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Four-regular graphs with extremal rigidity properties

Tibor Jordán⋆, Robin Huang⋆⋆, Henry Simmons⋆ ⋆ ⋆,

Kaylee Weatherspoon‡, and Zeyu Zheng§

Abstract

A graph G = (V,E) is called k-edge rigid (k-edge globally rigid, resp.), if it
stays rigid (globally rigid, resp.) after the deletion of at most k − 1 edges. We
can define k-vertex rigidity and k-vertex global rigidity in a similar manner. It
is known that if G is 3-edge rigid (2-edge globally rigid, 2-vertex globally rigid)
with |V | ≥ 5 then |E| ≥ 2|V | holds. Furthermore, the graphs that satisfy the
edge count with equality are all 4-regular.

In this paper we show that for a 4-regular graph G the properties of 3-edge
rigidity, 2-edge global rigidity, and essential 6-edge connectivity are equivalent.
By sharpening a result of H. Fleischner, F. Genest, and B. Jackson we give a
new inductive construction for the family of 4-regular and essentially 6-edge
connected graphs (and hence also for the 4-regular graphs with these rigidity
properties). We prove that G is 2-vertex globally rigid if and only if it is 4-vertex
connected and essentially 6-edge connected.

We also consider 2-vertex rigid graphs G = (V,E) with minimum size
|E| = 2|V | − 1 as well as with |E| = 2|V |. In the former case we use our results
on essentially 6-edge connected graphs to develop a new inductive construction,
complementing an earlier, different construction of B. Servatius. In the latter
case we characterize the edge pairs of G whose deletion preserves rigidity, and
use this result to verify the correctness of a construction of 3-vertex rigid graphs
on |V | ≥ 6 vertices and with |E| = 2|V |+2 edges, proposed by S.A. Motevallian,
C. Yu, and B.D.O. Anderson.

1 Introduction

A d-dimensional framework (or geometric graph) is a pair (G, p), where G is a simple
graph and p : V (G) → Rd is a map. We also call (G, p) a realization of G in Rd. The
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Section 1. Introduction 2

length of an edge uv in the framework is defined to be the distance between the points
p(u) and p(v). The framework is said to be rigid in Rd if every continuous motion of
its vertices in Rd that preserves all edge lengths preserves all pairwise distances. It
is globally rigid in Rd if the edge lengths uniquely determine all pairwise distances.
A relization (G, p) is generic if the set of the d|V (G)| coordinates of the vertices is
algebraically independent over the rationals. It is known that for generic frameworks
rigidity and global rigidity in Rd depends only on the graph of the framework, for
every d ≥ 1. So we may call a graph G rigid (resp. globally rigid) in Rd if every (or
equivalently, if some) d-dimensional realization of G is rigid (resp. globally rigid).
For d = 1, 2 good characterizations for the rigid and globally rigid graphs in Rd are
available (see the next section). Finding similar characterizations for d ≥ 3 is a major
open problem in rigidity theory. We shall only consider the case d = 2 and omit the
reference to the dimension in the rest of the paper. The reader is referred to [9, 14] for
more details on the theory of rigid and globally rigid frameworks and graphs.
Rigid and globally rigid graphs occur in several applications, including sensor

network localization, molecular conformation, formation control, and statics. In some
applications it is desirable to identify or construct graphs that remain rigid or globally
rigid after the removal of some vertices or edges. This motivates the next definitions.
We say that a graph G = (V,E) is k-vertex rigid (resp. k-vertex globally rigid)

if G − X is rigid (resp. globally rigid) for all X ⊆ V with |X| ≤ k − 1. A graph
G = (V,E) is said to be strongly minimally k-vertex rigid (resp. strongly minimally
k-vertex globally rigid) if it is k-vertex rigid (resp. k-vertex globally rigid) and no graph
on |V | vertices with less than |E| edges satisfies this property. We can define (strongly
minimal) k-edge rigidity and k-edge global rigidity in a similar way, by the deletion
of edge sets, rather than vertex sets. The basic problem arising in this setting is to
find the best possible lower bound, in terms of k and |V |, for the size of the strongly
minimal graphs. It amounts to proving a lower bound and finding an infinite family of
such graphs that attains this bound. In two dimensions this problem has been solved
for all k ≥ 1 and for each of the four versions (rigid or globally rigid, vertex or edge
deletion), see [8]. A related problem is to obtain a simpler characterization and-or an
inductive construction that generates every strongly minimal graph from a small base
graph. We shall focus on this problem in five special cases, with k ∈ {2, 3}.

It is well known that the number of edges in a strongly minimally rigid (also called
minimally rigid) graph on |V | vertices is equal to 2|V |−3. In the case of 2-edge rigidity
and global rigidity the extremal number is 2|V | − 2, assuming |V | ≥ 4. Inductive
constructions are also available: the so-called Henneberg construction of minimally
rigid graphs is a basic result in rigidity theory. Constructions for strongly minimally
2-edge rigid and globally rigid graphs (i.e. for rigidity circuits and 3-connected rigidity
circuits, resp.) can be found in [1].
It has been verified that the size of the strongly minimally 2-vertex globally rigid

[16], 2-edge globally rigid [8], and 3-edge rigid [8] graphs on |V | ≥ 5 vertices is equal
to 2|V |, and every strongly minimal graph is 4-regular. Our goal is to obtain simpler
characterizations, in terms of connectivity properties, and inductive constructions for
these families. We also show that our results give rise to a new inductive construction
for strongly minimally 2-vertex rigid graphs. These graphs satisfy |E| = 2|V | − 1 and
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Section 2. Rigid and globally rigid graphs 3

are almost 4-regular. A different inductive construction was given by B. Servatius in
[15].

In the last section we consider 2-vertex rigid graphs with |E| = 2|V | and characterize
the edge pairs whose deletion preserves rigidity. By using this result we can show that
the strongly minimally 3-vertex rigid graphs on |V | ≥ 6 vertices satisfy |E| = 2|V |+ 2.
We rely on a lower bound and construction from a paper by S.A. Motevallian, C.
Yu, and B.D.O. Anderson [12]. Here we complete the proof of correctness of their
construction. We also provide a different, simpler construction.

Notation

Let G = (V,E) be a graph and X ⊆ V . The set of neighbours of X, that is, the
set of vertices in V \X which are connected to X by at least one edge, is denoted
by NG(X). The set of edges of G with exactly one end-vertex in X is denoted by
δG(X). Edge sets of this form are called edge cuts. Clearly, δG(X) = δG(V \X). If
min{|X|, |V \X|} ≥ 2 then we say that δG(X) is a non-trivial edge cut. We define
dG(X) = |δG(X)|. For a singleton X = {v} we simply write dG(v), which is the degree
of v in G. We shall use the notation SG(X) for the set, and sG(X) for the number
of edges incident with X. The number of edges of G with both end-vertices in X is
denoted by iG(X). Thus sG(X) = iG(X) + dG(X). The subgraph of G induced by X
is denoted by G[X].

2 Rigid and globally rigid graphs

Let G = (V,E) be a graph. It is well-known that if G is rigid then |E| ≥ 2|V | − 3
holds. Rigid graphs with |E| = 2|V | − 3 are called minimally rigid. G. Laman gave a
combinatorial characterization of minimally rigid graphs by using the following notion.
We call G sparse if

iG(X) ≤ 2|X| − 3 (1)

holds for all X ⊆ V with |X| ≥ 2.

Theorem 1. [11] Let G = (V,E) be a graph with |E| = 2|V | − 3. Then G is rigid if
and only if G is sparse.

It is also known that every rigid graph has a minimally rigid spanning subgraph.
This fact and Theorem 1 can be used to characterize rigidity, see e.g. [7]. (We shall
not use this more general result in this paper.) Another basic result in rigidity theory
provides an inductive construction of minimally rigid graphs by using two operations,
called 0-extension and 1-extension. The first one adds a new vertex v to a graph and
two new edges incident with v. The second one deletes an edge xy of G and adds a
new vertex v and three new edges incident with v, including vx and vy. See Figure 1.
Every minimally rigid graph can be obtained from K2 by a sequence of such operations,
see e.g. [14]. We shall use that if G is rigid and G′ is obtained from G by a 0- or
1-extension, then G′ is also rigid. A simple corollary of this fact is that if G is 2-edge
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Section 2. Rigid and globally rigid graphs 4

rigid and G′ is obtained from G by adding a new vertex v and at least three new edges
incident with v then G′ is also 2-edge rigid.

v v v

Figure 1: The 0-extension, 1-extension, and 2-extension operations.

The following two lemmas will be used in the last section.

Lemma 2. Suppose that G = (V,E) is rigid. Then for every X ⊆ V with |V \X| ≥ 2
we have sG(X) ≥ 2|X|.

Proof. Let H = (V, F ) be a minimally rigid spanning subgraph of G. The sparsity
of H implies that iH(V − X) ≤ 2|V − X| − 3, which gives sG(X) ≥ sH(X) ≥
|F | − iH(V −X) ≥ 2|V | − 3− (2|V −X| − 3) = 2|X|.

Suppose that G[X] is a tree for some nonempty X ⊆ V , for which dG(x) = 3 for all
x ∈ X. Then G[X] is called a cubic subtree of G.

Lemma 3. Let G = (V,E) be a graph and let G[X] be a cubic subtree of G for which
G[V \X] is rigid. Then for each pair e, f ∈ SG(X) we have that (i) G − e is rigid,
and (ii) G− {e, f} is not rigid.

Proof. If |X| = 1 then (i) follows from the fact that G−e can be obtained from G[V \X]
by a 0-extension. Using this as the base case, it is not hard to see by induction on |X|
that G−e can be obtained from G[V \X] by a sequence of 0-extensions. This proves (i).
Since G[X] is a cubic subtree, we have sG−{e,f}(X) ≤ 3|X| − (|X| − 1)− 2 = 2|X| − 1.
By Lemma 2 this implies (ii).

Global rigidity is characterized by the following result.

Theorem 4. [5] A graph G is globally rigid if and only if either G is a complete graph
on at most three vertices, or G is 2-edge rigid and 3-vertex connected.

It follows that a 2-edge rigid (or globally rigid) graph on |V | ≥ 4 vertices has at
least 2|V | − 2 edges. A 2-edge rigid graph G = (V,E) with |E| = 2|V | − 2 is called a
rigidity circuit. It follows from Theorem 1 that a graph G with |E| = 2|V | − 2 is a
rigidity circuit if and only if it is ”minimally non-sparse”, that is, every proper subset
X of V satisfies (1). See Figure 2.
Thus the strongly minimally 2-edge rigid (globally rigid, respectively) graphs on

at least four vertices are the rigidity circuits (3-vertex connected rigidity circuits,
respectively). Inductive constructions for these two families of graphs were given in
[1].
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Section 3. Essentially 6-edge connected graphs 5

Figure 2: A minimally rigid graph, a rigidity circuit, and a 3-connected rigidity circuit.

3 Essentially 6-edge connected graphs

We say that a graph G = (V,E) is essentially k-edge connected if every edge cut of size
less than k is trivial. We shall consider essentially 6-edge connected 4-regular graphs.
It is easy to see that such a graph on at least four vertices is simple.

Lemma 5. Let G = (V,E) be an essentially 6-edge connected 4-regular graph with
|V | ≥ 5. Then G− e is 3-vertex connected for all e ∈ E.

Proof. Suppose that G− e is not 3-vertex connected. Then V can be partitioned into
three sets A, S,B such that |S| ≤ 2, A and B are both non-empty, and there are no
edges in G− e from A to B. Since G is 4-regular and simple, it follows that |A| ≥ 2
and |B| ≥ 2. Hence δG−e(A) and δG−e(B) are edge-disjoint non-trivial edge cuts in
G− e such that their edges are all incident with S. The essential 6-edge connectivity
of G implies that |δG−e(A)|+ |δG−e(B)| ≥ 10. This contradicts the fact that the total
degree of the vertices in S in G− e is at most 8, as |S| ≤ 2 and G is 4-regular.

Let G be a graph and let ab, cd be two disjoint edges of G. The 2-extension operation
(on edges ab, cd) adds a new vertex v to G and four new edges va, vb, vc, vd, and deletes
the edges ab, cd. See Figure 1. It is easy to see that 2-extension preserves essential
6-edge connectivity as well as 4-regularity (see [10, Lemma 5.1]). The 2-reduction
operation may be viewed as the inverse of 2-extension. It removes a vertex v which
has four neighbours a, b, c, d in G and adds two disjoint edges that connect two pairs
of its neighbours. In an essentially 6-edge connected graph G we call a vertex v of
degree four 2-reducible if there is a 2-reduction at v for which the resulting graph is
essentially 6-edge connected.

Let us call w a partner of v (in G) if vw ∈ E(G) and NG(v)− {w} = NG(w)− {v}.
It is a symmetric relation. It is easy to see that if G is an essentially 6-edge connected
4-regular graph on at least five vertices and v ∈ V (G) then (i) v has at most one
partner, unless G = K5, (ii) if v has a partner in G then v is not 2-reducible. Fleischner,
Genest, and Jackson [2] verified that every vertex which is not 2-reducible must have
a partner.

Lemma 6. [2] Let G = (V,E) be an essentially 6-edge connected 4-regular graph with
|V | ≥ 5 and let v ∈ V . Then v is not 2-reducible if and only if v has a partner.
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v w

v

w

x

Figure 3: Vertex w is a partner of v (left). A graph in which v and w are not 2-reducible.
Vertex x is 2-reducible (right).

As it was pointed out in [10, Theorem 5.2], Lemma 6 can be used to deduce that
every essentially 6-edge connected 4-regular graph can be obtained from K5 by a series
of 2-extensions and an additional operation that adds two vertices at a time. We next
refine this result, proving that, in fact, every essentially 6-edge connected 4-regular
graph can be obtained from K5 by a series of 2-extensions alone.

Lemma 7. Let G = (V,E) be an essentially 6-edge connected 4-regular graph with

|V | ≥ 6. Then either |V | = 6 and no vertex has a partner, or |V | ≥ 7 and at least 3|V |
7

vertices of G have no partners.

Proof. There is only one 4-regular graph on six vertices (K6 minus a perfect matching),
in which no vertex has a partner. Thus we may assume that |V | ≥ 7. Suppose that
v and w are partners. Let A = {v, w}, NG(A) = {x, y, z}, and B = V − A−NG(A).
We claim that x, y, or z cannot have partners.

By symmetry it suffices to consider x ∈ NG(A). Observe that x is connected to B
by an edge, for otherwise the 4-regularity of G implies that δG(A ∪N) is a non-trivial
edge cut of size at most two. Let xq ∈ E with x ∈ N and q ∈ B. Then, since x has
neighbours in A as well as in B, the only possible partner of x is one of y or z, say y.
But then δG(A ∪ {x, y}) is a non-trivial edge cut of size four, a contradiction. This
proves the claim.
Therefore each pair v, w of partners is incident with six edges that connect them

to vertices with no partners. So if p vertices have partners then 3p edges have this
property. The 4-regularity of G implies that there must be at least 3p

4
vertices with no

partners, which implies the lemma.

The graph on the right in Figure 3 is an essentially 6-edge connected 4-regular graph
with exactly 3|V |

7
2-reducible vertices.

Theorem 8. Let G = (V,E) be a 4-regular graph with |V | ≥ 5. Then G is essentially
6-edge connected if and only if it can be obtained from K5 by a series of 2-extensions.

Proof. Sufficiency is easy to check. The proof of necessity is by induction on |V |.
The statement is trivial if |V | = 5, so we may assume that |V | ≥ 6. By Lemmas
6 and 7 there is a vertex v which is 2-reducible. Let H be an essentially 6-edge
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Section 4. 2-edge global rigidity and 3-edge rigidity 7

connected 4-regular graph obtained from G by a 2-reduction at v. By induction H
may be obtained from K5 by a series of 2-extensions. Extending this series by a single
2-extension that rebuilds G from H, we obtain that G may also be obtained from K5

by a series of 2-extensions.

We remark that Theorem 8 can also be deduced from the inductive construction of
rigidity circuits given in [1], using [10, Lemma 2.1]. We close this section with a useful
lemma.

Lemma 9. [5] Every rigid graph in R2 is essentially 3-edge connected.

4 2-edge global rigidity and 3-edge rigidity

In this section we give a complete characterization of the strongly minimally 2-edge
globally rigid and 3-edge rigid graphs.

Theorem 10. Let G = (V,E) be a 4-regular graph with |V | ≥ 5. Then the following
are equivalent:
(i) G is essentially 6-edge connected,
(ii) G is 3-edge rigid,
(iii) G is 2-edge globally rigid,
(iv) G can be obtained from K5 by a sequence of 2-extensions.

Proof. (i) → (ii) Suppose that G is essentially 6-edge connected. It suffices to show
that for all edges e ∈ E the graph G − e is 2-edge rigid. For a contradiction let us
assume that G − e is not 2-edge rigid for some e ∈ E. Since G − e has 2|V | − 1
edges, there exists a subgraph C of G− e which is a rigidity circuit. Let X = V (C)
and Y = V \X. We must have Y ̸= ∅, for otherwise the 2-edge rigidity of C would
imply that G − e is also 2-edge rigid. If |Y | = 1, then Y = {v} for some v ∈ V
with dG−e(v) ≥ 3. As the addition of a vertex of degree (at least) three preserves
2-edge rigidity, it follows that G− e contains a 2-edge rigid spanning subgraph, which
contradicts our assumption. So we must have |Y | ≥ 2. In this case the 4-regularity of
G and |E(C)| = 2|V (C)| − 2 imply that there are at most four edges between X and
Y in G. Since |X| ≥ 4 and |Y | ≥ 2, it follows that δG(X) is a non-trivial edge cut of
size at most four, a contradiction.
(ii) → (iii) Consider a 3-edge rigid graph G and an edge e ∈ E. Clearly, G− e is

2-edge rigid. By Lemma 5 G− e is also 3-vertex connected. Therefore G′ is globally
rigid by Theorem 4. So G is 2-edge globally rigid, as required.
(iii) → (i) Suppose that G is 2-edge globally rigid. By a result of Hendrickson [4]

globally rigid graphs (on at least four vertices) are 2-edge rigid. Thus G − {e, f}
is rigid for every edge pair e, f ∈ E. We can now deduce from Lemma 9 and the
4-regularity of G is essentially 6-edge connected.

Finally, the equivalence of (i) and (iv) is guaranteed by Theorem 8.
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5 2-vertex global rigidity

In this section we show that 4-regular 2-vertex globally rigid graphs can also be
characterized by a connectivity condition. We start with a lemma, which provides a
fifth equivalent property of 4-regular graphs (c.f. Theorem 10).

Lemma 11. Let G = (V,E) be a 4-regular graph with |V | ≥ 5. Then G is essentially
6-edge connected if and only if G′ = G− v is 2-edge rigid for all v ∈ V .

Proof. Suppose that G is essentially 6-edge connected and let v ∈ V . Consider two
edges e, f incident with v in G. Since G is 3-edge rigid by Theorem 10, H = G−{e, f}
is rigid. We have dH(v) = 2, so G′ is also rigid. The edge count |E(G′)| = 2|V (G′)|− 2
now implies that either G′ is an M -circuit (in which case we are done, since M -circuits
are 2-edge rigid), or it contains a unique M -circuit C as a proper subgraph, induced
by a vertex set X ⊂ V (G′). Since G is 4-regular, it follows that C has four vertices of
degree three (and all other vertices in C are of degree four) in G′. This implies that
δG(X) is a non-trivial edge cut of size at most four, which contradicts our assumption.
Next we show sufficiency. For a contradiction suppose that there is a non-trivial edge
cut δ(X) of size (at most) four in G. The 4-regularity of G implies that X (and hence
V − X) has cardinality at least four. By removing the end-vertex v of some edge
e = uv from the edge cut, and another edge f ∈ δ(X) which is disjoint from v, we
obtain a graph G′′ with a non-trivial edge cut of size (at most) two. Thus G′′ is not
rigid by Lemma 9, a contradiction.

Necessity in Lemma 11 follows also from [10, Lemma 2.1(ii)]. We can now deduce
the main result of this section.

Theorem 12. Let G = (V,E) be a 4-regular graph. Then G is 2-vertex globally rigid
if and only if G is 4-vertex connected and essentially 6-edge connected.

Proof. First suppose that G is 2-vertex globally rigid and let v ∈ V . Then G′ = G− v
is globally rigid, and hence G′ is 3-vertex connected and 2-edge rigid by Theorem
4. Hence G is 4-vertex connected, and by using Lemma 11, we obtain that it is also
essentially 6-edge connected.
Next we prove sufficiency. Suppose that G is 4-vertex connected and essentially

6-edge connected and let v ∈ V . Then G′ = G− v is 3-vertex connected and, again by
Lemma 11, 2-edge rigid. Thus it is globally rigid by Theorem 4.

Examples

Let n, k be positive integers with n ≥ k+ 2, k ≥ 2, and let Cn,k be the graph obtained
from a cycle on n vertices by adding the two edges that connect a vertex v to its kth

neighbors along the cycle (one in each direction), for all v. For example, Cn,2 is the
square of the cycle Cn. See Figure 4. It was pointed out in [16] that the graphs Cn,k

are 2-vertex globally rigid for k ∈ {2, 3} and for all n ≥ 2k + 1. We now extend this
statement to every k.
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Section 6. 2-vertex rigidity: a new construction 9

Figure 4: The graph C6,2: the square of the six-cycle.

First observe that Cn,k is vertex-transitive and, for n ≥ 2k+1, 4-regular. It is known
that a d-regular vertex-transitive graph has vertex-connectivity at least 2(d + 1)/3,
see e.g. [3]. Tindell [17] proved that if a vertex-transitive graph G has a non-trivial
edge cut of size d, then the vertex set of G can be partitioned into sets of size d such
that each member in the partition induces a complete graph Kd. Since Cn,k (with
n ≥ 2k+1) has no K4 subgraphs, we can deduce from the above discussion (by putting
d = 4) that the graph Cn,k is 4-vertex connected and essentially 6-edge connected for
all integers n, k with k ≥ 2 and n ≥ 2k + 1. By using Theorem 12, we may conclude
that for n ≥ 2k + 1, the graph Cn,k is 2-vertex globally rigid.

Theorem 13. The graph Cn,k is strongly minimally 2-vertex globally rigid for all
k ≥ 2 and n ≥ 2k + 1.

It remains an open problem to find an inductive construction for the family of
strongly minimally 2-vertex globally rigid graphs. Although 2-extensions alone are
probably not sufficient to build up every graph in this family from a small set of base
graphs, the following might be a useful partial result.

Conjecture 14. Let G = (V,E) be a 4-connected and essentially 6-edge connected 4-
regular graph with |V | ≥ 9. Then there exists a vertex v ∈ V such that some 2-reduction
at v yields a graph which is also 4-connected and essentially 6-edge connected.

The complete bipartite graph K4,4 shows that the lower bound on the size of the
graph is essential.

6 2-vertex rigidity: a new construction

B. Servatius [15] showed that a strongly minimally 2-vertex rigid graph G on |V |
vertices has 2|V |−1 edges for all |V | ≥ 5, and that in such a graph exactly two vertices
x, y are of degree three and the remaining vertices each have degree four. If x, y are
non-adjacent, we say that G is of Type 1. Otherwise it is of Type 2. See Figure 5.
Further results of [15] imply an inductive construction of this family of graphs in which
the base graph is K5 − e and the operation used is 1-extension. In this section we
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Section 6. 2-vertex rigidity: a new construction 10

establish a connection between essentially 6-edge connected graphs and 2-vertex rigid
graphs, which makes it possible to obtain a new inductive construction for the latter
family by using 2-extensions.

Type I Type II

Figure 5: Strongly minimally 2-vertex rigid graphs on nine vertices.

We shall need the following corollary of [15, Theorem 3.1], which shows that a
strongly minimally 2-vertex rigid graph is ”nearly” 3-edge rigid.

Theorem 15. [15] Let G = (V,E) be a 2-vertex rigid graph with |E| = 2|V | − 1, and
let e, f ∈ E. Then G− {e, f} is rigid, unless (i) G is of Type 1, and e and f belong
to the star of the same degree three vertex, or (ii) G is of Type 2, and e and f belong
to the union of the stars of the degree three vertices.

Lemma 16. Let G = (V,E) be a strongly minimally 2-vertex rigid graph with degree
three vertices x, y. Then
(i) if G is of Type 1 then G′ = G+ xy is 4-regular and essentially 6-edge connected,
(ii) if G is of Type 2 then G′ = G/{x, y} is 4-regular and essentially 6-edge connected.

Proof. We prove (i) and (ii) simultaneously, since their proofs are similar. First observe
that G′ is 4-regular in both cases: it is obvious when G is of Type 1, and follows from
the fact that x and y cannot have a common neighbour z when G is of Type 2, for
otherwise G− z is not rigid.
It remains to show that G′ is essentially 6-edge connected. It is easy to see that

G′ is rigid, which implies, by 4-regularity and Lemma 9, that G′ is essentially 4-edge
connected. For a contradiction suppose that G′ has a non-trivial edge cut F ′ = δG′(X ′)
with |F ′| = 4. The 4-regularity of G′ and |F ′| = 4 imply that we have |X ′| ≥ 4 and
|V (G′)−X ′| ≥ 4. This 4-edge cut defines an edge cut F = δG(X) in G with |F | ≤ 4.
(by splitting v, if v ∈ X ′, or deleting xy, if xy ∈ F ). We now observe that |F | = 4
must hold and the edges in F are pairwise disjoint: if this is not the case, then there
is a vertex q for which δ(X − q) or δ(V −X − q) is an edge cut of size at most two in
G− q (namely, q is a common end-vertex of two incident edges in F , or an end-vertex
of some edge in F , when |F | = 3). Since this edge cut is non-trivial and G− q is rigid
(by the 2-rigidity of G), it contradicts Lemma 9.
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Section 6. 2-vertex rigidity: a new construction 11

To finish the proof we pick two edges e, f ∈ F which are not incident with x or
y. We have four disjoint edges in F , so these edges indeed exist. By Theorem 15
G′′ = G− {e, f} is rigid. But δG′′(X) is an edge cut of size two, contradicting Lemma
9.

Consider a vertex v in a 4-regular graph G = (V,E) with NG(v) = {a, b, c, d} and
replace it with two adjacent vertices v1, v2 of degree three such that v1 is connected to
a, b, and v2 is connected to c, d. See Figure 6. We say that the resulting graph G′ is
obtained from G by splitting v.

v v v1 2

a b c d a b c
d

Figure 6: The splitting operation.

Lemma 17. Let G = (V,E) be an essentially 6-edge connected 4-regular graph and let
G′ be obtained from G by (i) deleting an edge xy ∈ E, or (ii) splitting a vertex v ∈ V
into two degree three vertices x and y. Then G′ is 2-vertex rigid.

Proof. (i) follows immediately from Lemma 11.
(ii) First we show that G′−x (and hence, by symmetry, also G′−y) is rigid. Observe

that G′ − x can be obtained from G − v by a 0-extension. Since G − v is rigid by
Lemma 11, so is G′ − x. Next consider a vertex z /∈ {x, y}. Then, again by Lemma
11, G− z is 2-edge rigid, and hence G− z − e is rigid for any edge e incident with v.
Since G′ − z can be obtained from G− z − e by a 1-extension, it is also rigid.

Let K−
6 denote the graph obtained from K5 by splitting a vertex. It is easy to check

that the smallest strongly minimally 2-vertex rigid graph of Type 1 (resp. Type 2) is
the graph K5 − e (resp. K−

6 ). Since the 2-extension operation cannot turn a Type 1
graph into a Type 2 graph, we need different base graphs for the two types.

Theorem 18. A graph G = (V,E) with |V | ≥ 5 is strongly minimally 2-vertex rigid
if and only if either
(i) G is of Type 1 and it can be obtained from K5 − e by a sequence of 2-extensions, or
(ii) G is of Type 2 and it can be obtained from K−

6 by a sequence of 2-extensions that
do not involve the edge xy connecting the two degree three vertices of G and involve at
most one edge incident with x or y.

Proof. The graphs K5 − e and K−
6 are strongly minimally 2-vertex rigid. To show

sufficiency we prove that the 2-extension operations preserves (strongly minimal)
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2-vertex rigidity. Let x, y denote the vertices of degree three in G and let e, f denote
the edges involved in the 2-extension operation. Let the resulting graph be denoted by
Ge,f .
First suppose that G is of Type 1. By Lemma 16(i) G′ = G + xy is essentially

6-edge connected and 4-regular. Thus performing a 2-extension on edges e, f in
G′ = G+ xy results in an essentially 6-edge connected and 4-regular graph G′

e,f . Since
Ge,f = G′

e,f − xy, the claim follows from Lemma 17(i). Next suppose that G is of
Type 2. Then we first we use Lemma 16(ii) to obtain a 4-regular essentially 6-edge
connected graph G′ by contracting the pair {x, y}. By our assumption, the edges
corresponding to e and f are present in G′ and share no end-vertex. Hence we can
perform a 2-extension on e, f in G′ to obtain a graph G′

e,f . Since Ge,f can be obtained
from G′

e,f by a splitting operation, the claim follows from Lemma 17(ii).
We show necessity by induction on |V |. Let x, y be the two vertices of degree three

in G. We shall assume that G is of Type 1. (The proof is similar when G is of Type
2.) For |V | = 5 the statement is obvious, as the only strongly minimally 2-vertex rigid
graph on five vertices is K5 − e. Suppose that |V | ≥ 6. Let G′ = G+ xy. By Lemma
16(i) G′ is essentially 6-edge connected and 4-regular. Lemmas 6 and 7 imply that
either all vertices of G′ are 2-reducible (when |V | = 6) or at least three vertices of G′

are 2-reducible (when |V | ≥ 7). Thus there is vertex v ∈ V (G′) which is different from
x, y for which a suitable 2-reduction gives an essentially 6-edge connected 4-regular
graph G′

v. Lemma 17(i) now implies that a 2-reduction at v in G gives rise to smaller
2-vertex rigid graph Gv. By induction, Gv can be obtained from K5 − e by a sequence
of 2-extensions. This completes the proof, since G arises from Gv by a 2-extension
operation.

7 3-vertex rigidity

Motevallian, Yu, and Anderson [12] investigated the family of 3-vertex rigid graphs.
They proved that such a graph G = (V,E) with |V | ≥ 6 satisfies |E| ≥ 2|V |+ 2, and
suggested an inductive construction which can be used to obtain, from the base graph
K6−e, a 3-vertex rigid graph on |V | vertices, for each |V | ≥ 6, for which |E| = 2|V |+2
holds. Their construction is based on 2-extensions, executed on edge pairs satisfying
certain conditions.
It was shown in [12, Section 4.3] that every 3-vertex rigid graph G = (V,E) with

|E| = 2|V |+ 2 and |V | ≥ 6 has exactly four vertices of degree five, and these vertices
are pairwise adjacent. We say that W = {v ∈ V : dG(v) = 5} is the core of G. All
the other vertices are of degree four. The smallest such graph is K6 − e. They also
showed that G contains two disjoint edges ab, cd ∈ E with a, c /∈ W , b, d ∈ W , and
ac /∈ E. We call such an edge pair admissible. The key statement [12, Theorem 4.14]
is as follows.

Theorem 19. Let G = (V,E) be a 3-vertex rigid graph with |V | ≥ 6 and |E| = 2|V |+2,
and let ab, cd be an admissible edge pair in G. Then the graph G′ obtained from G by
a 2-extension on edges ab, cd is 3-vertex rigid.
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Starting with K6 − e and repeatedly applying 2-extension operations on admissible
edge pairs, one obtains an infinite family of 3-vertex rigid graphs with 2|V |+ 2 edges.
Together with the matching lower bound, it shows that this is the tight edge count for
the size of the strongly minimally 3-vertex rigid graphs.
However, the proof in [12] is incomplete. We present a complete proof in the

Appendix. It turns out that in order to deal with an important case not covered by
the proof in [12], we need an extension of Theorem 15 on removable edge pairs in
strongly minimally 2-vertex rigid graphs (which have 2|V | − 1 edges on |V | vertices)
to 2-vertex rigid graphs with 2|V | edges. This extension, which may be of independent
interest, is proved in the next subsection.

Figure 7: A strongly minimally 3-vertex rigid graph in which no two core vertices have
a common neighbour which does not belong to the core.

We remark that not all strongly minimally 3-vertex rigid graphs can be obtained from
K6 − e by a sequence of 2-extensions on admissible edge pairs. See Figure 7. We can
also provide a direct construction of an infinite family of strongly minimally 3-vertex
rigid graphs. Consider the graphs Dk, k ≥ 3, with vertex set {ai, bi : 0 ≤ i ≤ k − 1}
and edge set {aibi+1, biai+1 : 1 ≤ i ≤ k − 1} ∪ {a0b0, a1b1}, counting indices modulo
k. See Figure 8. Note that D3 = K6 − e. It is easy to check these graphs are indeed
3-vertex rigid with |E| = 2|V |+ 2.

Figure 8: The graph D8.

7.1 2-vertex rigidity revisited

Deleting two edges e, f from a 2-vertex rigid graph G = (V,E) may destroy rigidity.
It happens, for example, when the pair e, f belongs to a nontrivial 4-edge cut (cf.
Lemma 9) or when e and f are incident with the same cubic subtree (cf. Lemma 3(ii)).
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The next theorem asserts that there is no other case if |E| = 2|V | holds. In this sense
it is a direct extension of Theorem 15, which is valid in the case |E| = 2|V | − 1. The
case |E| = 2|V | − 1 is much simpler: as we discussed earlier, exactly two vertices of G
belong to cubic subtrees, and there is at most one non-trivial 4-edge cut in the graph.
Moreover, if such a cut exists (this happens when G is of Type 2), then the edges of
the non-trivial 4-edge cut are incident with the same cubic subtree (c.f. Lemma 16).

Theorem 20. Let G = (V,E) be a 2-vertex rigid graph with |E| = 2|V | and let
e, f ∈ E. Then one of the following holds:
(i) G− {e, f} is rigid,
(ii) there is a nontrivial 4-edge cut δ(X) in G with {e, f} ⊂ δ(X),
(iii) there is a cubic subtree G[X] of G with {e, f} ⊂ SG(X).

Proof. Suppose that G− {e, f} is not rigid. Let H = G− e. Since G is 2-vertex rigid,
it is also 2-edge rigid. Hence, H is a rigid spanning subgraph of G with 2|V | − 1 edges.
Thus H can be obtained from a minimally rigid spanning subgraph B of G by adding
two edges, say h1, h2. Let Ci be the unique rigidity circuit in B + hi, for i = 1, 2. Now
H − f is not rigid, which implies, by using that rigidity circuits are 2-edge rigid, that
the endvertices of f cannot belong to the same rigidity circuit Ci, i = 1, 2. Observe
that we cannot have |(V (C1) ∩ V (C2)| = 1. This follows from the fact that each
rigidity circuit has minimum degree three, and, hence, the unique common vertex
v satisfies dG(v) ≥ 6. But then G − v has too few edges to be rigid, contradicting
2-vertex rigidity. Moreover, the gluing lemma implies that if |(V (C1) ∩ V (C2)| ≥ 2
holds, then C1 ∪ C2 is rigid. We shall consider two cases.

Case 1: V (C1) ∪ V (C2) = V .

If |(V (C1) ∪ V (C2)| ≥ 2, then C1 ∪ C2 is a rigid spanning subgraph of H. Since
f /∈ E(C1) ∪ E(C2), it follows that H − f is rigid, a contradiction. Thus, we may
assume that V (C1) ∩ V (C2) = ∅. Then δH(V (C1)) is a nontrivial edge cut in H. Let
q = |δH(C1)|. The rigidity of G implies q ≥ 3. Furthermore, we have 2|V | − 1 =
|E(H)| ≥ |E(C1)| + |E(C2)| + q = 2|V (C1)| − 2 + 2|V (C2)| − 2 + q = 2|V | − 4 + q,
which gives q ≤ 3. On the other hand, the 2-edge rigidity of G implies |δG(V (C1))| ≥ 4.
Therefore, δG(V (C1)) is a nontrivial 4-edge cut in G with {e, f} ⊂ δG(V (C1)). Hence
(ii) holds.

Case 2: V (C1) ∪ V (C2) ̸= V .

Let X = V (G) \ (V (C1) ∪ V (C2)). Consider a vertex x ∈ X. The 2-vertex rigidity
of G implies dG(x) ≥ 3. To see that we must have equality, suppose that degG(x) ≥ 4.
Then |E(G − x)| ≤ 2|V (G − x)| − 2, from which we obtain, by using the 2-vertex
rigidity of G again, that G− x is a rigid graph which contains at most one rigidity
circuit. It contradicts the choice of x. Thus each vertex in X has degree three in G.
If V (C1) ∩ V (C2) = ∅, then for every vertex v ∈ V there exists a rigidity circuit

in G− v. An argument similar to that of the previous paragraph gives that, in this
case, we have dG(v) ≤ 4, for all v ∈ V (G). Since |E| = 2|V |, it follows that G is
4-regular, which contradicts the existence of the degree-three vertices in X. Thus, we
may assume that |V (C1) ∩ V (C2)| ≥ 2. So C1 ∪ C2 is rigid.
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Next we show that G[X] is a cubic subtree of G. We have already verified that each
vertex in X has degree three in G. Suppose that for some Y ⊆ X the subgraph G[Y ]
is a cycle. Then sG(Y ) ≤ 3|Y | − |Y | = 2|Y |, which gives sG−h(Y ) ≤ 2|Y | − 1 for any
edge h of the cycle. Since G − h is rigid, it contradicts Lemma 2. Thus, G[X] is a
forest. Let us assume that G[X] is disconnected and consider a nontrivial partition
X = X1 ∪X2 for which there is no edge in G from G[X1] to G[X2]. Then the 2-edge
rigidity of G and Lemma 2 yields:

sG(X) = sG(X1) + sG(X2) ≥ 2|X1|+ 1 + 2|X2|+ 1 = 2|X|+ 2.

Hence, |E(C1∪C2)| = |E|−sG(X) ≤ 2|V (C1)∪V (C2)|−2 follows. But this contradicts
that C1 ∪ C2 is rigid and contains at least two rigidity circuits. Thus, G[X] is a cubic
subtree, as claimed.
Since C1 ∪ C2 is rigid, G− e is rigid, and G− {e, f} is not rigid, we can now use

Lemma 3 to deduce that {e, f} ⊂ SG(X). Hence (iii) holds.

8 Concluding remarks

In this paper we obtained a new inductive construction for the family of 4-regular
essentially 6-edge connected graphs and showed that this family coincides with the
families of 4-regular 3-edge rigid (resp. 2-edge globally rigid) graphs. We also char-
acterized the 4-regular 2-vertex globally rigid graphs and proved several results on
strongly minimally 2-vertex rigid and 3-vertex rigid graphs.

Families of 4-regular graphs satisfying certain connectivity or rigidity properties play
an important role in other problems, too. For example, they show up in the character-
ization of rigid or globally rigid vertex transitive graphs [6], circuit decompositions of
Eulerian graphs [2], and in massless ϕ4-theory in physics [13]. Hence, our results (in
particular, Theorem 8) may find further applications in the future.
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10 Appendix

We prove Theorem 19 in two parts. The first part, which deals with all but one of the
subcases, is essentially the proof of [12, Theorem 4.14]. The second part completes
the proof by using Theorem 20.

The first part of the proof of Theorem 19: Let z be the new vertex created by
the 2-extension. We need to show that G′ − {x, y} is rigid for all x, y ∈ V (G′). We
start with the cases when z is not one of the deleted vertices. Then x, y ∈ V (G) and
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3-vertex rigidity of G implies that G − {x, y} is rigid. By symmetry, we have four
cases to consider.

(a) x, y /∈ {a, b, c, d}. Then G′−{x, y} is obtained from G−{x, y} by a 2-extension,
and hence it is rigid.

(b) x ∈ {a, b} and y /∈ {a, b, c, d}. Then G′ − {x, y} is obtained from G− {x, y} by
a 1-extension, and hence it is rigid.
(c) x ∈ {a, b} and y ∈ {c, d}. Then G′ − {x, y} is obtained from G − {x, y} by a

0-extension, and hence it is rigid.
(d) x = a, y = b. Since dG(b) = 5, the graph G − b is a 2-vertex rigid graph with

|E(G− b)| = 2|V (G− b)| − 1. Thus, G− b has exactly two vertices of degree three, a
and some other vertex a′. If aa′ ∈ E(G) then ac /∈ E implies a′ ̸= c. Let aq be an edge
incident with a in G− b. We can now deduce from Theorem 15 that G− b−{aq, cd} is
rigid. Since the degree of a in this graph is equal to two, it follows that G−{b, a}− cd
is also rigid. Since G′ is obtained from G− {b, a} − cd by a 0-extension, it is rigid.

(e) Let us assume now that x = z. If y ∈ {a, b} then G′−{z, y} = G− y− cd. Since
G−y is 2-vertex rigid, it is also 2-edge rigid. So G′−{z, y} is rigid. The case y ∈ {c, d}
is similar. So we may suppose that y /∈ {a, b, c, d}. Then G′−{z, y} = G− y− ab− cd.
If dG(y) = 5, then G − y is 2-vertex rigid with |E(G − y)| = 2|V (G − y)| − 1. In

this case we can use Theorem 15 again to show that deleting the pair ab,cd preserves
rigidity. If yc /∈ E, then dG−y(c) = dG−y(d) = 4, and hence G−y−ab−cd is rigid. The
case ya /∈ E is similar. If yc, ya ∈ E then, since ac /∈ E, G− y has two non-adjacent
vertices of degree three: a and c. Hence G− y − ab− cd is rigid. This completes the
subcase when dG(y) = 5.

The second part of the proof of Theorem 19: It remains to consider the case
when dG(y) = 4. Let H = G − y. Since G is 3-vertex rigid and dG(y) = 4, H is
2-vertex rigid with |E(H)| = 2|V (H)|. Let e = ab, f = cd. We need to show that
H − {e, f} is rigid. By Theorem 20, it suffices to show that no nontrivial 4-edge cut
or cubic subtree of H contains both edges.
First, suppose that there is a nontrivial 4-edge cut δH(X) with {e, f} ⊂ δH(X).

The 2-vertex rigidity of H implies that the edges in δH(X) are pairwise disjoint. Thus,
W lies entirely in one of two sides of the cut, say W ⊆ V \X. Hence a, c ∈ X. Since
G is 3-edge rigid and each vertex of X has even degree in G, it follows that y has
exactly two neighbors in X as well as in V \X. Thus dG(X) = dG(V \X) = 6. This
shows that |X| ≥ 3 holds, for otherwise ac /∈ E implies dG(X) = dG(a) + dG(c) ≥ 8,
a contradiction. Let q ∈ X with yq /∈ E. Then dH(q) = 4 holds and, hence, H − q
satisfies |E(H − q)| = 2|V (H − q)| − 2. Now H − q is rigid, so it can be obtained
from a sparse graph by adding an edge. On the other hand W ⊆ V \ X implies

iH−q(V −X) ≥ 4|V−X|+4−6
2

= 2|V −X| − 1, a contradiction.
Next, suppose that there is a cubic subtree H[X] in H with {e, f} ⊂ SG(X). Then

we must have dH(a) = dH(c) = 3 and {a, c} ⊆ X ⊆ NG(y). Moreover, since ac /∈ E, we
have |X| ≥ 3. This implies that there exist two incident edges jk, kl ∈ G[X]. Therefore
k and y are two adjacent degree-four vertices in G with two common neighbours: j
and l. But then sG−j−l({y, k}) = 3, from which Lemma 2 gives that G− y − k is not
rigid, a contradiction. QED.
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eds, CRC Press, pp. 1661-1694, 2018.
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