterations. Note that since the set consists only of
k − 1 paths instead of k this can only happen, when k = MAX-FLOW + 1.

6.1.2 A heuristic approach to reduce path lengths

After the completion of Alg. 1, similarly to [31], a heuristic shortening of the k =
MAX-FLOW disjoint paths can be applied as follows. In each iteration, we fix k − 1
paths, and we compute a shortest s-t path that is SRLG-disjoint from these. The
algorithm stops when there are no k − 1 paths for which a shorter disjoint s-t path
exists as the current kth path. As the total length of the paths decreases after each
successful shortening, the heuristic terminates after a finite number of iterations.

6.2 Additional natural constraint and tighter min-max theo-
rem

The following Property 3 is not demanded for the SRLG set S, but if it fulfills it, a
stronger max flow- min cut theorem can be stated:

Property 3. Suppose that two paths P1 and P2 in the duals of SRLGs S1, S2 ∈ S are
crossing in a face f ∈ V ∗. Then, there exists an SRLG S3 ∈ S such that S∗

3 involves f ,
some end-faces f1 and f2, and f − f1 and f − f2 sub-paths of P1, and P2, respectively.
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f1 f2

f3f4

f

P3 ⊂ S∗
3

P1 ⊂ S∗
1P2 ⊂ S∗

2

Figure 8: Illustration for Property 3. Nodes are vertices of the dual graph.

If this property holds, the uncrossing procedure used in Theorem 2.1 can be done in
such a way that l(C) ≤ l(C1) + l(C2) + 1. This means that in this case, MIN-CUT ≤
MAX-FLOW + 1. Thus, we can state:

Corollary 6.1. For any instance of the MRSDP problem, where Properties 1 and 3
hold,

MAX-FLOW ≤ MIN-CUT ≤ MAX-FLOW + 1.

We note that Property 3 holds in many natural settings, including the model of [18],
where the geographical embedding of the network is known and SRLGs are induced
by all the circular discs of the same radius.

6.3 Dealing with non-planar graphs
This paper assumed the network topology to be planar, which enabled the design of
a polynomial algorithm for calculating a maximal number of regional SRLG-disjoint
paths. Naturally rises the question if the problem can be solved efficiently if there
are a strictly positive number x of link crossings in any embedding of the network
in the plane. We believe the answer is affirmative. To argue, in the following, we
present a very heuristic approach as follows. We assume that for any crossing link
pairs e, f there is an SRLG S containing e and f . This means that there are no s-t
paths P1 and P2 containing e and f , respectively. We also ban every single path to
use both crossing edges. Then, the MAX-FLOW in G \ {e} or in G \ {f} will be a
maximal solution in the original graph too. It is easy to see that in the presence of
x non-overlapping link crossings, we can find the MAX-FLOW via solving 2x planar
problem instances, where we delete one edge of each crossing. If x is O(poly(log n)),
this means a runtime polynomial in n. A more elaborated study on calculating a
maximal number of regional SRLG-disjoint s-t paths in a network with some link
crossings will be part of a future work.

7 Related Works

7.1 Theoretical preludes
Papers [23] and [22] provided polynomial algorithms and min-max theorems to find
a maximal number of interiorly d-hop disjoint paths (i.e., no walk of length d is
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7.2 Prior works related to SRLG-disjoint routing 17

connecting any pair of these paths) in planar graphs, for d = 1, and d ≥ 1, respectively.
The condition of interiorly d-hop disjointness can be rephrased as interiorly SRLG-
disjointness for a special class of primal-connected SRLGs.

Based on the former, and motivated by [28], [18] and [31] designed a tight min-max
theorem and faster polynomial algorithms for finding a maximal number of circular
disk-disjoint paths in geometric graphs without link crossings. The disk-disjointness
can be rephrased as SRLG-disjointness for a special class of dual-connected SRLGs.

7.2 Prior works related to SRLG-disjoint routing
To the best of our knowledge, [17] was the first to prove that the problem of finding
two SRLG-disjoint paths is NP-complete via showing the NP-hardness of one of its
special cases, the so-called fiber-span-disjoint paths problem.

[6] corrects [21], and shows that the SRLG-disjoint routing is NP-complete even
if the links of each SRLG S are incident to a single node vS. It also presents some
polynomially solvable subcases of this special problem.

[44] offers an ILP solution for the SRLG-disjoint routing problem. Some papers, like
[13, 9] rely at least partly on ILP/MILP formulations, i.e., on (mixed) integer linear
programs to solve or approximate the weighted version of the SRLG-disjoint paths
problem.

Under a probabilistic SRLG model,[19] aims finding diverse routes with minimum
joint failure probability via an integer non-linear program (INLP).

Due to the complexity of the problem family, heuristics are also investigated [43, 45],
unfortunately, with issues ranging from possibly non-polynomial runtime to possibly
arising forwarding loops in the presence of disasters.

8 Simulation Results
In this section, we present numerical results to demonstrate the performance of
the proposed algorithms on some realistic physical networks. The algorithms were

Table 1: Backbone network topologies used in the simulations [30]. The diam is the physical length of the longest
shortest path, cable is the total physical length of the cables, k∗ is the average number of node disjoint paths between
the node-pairs.

Network |V | |E| diam. cable k∗ davg d ρavg ρ |Sregion|
name [km] [km] avg. over all SRLGs of Table 2

Pan-EU 16 22 1713 6321 2.72 2.70 3.00 4.27 5.39 9.56
EU (Nobel) 28 41 3314 16864 2.69 2.78 3.50 4.05 5.61 23.22

N.-American 39 61 5121 32796 2.89 3.07 3.89 4.03 5.39 31.00
US (NFSNet) 79 108 5502 37071 2.85 2.89 3.67 3.99 6.22 63.00

US (Fibre) 170 230 5695 41530 2.42 3.20 4.83 7.18 14.61 107.00
US (Sprint-Phys) 264 313 5539 40595 2.00 2.88 4.11 6.65 13.39 156.94

US (Att-Phys) 383 488 5617 58866 2.46 3.29 5.00 9.06 18.78 234.11
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implemented in Python version 3.8 using various libraries. Our implementation of the
algorithm and the input data used for evaluation is uploaded to a public repository2.
Runtimes were measured on a commodity laptop with a CPU at 2.8 GHz and 8 GB
of RAM. We investigate various aspects of system performance, e.g., how the list of
SRLGs or the network parameters impacts the number of SRLG-disjoint paths, their
length, and runtime.

For the performance evaluation of the algorithms, we selected seven topologies (see
Table 1 for the details) and analyzed the results for various known lists of SRLGs
(Table 2). We have adopted four approaches to generate SRLGs:

1. circular disk failures of a given radius like in [18],

2. ellipse disk failures of a given radius,

3. circular disks with k = 0, 1 nodes in their interior and

4. random walks in the dual graph.

For 1) we have set radius to r = 50, 100, 200, 300km and used the algorithm in [39] to
generate the SRLGs that over every possible epicenter for the circular disk. For 2),
first, we have transformed the node coordinates by multiplying the vertical coordinates
(the latitude values) by 0.5 and run the algorithm in [39] to generate the SRLGs.
After transforming back the coordinates, we have SRLGs covered by an ellipse where
the minor axis is 2 times longer than the major axis. We perform a second round of
generating SRLGs but multiply the horizontal coordinates (the longitude values) by
0.5. For 3) we select SRLGs that can be covered with a circular disk having k = 0, 1
nodes in its interior. This will result in a circular disk with different radii, and the
generation is based on the Delaunay graphs, see [41]. For 4), we generated SRLGs
as random walks in the dual graph with ρ = 2, 3, 4, 5 dual edges and the number of

2https://github.com/hajduzs/regsrlg

Table 2: The list of SRLGs used in the simulation. The minimal, average, and maximal diameter of the dual of an
SRLG is denoted by dmin, davg and d, respectively. The minimal, average and maximal size of an SRLG is denoted by
ρmin, ρavg and ρ. The number of SRLGs is |Sregion|. All the values in the table are averages over the networks shown
in Table 1.

SRLG name dmin davg d ρmin ρavg ρ |Sregion| illustration

disk 50km 1.43 2.27 3.57 2.00 3.41 7.86 103.71
disk 100km 1.71 2.71 4.00 2.71 5.25 11.14 96.71
disk 200km 1.43 3.08 4.29 2.57 8.88 18.00 117.00
ellipse 50km 1.43 2.30 3.71 2.00 3.64 8.14 102.71
ellipse 100km 1.71 2.79 4.00 2.86 5.90 11.71 99.14
ellipse 200km 1.57 3.18 4.57 2.57 10.55 21.29 115.57
0-node 1.43 2.34 3.86 1.14 2.18 4.57 122.43
1-node 1.71 2.68 4.14 2.29 4.05 7.00 145.86
dual-walk 2.59 3.17 3.84 3.50 3.50 3.50 57.25
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Figure 10: Average stretch of SRLG-disjoint paths for each network

SRLGs is ⌊|E|/ρ⌋. Finally, for a given s and t, the SRLGs that form an s-t cut are
omitted.

8.1 Larger SRLGs lead to less number of SRLG-disjoint paths
In this section, we investigate the correlation of the number of SRLG-disjoint paths
with respect to the size of the SRLGs. We expect that having larger SRLGs results in
less number of SRLG-disjoint paths. Fig. 9 shows two charts where the vertical axis is
the number of SRLG-disjoint paths; and the horizontal axis is the size of SRLG in
terms of the number of edges (Fig. 9a) and the diameter (Fig. 9b) of the SRLGs. On
Fig. 9a we draw different curve for each type of SRLG of Table 2 and on Fig. 9a we
draw different curve for each network of Table 1. We can observe that 0-node, 1-node,
and dual-walk SRLGs are smaller than the methods where SRLGs have fixed physical
sizes (disk and ellipse). The backbone network is denser in heavily populated areas
(e.g., east and west coast in the USA). On Fig. 9b we can observe that larger networks
have larger SRLGs as well (it can be also seen on Table 1). We can also observe that
for larger networks, the impact of the size of the SRLG decreases.
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8.2 Increase in the path lengths
We have also investigated the length of the paths. Fig. 10 shows the stretch, i.e., the
length of the path divided by the shortest path, where the lengths are the physical
length of the paths. The figure shows the length of the shortest paths among the k
SRLG-disjoint paths. We can observe that it is just 1%-10% longer than the shortest
path. It is essential in network resiliency because only one of the paths is set up, called
the working path, while the others are the backup paths set up only in case of failure.
It also shows that the longest paths among the k SRLG-disjoint paths have stretch
2-3. As expected, for networks with more nodes and links, the difference is smaller.
The chart also shows the average stretch over all the k SRLG-disjoint paths. Note
that, on average, there were 2.05 SRLG-disjoint paths in our evaluation.

8.3 Running time
We have also measured the running time of the proposed algorithm. Fig. 11 shows the
running times for networks of different sizes. The horizontal axis shows the number
of nodes in the network on a logarithmic scale. We have sorted the running times
depending on the maximal diameter of the SRLGs that was d = 3, 4, 5, 6 to illustrate
that the algorithm runs in a moderately longer time for larger SRLGs. In general, we
observe a scalable performance with a quadratic increase in the runtime with respect
to the number of nodes.

9 Conclusions
Finding SRLG-disjoint paths in a network between a given pair of nodes is essential to
network resiliency. The problem, in general, was known to be computationally complex;
thus, heuristic algorithms (mostly Integer Linear Programming) were used. It was
observed that heuristic algorithms perform well in most cases; however, they cannot
provide the performance guarantee required in operational networks. Therefore, the
best practice remained to degrade the requirements in the Service Level Agreements
to protect the network against single (or dual) link/node failures. It eventually leads
to networks being very reliable except during natural disasters (e.g., earthquakes,
flooding, hurricanes), where multiple pieces of equipment in a small area fail within a
short time, called regional failures.

On the other hand, although several NP-hard problems can be efficiently solved
for planar graphs, the (almost) planarity of backbone network topologies has not
yet been exploited in previous approaches. In the last decades, most of the related
algorithmic tools were already available in geometric topology to close this gap [22] and
precisely identify the properties SRLGs must meet to have fast algorithms for finding
SRLG-disjoint paths. An important step was on this road in 2014 by Kobayashi-Otsuki
[18], giving a polynomial-time algorithm for one particular type of SRLGs (circular
disk failures of a given radius). This paper aims to close this gap, and generalize the
algorithm for a broader range of SRLGs that covers all cases in practice (the edges in
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Figure 11: The runtime for each network

the dual graph must be connected), show that the algorithm is very efficient by proving
that the runtime of the algorithm is O(n2) roughly (with additional, in most cases
small parameters). Furthermore, we give a pure combinatorial algorithm description
that does not utilize the exact geographical embedding of the network. We provide a
Python implementation and show that, on average, one of the resulting SRLG-disjoint
paths is almost as short as the absolute shortest path through simulations.
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Two heuristics for calculating a shared risk link group disjoint set of paths of
min-sum cost. Journal of Network and Systems Management, 23(4):1067–1103,
2015.

[14] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukherjee.
Design of disaster-resilient optical datacenter networks. J. Lightw. Technol.,
30(16):2563–2573, 2012.

[15] I. B. B. Harter, D. Schupke, M. Hoffmann, G. Carle, et al. Network virtualization
for disaster resilience of cloud services. IEEE Commun. Mag., 52(12):88–95, 2014.

[16] J. Heidemann, L. Quan, and Y. Pradkin. A preliminary analysis of network
outages during hurricane Sandy. University of Southern California, Information
Sciences Institute, 2012.

EGRES Technical Report No. 2022-14



References 23

[17] J.-Q. Hu. Diverse routing in optical mesh networks. IEEE Trans. Communications,
51:489–494, 2003.

[18] Y. Kobayashi and K. Otsuki. Max-flow min-cut theorem and faster algorithms in
a circular disk failure model. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications, pages 1635–1643, April 2014.

[19] H.-W. Lee, E. Modiano, and K. Lee. Diverse routing in networks with probabilistic
failures. IEEE/ACM Trans. Netw., 18(6):1895–1907, 2010.

[20] X. Long, D. Tipper, and T. Gomes. Measuring the survivability of networks to
geographic correlated failures. Optical Switching and Networking, 14:117–133,
2014.

[21] X. Luo and B. Wang. Diverse routing in WDM optical networks with shared risk
link group (SLRG) failures. In Proceedings of 5th International Workshop on the
Design of Reliable Communication Networks (DRCN 2005), Oct. 16-19 2005.

[22] C. MacDiarmid, B. Reed, and L. Schrijver. Non-interfering dipaths in planar
digraphs. Jan. 1991.

[23] C. Mcdiarmid, B. Reed, A. Schrijver, and B. Shepherd. Induced circuits in planar
graphs. Journal of Combinatorial Theory, Series B, 60(2):169 – 176, 1994.

[24] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[25] B. Mukherjee, M. Habib, and F. Dikbiyik. Network adaptability from disaster
disruptions and cascading failures. IEEE Commun. Mag., 52(5):230–238, 2014.

[26] Y. Nemoto and K. Hamaguchi. Resilient ICT research based on lessons learned
from the Great East Japan Earthquake. IEEE Commun. Mag., 52(3):38–43, 2014.

[27] S. Neumayer, A. Efrat, and E. Modiano. Geographic max-flow and min-cut under
a circular disk failure model. In IEEE INFOCOM, pages 2736–2740, 2012.

[28] S. Neumayer, A. Efrat, and E. Modiano. Geographic max-flow and min-cut under
a circular disk failure model. Computer Networks, 77:117–127, 2015.

[29] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano. Assessing the vulnerability
of the fiber infrastructure to disasters. IEEE/ACM Trans. Netw., 19(6):1610–1623,
2011.
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