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Fast algorithms for sparsity matroids and the global
rigidity augmentation problem

Csaba Király? and András Mihálykó??

Abstract

A (k, `)-sparsity matroid is a matroid defined on the edge set of a graph
G = (V,E) with sparsity conditions on the edge set involving the values k and
` corresponding to the matroid independence. We show that for a given pair
of k and ` the components of the (k, `)-sparsity matroid can be calculated in
O(|V |2) time.

Components of a (k, `)-sparsity matroid appear in several applications con-
nected to rigidity theory. For example, for generic frameworks in the plane (with
Euclidean or non-Euclidean norm), or on a cylinder (with Euclidean norm), the
global rigidity of a framework is characterized by using the connectivity of a
(k, `)-sparsity matroid of its graph (for a given pair of k and `) along with some
vertex-connectivity properties. We use the above mentioned algorithm to check
global rigidity of such frameworks in O(|V |2) time. We also show how the algo-
rithm can be used to solve the global ridigity augmentation problem in O(|V |2)
time. In the latter problem the input is a graph which is generically rigid (in
the considered space) and our goal is to find a minimum edge set which makes
this graph generically globally rigid.

1 Introduction

In this paper we consider problems on (k, `)-sparsity matroids from an algorithmic
point of view. Many of these matroids are related to rigidity theory. Moreover, some
of the questions considered in this paper has their motivation rooted in rigidity theory.

In rigidity theory a d-dimensional framework is a pair (G, p) where G = (V,E)
is a graph and p : V → S ⊆ Fd is a map of the vertices of G to a given subset of
a d-dimensional normed vector space (Fd, || · ||). (G, p) and (G, q) are equivalent if
||p(u) − p(v)|| = ||q(u) − q(v)|| for every uv ∈ E, and they are congruent, if ||p(u) −
p(v)|| = ||q(u)−q(v)|| holds for every vertex pair u, v ∈ V . A framework (G, p) is called
globally rigid in S, if each equivalent framework (G, q) (in S) is also congruent with
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it. (G, p) is rigid, when the above condition only holds for realizations q : V → S
for which ||p(v) − q(v)|| < ε for some ε > 0, that is, when the framework has no
continuous deformation. Due to their connection to the (k, `)-sparsity matroids, in
this paper the following types of frameworks will arise: frameworks in the Euclidean
plane (when F = R, d = 2, the norm is the Euclidean norm, and S = R2), frameworks
in a non-Euclidean plane (when F = R, d = 2, the norm is a non-Euclidean analytic
norm, and S = R2), frameworks on a cylinder (when F = R, d = 3, the norm
is the Euclidean norm, and S = {(x, y, z) ∈ R3 : x2 + y2 = 1}). In these cases, the
rigidity and global rigidity of a framework only depends on the underlying graph if the
realization is generic, that is, when the only algebraic dependency of the coordinates
of the points over the rationals arise from the definition of S [1, 4, 14, 21, 27, 33].
Thus in this cases rigidity and global rigidity is in fact a graph property and we can
talk about the rigidity and global rigidity of a graph.

In the previously mentioned cases, the rigidity and global rigidity of a graph can
be characterized by using some sparsity properties of the graph. For the rest of this
paper let k always denote a positive integer and ` an integer such that 0 < ` < 2k.
A (multi)graph G = (V,E) is called (k, `)-sparse if iG(X) ≤ k|X| − ` for all X ⊆ V
with k|X| − ` ≥ 0, where iG(X) denotes the number of edges of G induced by X. A
(k, `)-sparse graph is called (k, `)-tight if |E| = k|V |− `. Due to its connections and
extensive usage in rigidity theory, a graph G is called (k, `)-rigid if G has a (k, `)-
tight spanning subgraph. It is known that the edge sets of (k, `)-sparse subgraphs of
a given graph G form the independent sets of a matroid on the edge set, callet the
(k, `)-sparsity matroid or count matroid of G (see [31], [38, Appendix A]). We
call an edge e of G = (V,E) a (k, `)-redundant edge if a (k, `)-rigid subgraph of
G− e spans both endpoints of e, or equivalently if E and E− e have the same rank in
the (k, `)-sparsity matroid of G. A (k, `)-rigid graph G is a (k, `)-redundant graph
if each edge of G is (k, `)-redundant.

Sparsity conditions occur in connection with several graph properties ranging from
edge-connectivity (e.g. (1, 1)-rigid graphs are exactly the connected ones), through
tree-connectivity [32] to the maximum size of a matching [9, Section 13.5]. However,
we are most interested in the applications regarding rigidity theory:

• A graph is rigid in the Euclidean plane if and only if it is (2, 3)-rigid. [28, 34]
• A simple graph on at least 4 vertices is globally rigid in the Euclidean plane if

and only if it is (2, 3)-redundant and 3-connected. [20]
• A simple graph is rigid in a non-Euclidean plane if and only if it is (2, 2)-rigid. [27]
• A simple graph on at least 5 vertices is globally rigid in a non-Euclidean plane

if and only if it is (2, 2)-redundant and 2-connected. [4]
• A simple graph is rigid on the cylinder if and only if it is (2, 2)-rigid. [33]
• A simple graph on at least 5 vertices is globally rigid on the cylinder if and only

if it is (2, 2)-redundant and 2-connected. [21]
It is known that the (k, `)-rigidity of a graph G = (V,E) can be tested in O(|V |2)

time (see [3, 22, 23] for the case where (k, `) = (2, 3), and [29] for general k and `).
Hence the above metioned rigidity properties can be tested efficiently. We note that
in the above characterizations of global rigidity the condition that the graph G is
(k, `)-redundant (for (k, `) = (2, 3) or (2, 2)) can be substituted by the requirement
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that the (k, `)-sparsity matroid of G is connected (see definition later). In Section 3
we show how the components of the (k, `)-sparsity matroid of G = (V,E) can be
calculated in O(|V |2) time. Since the 2- or 3-connectivity of G can be tested in
O(|V | + |E|) ≤ O(|V |2) time [5, 15, 17, 18], this implies that the above mentioned
global rigidity properties can be checked in O(|V |2) time. As another application
of the algorithm given in Section 3, we consider the global rigidity augmentation
problem. This problem takes a rigid graph as its input and looks for a minimum
edge set which makes the graph globally rigid. The optimum of this problem was
characterized in [25]. In Section 4, we summarize the results of [26, 25] which we
use for the algorithm. In Section 5, we show how the global rigidity augmentation
problem can be solved in O(|V |2) time.

2 Preliminaries

While graphs are the main focus of this paper, (k, `)-sparsity and (k, `)-tightness also
appear several times in context of hypergraphs. A hypergraph H = (V, E) is called
(k, `)-sparse if iH(X) ≤ k|X|−` holds for all X ⊆ V with k|X|−` ≥ 0, where iH(X)
denotes the number of hyperedges of H induced by X. A hypergraph H = (V, E) is
called (k, `)-tight if it is sparse and |E| = k|V |−`. We call a hypergraph (k, `)-rigid
if it contains a spanning (k, `)-tight subhypergraph. Similarly to the graphic case the
hyperedge sets of the (k, `)-sparse subhypergraphs of a given hypergraph correspond to
the independent sets of the so-called (k, `)-sparsity matroids or count matroids
(see [9, Section 13.5], [31], and [38, Appendix A]). We can also define redundancy
of hyperedges and (k, `)-redundant hypergraphs as a direct generalization of (k, `)-
redundant edges and graphs.

It is easy to see from the definition that a (k, `)-tight subhypergraph of a (k, `)-
sparse hypergraph is always an induced subhypergraph. The following well-known
statements (which can be found in e.g. [26]) show other important properties of the
(k, `)-sparisity.

Lemma 2.1. Let H = (V, E) be a (k, `)-sparse hypergraph with 0 < ` < 2k, and let
T1 = (V1, E1) and T2 = (V2, E2) be (k, `)-tight subhypergraphs of H. If k|V1 ∩ V2| ≥ `,
then T1 ∪ T2 and T1 ∩ T2 are (k, `)-tight hypergraphs, and dH(V1, V2) = 0.

Lemma 2.2. Let G = (V,E) be a (k, `)-tight graph on at least 3 vertices. Then
d(v) ≥ k for any v ∈ V . Moreover, there exists an i ∈ V such that d(i) ≤ 2k− 1.

Let us list now some basic definitions and properties concerning the sparsity matroid
without proofs, as they play important roles in this paper. We refer to [9, 24, 38] for
more details.

First, a subhypergraph, the edges set of which forms a circuit in the (k, `)-sparsity
matroid is called a (k, `)-M-circuit. In other words, a subhypergraph C is a (k, `)-
M-circuit if it is not (k, `)-sparse and C−e is (k, `)-sparse for every single hyperedge e
of C. In particular, if H is (k, `)-sparse, e = ij is a new (graph) edge, and there exists
a (k, `)-tight subhypergraph of H with vertex set V ′ so that i, j ∈ V ′, then H+e has a
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unique (k, `)-M-circuit, denoted by CH(ij) or CH(e). This circuit contains e. In this
case, (V (CH(e)), E(CH(e)) − e) forms a (k, `)-tight subhypergraph of H, that we call
TH(e) or TH(ij). For the sake of convenience, we do not distinguish a hypergraph
from its edge set, that is, TH(e) = E(CH(e)) − e, while we denote the vertex set of
TH(ij) by VH(ij) = V (CH(e)). For every hyperedge e′ of CH(ij), H′ = H + ij − e′ is
also (k, `)-sparse and the unique (k, `)-circuit of H′ + e′ is again CH(ij). Moreover, if
e′′ 6∈ CH(ij), then H′ + ij − e′′ is not (k, `)-sparse. For the sake of simplicity, when
the hypergraph H is clear from the context, we will omit the subscript H from all the
notation throughout this entire paper.

The following well-known statement (which can be deduced from for example [26,
Lemma 2.1]) highlights the most important property of T (ij).

Lemma 2.3. [26] Let H = (V, E) be a (k, `)-sparse hypergraph with 0 < ` < 2k and
let i, j ∈ V . Assume that H + ij is not (k, `)-sparse and there exists a (k, `)-tight
subhypergraph of H, denoted by H′ = (V ′, E ′), so that i, j ∈ V ′. Then T (ij) ⊆ H′ and
T (ij) =

⋂
{Th : Th is a (k, `)-tight subhypergraph of H including i and j}.

It is also well-known (and is presented for the (k, `)-sparsity matroids of (k, `)-
rigid graphs in [25]) that an equivalence relation can be defined on the ground set
S of an arbitrary matroid M (by using the circuit axioms of a matroid), as follows.
Two elements x, y ∈ S are equivalent if there exists a circuit C of M, such that
x, y ∈ C. The equivalence classes of this matroid are called components of M. A
component of the (k, `)-sparsity matroid is called a (k, `)-M-component. Note
that if an edge e of G is not (k, `)-redundant, then the singleton {e} is a (k, `)-M-
component of G and it is called a trivial (k, `)-M-component of G. If G consists of
only one (k, `)-M-component, then G is called (k, `)-M-connected. The following
lemma from [11] shows that non-trivial (k, `)-M-components are (k, `)-rigid induced
subgraphs. (We note here that the (k, `)-M-components do not coincide with the
(k, `)-rigid components of the graph used in [30].)

Lemma 2.4. [11, Lemma 2.4] Let G′ be a non-trivial (k, `)-M-component of the graph
G. Then G′ is an induced subgraph and is (k, `)-rigid.

Given a graph G = (V,E), the (k, `)-M-component hypergraph of G is a
hypergraph HG = (V, E), where E consists of the union of the non-redundant edges
of G and k|V (C)| − ` parallel copies of the hyperedge formed on V (C) for each non-
trivial (k, `)-M-component C of G. The above definition appeared in a paper by Fekete
and Jordán [8] for (k, `) = (2, 3) and has been generalized for general (k, `) in [25].
Note that in [25] the above definition appeared only for (k, `)-rigid graphs, however,
as the rigidity cannot be assured throughout the whole run of the algorithm, we need
the definition for general graphs. By using Lemma 2.4, most of the results from [25]
on the (k, `)-M-component hypergraph can be generalized to non-rigid graphs, as well.
For example [25, Lemma 3.1] can be generalized as follows.

Lemma 2.5. Let G = (V,E) be a graph and let G∗ = (V,E∗) be an arbitrary maximal
spanning (k, `)-sparse subgraph of G. Then every trivial (k, `)-M-component of G is
contained in E∗, and, for any non-trivial (k, `)-M-component C of G, iG∗(V (C)) =
k|V (C)| − `.
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2.1 Efficient algorithm for testing (k, `)-rigidity 5

Proof. If C is a trivial (k, `)-M-component of G, then C consists of a single non-
redundant edge e of G. Remember, in this case non-redundant means that the number
of edges in the maximal (k, `)-sparse subgraph of G is not equal to the number of
edges in the maximal (k, `)-sparse subgraph of G− e. Thus e must be an edge of G∗.

Suppose now that C is non-trivial. Let B = E∗∩C, that is, iG∗(V (C)) = |B|. Now
B must be a maximal (k, `)-sparse subgraph of C, since otherwise we may add edges
from C to G∗ while still maintaining its sparsity (as the edges in C are only contained
in (k, `)-circuits of G consisting of the edges of C by the definition of a (k, `)-M-
component). This, together with Lemma 2.4 shows that |B| = k|V (C)| − `.

Moreover, the following lemma (which implies the (k, `)-sparsity of HG) can be
proved by a straightforward generalization of the proof of [25, Lemma 3.3], using
Lemma 2.5.

Lemma 2.6. Let G = (V,E) be a graph, let G∗ be an arbitrary maximal spanning
(k, `)-sparse subgraph of G, and let HG be the (k, `)-M-component hypergraph of G.
Then iHG

(X) ≤ iG∗(X) holds for each X ⊆ V . Furthermore, equality holds exactly
when X induces either all or none of the edges of each (k, `)-M-component of G.

Lemma 2.6 has the following important corollary.

Observation 2.7. If G is a (k, `)-rigid graph, then the (k, `)-M-component hyper-
graph HG of G is a (k, `)-tight hypergraph. Furthermore, if X induces a (k, `)-tight
subhypergraph of HG, then G[X] is a (k, `)-rigid subgraph of G.

2.1 Efficient algorithm for testing (k, `)-rigidity

Algorithms for testing the (k, `)-rigidity of a graph already exist for each pair of k and
` (see the works of Hendrickson, Jacobs and Thorpe [22, 23] and Berg and Jordán [3]
for the case of (k, `) = (2, 3), the paper of Lee and Streinu [29] for general k and `,
and the extension of this latter paper for hypergraphs by Streinu and Theran [36]).
The algorithm is based on the Orientation Lemma of Hakimi [16] and uses in-degree
constrained orientations. For later purposes, we state the hypergraphic version of this
lemma here from [10] (see also [9, Theorem 9.4.2]). We say that ~H is an orientation
of a hypergraph H if a unique head is designated for each hyperedge from its
endvertices. The in-degree of a vertex v in ~H is the number of hyperedges which has
v as its head.

Lemma 2.8 (Hypergraphic orientation lemma, [10]). Let H = (V, E) be a hypergraph
and let m : V → Z+. Then H has an orientation such that the in-degree of each
vertex v is at most m(v) if and only if i(X) ≤

∑
x∈X m(x) holds for each X ⊆ V .

All the above mentioned algorithms construct a maximal (k, `)-sparse subgraph
of G by considering its edges one by one and adding them to the spare subgraph
greedily by using Lemma 2.8. (Note that we have the (k, `)-sparsity matroid in the
background and hence such a greedy method suffices.) The running time of the
algorithm is O(|V ||E|) on graphs for fixed k and `. It was observed in [3, 29] that

EGRES Technical Report No. 2022-05



2.2 Connectivity 6

this running time can be reduced to O(|V |2) (by using a data structure presented
in [30] which also appeared independently in [2]). The main idea is to maintain the
family of (k, `)-rigid components (which are the maximal (k, `)-tight subgraphs)
of our sparse subgraph. By using this extra data, edges which are induced by a (k, `)-
rigid component can be skipped in constant time. Finally we note that the running
time is worse in the case of hypergraphs by a factor of the maximum cardinality of a
hyperedge, however, we will see in Section 3 that we can get rid of this extra factor
for (k, `)-M-component hypergraphs.

2.2 Connectivity

As we have mentioned in the Introduction, 2- and 3-connectivity is used in the char-
acterization of global rigidity for the types of frameworks we are interested in. In this
section we present some structural properties and efficient algorithms related to the
vertex-connectivity of graphs.

A graph G on at least k+1 vertices is called k-(vertex-)connected (or respectively
k-edge-connected) if G − X is connected for any set X of k − 1 vertices (edges,
respectively). If a k-connected graph G is not (k+1)-connected, then there exists a set
X ⊂ V of cardinality k such that G−X is not connected. For the sake of simplicity, we
call such a set X a mincut of G. For a mincut X of cardinality k, let bkX(G) denote
the number of connected components of G − X. Let bk(G) denote the maximum
value of bkX(G) over all k element subsets of V . (When G is (k + 1)-connected, let
bk(G) = 1.) For a cut-set X of cardinality k, the connected components of G−X are
called (k+ 1)-fragments of G. An inclusion-wise minimal (k+ 1)-fragment is called
a (k + 1)-end.

Let ck,` be an integer which is 1 if 0 < ` ≤ k and is 2 if k < ` < 2k. The following
folklore statement is about the vertex-connectivity of a (k, `)-rigid graph.

Proposition 2.9. If G = (V,E) is a (k, `)-rigid graph for which |V | ≥ 3, then G is
ck,`-connected.

This statement implies that in the applications corresponding to global rigidity we
need to test the 2- or 3-connectivity of an already 1- or 2-connected graph or augment
its connectivity by one. When G is connected but not 2-connected, a mincut X is a
singleton, and its single element is called a cut-vertex. When G is 2-connected but
not 3-connected, we call a mincut a cut-pair. We shall use the structure of the graph
determined by its cut-vertices or cut-pairs, respectively.

The structure of the 2-connected components of a connected graph. A
2-connected component of G is a maximal 2-connected subgraph of G (which
could be a single edge). Any connected graph decomposes into a tree of 2-connected
components called the block-cut tree (BC-tree or 2-block tree) that we denote
by BC(G). The vertices of this tree are called nodes (and denoted by N), and they
correspond to the 2-connected components and to the the cut-vertices of the graph,
thus there is a map ϕ : N → 2V for which ϕ(n) is either a singleton formed by a
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cut-vertex of G or the vertex set of a 2-connected component of G for each n ∈ N .
There is an edge between a node representing a 2-connected component and a node
representing a cut-vertex in G, if the cut-vertex is in the 2-connected component.
The 2-ends of G correspond to the leaves of BC(G). The following lemma, which
is based on the results of Hopcroft and Tarjan [17] and Rosenthal and Goldner [35],
summarizes the properties of BC(G).

Lemma 2.10. [17, 35] Let G = (V,E) be a connected graph. Then BC(G) can be
calculated in O(|V | + |E|) time. If c is a node of BC(G) corresponding to a cut-
vertex v ∈ V , and C is the node set of a connected component of BC(G) − c then
ϕ(C) − ϕ(v) is the vertex set of a 2-fragment that arise after deleting v. If u, v ∈ V
are not cut-vertices of G and u′ and v′ are the nodes of BC(G) which correspond
to the 2-connected components containing u and v, respectively, then BC(G + uv) =
BC(BC(G) + u′v′).

The structure of the 3-connected components of a 2-connected graph. Ob-
serve that a cut-pair {u1, v1} may separate an other cut-pair {u2, v2} (that is, u2 and
v2 are in different components of G− {u1, v1}). Such a pair {u1, v1} is called a weak
cut-pair. It can be proved that in this case {u2, v2} is also a weak cut-pair and sep-
arates {u1, v1}. A cut-pair which is not a weak cut-pair, is called a strong cut-pair.
To store the 2-cuts of a 2-connected graph G, we shall use a structure defined by
Tutte [37], and Di Battista and Tamassia [5, 6]. This structure has similar properties
to the BC-trees, however, its definition is more complex due to the existence of weak
pairs. It is based on the 3-connected components defined by Tutte [37]. We sketch
its construction and its main properties below based on [6, 15]. We assume that G is
a simple 2-connected graph. (When G is not simple, we just take its maximal simple
subgraph.) First we split G into smaller graphs, called split components, along its
cut-pairs, as follows. Assume that {u, v} decomposes the edge set of (a split compo-
nent G0 of) G into more than one equivalence classes E1, . . . , Et, in which two edges
are equivalent if they are on the same path which is internally disjoint from {u, v},
and there exists a subset I ⊂ {1, . . . , t} of indices such that the sets E ′ =

⋃
i∈I Ei

and E ′′ =
⋃

i∈({1,...,t}−I) Ei both have cardinality at least two. We replace (the split

component G0 of) G with the two split components G′ = (V (E ′), E ′ ∪ {uv}) and
G′′ = (V (E ′′), E ′′ ∪ {uv}) where we call uv a virtual edge. When all possible splits
have been done, we have three types of split components: 3-connected graphs, tri-
angles, and 3-bonds (which are two vertices connected by three edges). We say that
two split components are adjacent if they share a virtual edge which is added to G at
some split. Finally we merge (along with deleting the shared virtual edges) the adja-
cent 3-bonds to bonds (with at least three parallel edges) and the adjacent triangles
to circles which are called polygons. The resulting graphs are called the 3-blocks of
G. By Tutte [37], this structure is unique for a 2-connected graph. (Note that the
splitting procedure may result in different structures depending on the order of splits.
These become the same during the merging steps.)

We can define a tree on the 3-blocks, called the 3-block-tree of G, by considering
3-blocks as (tree-)nodes which we connect if they share a virtual edge which is added
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at some split. For the sake of simplicity, contrary to other papers, we split each edge
connecting two nodes of the tree none of which is a bond node by an extra bond
node of degree two. (This way each edge of the connects a bond node to a non-bond
node.) By using the 3-blocks and 3-block-tree, we can store the main 3-connectivity
properties of G in a data structure, called the SPQR-tree of G that we denote by
SPQR(G). In SPQR(G) we store the 3-block-tree as a tree, along with the vertex
sets and types of 3-blocks corresponding to their nodes (that is, like for the BC-tree,
we again have a map ϕ′ from the node set of SPQR(G) to 2V ), and all the edges of
each polygon (which is a simple circle that may contain virtual edges and edges of G).
For each vertex v of G, we also store the nodes which span v in their 3-block. The
resulting structure has O(|V |) nodes and it can be stored in O(|V |) space.

The following lemma, which is based on the results of [5, 6, 15, 18, 19], summarizes
the properties of SPQR(G).

Lemma 2.11. [5, 6, 15, 18, 19] Let G = (V,E) be a 2-connected graph. Then
SPQR(G) can be calculated in O(|V |+ |E|) time and this structure can be updated in
O(|V |) time after the addition of a new edge. A vertex pair {u, v} is a strong cut-pair
of G if and only if {u, v} = ϕ′(c) for a bond node c of SPQR(G). In this case, for
the node set of a component C of SPQR(G), ϕ′(C) − {u, v} is the vertex set of a
3-fragment that arises after deleting {u, v}. On the other hand, weak cut-pairs are
exactly the non-adjacent vertex pairs in polygon-nodes. In this case the corresponding
3-fragments can be calculated by splitting the polygon (and this way the whole tree)
along this cut-pair and calculating the ϕ′ image of the resulting two components.

Observe that Lemma 2.11 implies that a 2-connected graph may have two types of
3-ends: the leaves of the SPQR-tree which are not polygons are all 3-ends, and the
vertices of degree 2 are also all 3-ends (such vertices may be contained in polygons
which are not leaves of the SPQR-tree).

Note that the main difference between the properties of BC-trees and SPQR-trees
is the usage of polygon nodes. The usage of these special nodes is mandatory when
we want to store the structure of all cut-pairs (and the corresponding 3-fragments) of
G = (V,E) in a structure of size O(|V |), as there could be O(|V |2) cut-pairs in a 2-
connected graph on V (for example, in a cycle). On the other hand, if G has no weak
cut-pairs the structure gets much simpler. In this case, each polygon in SPQR(G)
is a triangle and all cut-pairs of G are represented by bond-nodes of the tree. Thus
the whole structure has almost the same properties as the BC-tree. The following
result of Jackson and Jordán [20] shows why the case where G has no weak cut-pairs
is significant in this paper.

Lemma 2.12. [20] If G is a (2, 3)-rigid graph, then G contains no weak cut-pairs.

3 Computing the (k, `)-M-components

In this section we present an efficient algorithm that computes the (k, `)-M-components
of a graph G by constructing its (k, `)-M-component hypergraph in O(|V |2) running

EGRES Technical Report No. 2022-05



Section 3. Computing the (k, `)-M-components 9

time. We note here that Berg and Jordán [3] gave an algorithm which calculates
the (2, 3)-M-components of a graph G = (V,E) in O(|V |2) time (see also [2] for more
details). In some sense, our algorithm is a direct generalization of the algorithm of [3].
However, contrary to their approach, we shall use the (k, `)-M-component hypergraph
of some subgraph of G and maintain its k-in-degree constrained orientation during
the algorithm.

For building the (k, `)-M-component hypergraph, we shall use some similar tech-
niques to the ones mentioned in Section 2.1. During the procedure, we collect the al-
ready considered edges to a graph G′ = (V,E ′). We maintain the (k, `)-M-component

hypergraph HG′ = (V, E ′) of G′, and its orientation ~HG′ in which the in-degree of
each vertex is at most k. For technical reasons, and to obtain some extra data in our
output, we will also maintain a maximal (k, `)-sparse subgraph G′′ = (V,E ′′) of G′.

At the beginning of our procedure G′, G′′, HG′ and ~HG′ are empty.
To achieve the O(|V |2) running time, we need to deploy a rather complex data

structure that we describe below and illustrate in Figure 1. Besides storing each edge
of HG′ corresponding to a trivial M-component of G′, we store just one instance of
every (undirected) hyperedge of HG′ which corresponds to a non-trivial M-component
of G′. For each directed hyperedge, we maintain a pointer to the underlying undirected
hyperedge and a pointer to their head. For every vertex v, we keep a doubly linked
list of pointers to the directed hyperedges that v is head of. We call it the head-list
of v.

Vertices

Directed hyperedgesUndirected hyperedges

Non-trivial

Trivial

Head-lists

Ci

Figure 1: Illustration of the data structure used for Algorithm 3.2.

The following lemma implies that HG′ can always be stored in O(|V |) space with
our data structure since G′ has at most k|V | − ` trivial M-components.

Lemma 3.1. Given a graph G = (V,E), let C denote the family of the vertex sets of
its non-trivial (k, `)-M-components. Then

∑
C∈C |C| ≤ 2(k|V | − `).

Proof. By Lemma 2.6 HG is a (k, `)-sparse hypergraph. Let mi denote the number
of non-trivial (k, `)-M-components of G with cardinality i, where i ∈ {1, . . . , |V |}.
(Note that m1 = 0 when k ≤ `.) Then counting the hyperedges of HG = (V, E)
corresponding to the non-trivial M-components of G we get that its number equals∑|V |

i=1(ki− `)mi. Hence
∑|V |

i=1(ki− `)mi ≤ |E| ≤ k|V | − `. Observe that i ≤ 2(ki− `)
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holds for each i ∈ {2, . . . , |V |} as from 2k > ` we get i ≤ 2ki − `i. 1 ≤ 2(k − `)
also holds when k > ` (and hence m1 can be nonzero). Thus we get

∑
C∈C |C| =∑|V |

i=1 imi ≤
∑|V |

i=1 2(ki− `)mi ≤ 2(k|V | − `), as claimed.

We shall consider the edges of G one by one in a breath first manner. When we
reach a new vertex i, we create a 0-1 vector ci of length |V | that indicates for every
vertex v, if v is contained in a joint non-trivial (k, `)-M-component with i (that is,
ci is 1 exactly at the (E ′ − E ′)-neighbors of i). Note that ci can be created for any
particular vertex i in O(|V |) time, as we can traverse all the hyperedges of HG′ in
O(|V |) time by Lemma 3.1.

Now, once we consider a new edge ij adjacent to the vertex i, we use the following
subroutine.

Algorithm 3.2. Input: A maximal (k, `)-sparse subgraph G′′ of a graph G′, the M-

component hypergraph HG′ of G′, its orientation ~HG′ where the in-degree din~HG′
≤ k

for each vertex v, a vertex i (all of these stored in the data-structure mentioned above
along with the vector ci), and an edge ij.
Output: A maximal (k, `)-sparse subgraph G′′ of G′ + ij, the M-component hyper-

graph HG′+ij of G′ + ij, and its orientation ~HG′+ij where the in-degree of each vertex
is at most k.

1 FoundSmallIndegree := True, H := HG′, ~H := ~HG′.
2 If ci(j) = 0, then
3 While (din~H(i) + din~H(j)) ≥ 2k − ` and FoundSmallIndegree = True do

FoundSmallIndegree := False
4 Conduct a backwards DFS in ~H from the set {i, j}, let X ⊆ V be the

set of vertices reached during the backwards DFS.
5 If ∃v ∈ X − {i, j} with din~H(v) < k, then

6 Reorient a path leading from v to {i, j} to the other direction in ~H
FoundSmallIndegree := True

7 If FoundSmallIndegree = True then
Add ij to G′′, to H, and also to ~H with an orientation such that din~H(i) ≤
k and also d ~H(j)in ≤ k.

8 else
Update H by deleting all hyperedges induced by X and adding k|X| − `

copies of X as a hyperedge to it. The heads of these hyperedges in ~H will
be exactly the heads of the deleted hyperedges. G′′ remains the unchanged.

9 Return G′′, HG′+ij := H, and ~HG′+ij := ~H

Next we show that the above procedure maintains our data structure correctly.

Lemma 3.3. Algorithm 3.2 outputs a maximal (k, `)-sparse subgraph G′′ of G′+ij, the

M-component hypergraph HG′+ij of G′ + ij, and its orientation ~HG′+ij with in-degree
of at most k for each vertex.

Proof. If the condition at Step 2 is not satisfied, then there exists a (k, `)-M-component,
which contains i and j and hence the edge ij cannot be used to construct larger (k, `)-
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M-components. Hence G′ + ij has the same (k, `)-M-components and G′′ is still its
maximal (k, `)-sparse subgraph.

We might assume now that the condition at Step 2 is satisfied. If the condi-
tion FoundSmallIndegree = True holds in Step 7, then HG′ + ij is (k, `)-sparse by
Lemma 2.8, since it implies that each set Y containing i and j can induce at most
2k − ` + k(|Y | − 2) = k|Y | − ` hyperedges in HG′ + ij. To show that G′′ + ij
is also (k, `)-sparse, let us take a set Z ⊆ V containing both i and j. (When Z
does not contain both i and j, iG′′+ij(Z) = iG′′(Z) ≤ k|Z| − ` is obvious.) Then
iG′′+ij(Z) = iG′′(Z) + 1 ≤ k|Z| − ` + 1 and hence the (k, `)-sparsity condition fol-
lows whenever iG′′(Z) < k|Z| − `. Hence we may assume that iG′′(Z) = k|Z| − `
and hence iHG′

(Z) < iG′′(Z) by the (k, `)-sparsity of HG′ + ij. Now, by the second
statement in Lemma 2.6, it follows that there is a (k, `)-M-component of G′ with
vertex set C, so that Z induces some, but not all of the edges of G′[C]. Lemma 2.6
also implies that k|C| − ` ≤ iHG′

(C) ≤ iG′′(C) ≤ k|C| − `, that is, equality holds
throughout. As X and C share an edge, we can use Lemma 2.1 on G′′ to show that
iG′′(Z ∪ C) = k|Z ∪ C| − `. However, again by the second statement of Lemma 2.6
and the (k, `)-sparsity of HG′ + ij, there exists a (k, `)-M-component of G′ so that
Z ∪C induces some but not all of its edges. Subsequently adding these vertex sets of
(k, `)-M-components of G′ to our set with which it shares at least one edge, we get the
set V , contradicting the (k, `)-sparsity of HG′ + ij. Therefore, G′′+ ij is (k, `)-sparse.
This also implies that ij is non-redundant in G′ + ij, since it increases the size of
the maximal (k, `)-sparse subgraph G′′ of G′ and hence HG′ + ij is the M-component
hypergraph of G′ + ij. Clearly, the orientation of HG′ + ij provided by the algorithm
in Step 7 satisfies our conditions.

If, in contrast, FoundSmallIndegree = False in Step 7 (and hence we get to Step 8),
the algorithm takes the set X, which has in-degree 0 as it is the set of vertices from
which {i, j} is reachable. As no reorientation can be made, every vertex has in-degree
k in X−{i, j}. Hence X induces at least k(|X|−2)+2k− ` = k|X|− ` hyperedges in
HG′ . By the (k, `)-sparsity of HG′ , X induces exactly k|X|− ` hyperedges in HG′ . By
its construction, it is easy to see that X is the unique minimal set with the property
of containing i and j and inducing k|X| − ` hyperedges simultaneously.

By Lemma 2.6 and the (k, `)-sparsity of G′′, X induces exactly k|X| − ` edges
in G′′. Moreover, this is true for any maximal (k, `)-sparse subgraph of G′. Hence
G′+ ij cannot contain any (k, `)-M-circuit which contains both of i and j and is not a
subgraph of G′[X] + ij, that is, the vertex set X0 of the (k, `)-M-component of G′+ ij
containing both i and j is a subset of X.

As X0 forms a (k, `)-M-component in G′ + ij and ij is a (k, `)-redundant edge
in G′ + ij, G′′ is still a maximal (k, `)-sparse subgraph of G′ + ij and the (k, `)-M-
component hypergraph HG′+ij of G′ + ij induces at least k|X0| − ` parallel copies of
the hyperedge on X0. Hence, by Lemma 2.6, X0 induces exactly k|X0|− ` hyperedges
in HG′+ij and G′′[X0] is (k, `)-tight. By the definition of (k, `)-M-components, we can
conclude that X0 induces no edge of any other (k, `)-M-component of G′ + ij. Note
that the definition of (k, `)-M-components also implies that the (k, `)-M-components
of G′ + ij other than X0 are (k, `)-M-components of G′, as well. Thus X0 induces
either all or none of the edges of each (k, `)-M-component of G′. By applying the
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second statement of Lemma 2.6 to HG′ , G
′′ and X0, we can see that HG′+ij[X0] is a

(k, `)-tight hypergraph containing i and j. This, together with the definition of X,
proves that X ⊆ X0 and hence X = X0.

Finally, it is obvious that the in-degree of each vertex is at most k in the orientation
provided by the algorithm.

Next we show that Algorithm 3.2 needs O(|V |) running time and the total running
time of our algorithm computing the (k, `)-M-component hypergraph is O(|V |2).

Theorem 3.4. Let k and ` be positive integers such that ` < 2k. Then the (k, `)-M-
component hypergraph HG of a graph G = (V,E) (with at most O(|V 2|) edges) can be
calculated in O(|V |2) time. Also, a maximal (k, `)-sparse subgraph G∗ of G can also
be found in the same running time. Moreover, the algorithm provides an orientation
~HG of HG, with which we can decide whether HG + ij is (k, `)-sparse and, if not, we
can determine T (ij) for arbitrary i, j ∈ V in O(|V |) running time.

Proof. We shall use Algorithm 3.2 as presented above. We have seen that the vector
ci used in our data structure can be maintained in O(|V |2) total time if we consider
the edges of G in a breath-first manner. Throughout the whole method we run
Algorithm 3.2 for each edge.

Let us show that each step of Algorithm 3.2 requires at most O(|V |) running time.
Again, we might assume that the condition at Step 2 is satisfied.

First, we try to find a reorientation by running backwards DFSs from i and j on
~H, shown in Step 4. With the head-lists each DFS needs O(|V |) running time, since
we need to traverse only on one copy of each undirected hyperedge of H, which is fast
by Lemma 3.1. Now, if we found a vertex v with in-degree at most k, we need to
reorient the path leading from {i, j} to v. With the help of the data achieved by the
DFS, the directed hyperedges of such a path can be found in O(|V |) running time.
Note that we also need to refresh the head-lists in every reorientation. Clearly, we
can add a directed hyperedge to the head-list of v in O(1) time. As we store the head
list in doubly linked lists, we can also delete and add directed hyperedges from and
to the head-list of each vertex on the reoriented path in O(1) time. With these steps,
one possible reorientation can be found and executed in O(|V |) running time. As we
need to run at most 2k− ` = O(1) reorientations, in total the loop of Step 3 requires
O(|V |) time.

If FoundSmallIndegree = True in Step 7, than we can obviously finish the run
in O(1) time. On the other hand, we need some more work for Step 8. Here, to
meet our running time constraints, we first create one instance of the undirected
hyperedge induced by X. Then we loop through all the undirected hyperedges of
T (ij), and delete them. Now we refresh the corresponding directed edges: we redirect
the pointers of the underlying undirected hyperedge, while we do not change the heads
or the head-lists. (After this step we also need to update ci as we described after its
definition.) This whole procedure requires O(|V |) time.

Note that we add at most k|V |−` = O(|V |) edges to G′′ during the whole algorithm
since it is (k, `)-sparse. Observe also that, when a new (k, `)-M-component arises, we
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merge at least two (k, `)-M-components. Only the edges of G′′ arise as a new (triv-
ial) M-component during the algorithm, hence we can have at most O(|V |) merges.
Therefore, we have O(|V |) edges of G for which we run Steps 3–8 from Algorithm 3.2
and for all other edges, the structure is left unchanged following Step 2 in O(1) time.
Thus the total running time is indeed O(|V |2).

Regarding the last statement of the Theorem, given an extra edge ij, we can use
the orientation provided, and run Steps 3–8 of Algorithm 3.2 in O(|V |) time again
to decide whether it maintains the sparsity of HG. If it does not, we calculate T (ij),
which is the subhypergraph induced by the new hyperedge provided by Step 8.

We note here that we used only O(|V |) extra memory for the data structure by
Lemma 3.1 and the fact that HG′ has O(|V |) directed hyperedges. Hence, Algo-
rithm 3.2 uses only O(|V |) extra memory.

Note that a graph G = (V,E) is (k, `)-M-connected if and only if its (k, `)-M-
component hypergraph consists of k|V | − ` copies of the hyperedge, which contains
all of the vertices of G. Hence Theorem 3.4 implies that the (k, `)-M-connectivity of
G can be checked in O(|V |2) time. Moreover, G is (k, `)-redundant if and only if it is
(k, `)-rigid and each of its edges is contained by a (k, `)-circuit, that is, no edge of G
is contained by a trivial (k, `)-M-component. This implies the following.

Corollary 3.5. Let k and ` be positive integers such that ` < 2k, and let G = (V,E)
be a graph. Then it can be decided in O(|V |2) time whether G is (k, `)-redundant.

Recall the characterizations of global rigidity of several types of frameworks from
the Introduction. Recall also from Section 2.2 that the 2- or 3-connectivity of a graph
G = (V,E) can be checked in O(|V |2) time. Hence Corollary 3.5 has the following
important consequence.

Corollary 3.6. Let G = (V,E) be a graph. Then it can be decided in O(|V |2) time
whether G is generically globally rigid in the Euclidean plane, in a non-Euclidean
plane, or on the cylinder.

4 Augmentation problems on (k, `)-rigid graphs

Algorithms for augmenting (k, `)-rigidity have a long history. There exists an O(|V |+
|E|) ≤ O(|V |2) time algorithm that searches for the smallest set of edges making
a graph G = (V,E) 2-edge-connected (that is, (1,1)-redundant) [7]. Garćıa and
Tejel [12] showed an O(|V |2) method to add the minimum number of edges so that a
(2, 3)-tight graph becomes (2, 3)-redundant. In [26], a min-max theorem was given to
this problem and also to its extension, called the (k, `)-redundant rigidity aug-
mentation problem, in which the goal is to find the smallest edge set that makes
a given (k, `)-tight graph (k, `)-redundant. (It was also shown that the extension of
this problem for (k, `)-rigid inputs is NP-hard whenever ` > k.)

Let RH(i1j1, . . . , irjr) denote the subhypergraph of H = (V, E) induced by the
hyperedges in E which are (k, `)-redundant in H ∪ {i1j1, . . . , irjr} where i1, . . . , ir,
j1, . . . , jr ∈ V . Note that RH(ij) = TH(ij) for any (k, `)-tight hypergraph H and any
i, j ∈ V . The following lemma extends this simple fact.
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Lemma 4.1. [26] If H is a (k, `)-tight hypergraph with 0 < ` < 2k, then

RH(i1j1, . . . , irjr) = TH(i1j1) ∪ · · · ∪ TH(irjr).

A vertex set C of a (k, `)-tight hypergraph H = (V, E) is called (k, `)-co-tight, if
V − C induces a (k, `)-tight subhypergraph. We say that an edge set F touches a
vertex set X if at least one edge in F has an endvertex in X. The following statement
shows why co-tight sets are important in this topic.

Observation 4.2. [26] Let H = (V, E) be a (k, `)-tight hypergraph on at least k2 + 2
vertices and let C be a (k, `)-co-tight set of H. Then, for any edge set F , for which
H + F is (k, `)-redundant, F touches C.

The main result of [26] is the following.

Theorem 4.3. [26] Let H = (V, E) be a (k, `)-tight hypergraph on at least k2 + 2
vertices. If there exists any (k, `)-co-tight set in H, then min{|F | : H = (V, F ) is a

graph for which H ∪ H is (k, `)-redundant} = max
{⌈
|C|
2

⌉
: C is a family of pairwise

disjoint (k, `)-co-tight sets of H
}
. Otherwise, H + uv is (k, `)-redundant for every

pair u, v ∈ V .

The minimal (k, `)-co-tight sets of H will be called the (k, `)-MCT sets of H. The
key lemmas in the proof of Theorem 4.3 are the following.

Lemma 4.4. [26] Let H be a (k, `)-tight hypergraph on at least k2 + 2 vertices, with
C∗ as the family of its (k, `)-MCT sets. Then the members of C∗ are either pairwise
disjoint and |C∗| ≥ 3 or there exists a pair u, v ∈ V such that T (uv) = H, that is,
H+uv is (k, `)-redundant. Furthermore, in the first case no hyperedge of H intersects
more than one (k, `)-MCT sets.

A set P ⊆ V is called a transversal of a set system S if P ⊆
⋃
S and |P ∩ S| = 1

for each S ∈ S.

Lemma 4.5. [26] Let H be a (k, `)-tight hypergraph on at least k2+2 vertices. Suppose
that there is no edge uv for which H + uv is (k, `)-redundant. Let P be a transversal
of the (k, `)-MCT sets of H. Then for any connected graph H on P (for example a
star H = K1,|P |−1), H + H is (k, `)-redundant.

Lemma 4.6. [26] Let H be a (k, `)-tight hypergraph on at least k2+2 vertices. Suppose
that there is no edge uv for which H + uv is (k, `)-redundant. Let y, x1, x2, x3 be
elements of distinct (k, `)-MCT sets of H. Let T ∗ = T (yx1)∪T (yx2)∪T (yx3). Then
T ∗ = T (x1y) ∪ T (x2x3) or T ∗ = T (x2y) ∪ T (x1x3) holds.

Let us call a (k, `)-tight subhypergraph H0 of H generated if there are u, v ∈ V
such that TH(uv) = H0. The following result of [26] provides a connection between the
(k, `)-MCT sets and the ‘classes of extreme vertices’ defined by Garćıa and Tejel [13].

EGRES Technical Report No. 2022-05



Section 4. Augmentation problems on (k, `)-rigid graphs 15

Lemma 4.7. [26] Let H be a (k, `)-tight hypergraph on at least k2+2 vertices. Suppose
that there is no edge uv so that H+ uv is (k, `)-redundant. Then T (uv) is inclusion-
wise maximal amongst all the generated subgraphs of H if and only if u, v ∈ V are
elements of two distinct (k, `)-MCT sets. Moreover, two inclusion-wise maximal gen-
erated subgraphs T (uv1) and T (uv2) are equal if and only if v1, v2 are in the same
(k, `)-MCT set.

Besides the min-max theorem, an O(|V |2) time algorithm was given for the (k, `)-
redundant rigidity augmentation problem in [26] for graph inputs. However, for hy-
pergraphs, its running time has an extra |V | factor which comes from the extra factor
in the running time of the algorithm of Section 2.1 corresponding to the potential size
of the hyperedges. Since HG can be calculated in O(|V |2) time and after this THG

(ij)
can be calculated in O(|V |) time by Theorem 3.4, the (k, `)-redundant rigidity aug-
mentation problem on the (k, `)-M-component hypergraph of a (k, `)-rigid graph can
also be solved in O(|V |2) time. The combination of Theorem 3.4 and the algorithmic
results of [26] can be summarized as follows.

Theorem 4.8. Let G = (V,E) be a (k, `)-rigid graph. Let HG be the (k, `)-M-
component hypergraph of G. Then a minimum cardinality edge set F for which HG+F
is (k, `)-redundant can be calculated in O(|V |2) time. If there is no edge uv for which
HG + uv is (k, `)-redundant, then the algorithm also provides a transversal of the
(k, `)-MCT sets of HG.

For completeness, we shall give an alternative proof to Theorem 4.8 in the Appendix
by extending the ideas of the paper by Gaćıa and Tejel [13].

As we mentioned in the Introduction, one of our goals is to give an efficient algorithm
that can be applied in several global ridity augmentation problems. Hence we consider
the following generalization: Given (k, `)-rigid graph G, we want to find a minimum
cardinality edge set F for which G + F is (k, `)-redundant and (ck,` + 1)-connected.
(In fact, we also need the simplicity of the output which will be handled later.) To
make this problem more approachable we may use the fact that a (k, `)-redundant
and (ck,` + 1)-connected graph is (k, `)-M-connected (if it has not too many parallel
edges when k > `). With this, it was shown in [25] that the (generalized) global
ridity augmentation problem is equivalent to the following problem, if we assume that
0 < ` ≤ 3

2
k, and G is simple if ` > k.

Problem 1. Let k and ` be positive integers such that 0 < ` ≤ 3
2
k, and let G = (V,E)

be a (k, `)-rigid graph, which is simple if k < `. Let HG = (V, E) denote the (k, `)-
M-component hypergraph of G. Find a graph H = (V, F ) with a minimum cardinality
edge set F such that HG ∪H = (V, E ∪F ) is (k, `)-redundant and G∪H = (V,E ∪F )
is (ck,` + 1)-connected, where ck,` =

⌈
`
k

⌉
.

The main result of [25] is the following.

Theorem 4.9. [25] Let k and ` be two positive integers such that ` ≤ 3
2
k. Let

G = (V,E) be a (k, `)-rigid graph on at least k2 + 2 vertices. Suppose also that
G is simple if k < `. Let HG = (V, E) be the M-component hypergraph of G. If
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G is (ck,` + 1)-connected, (k, `)-tight, and there is no (k, `)-co-tight set in HG, then
any new edge makes HG (k, `)-redundant. Otherwise, min{|F | : F is a set of graph
edges for which HG + F = (V, E ∪ F ) is (k, `)-redundant and (ck,` + 1)-connected} =

max
{
bck,`(G)− 1,max

{⌈
|A|
2

⌉
: A is a family of pairwise disjoint (k, `)-co-tight sets

of HG and (ck,` + 1)-fragments of G
}}

.

The minimal members of the family of the (k, `)-co-tight sets ofHG and the (ck,`+1)-
fragments of G will be called the atoms of G. Note that if G is (k, `)-rigid and (ck,`+1)-
connected graph then the statement of Theorem 4.9 coincide with the statement of
Theorem 4.3 for HG. The key lemmas in the proof of Theorem 4.9, for the case where
G is not (ck,` + 1)-connected, are the following. In the following lemmas we always
assume that G = (V,E) is a (k, `)-rigid graph on at least k2 + 2 vertices which is not
(ck,` + 1)-connected. Moreover, we suppose that 0 < ` ≤ 3

2
k, and G is simple if k < `.

Lemma 4.10. [25] Let A be an atom of G and let a ∈ A. Then G − a is ck,`-
connected.

Lemma 4.11. [25] The atoms of G are pairwise disjoint and no edge of G connects
two atoms.

Lemma 4.12. [25] Assume that there is no edge uv for which HG + uv is (k, `)-
redundant and G + uv is (ck,` + 1)-connected. Let P be a transversal of the atoms
of HG. Then for any connected graph H on P (for example a star H = K1,|P |−1),
HG + H is (k, `)-redundant and G + H is (ck,` + 1)-connected. Furthermore, for any
two connected graphs H ′ and H ′′ on a subset P ′ ⊆ P , the sets of (k, `)-redundant
hyperedges of H in H + H ′ and H + H ′′ coincide.

Lemma 4.13. [25] Assume that there is no edge uv for which HG + uv is (k, `)-
redundant and G+uv is (ck,`+1)-connected. Let P be a transversal of the atoms of HG

and let x1, x2, x3, y ∈ P be distinct vertices. Let T ∗ = THG
(x1y)∪THG

(x2y)∪THG
(x3y).

Then T ∗ = THG
(x1y) ∪ THG

(x2x3) or T ∗ = THG
(x2y) ∪ THG

(x1x3) holds.

5 Global rigidity augmentations

In this section we give an algorithm for Problem 1 with running time O(|V |2). Our
input is a (k, `)-rigid graph on at least k2 + 2 vertices (where ` ≤ 3

2
k) which is

assumed to be simple, when k < `. The algorithms differ in some details depending
on ck,` hence, after a common introduction, we show the algorithm first for ck,` = 1.
Next we present how it can be extended to (k, `) = (2, 3) and to the cases where
3 ≤ k < ` ≤ 3

2
k.

We start our algorithm by constructing BC(G) or SPQR(G) (depending on ck,`).
This can be done in O(|V |2) time by Lemmas 2.10 and 2.11. We also calculate HG

in O(|V |2) time by using the algorithm of Theorem 3.4. If G is (ck,` + 1)-connected,
then we only need to augment HG to a (k, `)-redundant hypergraph which can be
done in O(|V |2) time by Theorem 4.8. Hence from now on, we assume that G is not
(ck,` + 1)-connected. In this case the atoms of G are pairwise disjoint by Lemma 4.11.
Next, we need to construct a transversal P of the atoms.
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Section 5. Global rigidity augmentations 17

Constructing the transversal of the atoms. Our algorithm will rely on The-
orem 4.8 and the following greedy subroutine which we got as an extension of [26,
Algorithm 6.7].

Algorithm 5.1. Input: The (k, `)-M-component hypergraph HG = (V, E) of a (k, `)-
rigid graph G on at least k2 + 2 vertices, a set L ⊆ V and a vertex i ∈ V .
Output: A (minimum cardinality) vertex set V ′(i, L) such that V =

⋃
j∈V ′(i,L) V (ij).

1 Initialize V ′(i, L) := ∅. All vertices are unmarked.
2 Mark i.
3 Explore all vertices j ∈ L. Subsequently, explore all other vertices j ∈ V − L:
4 If j is unmarked, then
5 Calculate THG

(ij)
6 Mark all unmarked vertices in VHG

(ij)
7 V ′(i, L) := [V ′(i, L)− VHG

(ij)] + j
8 Return V ′(i, L)

Lemma 5.2. Algorithm 5.1 runs in O(|V |2) time.

Proof. Recall that THG
(ij) can be calculated in O(|V |) running time for any vertex

j by Theorem 3.4. Hence, as we compute THG
(ij) only O(|V |) times, Algorithm 5.1

concludes in O(|V |2) running time. Note that the marking and set operations can be
executed without additional complexity in O(|V |) running time each.

Lemma 5.3. Let k and ` be two positive integers such that ` < 2k. Let G be a (k, `)-
rigid graph on at least k2 +2 vertices and let HG be its (k, `)-M-component hypergraph.
Suppose that there is no edge uv such that HG + uv is (k, `)-redundant. Let i′ be a
vertex from a (k, `)-MCT set of HG and let L be an arbitrary subset of V . Let V ′(i′, L)
be the result of Algorithm 5.1 with the input HG, i′ and L. Then V ′(i′, L) ∪ {i′} is a
transversal of the (k, `)-MCT sets of HG, and hence every vertex from V ′(i′, L) is a
vertex from a (k, `)-MCT set of HG. Moreover, if L ∩ C 6= ∅ for a (k, `)-MCT set C
for which i′ 6∈ C, then V ′(i′, L) ∩ C ∩ L 6= ∅.

Proof. If i′ is from a (k, `)-MCT set of HG, then by Lemma 4.7 we know that the
inclusion-wise maximal generated (k, `)-tight subhypergraphs of HG are exactly the
ones generated by two vertices from different (k, `)-MCT sets. Hence it follows from
Observation 4.2 and Lemma 4.7 that V ′(i′, L) consists of exactly one vertex from every
other (k, `)-MCT set. As we check first the vertices in L, it is clear that we choose
a vertex from L ∩ C for each (k, `)-MCT set C for which C ∩ L 6= ∅ and i /∈ C by
Lemma 4.7.

Lemma 5.4. Let k and ` be positive integers such that ` ≤ 3
2
k. Let G = (V,E) be a

(k, `)-rigid graph on at least k2 + 2 vertices, which is not (ck,` + 1)-connected. Suppose
also that G is simple if k < `. Then a transversal P of the atoms of G can be found
in O(|V |2) running time.

Proof. First we find all the (ck,` +1)-ends of G. We can obtain this by first computing
BC(G) or SPQR(G) in O(|V |2) running time. The set of the leaves of BC(G) and of
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SPQR(G) correspond to the 2-ends and 3-ends (along the maps ϕ and ϕ′ and delet-
ing the corresponding cut-vertex or cut-pairs from them) by Lemmas 2.10 and 2.11,
respectively. (Note that a vertex of degree two, which is contained in the vertex set
of a polygon of length at least four, possibly could also be a 3-end of G as a singleton.
However, this cannot happen in a simple (k, `)-tight graph where k < `. To see this,
observe that a (k, `)-tight graph has no vertex of degree 2 when k ≥ 3, by Lemma 2.2.
On the other hand, when k = 2, ` = 3 and d(v) = 2, then G − v is also (2, 3)-rigid
and hence 2-connected by Proposition 2.9. Hence v is not contained by a polygon
of length at least four in this case.) This also implies that the (ck,` + 1)-ends of G
are pairwise disjoint. Let L0 denote the set of vertices which are contained in any
(ck,` + 1)-end of G. As P must intersect every (k, `)-MCT set of HG, we can use the
algorithm of Theorem 4.8 (with O(|V |2) running time) to construct a transversal P0

of the (k, `)-MCT sets of HG or conclude that HG + u′v′ is (k, `)-redundant for a pair
u′, v′ ∈ V .

If there is no edge uv, so that HG + uv is (k, `)-redundant, then the (k, `)-MCT
sets of HG are pairwise disjoint by Lemma 4.4, and the output P0 of the algorithm of
Theorem 4.8 contains exactly one element of each of them. Let i′ ∈ P0 and let us run
Algorithm 5.1 for i = i′ and L = L0 (in O(|V |2 time by Lemma 5.2). By Lemma 5.3,
V ′(i′, L0) ∪ {i′} is also a transversal of the (k, `)-MCT sets of HG, and if L0 ∩ C 6= ∅
for a (k, `)-MCT set C for which i′ 6∈ C, then V ′(i′, L0)∩C ∩L0 6= ∅. Next we choose
a vertex i′′ ∈ V ′(i′, L0) and run Algorithm 5.1 for i = i′′ and L = L0 (again in O(|V |2
time by Lemma 5.2) to calculate V ′(i′′, L0). Now, by Lemma 5.3 (and by the choice
of i′′), X := V ′(i′′, L0) ∪ {i′′} is also a transversal of the (k, `)-MCT sets of HG, and
if L0 ∩ C 6= ∅ for a (k, `)-MCT set C, then X ∩ C ∩ L0 6= ∅.

Note that Lemmas 4.4 and 4.11 imply that a (k, `)-MCT set of HG and a (ck,` + 1)-
end of G are either disjoint or one of them contains the other. Thus the above set
X is a transversal of the (k, `)-MCT sets which intersects the most (ck,` + 1)-ends
possible. After getting X we can choose one vertex from each (ck,` + 1)-end which
does not intersect X. Adding these vertices to X we get a set P . Note that we got P
in O(|V |2) running time.

Claim 5.5. P is a transversal of the atoms of G.

Proof. Recall first that the (ck,` + 1)-ends of G are pairwise disjoint. On the other
hand, in this case the (k, `)-MCT sets of HG are also pairwise disjoint. Since the
atoms are also pairwise disjoint and they are the minimal elements of the family of
all (ck,` + 1)-ends of G and all (k, `)-MCT sets of HG, if a (k, `)-MCT set C of HG

intersects a (ck,` + 1)-ends K of G, then C ⊆ K or K ⊆ C must hold. Hence the
vertices in X are all chosen from pairwise disjoint atoms. On the other hand, the rest
of the vertices of P are choosen from the (ck,` + 1)-ends of G which do not intersect
X, hence these (ck,` + 1)-ends are also all atoms and hence P is indeed a transversal
of the atoms of G.

Let us turn to the case where there is an edge u′v′ so that HG + u′v′ is (k, `)-
redundant. In this case, the algorithm of Theorem 4.8 finds such an edge uv. If
there are any (k, `)-MCT sets that are also atoms, they must contain either u or v
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by Observation 4.2. In fact, if there are two of them, then one of them must contain
u while the other contains v. Given a transversal of the (ck,` + 1)-ends P0 such that
|P0 ∩ {u, v}| is as large as possible (that is, we chose u or v from a (ck,` + 1)-end if
possible), either P0, P0 + {u}, P0 + {v} or P0 + {u, v} is a transversal of the atoms.
We shall test each of them to determine the actual transversal. The algorithm for this
is as follows.

Let X denote the actual vertex set of interest. If X is a transversal on the atoms of
G, then, for the edge set F of any connected graph on X, HG+F is (k, `)-redundant by
Lemma 4.5. On the other hand, if X does not contain a transversal of the atoms, then
HG + F clearly cannot be (k, `)-redundant, as there is a (k, `)-MCT set which is not
intersected by V (F ) contradicting Observation 4.2. By Lemma 4.1 and Theorem 3.4,
it can be checked in O(|V |2) time whether HG + F is (k, `)-redundant and hence
we can find out in O(|V |2) time whether P0, P0 + {u}, P0 + {v} or P0 + {u, v} is a
transversal of the atoms of G in this case.

Now, we know that the addition of any star SP on a transversal P of the atoms
of G makes G (ck,` + 1)-connected and HG (k, `)-redundant by Lemma 4.12. By
Lemma 4.13, for any three edges x1y, x2y and x3y of this star, HG +SP −{x2y, x3y}+
{x2x3} orHG+SP−{x1y, x3y}+{x1x3} is (k, `)-redundant. Observe that, for i = 1, 2,
SP − {xiy, x3y} is a star on P − {xi, x3}. By Lemma 4.1 and the last statement of
Lemma 4.12, it follows that, if HG +SP −{xiy, x3y}+{xix3} is (k, `)-redundant, then
HG+SP−{xi,x3}+{xix3} is also (k, `)-redundant for any star SP−{xi,x3} on P − {xi, x3}.
Hence from this point the algorithm may choose three vertices x1, x2 and x3 from
a subset N ⊆ P of ‘non-fixed’ vertices and delete either x2 and x3, or x1 and x3

along with the addition of the edge x2x3 or x1x3 to the final augmenting edge set,
respectively. The only issue is that we also want to get a (ck,` +1)-connected graph at
the end, hence the three vertices must be chosen in such a way that, after fixing the
edge, the (ck,` + 1)-connectivity augmentation can still be solved by the same number
of edges. This issue was handled by an algorithmic proof in [25]. In what follows, we
show how the algorithm which arise from the proof of [25, Lemma 4.15] can be run
in O(|V |2) time by using the structures presented in Section 2.2. As the structures
differ for the 2- and 3-connectivity augmentations, we first give the algorithm for the
case where 0 < ` ≤ k. We shall denote a star on the vertex set X by SX .

Algorithm 5.6 (Based on [25, Lemma 4.15]). Input: A (k, `)-redundant graph G =
(V,E) (where 0 < ` ≤ k) on at least k2 + 2 vertices which is not 2-connected, the

(k, `)-M-component hypergraph HG of G, along with its orientation ~HG where the in-
degree of each vertex is at most k, the block-cut tree BC(G) of G, and a transversal
P of the atoms of G.

Output: A minimum size edge set F for which HG + F is (k, `)-redundant and
G + F 2-connected.

1 N := P , F := ∅
2 While |N | ≥ max{4, b1(G + F ) + 1} do
3 If b1(G + F )− 1 ≥

⌈
|N |
2

⌉
, then

4 If there is only one cut-vertex v such that b1
v(G + F ) = b1(G + F ), then
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Choose x1, x2 from a component of G+ F −{v} that contains at least two
vertices from N . Let x3 ∈ N be a vertex from a component of G+F −{v}
that does not contain x1 and x2.

5 else
Let v1 and v2 be two cut-vertices for which b1

v1
(G+F ) = b1(G+F ) = b1

v2
(G+

F ). Choose x1, x2 ∈ N from two different components of G+F −{v1} that
do not contain v2. Choose x3 ∈ N from a component of G+F −{v2} that
does not contain v1.

6 else
7 If there is a 2-fragment K of G such that |N ∩K| ≥ 2 and |N −K| ≥ 2, then

Choose x1, x2 from N ∩K and choose x3 from N −K.
8 else (Notice that if b1(G + F ) = 1, then this is the only possible case.)

Choose x1, x2, x3 ∈ N arbitrarily.
9 Take y ∈ N − {x1, x2, x3}.
10 If THG

(x1y) ∪ THG
(x2y) ∪ THG

(x3y) = THG
(x2y) ∪ THG

(x1x3), then
x := x1, x

′ := x3.
else

x := x2, x
′ := x3.

11 F := F + {xx′}, N = N − {x, x′}. Refresh BC(G + F ).
12 F := F ∪ SN . Return: F .

It was shown in [25] that Algorithm 5.6 returns an edge set F for which HG +F is
(k, `)-redundant, G+F is 2-connected, and its size is optimal. Hence we just need to
show that the running time of Algorithm 5.6 is O(|V |2).

Theorem 5.7. Let G = (V,E) be a (k, `)-rigid graph where ` ≤ k. Then Algo-
rithm 5.6 can be executed in O(|V |2) time on G and hence Problem 1 can be solved in
O(|V |2) time on G.

Proof. Recall the properties of BC-trees from Section 2.2. As Algorithm 5.6 starts
with F = ∅, we have BC(G + F ) = BC(G) initially. Now suppose that we know
BC(G+F ). Remember that the degree of a node cv of the BC-tree corresponding to
a cut-vertex v of G equals to b1

v(G + F ). Hence the computation of b1(G + F ) takes
O(|V |) running time (if we use BC(G + F )), as well, as finding the single vertex v
for which b1

v(G + F ) = b1(G + F ) or the pair of vertices u, v for which b1
u(G + F ) =

b1
v(G + F ) = b1(G + F ). Furthermore, since the components of BC(G + F ) − cv

correspond to the components of G+F − v, we can execute Steps 4 and 5 in O(|V |)
time. Similarly, BC(G + F ) can help us finding the appropriate K in Step 7 also in
O(|V |) time.

By Theorem 3.4, we can compute THG
(ij) in O(|V |) running time. Thus executing

Step 10 needs O(|V |) time. For Step 11, we also need to refresh the BC-tree of
G+F . Recall that BC(G+e) = BC(BC(G)+e) holds for any edge e by Lemma 2.10.
Thus, as BC(G) has O(|V |) edges, we can refresh it in O(|V |) running time. Clearly,
the rest of the steps need only O(1) time. Hence each execution Steps 3–11 takes
only O(|V |) time. By the condition of Step 2 and the fact that |N | ≤ |V | and |N |
decreases by two in each loop, we can conclude that the loop can be executed at most
O(|V |) times. This proves that the whole algorithm runs in O(|V |2) time.

EGRES Technical Report No. 2022-05



Section 5. Global rigidity augmentations 21

Let us consider next the case of (k, `) = (2, 3). Here, G has no weak cut-pairs by
Lemma 2.12. Hence we can describe its algorithm with simpler terms, separated from
the general case of k < ` ≤ 3

2
k.

As now G is 2-connected but contains no weak cut-pairs, the properties of SPQR(G)
are quite similar to the properties of a BC-tree by Section 2.2. Now, by changing cut-
vertices to cut-pairs, b1 to b2, BC(G + F ) to SPQR(G + F ), and 2-fragment to
3-fragment in Algorithm 5.6, we can run it to solve Problem 1 for (k, `) = (2, 3).
By [25, Lemma 4.15] Algorithm 5.6 with these changes indeed results an optimal
solution. Now, by copying the proof of Theorem 5.7 and using the fact that the
SPQR-tree can be updated in O(|V |) time by Lemma 2.11, we can get the following.

Theorem 5.8. Let G = (V,E) be a simple (2, 3)-rigid graph. Then Problem 1 can be
solved in O(|V |2) time.

The solution of Problem 1 for k < ` ≤ 3
2
k in O(|V |2) time requires some more

changes in Algorithm 5.6. The reason for this is the possible existence of weak cut-
pairs, with which there might be O(|V |2) cut-pairs in total. In what follows, we sketch
how to handle these difficulties.

As before, Lemma 5.4 provides us a transversal P of the atoms. We shall follow and
change the steps of Algorithm 5.6 with the use of the SPQR-tree, in a similar manner
to the case of (k, `) = (2, 3). Let us take a look at the weak cut-pairs. For a weak cut-
pair {u, v} of G + F , b2

{u,v}(G + F ) = 2. Thus no weak cut-pairs could be considered
until Step 6 and hence no change is needed to be made in the algorithm until this
point compared to the case of (k, `) = (2, 3). However, to handle the weak cut-pairs,
we need a slightly modified version of Step 7, introduced in [25, Section 4.2].
7’ If there is a 3-fragment K of G such that |N ∩K| ≥ 2 and |N −K| ≥ 2, then

Choose x′1, x
′
2 from N ∩K and choose x3 from N −K.

If every 3-end of G + F + x′1x3 contains a vertex from N − {x′1, x3}, then
Let x1 = x2 := x′1,

else
Let x1 = x2 := x′2.

As it was shown in [25], after this modification the algorithm indeed provides an
optimal solution for Problem 1 when 3 ≤ k < ` ≤ 3

2
k. Since all the other steps

work like in the case of (k, `) = (2, 3), we only need to show that Step 7’ can be
executed in O(|V |) time and that the SPQR-tree can be updated in the same time,
as well. To check whether G + F has any 3-fragment K for which both N ∩K and
N −K have cardinality at least two, we first check this condition for the 3-fragments
which arise as a connected component after the deletion of a strong cut-pair. We do
this by using the properties of the SPQR-tree described in Lemma 2.11 (like we did
for (k, `) = (2, 3)). If we cannot find a proper strong cut-pair, then the deletion of
each strong cut-pair leads to a graph with exactly two connected components, one of
which contains exactly one vertex from N . (Note that each 3-fragment of G+F must
contain at least one element of N as the algorithm results a 3-connected graph in the
end.) In this case, we check whether SPQR(G+F ) has any polygon node with degree
at least three. If not, then it is easy to see that the condition of Step 7’ fails and we
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can go to the next step. Otherwise, let the cyclic order of the vertices on the polygon
be x1, . . . xk, xk+1 = x1. Recall from Section 2.2 that the neighbors of the node of the
SPQR-tree corresponding to this polygon belong to different strong cut-pairs (which
are some neighboring vertices on the polygon), and all the non-neighboring vertices
of the polygon form weak cut-pairs in G + F . If {xi, xi+1} is a cut-pair, then, by our
previous observation, G+F −{xi, xi+1} has two connected components, one of which
contains exactly one vertex from N . Note that the other component contains all other
vertices from N as N is disjoint from the cut-pairs by Lemma 4.10. Hence, it is easy
to see that our polygon node must have degree at least four in SPQR(G + F ), that
is, there are indices 1 ≤ i1 < i2 < i3 < i4 ≤ k such that {xij , xij+1} is a cut-pair
of G + F for j = 1, 2, 3, 4. Then, by the properties of SPQR-trees, one can see that
each of the two components of G+F −{xi1 , xi3} contains at least two elements of N .
(Illustrated by Figure 2.)

Figure 2: A schematic figure of a polygon node (dark gray area) of the SPQR-tree
and the 3-fragments (light gray areas) corresponding to its strong cut-pairs. If no 3-
fragment, arising from a deletion of a strong cut-pair, fulfills the condition of Step 7’
and we have at least 3 strong cut-pairs on the polygon, then each light gray 3-fragment
contains exactly one element of N (the triangular vertices). As |N | ≥ 4, this implies
that we have at least 4 strong cut-pairs in the polygon. The areas below and above
the dashed line correspond to the connected components after the deletion of the weak
cut-pair {x1, x4}. These fulfill the condition of Step 7’.

Next, based on this two-separation, the choice of x′1, x′2, and x3 can be made in
O(|V |) time. For the second condition (that is, whether every 3-end of G + F + x′1x3

contains a vertex from N−{x′1, x3}), we need to calculate SPQR(G+F +x′1x3), which
can be done again in O(|V |) running time by Lemma 2.11. We can also update the
SPQR-tree in O(|V |) time by the same consideration. Therefore, Step 7’ and hence
every loop of Step 2 can be executed in O(|V |) running time. Thus, the running
time of the whole algorithm is indeed O(|V |2).
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Recall that we assumed G being a graph with at least k2 + 2 vertices in this whole
section due to technical reasons. Since there are constantly many graphs with at most
k2 + 1 vertices, the solution of the problem can be provided in constant (although
potentially considerable) time. Hence finally we can conclude the following theorem.

Theorem 5.9. Let G = (V,E) be a simple (k, `)-rigid graph where k < ` ≤ 3
2
k. Then

Problem 1 can be solved in O(|V |2) time.

Simple outputs. Recall that in the original problems motivated by rigidity theory,
mentioned in the Introduction, we also need to ensure that the augmenting edges are
not parallel to any edge of the input graph G. Note that Lemmas 4.4 and 4.11 ensure
that the output of our algorithm fulfills this requirement when the augmenting edge
set has cardinality at least two. Moreover, it is also clear that a singleton augmenting
edge set for Problem 1 must be formed by an edge which is not parallel to any edge
of G, when the input G is not (ck,` + 1)-connected. When G is (ck,` + 1) connected
though, as it is explained in [25], Problem 1 is equivalent to finding a minimum
cardinality edge set F , for which G + F is (k, `)-redundant. Hence both problems
may be formulated as follows.

Let G = (V,E) be a (k, `)-rigid graph which is not (k, `)-redundant, and let e′ be an
edge parallel to an edge e in E, such that G + e′ is (k, `)-redundant. Find an edge f ,
which is not parallel to any edge in E, such that G + f is also (k, `)-redundant.

This problem was solved in [26] with running time O(|V |3), when the input is
(k, `)-tight. Here with a new idea we reduce this running time to O(|V |2) and we also
sketch how the same idea can be used for (k, `)-rigid inputs. The main idea of [26]
was that the complete graph on sufficiently many (that is, at least 2k + 1) vertices
is (k, `)-redundant. Thus if we add the set of non-edges Ē to G, then it becomes
(k, `)-redundant (regardless whether G was (k, `)-tight or (k, `)-rigid).

Let G′ = (V,E ′) be a (k, `)-tight spanning subgraph of the (k, `)-rigid input graph
G = (V,E) so that e ∈ E ′ holds for the edge e specified in the problem. Let us assume
that |V | ≥ 2k + 1 and hence the complete graph KV on V is (k, `)-redundant. Note
that all edges in E − E ′ are (k, `)-redundant in G, however, E ′ 6= RG′(E − E ′) =⋃

e′′∈E−E′ TG′(e′′) by Lemma 4.1, as G is not (k, `)-redundant. Let Ē denote the
set of the non-edges of G and Ē ′ the set of non-edges of G′. By Lemma 4.1 and
our assumption that the complete graph on V is (k, `)-redundant, E ′ = RG′(Ē ′) =⋃

ē∈Ē′ TG′(ē). Thus there exists an f ∈ Ē ′ such that e ∈ TG′(f). Now remember that
e and e′ are parallel. As G+ e′ is (k, `)-redundant, E ′ = TG′(e′)∪

⋃
e′′∈E−E′ TG′(e′′) =

TG′(e) ∪
⋃

e′′∈E−E′ TG′(e′′) ⊆ TG′(f) ∪
⋃

e′′∈E−E′ TG′(e′′) by Lemma 2.1. Therefore,
G′ + (E − E ′) + f and hence G + f is (k, `)-redundant. Here f ∈ Ē since otherwise
f ∈ E − E ′ (as f ∈ Ē ′), and TG′(f) ∪

⋃
e′′∈E−E′ TG′(e′′) =

⋃
e′′∈E−E′ TG′(e′′) 6= E ′ by

our observation above.
To find f , one needs to check TG′(ē) for all ē ∈ Ē which needs O(|Ē||V |) = O(|V |3)

time. This time can be reduced by giving a subset F ⊆ Ē of cardinality O(|V |) for
which G+F is also (k, `)-redundant, as in this case the running time can be reduced
to the time that we need to calculate F plus O(|F ||V |) = O(|V |2) (which time is
needed to calculate TG(f) for all f ∈ F ). The following lemma shows that a maximal
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(k, `)-sparse subset of Ē fulfills this aim, moreover, it can be calculated in O(|V |2)
time by Section 2.1.

Lemma 5.10. Let G = (V,E) be a (k, `)-rigid graph on at least 2k + 1 vertices and
let Ē denote the complement set of E on V . Suppose that H = (V, F ) is a maximal
(k, `)-sparse subgraph of Ḡ = (V, Ē). Then G + H is (k, `)-redundant.

Proof. Since G is (k, `)-rigid, we only need to show that each edge e ∈ E is (k, `)-
redundant in G + H. Let us take an edge e ∈ E and let r(k,`) denote the rank
function of the (k, `)-sparsity matroid. As H is a maximal (k, `)-sparse subgraph of
Ḡ, r(k,`)(F ) = r(k,`)(Ē). Hence r(k,`)(E − e ∪ F ) = r(k,`)(E − e ∪ Ē) ≥ r(k,`)(KV − e)
where KV is the edge set of the complete graph on V . Since KV is clearly redundantly
rigid if |V | ≥ 2k + 1, r(k,`)(KV − e) = k|V | − ` and hence G + H − e is (k, `)-rigid
which completes our proof.

Recall the characterizations of rigidity and global rigidity of several types of frame-
works from the Introduction. We have seen above that the algorithms of Theorems 5.7
and 5.8 can be modified in such a way that the output edge set has no edge parallel
to an edge of the input, which has the following consequence.

Corollary 5.11. If G = (V,E) is a graph which is generically rigid in the Euclidean
plane, in a non-Euclidean plane, or on the cylinder, then there exists an algorithm
which calculates in O(|V |2) time a minimum edge set F for which G+F is generically
globally rigid in the Euclidean plane, in a non-Euclidean plane, or on the cylinder,
respectively.

6 Concluding remarks

Non-rigid inputs. When the input is not (k, `)-rigid, we can still get a 2-approxi-
mation for Problem 1 by the following method of [25]. Take first an optimal (k, `)-
rigid augmentation of the input graph G = (V,E) first and then solve Problem 1 on
this (k, `)-rigid graph. The optimal (k, `)-rigid augmentation can be found by trying
to add extra edges to a maximal (k, `)-sparse subgraph of G with the algorithm of
Section 2.1. Since the complete graph on sufficiently many vertices is (k, `)-rigid, this
way we can find an optimal (k, `)-rigid augmentation in O(|V |2) time. Hence the
whole 2-approximation algorithm for this extended problem also needs O(|V |2) time.

The pinning problem in R2. Problems, which are closely related to the augmen-
tation problems presented in this paper are the pinning problems from rigidity theory.
In these problems, our goal is to achieve the rigidity or global rigidity of our framework
by anchoring (that is, fixing the location) of a minimum set of vertices. The anchoring
procedure can be modeled as the addition of a complete graph to the set of anchored
vertices. This type of problems can be particularly useful in case of localization, as
anchoring/localizing any point also provides valuable information on the location of
the whole framework. It was shown in [26] that the transversal of the (k, `)-MCT
sets of a (k, `)-tight graph G = (V,E) is an optimal pinning set for (k, `)-redundancy.
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Furthermore, by the results in [25], the transversal of the atoms of a (k, `)-rigid graph
G = (V,E) is an optimal pinning set for (k, `)-redundancy and (ck,` + 1)-connectivity.
Hence by Lemma 5.4 this optimum can also be found in O(|V |2) time, and hence
the global rigidity pinning problem can be solved in O(|V |2) time for rigid generic
frameworks in the plane with Euclidean or non-Euclidean norm, and on the cylinder.
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[12] A. Garćıa and J. Tejel. Augmenting the rigidity of a graph in R2. Algorithmica,
59(2):145–168, 2011.

[13] A.V. Goldberg and R.E. Tarjan. A new approach to the maximum flow problem.
In STOC, pages 136–146. ACM, 1986.

[14] S.J. Gortler, A.D. Healy, and D.P. Thurston. Characterizing generic global rigid-
ity. American Journal of Mathematics, 132(4):897–939, 2010.

[15] C. Gutwenger and P. Mutzel. A linear time implementation of SPQR-trees. In
J. Marks, editor, Graph Drawing 2000, volume 1984 of Lecture Notes in Computer
Science, pages 77–90. Springer, 2001.

[16] S.L. Hakimi. On the degrees of the vertices of a directed graph. J. Franklin Inst.,
279(4):290–308, 1969.

[17] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph ma-
nipulation. Commun. ACM, 16(6):372––378, jun 1973.

[18] J.E. Hopcroft and R.E. Tarjan. Dividing a graph into triconnected components.
SIAM J. Comput., 2(3):135–158, 1973.

[19] T.S. Hsu and V. Ramachandran. A linear time algorithm for triconnectivity
augmentation. Annual Symposium on Foundations of Computer Science (Pro-
ceedings), pages 548–559, 1991.

[20] B. Jackson and T. Jordán. Connected rigidity matroids and unique realizations
of graphs. J. Comb. Theory, Ser. B, 94:1–29, 2005.

[21] B. Jackson and A. Nixon. Global rigidity of generic frameworks on the cylinder.
J. Comb. Theory, Ser. B, 139:193–229, 2019.

[22] D.J. Jacobs and B. Hendrickson. An algorithm for two dimensional rigidity
percolation: The pebble game. Journal of Computational Physics, 137:346–365,
1997.

[23] D.J. Jacobs and M.F. Thorpe. Generic rigidity percolation: The pebble game.
Phys. Rev. Lett., 75:4051–4054, Nov 1995.

EGRES Technical Report No. 2022-05



References 27

[24] T. Jordán. Combinatorial rigidity: Graphs and matroids in the theory of rigid
frameworks. In Discrete Geometric Analysis, volume 34 of MSJ Memoirs, pages
33–112. Mathematical Society of Japan, Japan, 2016.
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7 Appendix: Making (k, `)-M-component hyper-

graphs (k, `)-redundant

Let G be a (k, `)-rigid graph and HG = (V, E) its (k, `)-M-component hypergraph. In
this section we present an algorithm with O(|V |2) running time that finds a minimum
cardinality edge set F such that HG +F is (k, `)-redundant. This gives an alternative
proof to Theorem 4.8. If G is a (k, `)-tight graph, then HG is a (k, `)-tight graph that
coincides with G. Hence the algorithm presented below can also be used to find an
optimal solution for the (k, `)-redundant rigidity augmentation problem.

Throughout this section, G is a (k, `)-rigid graph on at least k2 +2 vertices, where k
and ` are positive integers such that ` < 2k. HG denotes the (k, `)-M-component hy-
pergraph of G, G∗ is a (k, `)-tight spanning subgraph of G and, if not stated otherwise,
T (ij) and V (ij) denote THG

(ij) and VHG
(ij) for i, j ∈ V , respectively.

We start with running the algorithm of Section 3 on G. As we showed it in Theo-
rem 3.4, this method generates an auxiliary orientation ~HG of the (k, `)-M-component
hypergraph that can be used to determine T (ij) for arbitrary i, j ∈ V in O(|V |) run-
ning time. Our algorithm will rely on Algorithm 5.1. Recall that the output of
Algorithm 5.1 is denoted by V ′(i, L).

Observation 7.1. If V ′(i, L) = {j} for a vertex j ∈ V , then T (ij) = HG, and hence
HG + ij is (k, `)-redundant.

The following lemma will be used several times.

Lemma 7.2. Let i ∈ V , such that dG∗(i) ≤ 2k − 1. Suppose that T1 and T2 are
two (k, `)-tight subhypergraphs of HG such that i ∈ V (T1) ∩ V (T2) and |V (T1)| ≥ 3,
|V (T2)| ≥ 3. Then T1 ∪T2 is a (k, `)-tight subhypergraph of HG and and dHG

(V (T1)−
V (T2), V (T2)− V (T1)) = 0.

Proof. By Lemma 2.6, G∗[V (T1)] and G∗[V (T2)] are (k, `)-tight subgraphs of G∗. By
Lemma 2.2 i has degree at least k in both of them implying that T1 and T2 have a
common edge incident with i and hence 1 ≤ i(V (T1)∩V (T2)) ≤ k|V (T1)∩V (T2)| − `.
Now our statement follows by Lemma 2.1.

An output V ′(i, L) is called simple, if |V (i, j)| ≥ 3 for every j ∈ V ′(i, L). Let us
show now how Algorithm 5.1 can be used with a simple output to determine, if there
is an edge uv for which HG + uv is (k, `)-redundant.

Lemma 7.3. Let i ∈ V , such that dG∗(i) ≤ 2k − 1 and let V ′(i, L) be the output of
Algorithm 5.1 with inputs G and i (and an arbitrary subset L of V ). Suppose that there
is an edge uv so that HG + uv is (k, `)-redundant. Suppose moreover that V ′(i, L) is
simple and |V ′(i, L)| ≥ 2. Then there exists j1, j2 ∈ V −i such that V ′(i, L) = {j1, j2},
and there exists a vertex y ∈ V such that T (j1y) = HG or T (j2y) = HG.

Proof. Let j1, j2 ∈ V ′(i, L) be two vertices for which u ∈ V (ij1) and v ∈ V (ij2) for
the two endvertices of the edge uv. Note that v /∈ V (ij1) since otherwise HG =
T (uv) ⊆ T (ij1) would hold by Lemma 2.3, contradicting |V ′(i, L)| ≥ 2. By the run
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of Algorithm 5.1 j2 /∈ V (ij1). Similarly one can prove that u, j1 /∈ V (ij2). As V ′(i, L)
is simple, both V (ij1) and V (ij2) have cardinality at least three. Hence Lemma 7.2
implies that T (ij1)∪T (ij2) is (k, `)-tight and dHG

(V (ij1)−V (ij2), V (ij2)−V (ij1)) = 0.
Since T (ij1) ∪ T (ij2) induces both u and v, HG = T (uv) ⊆ T (ij1) ∪ T (ij2) by
Lemma 2.3. Hence V ′(i, L) = {j1, j2} as the first statement of the lemma claimed.

In case of |V (ij1) − V (ij2)| = 1 (or |V (ij2) − V (ij1)| = 1, respectively), u = j1

(or v = j2, respectively) hence the last statement is obviously true by having y = v
(or y = u, respectively). Thus we may suppose that |V (ij1) − V (ij2)| ≥ 2 and
|V (ij2)− V (ij1)| ≥ 2. As dHG

(V (ij1)− V (ij2), V (ij2)− V (ij1)) = 0, no (graph) edge
connects j1 to j2 in HG and hence HG[{j1, j2}] is not (k, `)-tight. Thus |V (j1j2)| ≥ 3.
As V (ij1) ∪ V (ij2) = V , V (j1j2) intersects at least one of V (ij1) and V (ij2) (say,
V (ij2)) in at least 2 vertices. Hence, by Lemma 2.1, T (ij1) ∪ T (j1j2) is (k, `)-tight,
containing i and j2. Thus T (ij2) ⊆ T (ij1) ∪ T (j1j2) by Lemma 2.3. Consequently,
V (j1j2) ⊇ V (ij2)− V (ij1) and similarly V (j1j2) ⊇ V (ij1)− V (ij2). This implies that
u, v ∈ V (j2j3), resulting HG = T (uv) ⊆ T (j1j2) by Lemma 2.3, as we claimed.

Lemma 7.4. Let i ∈ V , such that dG∗(i) ≤ 2k − 1 and let V ′(i, L) be the output of
Algorithm 5.1 with inputs G and i (and an arbitrary subset L of V ). Suppose that
there is no edge uv such that HG + uv is (k, `)-redundant and that V ′(i, L) is simple.
Then every vertex of V ′(i, L) is contained in a (k, `)-MCT set.

Proof. For any v ∈ V ′(i, L), the sequential applications of Lemma 7.2 imply that
if
⋃

j∈V ′(i,L)−v T (ij) is (k, `)-tight (as |V ′(i, L)| ≥ 2 by Observation 7.1). Hence

V −
⋃

j∈V ′(i,L)−v V (ij) is a (k, `)-co-tight set which contains v and has a (k, `)-MCT

subset C which has no vertex from V ′(i, L) ∪ {i}. Now as
⋃

j∈V ′(i,L) T (ij) = HG,

Observation 4.2 and Lemma 4.1 imply that v ∈ C is from a (k, `)-MCT set.

Let us consider now the case, when V ′(i, L) is not simple.

Lemma 7.5. Let i ∈ V , such that dG∗(i) ≤ 2k − 1 and let V ′(i, L) be the output of
Algorithm 5.1 with inputs G and i (and an arbitrary subset L of V ). Suppose that
V ′(i, L) is not simple and |V ′(i, L)| ≥ 2. Let N := {j : j ∈ V ′(i, L) and |V (ij)| = 2}.
If there exists an edge uv such that HG + uv is (k, `)-redundant, then there exists a
vertex n ∈ N and a vertex y ∈ V for which T (ny) = HG. Otherwise, there exists a
vertex in N which is contained in a (k, `)-MCT set of HG.

Proof. As V ′(i, L) is not simple, N is non-empty. Suppose first that there exists an
edge uv so that HG + uv is (k, `)-redundant. If u ∈ N or v ∈ N , the statement
obviously holds. Otherwise, there are the vertices j1, j2 ∈ V ′(i, L) for which u ∈
V (ij2), v ∈ V (ij3), |V (ij2)| ≥ 3, and |V (ij3)| ≥ 3. In this case, similarly to the proof
of Lemma 7.3, T (ij1) ∪ T (ij2) = HG by Lemma 7.2. This contradicts N 6= ∅.

If there is no edge uv for which HG+uv is (k, `)-redundant, then let T =
⋃
{T (ij) :

j ∈ V ′(i, L)−N}. Now T is non-empty by our assumption that |V | ≥ k2 + 2 and the
fact that |N | ≤ 2k− 1 since dG∗(i) ≤ 2k− 1. Hence T is a (k, `)-tight subhypergraph
of HG by the sequential application of Lemma 7.2, and thus N is a (k, `)-co-tight set
of HG. Hence N has a (k, `)-MCT subset and thus a vertex of N is included in a
(k, `)-MCT set of HG.
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Now, by these results, we can construct the core algorithm to solve the (k, `)-
redundant rigidity augmentation problem on (k, `)-M-component hypergraphs.

Algorithm 7.6. Input: (k, `)-rigid graph G on at least k2 + 2 vertices and a vertex
set L ⊆ V .
Output: If there exists an edge e, for which HG + e is (k, `)-redundant, then an edge
ij for which HG + ij is (k, `)-redundant. Otherwise, a transversal vertex set P on the
(k, `)-MCT sets of HG, so that |L∩P | is maximal amongst all the transversals of the
(k, `)-MCT sets.

1 Run the algorithm of Theorem 3.4 on G. Get the (k, `)-M-component hypergraph
HG and a (k, `)-tight spanning subgraph G∗ of G.

2 Choose a vertex i with minimum degree in G∗.
3 Run Algorithm 5.1 with i and L, resulting V ′(i, L).
4 If V ′(i, L) = {j}, then

Return the edge ij
5 If V ′(i, L) = {j1, j2}, then

Check if T (j1v) = HG or T (j2v) = HG for every v ∈ V .
If there exists such an edge jv, then

Return jv.
6 If V ′(i, L) is not simple, then

N := {v|v ∈ V ′(i, L) and |V (iv)| = 2}
else

N := {v} for any v ∈ V ′(i, L).
7 For every i′ ∈ N ,

Run Algorithm 5.1 with i′ and L resulting V ′(i′, L).
8 Choose i0 = argmin{|V ′(i′, L)| : i′ ∈ N}.
9 Run Algorithm 5.1 with i0 and L resulting V ′(i0, L). Take i1 ∈ V ′(i0, L).

10 If V ′(i0, L) = {i1}, then
Return the edge i0i1.

11 else
Run Algorithm 5.1 with i1 and L resulting V ′(i1, L).
Return P := V ′(i1, L) ∪ {i1}.

Lemma 7.7. Let G = (V,E) be a (k, `)-rigid graph on at least k2 + 2 vertices, where
0 < ` < 2k, and let HG be its (k, `)-M-component hypergraph. Then Algorithm 7.6
returns either one edge ij, for which HG+ij is (k, `)-redundant, or a transversal vertex
set P on the (k, `)-MCT sets of HG such that |P ∩L| is maximum. The running time
of Algorithm 7.6 is O(|V |2).

Proof. Let G∗ be the (k, `)-tight subgraph of G that we get in Step 1 of Algorithm 7.6.
By Lemma 2.2, G∗ has a vertex i so that dG∗(i) ≤ 2k − 1. Hence dG∗(i) ≤ 2k − 1
holds for the vertex i chosen in Step 2.

By Observation 7.1 and Lemmas 7.3 and 7.5, the algorithm returns with one edge
in Step 4, 5 or 10 if and only if exists an edge for which HG + e is (k, `)-redundant.
Hence we may assume, that no single edge addition can make HG (k, `)-redundant.
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Thus Lemmas 7.4 and 7.5 imply that at least one vertex i∗ ∈ N is from a (k, `)-
MCT set of HG. Now, V ′(i∗, L) ∪ {i∗} is a transversal of the (k, `)-MCT sets of HG

by Lemma 5.3. Note that V ′(v, L) ∪ {v} must intersect each (k, `)-MCT set C for
arbitrary choice of v ∈ V since otherwise V (vj) ⊆ V − C holds for each j ∈ V ′(i, L)
by Lemma 2.3, contradicting its construction. Hence the choice of i0 in Step 8 indeed
results a vertex from a (k, `)-MCT set.

Now Lemma 5.3 implies that the vertex i1 ∈ V ′(i0, L) choosen in Step 9 is con-
tained by a (k, `)-MCT set C of HG, moreover, if C∩L 6= ∅, then i1 ∈ L. This implies
by using Lemma 5.3 again that P is a transversal of the the (k, `)-MCT sets of HG,
moreover, |L∩P | is the maximum amongst all the transversals of the (k, `)-MCT sets.

Step 1 has O(|V |2) running time by Theorem 3.4. We can easily find i in O(|V |2)
running time (in fact, O(|V |) time is enough). Step 3 runs in O(|V |2) time by
Lemma 5.2. As we compute T (ij) only O(|V |) times in Step 5, this can be executed
in O(|V |2) total time by Theorem 3.4. As dG∗(i) ≤ 2k − 1, |N | ≤ (2k − 1)/(2k − `),
hence |N | = O(1) and Steps 7–8 run in O(|V |2) time by Lemma 5.2. Steps 9 and
11 need O(|V |2) running time again by Lemma 5.2. Therefore, the total running time
of Algorithm 7.6 is O(|V |2).

After running Algorithm 7.6 (with L = ∅), Lemma 7.7 implies that we get either an
edge e, for which HG + e is (k, `)-redundant and hence is an optimal augmentation,
or a set P = V ′(i1, ∅) ∪ {i1} which is a transversal of the (k, `)-MCT sets of HG. By
Lemma 4.5, HG+{i1j : j ∈ V ′(i1, ∅)} is (k, `)-redundant. Next we can use Lemma 4.6,
like it is used in [26], to algorithmically reduce this augmenting edge set to the size of⌈
|P |
2

⌉
which is optimal by Theorem 4.3. Since T (ij) can be calculated in O(|V |) time

by Theorem 3.4 and P has size O(|V |), the running time of this algorithm is O(|V |2).
This finishes the proof of Theorem 4.8.

Finally, we note that in [26] the redundant rigidity augmentation problem was
solved for so-called (m, `)-tight inputs (where we have a map m : V → Z+ and the
sparsity condition i(X) ≤ k|X| − ` is substituted by i(X ≤

∑
x∈X m(x) − `), as this

extension was needed to solve the problem for (k, `)-rigid inputs when k ≥ `. We
note that the algorithm presented above can be extended for this concept. The main
difference is that, instead of a minimum degree vertex (which had degree less than
2k for (k, `)-tight inputs), we need to take an initial vertex v which has degree less
than 2m(v). Since |E| =

∑
v∈V m(v) − ` in an (m, `)-tight graph, such a vertex can

be found when ` > 0. Finally, we also note that the algorithm presented in Section 3
can be extended to calculate the (m, `)-M-component hypergraph.
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