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Abstract

We provide a combinatorial study of split matroids, a class that was moti-
vated by the study of matroid polytopes from a tropical geometry point of view.
A nice feature of split matroids is that they generalize paving matroids, while
being closed under duality and taking minors. Furthermore, these matroids
proved to be useful in giving exact asymptotic bounds for the dimension of the
Dressian, and also implied new results on the rays of the tropical Grassmanni-
ans.

In the present paper, we introduce the notion of elementary split matroids,
a subclass of split matroids that contains all connected split matroids. We
give a hypergraph characterization of elementary split matroids in terms of
independent sets, and show that the proposed class is closed not only under
duality and taking minors but also truncation. We further show that, in contrast
to split matroids, the proposed class can be characterized by a single forbidden
minor. As an application, we provide a complete list of binary split matroids.

Keywords: Binary matroids, Excluded minors, Split matroids, Paving ma-
troids

1 Introduction

The class of split matroids was introduced by Joswig and Schröter [10] as an efficient
tool in tropical geometry. Their definition was based on a polyhedral approach, by
imposing conditions on the split hyperplanes of the matroid base polytope. In order
to recall the definition, we first overview the polyhedral background.
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Section 1. Introduction 2

Given a polytope P , its intersection with a supporting hyperplane is called a face of
P . The polytope itself is also considered to be a face. A face is a facet if it is properly
contained in exactly one face, namely P . A split of P is a subdivision without new
vertices which has exactly two maximal cells. The affine span of the intersection of
the two cells is then called a split hyperplane. Two splits are compatible if the
corresponding split hyperplanes do not meet in a relative interior point of P . Let
M = (S, rM) be a matroid on ground set S with rank function rM . We denote the
rank of the matroid by r, that is, rM(S) = r. The convex hull of the characteristic
vectors of the bases of M is called the matroid base polytope of M and is denoted
by P (M). We denote by ∆(r, S) the |S| − 1-dimensional hypersimplex representing
the matroid base polytope of the rank-r uniform matroid on S, that is, the convex
hull of all zero-one vectors over S with exactly r ones. For a flat F of M , the F -
hyperplane is defined as H(F ) = {x ∈ RS | x(F ) = rM(F )}, while the intersection
P (M) ∩H(F ) is the face of P (M) defined by F . Note that two flats might define
the same face. A flat F is called a flacet if it defines a facet and is inclusionwise
minimal among flats defining H(F ). A flacet F is a split flacet if the corresponding
F -hyperplane defines a split of ∆(r, S). Roughly, the split flacets are the hyperplanes
that are used to cut off parts of ∆(r, S) to obtain P (M). Using this terminology, a
matroid M is a split matroid if its split flacets form a compatible system of splits
of the affine hull of P (M) intersected with the unit cube [0, 1]S.

The goal of the present paper is to give a combinatorial understanding of split
matroids.

Previous work. Joswig and Schröter [10] gave a thorough analysis of split matroids
in terms of polyhedral geometry. They observed that it suffices to concentrate on the
connected case, as a matroid is a split matroid if and only if at most one connected
component is a non-uniform split matroid and all other components are uniform [10,
Proposition 15]. For the connected case, they also gave a characterization that does
not rely on polyhedral combinatorics, stating that a connected matroid is a split
matroid if and only if for each split flacet F the restriction M |F and the contraction
M/F both are uniform [10, Theorem 11].

Besides their applicability in tropical geometry, split matroids are also of combina-
torial interest. In particular, the class of split matroids contains all paving matroids,
a well-studied class with distinguished structural properties. A conjecture of Crapo
and Rota [4], that was made precise by Mayhew, Newman, Welsh and Whittle [11],
suggests that the asymptotic fraction of matroids on n elements that are paving tends
to 1 as n tends to infinity. Therefore, an affirmative answer to the conjecture would
imply that almost all matroids are split. A weakness of paving matroids is that their
class is not closed under duality, a property that is desired in many cases. However,
split matroids are closed both under duality and taking minors [10, Proposition 44],
hence they form a large class with strong combinatorial properties.

In the light of minor-closedness, it is natural to ask what the excluded minors
are for the class of split matroids. It is an easy exercise to show that uniform ma-
troids are exactly the U0,1 ⊕ U1,1 minor-free matroids. The broader class of paving
matroids coincides with the family of U0,1 ⊕ U2,2-minor-free matroids [14]. For split
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Section 1. Introduction 3

matroids, Joswig and Schröter [10, Question A] identified five forbidden minors, and
Cameron and Mayhew [3] later verified that the list is complete. It is worth mention-
ing that U0,ℓ ⊕ Uk,k-minor-free matroids were studied for positive integers k and ℓ in
general [5], while [18] gave excluded-minor characterizations for the class of so-called
nearly-uniform and nearly-paving matroids.

Our results. In [10], split matroids were introduced via polyhedral geometry. The
polyhedral point of view gives an insight into the geometry of the base polytope of split
matroids, which in turn leads to a series of fundamental structural results. However,
the polyhedral approach has two shortcomings when it comes to optimization. First,
the definition is difficult to work with as it relies on the joint structure of split flacets.
For example, it is not immediate to see what the independent sets are, or how the
rank of a set can be determined. Furthermore, as it was already observed in [10], the
notion of split matroids is a bit subtle in the disconnected case. This is strengthened
by the fact that while uniform or paving matroids can be characterized by a single
excluded minor, the class of split matroids requires five of those.

The above observations suggest that there might be an intermediate matroid class
that captures all the good characteristics of split matroids (i.e. closed under duality
and taking minors) but is more convenient to work with in terms of optimization.
We show that this is indeed true and introduce a class that we call elementary split
matroids. The proposed class is a proper subclass of split matroids which includes
all connected split matroids. The definition follows a combinatorial approach by
setting the independent sets of the matroid to be the family of sets having bounded
intersections with certain hyperedges. An analogous characterization was previously
known for paving matroids, see [9, 19]: for a non-negative integer r, a ground set S
of size at least r, and a (possibly empty) family H = {H1, . . . , Hq} of proper subsets
of S such that |Hi ∩ Hj| ≤ r − 2 for 1 ≤ i < j ≤ q, the set system BH = {X ⊆ S |
|X| = r, X ̸⊆ Hi for i = 1, . . . , q} forms the set of bases of a paving matroid, and in
fact every paving matroid can be obtained in this form. Elementary split matroids
satisfy similar constraints; nevertheless, the underlying hypergraph might have more
complex structure.

We show that the proposed class has various nice properties that partially follow
from connected split matroids being special cases. However, elementary split matroids
are closed not only under duality and taking minors but also truncation. Furthermore,
the class can be characterized by the single forbidden minor U0,1⊕U1,2⊕U1,1, therefore
fitting in the list of earlier results. Based on the excluded-minor characterization, we
give a new proof for the result of [3] on forbidden minors of split matroids and a
complete description of binary split matroids.

The rest of the paper is organized as follows. Basic notation and definitions are
introduced in Section 2. The hypergraph representation of elementary split matroids
is presented in Section 3. Section 4 gives an excluded-minor characterization of the
proposed class. Finally, Section 5 gives a new proof for the list of forbidden minors of
split matroids, and further provides a complete list of binary split matroids.
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Section 2. Preliminaries 4

2 Preliminaries

Let S be a ground set of size n. A clutter (or Sperner family) is a collection F of
subsets of S in which none of the sets is a subset of another. For subsets X, Y ⊆ S,
the difference of X and Y is denoted by X − Y . If Y consists of a single element y,
then X − {y} and X ∪ {y} are abbreviated as X − y and X + y, respectively.
A matroid is a pair M = (S, I) where I ⊆ 2S is the family of independent sets

satisfying the so-called independence axioms:

(I1) ∅ ∈ I,
(I2) if X ⊆ Y and Y ∈ I, then X ∈ I,
(I3) for every subset X ⊆ S the maximal subsets of X which are in I have the same

cardinality.

For a set X ⊆ S, the maximum size of an independent subset of X is the rank of X
and is denoted by rM(X). The subscript M is dismissed when the matroid is clear
from the context. The inclusionwise maximal members of I are called bases. An
inclusionwise minimal non-independent set forms a circuit, while a loop is a circuit
consisting of a single element. The dual of M is the matroid M∗ = (S, I∗) where
I∗ = {X ⊆ S | S − X contains a basis of M}. A cocircuit or coloop of M is a
circuit or loop of M∗, respectively. The matroid is connected if for any two elements
e, f ∈ S there exists a circuit containing both. This can be shown to be equivalent
to rM(X) + rM(S − X) > rM(S) for every ∅ ̸= X ⊊ S. A set X ⊆ S is closed or
is a flat if rM(X + e) > rM(X) for every e ∈ S − X. The closure of a set X ⊆ S,
that is, the inclusionwise minimal closed set containing X is denoted by clM(X). Two
non-loop elements e, f ∈ S are parallel if rM({e, f}) = 1. A flat of rank one is called
a parallel class. A flat is proper if it has nonzero rank and it is not the ground set
of the matroid. A subset Z ⊆ S is cyclic if it is the (possibly empty) union of circuits,
or equivalently, the matroid restricted to Z has no coloops. Bonin and de Mier [2]
rediscovered the following axiom scheme for the cyclic flats of a matroid, first proved
by Sims [15].

Proposition 1. Let Z be a collection of subsets of a ground set S and r : Z → Z≥0

a function. There is a matroid M on S for which Z is the set of cyclic flats and r
is the rank function of M restricted to Z if and only if the following conditions are
satisfied:

(Z0) Z is a lattice under inclusion,

(Z1) r(0Z) = 0 where 0Z is the zero of this lattice,

(Z2) 0 < r(Y )− r(X) < |Y −X| for all X, Y ∈ Z with X ⊊ Y ,

(Z3) r(X) + r(Y ) ≥ r(X ∨ Y ) + r(X ∧ Y ) + |(X ∩ Y ) − (X ∧ Y )| for all X, Y ∈ Z
with join X ∨ Y and meet X ∧ Y .

In this case, the independent sets of M are I = {I ⊆ S | |I ∩Z| ≤ r(Z) for each Z ∈
Z}.
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For a non-negative integer r ≤ n, the uniform matroid Ur,n is defined on an
n-element set by setting every subset of size at most r to be independent, that is,
I = {X ⊆ S | |X| ≤ r}. When r = n, the matroid is called a free matroid, while
the choice r = 0 results in a rank-0 matroid. For technical reasons, we allow the
ground set of the matroid to be the empty set, i.e. n = 0, in which case the matroid
is simply the empty matroid M = (∅, {∅}). A matroid of rank r is called paving if
every set of size at most r − 1 is independent, or in other words, every circuit of the
matroid has size at least r.

The direct sum M1⊕M2 of matroids M1 = (S1, I1) and M2 = (S2, I2) on disjoint
ground sets is the matroid M = (S1 ∪ S2, I) whose independent sets are the disjoint
unions of an independent set of M1 and an independent set of M2, that is, I =
{I1 ∪ I2 | I ∈ I1 and I2 ∈ I2}. Given a non-negative integer k, the k-truncation of
M = (S, I) is the matroid (M)k = (S, Ik) with Ik = {X ∈ I | |X| ≤ k}. Given a
subset S ′ ⊆ S, the restriction of M to S ′ is again a matroid M |S ′ = (S ′, I ′) with
independence family I ′ = {I ∈ I | I ⊆ S ′}. We also say that M |S ′ is obtained by the
deletion of S − S ′, denoted by M\(S − S ′). The contraction of a subset S ′′ ⊆ S
results in a matroid M/S ′′ = (S − S ′′, I ′′) where I ′′ = {I ∈ I | I ⊆ S − S ′′, |I| =
rM(S ′′ ∪ I)− rM(S ′′)}. A matroid N that can be obtained from M by a sequence of
deletions and contractions is called a minor of M . For uniform matroids, it is not
difficult to see that Uk′,ℓ′ is a minor of Uk,ℓ if and only if k′ ≤ k and ℓ − ℓ′ ≥ k − k′

hold. The following well-known result is [13, Theorem 4.3.1].

Proposition 2. Let e be an element of a connected matroid M . Then M/e or M\e
is connected.

A class M of matroids is minor-closed if for any member M of M, each minor
of M is also contained in M. For a minor-closed class M, a nearly-M matroid is
a matroid M such that M/e ∈ M or M\e ∈ M for each element e. We will use the
following observation of [16,18].

Proposition 3. The class of nearly-M matroids is minor-closed for each minor-closed
class M of matroids.

The rank-2 wheel M(W2) is the matroid obtained from U2,3 by adding a parallel
copy of one of the elements of the ground set. The following is a consequence of a
result of Gershkoff and Oxley [8].

Proposition 4. Every connected non-uniform matroid contains M(W2) as a minor.

For connected matroids, the following proposition summarizes the relations between
the different notions of flacets and characterizes compatibility, see [3, 6, 7, 10].

Proposition 5. Let M be a connected matroid on ground set S with rank function
rM .

(a) A subset Z ⊆ S is a flacet of M if and only if it is a proper flat such that both
M |Z and M/Z are connected.

(b) A flacet Z is a split flacet if and only if |Z| ≥ 2, or equivalently, if Z is cyclic.
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Section 3. Hypergraph representation 6

(c) For distinct split flacets F and G, the splits obtained from the F - and G-
hyperplanes are compatible if and only if |F ∩ G| + rM(S) ≤ rM(F ) + rM(G).

As we will show, the inequality of (c) motivates a matroid class slightly different
from that of split matroids.

3 Hypergraph representation

In this section, we introduce the notion of elementary split matroids. Similarly to
paving matroids, the definition is via hypergraphs, which will immediately imply that
the proposed class is closed under duality, taking minors, and truncation.

Theorem 6. Let S be a ground set of size at least r, H = {H1, . . . , Hq} be a (possibly
empty) collection of subsets of S, and r, r1, . . . , rq be non-negative integers satisfying

(H1) |Hi ∩Hj| ≤ ri + rj − r for 1 ≤ i < j ≤ q.

Then I = {X ⊆ S | |X| ≤ r, |X ∩ Hi| ≤ ri for 1 ≤ i ≤ q} forms the independent
sets of a matroid with rank function rM(Z) = min

{
r, |Z|, min

1≤i≤q
{|Z − Hi| + ri}

}
. If

furthermore

(H2) |S −Hi|+ ri ≥ r for i = 1, . . . , q

holds, then the rank of the matroid is r.

Proof. The first two independence axioms clearly hold. A nice trick of the proof is that
the third independence axiom (I3) and the rank formula is proved simultaneously. For
any subset Z ⊆ S, let I ⊆ Z be a maximal member of I in the sense that I cannot be
extended by an element of Z to a member of I. If |I| = min{r, |Z|} then we are done,
hence assume that strict inequality holds. Since I is maximal in Z, there is a hyperedge
Hz ∈ H for every z ∈ Z − I such that |I ∩ Hz| = rz and z ∈ Hz. Furthermore, if
z′, z′′ ∈ Z − I are distinct elements, then the corresponding hyperedges Hz′ and Hz′′

are identical as otherwise

|Hz′ ∩Hz′′ | ≥ |I ∩Hz′ ∩Hz′′ |
= |I ∩Hz′|+ |I ∩Hz′′ | − |I ∩ (Hz′ ∪Hz′′)|
≥ rz′ + rz′′ − |I|
> rz′ + rz′′ − r,

contradicting (H1). Therefore there exists a hyperedge, say Hi, such that Z − I ⊆ Hi

and |I ∩ Hi| = ri. Thus we get |I| = |I ∩ Hi| + |I − Hi| = ri + |Z − Hi|, implying
that the cardinality of I depends only on Z. Therefore the third independence axiom
holds, and the rank formula is also verified. If (H2) holds, then the rank formula
implies rM(S) = min

{
r, |S|,min1≤i≤q{|S − Hi| + ri}

}
= r, concluding the proof of

the theorem.
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We call the matroids that can be obtained in the form provided by Theorem 6
elementary split matroids. When (H2) fails for some 1 ≤ i ≤ q, the rank of the
matroid is less than r by the rank formula. In such a case, replacing r with r′ =
min1≤i≤q{|S−Hi|+ri} does not violate (H1) while I remains the same. Thus a rank-
r elementary split matroid can be represented by a hypergraph H = {H1, . . . , Hq}
and values r, r1, . . . , rq satisfying both (H1) and (H2). It is not difficult to see that
the underlying hypergraph can be chosen in such a way that

ri ≤ r − 1 for i = 1, . . . , q,(H3)

|Hi| ≥ ri + 1 for i = 1, . . . , q.(H4)

Indeed, if a pair (Hi, ri) violates (H3) or (H4), then the corresponding constraint
|X ∩Hi| ≤ ri is redundant. Therefore, we call the representation non-redundant if
all of (H1)–(H4) hold.

Elementary split matroids generalize paving matroids. Indeed, paving matroids
correspond to the special case when ri = r − 1 for i = 1, . . . , q. If, in addition,
|Hi| = r holds for i = 1, . . . , q, then we get back the class of sparse paving matroids.

Remark 7. The definition of elementary split matroids is closely related to the con-
struction of matroids by cyclic flats, described in Proposition 1. Consider a non-
redundant hypergraph representation H = {H1, . . . , Hq}, r, r1, . . . , rq of a rank-r ele-
mentary split matroid. In order to exclude extreme cases, assume that q ≥ 1, the ri
values are strictly positive, and (H2) holds with strict inequality for 1 ≤ i ≤ q. We
claim that the family Z = {∅, H1, . . . , Hq, S} satisfies the conditions of Proposition 1
with rM(∅) = 0, rM(Hi) = ri and rM(S) = r. Indeed, for different indices i and j we
have |Hi∩Hj| ≤ ri+ rj − r ≤ (|Hi|− 1)− 1 = |Hi|− 2 by (H1), (H3) and (H4), hence
Hi ̸⊆ Hj. Thus condition (Z0) is satisfied and Hi ∧ Hj = ∅, Hi ∨ Hj = S for each
i ̸= j. Condition (Z1) holds by rM(∅) = 0. Condition (Z2) for X = ∅ and Y = Hi

translates to 0 < ri < |Hi|, for X = ∅ and Y = S it translates to 0 < r < |S|, and for
X = Hi and Y = S it translates to 0 < r − ri < |S − Hi|, all of which are satisfied
by our assumptions. Conditions (Z0)–(Z2) imply that (Z3) is satisfied if either X or
Y is 0Z or 1Z , or if X = Y . If X = Hi and Y = Hj for i ̸= j, then (Z3) is equivalent
to ri + rj ≥ r+ |Hi ∩Hj|, that is, to (H1). Therefore, Proposition 1 provides another
proof for M being a rank-r matroid whose system of cyclic flats is Z. However, the
addition of the missing extreme cases ensures that our class is minor-closed.

A nice feature of the class of split matroids is that it is closed under duality and
taking minors. We show that the same holds for elementary split matroids. In ad-
dition, the class of elementary split matroids is closed for truncation, a property
that split matroids do not satisfy in general. To see the latter, consider the matroid
M = (U1,2 ⊕ U1,2 ⊕ U1,2 ⊕ U1,2)3, that is, the 3-truncation of the direct sum of four
rank-1 uniform matroids on 2 elements. Then it is not difficult to check that M is
connected and has a U0,1 ⊕ U1,2 ⊕ U1,1-minor, therefore it is not a split matroid, see
Theorem 11 later.

Theorem 8. The class of elementary split matroids is closed under duality, taking
minors, and truncation.

EGRES Technical Report No. 2022-07



Section 3. Hypergraph representation 8

Proof. Let M = (S, I) be a rank-r elementary split matroid and H = {H1, . . . , Hq},
r, r1, . . . , rq be a representation satisfying (H1) and (H2). For a non-negative integer
k < r, the k-truncation of M is the matroid (M)k = (S, Ik) where Ik = {X ⊆ S |
|X| ≤ k, |X ∩Hi| ≤ ri for 1 ≤ i ≤ q}. As |Hi ∩Hj| ≤ ri + rj − r ≤ ri + rj − k, (M)k
is an elementary split matroid.

Now consider a set Z ⊆ S. The deletion of Z results in a matroid M\Z = (S −
Z, IS−Z) where IS−Z = {X ⊆ S−Z | |X| ≤ r, |X ∩ (Hi−Z)| ≤ ri for 1 ≤ i ≤ q}. As
|(Hi ∩Hj)−Z| ≤ |Hi ∩Hj| ≤ ri + rj − r, M\Z is an elementary split matroid. Note
that (H2) might not hold for the restriction as the size of the ground set decreased,
hence the rank of M\Z might be smaller than r.

Finally, define H i := S −Hi, r := |S| − r, and ri := |H i| − r + ri for i = 1, . . . , q.
Then r ≤ |S| and r, r1, . . . , rq are non-negative by r ≤ |S| and (H2). By (H1), for
1 ≤ i < j ≤ q, we obtain

|H i ∩Hj| = |S| − |Hi| − |Hj|+ |Hi ∩Hj|
≤ |S| − |Hi| − |Hj|+ ri + rj − r

=
(
|H i| − r + ri

)
+
(
|Hj| − r + rj

)
− (|S| − r)

= ri + rj − r.

By ri ≥ 0, for i = 1, . . . , q, we obtain

|S −H i|+ ri = |Hi|+ |S| − |Hi| − r + ri ≥ r.

Therefore H = {H1, . . . , Hq}, r, r1, . . . , rq satisfies all the conditions of Theorem 6,
hence {X ⊆ S | |X| ≤ r, |X ∩H i| ≤ ri for i = 1, . . . , q} forms the independent sets
of a rank-r elementary split matroid M . For a set X ⊆ S of size r, |X ∩ Hi| ≤ ri
holds if and only if |X ∩H i| ≤ ri holds, where X = S −X. That is, the bases of M
are exactly the complements of the bases of M , thus M coincides with the dual M∗

of M .
As every minor of a matroid can be obtained by a series of deletions and contrac-

tions, and M/Z = (M∗\Z)∗, the minor-closedness of the class of elementary split
matroids follows.

Remark 9. Assume that the representation of M is non-redundant, that is, all of
(H1)–(H4) are satisfied. By (H4), for i = 1, . . . , q, we obtain

ri = |H i| − r + ri = |S| − |Hi| − r + ri ≤ r − 1.

Furthermore, by (H3), for i = 1, . . . , q, we obtain

|H i| ≥ |H i| − r + ri + 1 = ri + 1.

That is, H = {H1, . . . , Hq}, r, r1, . . . , rq satisfies (H3) and (H4) as well, hence then the
representation of the dual provided by the proof of Theorem 8 is also non-redundant.

The following observation will be helpful when characterizing binary split matroids.
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Theorem 10. Consider a non-redundant representation H = {H1, . . . , Hq}, r, r1, . . . , rq
of an elementary split matroid M on ground set S. Then M |Hi

∼= Uri,|Hi| and
M/Hi

∼= Ur−ri,|S−Hi| for i = 1, . . . , q.

Proof. Let X ⊆ Hi be a subset of size ri for some 1 ≤ i ≤ q. Then |X| = ri < r by
(H3) and |X ∩ Hj| ≤ |Hi ∩ Hj| ≤ ri + rj − r < rj by (H1) and (H3) for each index
j ̸= i, hence X is independent in M . As each independent subset of Hi has size at
most ri, we get that M |Hi

∼= Uri,|Hi|. Considering the hypergraph representation of
the dual matroid M∗ constructed in the proof of Theorem 8, it follows that M∗|H i

∼=
Uri,|Hi| = U|Hi|−r+ri,|Hi|, hence M/Hi = (M∗|H i)

∗ ∼= Ur−ri,|Hi|.

4 Excluded-minor characterization

The aim of this section is to give an excluded-minor characterization of elementary
split matroids. In contrast to split matroids where five forbidden minors are needed,
elementary split matroids can be characterized by a single one. The next theorem de-
termines the unique forbidden minor, and establishes a connection between elementary
and connected split matroids.

Theorem 11. The following are equivalent for a matroid M on ground set S.

(i) M is an elementary split matroid.

(ii) M has no U0,1 ⊕ U1,2 ⊕ U1,1-minor.

(iii) M is a loopless and coloopless matroid whose proper cyclic flats form a clutter,
or M is the direct sum of a uniform matroid with either a rank-0 matroid or a
free matroid.

(iv) M is a connected split matroid or the direct sum of two uniform matroids.

Proof. (i) ⇒ (ii) The class of elementary split matroids is closed under taking mi-
nors by Theorem 8, hence it suffices to show that M = U0,1 ⊕ U1,2 ⊕ U1,1 is not an
elementary split matroid. Suppose to the contrary that there exists a hypergraph
H = {H1, . . . , Hq} and values r1, . . . , rq satisfying (H1)–(H4) with r = 2 which define
M . As M has exactly one loop, there is an index i such that |Hi| = 1 and ri = 0.
We claim that Hi is the unique hyperedge in H. Indeed, for an arbitrary index j ̸= i,
we have 0 ≤ |Hi ∩ Hj| ≤ rj − r < 0 which is not possible. Hence i = q = 1 and
M ∼= U0,1 ⊕ U2,3, a contradiction.

(ii) ⇒ (iii) Suppose that M is U0,1 ⊕U1,2 ⊕U1,1-minor-free and has proper cyclic flats
X and Y such that X ⊊ Y . As X is a flat and Y is cyclic, (M |Y )/X is loopless and
not free, hence it has a U1,2-minor. Let x ∈ X and z ∈ S−Y and consider the matroid
M ′ = (M |(Y + z))/(X − x). As X is cyclic, x is a loop in M/(X − x), and it is also
a loop in M ′. As Y is a flat, z is a coloop in M |(Y + z), hence it is a coloop in M ′

as well. We get that M ′ ∼= U0,1 ⊕ (M |Y )/X ⊕U1,1 where (M |Y )/X has a U1,2-minor.
Therefore M ′ has a U0,1 ⊕ U1,2 ⊕ U1,1-minor, hence so does M . This contradiction
proves that the proper cyclic flats of M form a clutter.
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It remains to consider the case when M is U0,1 ⊕ U1,2 ⊕ U1,1-minor-free and has a
loop or a coloop. By duality, we may assume that M contains a loop. Let M ′ be the
matroid obtained by deleting all the loops and coloops from M . If M ′ is empty, then
M is the direct sum of a rank-0 and a (possibly empty) free matroid. Otherwise, as
M ′ is loopless and coloopless, it has a U1,2-minor. This implies that M is coloopless,
as otherwise it contains a U0,1 ⊕U1,2 ⊕U1,1-minor, contradicting the assumption. We
also get that M ′ is connected, as otherwise it has a U1,2⊕U1,2-minor, meaning that M
contains U0,1 ⊕U1,2 ⊕U1,2 as a minor. By Proposition 4, each connected non-uniform
matroid contains M(W2) as a minor. However, M(W2) has a U1,2⊕U1,1-minor, hence
M ′ is necessarily a uniform matroid. Therefore M is the direct sum of a rank-0 and
a uniform matroid.

(iii) ⇒ (iv) The implication is immediate if M is the direct sum of a uniform
matroid with either a rank-0 matroid or a free matroid. Hence we may assume that
M is loopless, coloopless and its cyclic flats form a clutter. If M is connected, we
need to show that any two distinct split flacets F and G are compatible, that is,
|F ∩ G| + rM(S) ≤ rM(F ) + rM(G) by Proposition 5. As proper cyclic flats form a
clutter and each split flacet is a proper cyclic flat, this inequality is equivalent to the
cyclic flat axiom (Z3) for X = F and Y = G.
Consider the case when M is disconnected and let Z1, . . . , Zt denote its connected

components. As M is loopless and coloopless, Z1, . . . , Zt are proper cyclic flats. This
implies t = 2, as otherwise Z1 and Z1∪Z2 are both proper cyclic flats with Z1 ⊊ Z1∪Z2,
contradicting the assumption that proper cyclic flats form a clutter. Assume that there
is a proper cyclic flat Z ̸∈ {Z1, Z2}. Then in the lattice of cyclic flats Z ∧ Zi = ∅ and
Z ∨ Zi = S, hence (Z3) implies that rM(Z) + rM(Zi) ≥ rM(S) + |Z ∩ Zi| holds for
i = 1, 2. Thus we get

rM(Z) + 1 ≤ |Z|
= |Z ∩ Z1|+ |Z ∩ Z2|
≤ (rM(Z) + rM(Z1)− rM(S)) + (rM(Z) + rM(Z2)− rM(S))

= 2rM(Z)− rM(S)

≤ rM(Z)− 1,

a contradiction. Therefore, the only proper cyclic flats of M are Z1 and Z2, hence
M |Z1 and M |Z2 are uniform matroids. We proved that M is the direct sum of two
uniform matroids.

(iv) ⇒ (i) Assume first that M is the direct sum of a rank-r1 uniform matroid on
ground set H1 and a rank-r2 uniform matroid on ground set H2. Let r := r1 + r2.
Then M is the elementary split matroid on ground set S := H1 ∪ H2 corresponding
to the hypergraph H = {H1, H2} and non-negative integers r, r1, r2. Indeed, r ≤ |S|
holds and (H1) is satisfied as 0 = |H1 ∩H2| ≤ r1 + r2 − r = 0.
Now consider the case when M is a connected split matroid. Let r denote the rank

of M , H = {H1, . . . , Hq} be the collection of split flacets, and set the value of ri
to be the rank of Hi for i = 1, . . . , q. Then r ≤ |S| and the values r, r1, . . . , rq are
non-negative. As M is a split matroid, any two split flacets are compatible, therefore
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S1 S2 S3 S4

Figure 1: The connected excluded minors for split matroids [3].

(H1) is satisfied. By Theorem 6, H = {H1, . . . , Hq}, r, r1, . . . , rq define an elementary

split matroid M̂ . We claim that M̂ is identical to M . Indeed, if a set B ⊆ S is a
basis in M then, by definition, it is also a basis in M̂ . If B is not a basis in M , then
the charasteristic vector of B is not contained in the base polytope of M . As the base
polytope is completely determined by the flacet inequalities (see e.g. [12, Theorem
2.6]), this means that |B∩F | > rM(F ) for some flacet F of M . Since M is connected,
necessarily |F | ≥ 2. By Proposition 5(b), F is a split flacet, hence B is not a basis of
M̂ either.

5 Applications

As an application of our results, we give a new proof for the result of Cameron and
Mayhew [3]. Furthermore, we further give a complete list of binary split matroids.

5.1 Split matroids

Based on the previous results, we give a different and shorter proof of the excluded mi-
nor characterization of split matroids originally proved by Cameron and Mayhew [3].
As already observed in [10], the only disconnected excluded minor for the class of
split matroids is M(W2) ⊕ M(W2). This follows from Proposition 4 and the fact
that a disconnected matroid is a split matroid if and only if it is the direct sum of a
connected split matroid and uniform matroids (see [3, Proposition 2.7]). Joswig and
Schröter [10] also identified four connected rank-3 excluded minors on 6 elements,
these matroids S1, S2, S3, S4 are given by their geometric representations on Figure 1,
see also [3].

Theorem 12. The only connected excluded minors for split matroids are S1, S2, S3

and S4.

Proof. Let M be a connected matroid which is not a split matroid but each of its
proper minors is. By Theorem 11, connected split matroids coincide with connected el-
ementary split matroids, henceM is not elementary split while it is nearly-elementary-
split by Proposition 2. As M is not elementary split, (M/X)\Y ∼= U0,1⊕U1,2⊕U1,1 for
some subsets X, Y ⊆ S by Theorem 11. By M being loopless and coloopless, the sets
X and Y are nonempty. Let X ′ ⊆ X be a nonempty subset and consider the matroid
N = M/X ′. Notice that N is disconnected since it is split but not elementary split.
Moreover, N is coloopless since M is coloopless.
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We claim that N contains exactly one loop. If N is loopless, then each of its
connected components has a U1,2-minor and each of its non-uniform components has
an M(W2)-minor by Proposition 4. As N is not the direct sum of two uniform
matroids by Theorem 11, we get that it either containsM(W2)⊕U1,2 or U1,2⊕U1,2⊕U1,2

as a minor. This contradicts Proposition 3 since neither of these two matroids is
nearly-elementary-split. Similarly, if N has at least two loops, then it has a non-
uniform connected component or at least two loopless connected components. Thus
N contains either U0,2 ⊕ M(W2) or U0,2 ⊕ U1,2 ⊕ U1,2 as a minor, both of which
contradict Proposition 3. This proves that N has exactly one loop.
Suppose that |X| ≥ 2 and choose distinct elements x1, x2 ∈ X. By our previous

observation, M/x1 contains exactly one loop l1 and M/x2 contains exactly one loop
l2, that is, {x1, l1} and {x2, l2} are parallel classes of M . If x2 = l1, then M/{x1, x2} is
loopless. Otherwise, parallel classes {x1, l1} and {x2, l2} are disjoint and M/{x1, x2}
contains l1 and l2 as loops. Both of these cases contradict that M/{x1, x2} contains
exactly one loop. We conclude that |X| = 1. The class of split matroids is closed
under duality, hence the dual M∗ is also an excluded minor. Applying the previous
argument to (M∗\X)/Y = ((M/X)\Y )∗ = U1,1 ⊕ U1,2 ⊕ U0,1, we get that |Y | = 1
holds as well.

We proved that M is a rank-3 matroid on 6 elements. Denote the element of
X by a, the loop of M/a by b, the element of Y by e, the coloop of M\e by f ,
and the remaining two elements of the ground set by c and d. Then {e, f} is a
cocircuit of M , thus M |{a, b, c, d} is a loopless rank-2 matroid containing the parallel
class {a, b}, hence it is isomorphic to either U1,2 ⊕ U1,2 or M(W2). The former case
gives the matroid S1. In the latter case consider the lines {a, b, c, d} and clM({e, f}).
If clM({e, f}) = {e, f}, we get S4. Otherwise, the intersection of {a, b, c, d} and
clM({e, f}) is a rank-1 flat, thus it is {a, b}, {c} or {d}. The first case gives S2 and
the latter two cases give S3.

5.2 Binary split matroids

Acketa [1] gave a complete list of binary paving matroids: Ur,n for r ∈ {0, 1, n− 1, n},
loopless rank-2 matroids with at most three parallel classes, M(K4 − e), M(K4),
M(K2,3), F7, F ∗

7 and AG(3, 2) (see also [13] for the definition of the latter three
matroids). Based on this and our previous results, we extend this list to contain all
binary split matroids. As each split matroid has at most one non-uniform connected
component, we only consider the connected case. Recall that the only forbidden minor
for binary matroids is U2,4 by Tutte [17].

Theorem 13. The following is a complete list of connected binary split matroids on
at least two elements.

(a) Matroids obtained by adding (possibly zero) parallel copies to an element of Ur−1,r

for any r ≥ 2.

(b) Loopless rank-2 matroids with exactly three parallel classes, and their duals.

(c) Connected binary (sparse) paving matroids of rank and corank at least three:
M(K4), F7, F

∗
7 , AG(3, 2).
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Proof. It is not difficult to check that all the listed matroids are connected binary
split matroids. It remains to prove that each binary split matroid M is included in
the list. Connected matroids of rank or corank one are U1,n and Un−1,n, and these
are included in (a). Connected binary matroids of rank or corank two are exactly the
matroids listed as (b). Thus we may assume that M has rank and corank at least
three. As (c) contains binary paving matroids of rank and corank at least three from
the list of Acketa [1], it only remains to consider the non-paving case.

Let M be given by a non-redundant hypergraph representation H = {H1, . . . , Hq},
r, r1, . . . , rq. As M is non-paving, ri ≤ r − 2 holds for some index i. By Theorem 10,
M/Hi

∼= Ur−ri,|S−Hi| where 2 ≤ r − ri by our assumption and r − ri + 1 ≤ |S − Hi|
as M is coloopless. As M contains no U2,4-minor, nececssarily |S −Hi| = r − ri + 1.
Then |Hi| = |S| − r + ri − 1 ≥ ri + 2 as M has corank at least 3. Furthermore,
M |Hi

∼= Uri,|Hi| contains no U2,4-minor, implying ri = 1 and |S − Hi| = r. Suppose
that q ≥ 2 and pick an index j ̸= i. Applying (H1) and (H3), we get 1 + rj − r ≥
|Hi ∩Hj| ≥ |Hj| − |S −Hi| ≥ rj + 1− r, hence S −Hi ⊆ Hj and |Hj| = rj + 1. Then
S − Hi ⊆ Hj implies that r = |S − Hi| ≤ |Hj| = rj + 1 ≤ r, hence S − Hj = Hj

and rj = r − 1. Therefore, S is the disjoint union of the rank-1 set Hi and the
rank-(r − 1) set Hj, contradicting the connectivity of M . This proves that q = 1, so
M ∼= (U1,|Hi| ⊕ Ur,r)r as described in (a).
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