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Redundantly globally rigid braced triangulations

Qianfan Chen⋆, Siddhant Jajodia⋆⋆, Tibor Jordán⋆ ⋆ ⋆, and

Kate Perkins‡

Abstract

By mapping the vertices of a graph G to points in R3, and its edges to the
corresponding line segments, we obtain a three-dimensional realization of G. A
realization of G is said to be globally rigid if its edge lengths uniquely determine
the realization, up to congruence. The graph G is called globally rigid if every
generic three-dimensional realization of G is globally rigid.

We consider global rigidity properties of braced triangulations, which are
graphs obtained from maximal planar graphs by adding extra edges, called
bracing edges. We show that for every even integer n ≥ 8 there exist braced
triangulations with 3n − 4 edges which remain globally rigid if an arbitrary
edge is deleted from the graph. The bound is best possible. This result gives
an affirmative answer to a recent conjecture. We also discuss the connections
between our results and a related more general conjecture, due to S. Tanigawa
and the third author.

1 Introduction

A d-dimensional framework (or geometric graph) is a pair (G, p), where G is a simple
graph and p : V (G) → Rd is a map. We also call (G, p) a realization of G in Rd. The
length of an edge uv in the framework is defined to be the distance between the points
p(u) and p(v). The framework is said to be rigid in Rd if every continuous motion of
its vertices in Rd that preserves all edge lengths preserves all pairwise distances. It
is globally rigid in Rd if the edge lengths uniquely determine all pairwise distances.
A realization (G, p) is generic if the set of the d|V (G)| coordinates of the vertices is
algebraically independent over the rationals. It is known that for generic frameworks
rigidity and global rigidity in Rd depends only on the graph of the framework, for
every d ≥ 1. So we may call a graph G rigid (resp. globally rigid) in Rd if every
(or equivalently, if some) d-dimensional realization of G is rigid (resp. globally rigid).
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Section 1. Introduction 2

The characterization of rigid and globally rigid graphs is known for d = 1, 2. For
d ≥ 3 these are major open problems. We refer the reader to [9, 11] for more details
on the theory of rigid and globally rigid frameworks and graphs.

Rigid and globally rigid graphs occur in several applications, including sensor net-
work localization [5], molecular conformation [4], formation control [15], and statics
[10]. In some applications it is desirable to have a graph which remains rigid or glob-
ally rigid even if some vertices or edges are removed. In this paper we study graphs G
for which G−e is globally rigid in Rd for each edge e of G. They are called redundantly
globally rigid in Rd. In the rest of the paper we focus on the three-dimensional case,
i.e. d = 3, and the following two conjectures concerning redundant global rigidity.
A triangulation T = (V,E) is a maximal planar graph on at least three vertices.

A braced triangulation G = (V,E ∪ B) is a graph obtained from a triangulation
T = (V,E) by adding a set B of new edges, called the bracing edges. If |B| = 1 (resp.
|B| = 2) then we say that G is a uni-braced (resp. doubly braced) triangulation. The
characterization of globally rigid braced triangulations in R3 is known, see Theorem
6 below. A conjectured sufficient condition for redundant global rigidity is as follows.

Conjecture 1. [8] Every 5-connected braced triangulation G = (V, T∪B) with |B| ≥ 2
is redundantly globally rigid in R3.

A related extremal problem is to determine the smallest number of edges in a redun-
dantly globally rigid graph in R3 on n vertices, as a function of n, for all (sufficiently
large) n. By a theorem of B. Hendrickson [4] every globally rigid graph on n ≥ d+ 2
vertices is redundantly rigid1 in Rd. It is well-known that a rigid graph in R3 on n ≥ 3
vertices has at least 3n− 6 edges. These facts imply that 3n− 4 is a lower bound for
the extremal value, and n ≥ 6 must hold. It was conjectured in [7] that this lower
bound is tight.

Conjecture 2. [7] For every integer k there exists a redundantly globally rigid graph
G in R3 on n ≥ k vertices with 3n− 4 edges.

Note that the truth of Conjecture 1, combined with existence of arbitrarily large
5-connected triangulations, would imply Conjecture 2.

In the rest of the paper – after introducing the results from rigidity theory that we
shall use – we consider doubly braced triangulations in which both bracing edges are
dihedral (i.e. they connect non-adjacent vertices that belong to edge sharing faces).
We shall prove sufficient conditions that guarantee that a specific edge can be removed
from such a triangulation while preserving global rigidity.

Based on these results we can analyse special families of such triangulations which
will lead to the proof of (a stronger form of) Conjecture 2. We shall prove that for every
even integer n ≥ 8 there exist redundantly globally rigid graphs in R3 on n vertices

1The definitions of redundantly rigid graphs and doubly redundantly rigid graphs are similar to that
of redundantly globally rigid graphs: these graphs remain rigid after removing any edge (resp. any
pair of edges). A conjecture of W. Whiteley [13] states that 5-connected doubly braced triangulations
are doubly redundantly rigid. The truth of Conjecture 1, together with Hendrickson’s theorem, would
imply an affirmative answer to Whiteley’s conjecture.
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Section 2. Rigid and globally rigid graphs 3

with 3n−4 edges2. In the last section we prove necessary conditions for the redundant
global rigidity of braced triangulations and formulate a couple of conjectures.

2 Rigid and globally rigid graphs

We shall use the following results in order to verify the (global) rigidity of a graph.
Let G = (V,E) be a graph. For a vertex v ∈ V we use NG(v) (resp. dG(v)) to denote
the set (resp. the number) of neighbours of v in G. For a set X ⊆ V the graph
obtained from G by adding a complete graph on vertex set X (that is, by adding new
edges connecting the vertex pairs x, y ∈ X which are not adjacent in G) is denoted
by G+K(X).

Theorem 1. [12] Let G = (V,E) be a graph, v ∈ V , and d ≥ 1. If G− v is rigid and
G− v +K(NG(v)) is globally rigid in Rd then G is globally rigid in Rd.

A bracing edge uv is called dihedral if it connects the two non-adjacent vertices u, v
of two edge sharing triangular faces on vertices uab and vab, respectively, of (some
planar embedding of) G. In this case the resulting K4 subgraph forms a rigid 4-block.
In our proofs we shall consider braced triangulations with one or two such 4-blocks.
By removing a single edge (or a vertex of degree five) from a (braced) triangulation, we
may create a face whose boundary is a 4-cycle (5-cycle, resp.). We shall say that such
a cycle is a 4-hole (or 5-hole) in (some planar embedding of) the graph. For simplicity
we shall call a braced triangulation with dihedral bracing edges and a removed edge
or degree-five vertex a block and hole graph. See [2, 13] for a more general definition
and results on rigid block and hole graphs in three-space. We need the following
corollaries of their results.

Theorem 2. [13] Let G be a 4-connected block and hole graph which has a single
4-hole and a single 4-block. Then G is rigid in R3.

Theorem 3. [2] Let G′ be a 5-connected block and hole graph with two 4-blocks and
let G = G′ − v, where v is a vertex of degree five in G′ which is disjoint from the
blocks. Then G is rigid in R3.

Let G be a graph and let uv, vw be a pair of incident edges in G. Let Ev
uw be the

set of the remaining edges incident with v and let Ev
uw = F ∪ F ′ be a bipartition of

Ev
uw. The (3-dimensional) vertex splitting operation (at v, on edges uv, vw) adds a

new vertex v′ to the graph, adds the new edges uv′, v′w, vv′, and then replaces every
edge xv in F ′ by an edge xv′. The edges in F stay incident to v. See Figure 1. The
vertex splitting is said to be non-trivial if F and F ′ are both non-empty.

An important conjecture in rigidity theory is that non-trivial vertex splitting pre-
serves global rigidity in Rd, for all d ≥ 1, see [1]. The next result verifies a special
case.

2We can extend our result to odd values of n by using different techniques. We do not discuss
this extension in this paper.
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Section 3. Redundant edges in braced triangulations 4
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Figure 1: A non-trivial vertex splitting operation on edges uv, vw.

Theorem 4. [8] A graph is globally rigid if it can be obtained from K5 by a sequence
of non-trivial vertex splitting operations.

This theorem can be used in the analysis of globally rigid braced triangulations,
due to the following combinatorial result.

Theorem 5. [8] Every 4-connected uni-braced triangulation can be obtained from K5

by a sequence of non-trivial vertex splitting operations.

Thus 4-connected uni-braced triangulations are globally rigid. A complete charac-
terization, with no bounds on the number of bracing edges, is the following.

Theorem 6. [8] A braced triangulation G = (V,E ∪B) with |V | ≥ 5 is globally rigid
in R3 if and only if G is 4-connected and |B| ≥ 1.

The inverse operation of vertex splitting is the contraction of an edge uv for which
u and v have exactly two common neighbours. This operation takes a triangulation to
a smaller triangulation. We shall also use the fact that an edge contraction decreases
the vertex connectivity of a graph by at most one.

3 Redundant edges in braced triangulations

Every 5-connected braced triangulation with at least one bracing edge is globally
rigid in R3 by Theorem 6. In this section we describe several situations in which the
removal of an edge from a 5-connected braced triangulation preserves global rigidity.
The first lemma is an immediate corollary of Theorem 6.

Lemma 1. Let G = (V,E ∪ B) be a 5-connected braced triangulation with |B| ≥ 2.
Then G− e is globally rigid for every e ∈ B.

In the rest of this section we shall assume that G is obtained from a triangulation
by adding exactly two dihedral bracing edges that create two 4-blocks, with at most
two vertices in common.

Lemma 2. Let G = (V,E ∪B) be a 5-connected doubly braced triangulation with two
4-blocks. Suppose that e = uv ∈ E is an edge with dG(v) = 5 and v is disjoint from
the 4-blocks. Then G− e is globally rigid.
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Section 3. Redundant edges in braced triangulations 5

Proof. We shall prove that v satisfies the conditions of Theorem 1 in graphG−e. Since
v is disjoint from the 4-blocks of G, the graph (G−e)−v (= G−v) is a block and hole
graph with one 5-hole and two 4-blocks. The 5-connectivity of G and Theorem 3 imply
that (G− e)− v is rigid. Next consider the graph H = (G− e)− v+K(NG−e(v)). By
5-connectivity the four neighbours of v in G−e induce three edges in G−e. Thus three
new edges are added to G− e to obtain H. Notice that H is a braced triangulation:
two new edges can be used to triangulate the graph obtained from T = (V,E) by
removing v, while the third one becomes a bracing edge. See Figure 2.

v

G - e G - e - v + K(N(G - e)(v))

K4

K4

K4

K4

Figure 2: The neighbourhood of v in G − e and the edges they induce in H. The
dashed edge is a bracing edge.

Since G is 5-connected, (G− e)− v = G− v is 4-connected. This implies that H is
4-connected. Hence H is globally rigid by Theorem 6. The lemma now follows from
Theorem 1, applied to G− e and v.

Lemma 3. Let G = (V,E ∪B) be a 5-connected doubly braced triangulation with two
4-blocks. Suppose that e = uv ∈ E is an edge with dG(v) = 5 and v belongs to exactly
one of the 4-blocks. Then G− e is globally rigid.

Proof. Suppose that the 4-blocks are C1 and C2, and v is part of C1, say. Then the
deletion of v from G− e creates a block and hole graph with a 4-block (namely, C2)
and a 4-hole. Note that if v is not incident with the bracing edge f of C1 then f
becomes an edge of the underlying (almost) triangulation of (G − e) − v. Since G
is 5-connected, (G − e) − v = G − v is 4-connected. Thus (G − e) − v is rigid by
Theorem 2. Furthermore, it follows that G− v+K(NG−e(v)) is a 4-connected braced
triangulation with two bracing edges. Hence it is globally rigid by Theorem 6.

The lemma now follows from Theorem 1, applied to G− e and v.

Lemma 4. Let G = (V,E ∪B) be a 5-connected doubly braced triangulation with two
4-blocks C1, C2 and let v ∈ V (C1) − V (C2). Suppose that vw ∈ E ∩ E(C1) for which
there is a triangular face uvw of T = (V,E) with u /∈ V (C1). Let e = uv. Then G− e
is globally rigid.

Proof. We show that G − e can be obtained from K5 by a sequence of non-trivial
vertex splitting operations. Observe that G − e has a 4-hole and two 4-blocks in
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Section 4. Two families of graphs 6

which v and w have exactly two common neighbours (the two other vertices of C1).
Let H be the graph obtained from G − e by contracting the edge vw. It is easy to
see that H is a 4-connected uni-braced triangulation. Thus H (and hence also G− e)
can be obtained from K5 by a sequence of non-trivial vertex splitting operations by
Theorem 5. The lemma now follows from Theorem 4.

The last lemma of this section is concerned with the case when the two 4-blocks
share two vertices.

Lemma 5. Let G = (V,E ∪B) be a 5-connected doubly braced triangulation with two
4-blocks C1, C2 with V (C1) ∩ V (C2) = {a, b}, where the crossing edges of C1 are bc
and ad. Suppose that av is an edge for some vertex v disjoint from the 4-blocks. Then
G− ab, G− ac, and G− av are all globally rigid.

Proof. We have V (C1)− V (C2) = {c, d}. Let us consider the removal of edge e = ab.
Observe that in G − e the vertices c and a have exactly two common neighbours.
Moreover, H is a 4-connected uni-braced triangulation, where H is the graph obtained
from G−e by contracting the edge ca. Thus H (and hence also G−e) can be obtained
from K5 by a sequence of non-trivial vertex splitting operations by Theorem 5. Thus
G− ab is globally rigid by Theorem 4.

The proof for edge ac is similar. In this case we delete the edge ac, contract the
edge cd, and apply the same argument. Finally, to show that G− av is globally rigid,
we use a similar proof again in which we delete av and then contract ac.

4 Two families of graphs

In this section, we define two infinite families of redundantly globally rigid doubly
braced triangulations in R3.

Definition 1 (Belted bipyramid). For every n ≥ 3, an n-gonal belted bipyramid,
denoted by G(n), is a graph on 2n + 2 vertices that is constructed as follows. Take
two n-gonal pyramids with poles N and S, respectively, and label the vertices on the
base of one pyramid 1 to n and on that of the other 1’ to n’ consecutively. Insert edges
between the corresponding pairs of vertices (i.e. between 1 and 1’, 2 and 2’, and so
on) and insert an edge between k and (k + 1)’ for every 1 ≤ k ≤ (n − 1). Finally,
insert an edge between n and 1′. See Figure 3.

It is easy to see that G(n) is a triangulation. Let G(n, k) denote the graph obtained
by inserting the edges 1n′ and k(k − 1)′ to G(n). Then G(n, k) is a doubly braced
triangulation with two dihedral bracing edges. See Figure 3.

Lemma 6. For every n ≥ 5, G(n) (and hence, G(n, k) for every 2 ≤ k ≤ n) is
5-connected.

Proof. By using the structure and the symmetry of G(n) it is not hard to check that
it is 5-connected. A simple argument is as follows: consider the base cycle C of one of
the pyramids on vertex set (1, 2, ...n). It is easy to verify that for every v ∈ V −V (C)
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Figure 3: The graphs G(5) and G(5, 4).

there exist 5 paths from v to V (C) that are vertex-disjoint, apart from v. Furthermore,
for every u, v ∈ V (C) there exist 5 u-v-paths that are vertex-disjoint apart from u, v.
Since |V (C)| ≥ 5, this implies that G(n) cannot have a vertex separator of size less
than 5.

Theorem 7. For every n ≥ 5 and 2 ≤ k ≤ n the graph G(n, k) is redundantly globally
rigid in R3.

Proof. Theorem 6 implies that G(n, k) is globally rigid in R3. It remains to show that
the removal of any edge preserves global rigidity. First suppose that 3 ≤ k ≤ n − 1,
in which case the two 4-blocks are disjoint.

The bracing edges are redundant by Lemma 1. Note that each vertex has degree
five in G(n, k), except for the two poles and the end-vertices of the bracing edges.
Thus we can use Lemmas 2 and 3 to show that most of the edges are redundant. The
edges that do not satisfy the conditions of at least one of these two lemmas are the
edges from the poles to the end-vertices of the bracing edges and, possibly, an edge
that connects the end-vertices of different bracing edges. These edges are redundant
by Lemma 4. So every edge is redundant and the graph is redundantly globally rigid,
as required.
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Section 4. Two families of graphs 8

We can also show that G(n, 2) and G(n, n) are redundantly globally rigid by a
similar argument. In these two special cases the two 4-blocks share two vertices,
so we also need Lemma 5 in order to handle some of the edges incident with the
intersection of the blocks.

A slightly different construction is the following.

Definition 2 (Flat belted bipyramid). For every n ≥ 4, an n-gonal flat belted bipyra-
mid, denoted by F (n), is a graph on 2n vertices that is constructed as follows. Take
G(n) and delete its two poles. Retaining the vertex labels described in Definition 1,
for every 1 ≤ k ≤ n, insert an edge between vertex 3 and vertex k (unless 3 is already
adjacent to k). Then, for every 1 ≤ k ≤ n, insert an edge between vertex 2′ and vertex
k′ (unless 2’ is already adjacent to k′). See Figure 4.

It is easy to see that F (n) is a triangulation. Let H(n) be the graph obtained
from F (n) by inserting edges 1′2 and 3′4. See Figure 4. Thus H(n) is a doubly
braced triangulation with two dihedral bracing edges that create two disjoint 4-blocks.
Although F (n) is not 5-connected, a proof strategy similar to that of Lemma 6 can
be used to show that H(n) is 5-connected.

H5

3

21

5

4

5’

1’ 2’

3’

4’

H(5)

3

21

5

4

5’

1’ 2’

3’

4’

Figure 4: The graphs H5 and H(5).
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Section 5. Concluding remarks and conjectures 9

Lemma 7. For every n ≥ 4 the graph H(n) is 5-connected.

In fact we can show that H(4) is the smallest 5-connected doubly braced triangu-
lation3.

Theorem 8. H(n) is redundantly globally rigid in R3 for n ≥ 4.

Proof. Theorem 6 implies that H(n) is globally rigid in R3. It remains to show that
the removal of any edge preserves global rigidity. The rest of the proof is similar to
that of Theorem 7, using the lemmas of the previous section. Note that in the case
of H(n) the two 4-blocks are disjoint.

The results of this section imply that Conjecture 2 is true.

Theorem 9. For every even integer n ≥ 8 there exist redundantly globally rigid graphs
in R3 on n vertices with 3n− 4 edges.

A simple degree count shows that there are no such graphs for n ≤ 7.
As we noted earlier, redundantly globally rigid graphs are doubly redundantly rigid.

Thus the graphs defined in this section are also examples of doubly redundantly rigid
graphs with the smallest number of edges for every even n ≥ 8. They are different
from the ones constructed in [7], and easier to analyse.

5 Concluding remarks and conjectures

A natural question is whether the 5-connectivity condition in Conjecture 1 can be
weakened. The next example shows that 5-connectivity is not necessary.

Example Consider the graph G in Figure 5. It is a 4-connected (but not 5-connected)
doubly braced triangulation, and hence it is globally rigid by Theorem 6. We sketch
a proof which shows that G− e is globally rigid for every edge e. By the symmetry of
G we have four cases to consider: the deleted edge e is (i) a cross edge in the top K4,
(ii) a side in the top K4, (iii) an edge from the K4 to the 4-cycle of the 4-separator,
(iv) an edge of the 4-cycle of the separator.

In case (i) G−e is a 4-connected braced triangulation. In cases (ii) and (iii) we can
apply (the proof of) Lemma 3 by noting that its proof works here by using the specific
structure of G (rather than 5-connectivity). In case (iv) we perform two contractions
and get to a 4-connected uni-braced triangulation as follows. Suppose, by symmetry,
that e = cd. Then first contract an edge connecting c to the top K4. Next contract
one of the edges from c to the remainder of the topK4. By contracting the appropriate
edge we obtain a 4-connected uni-braced triangulation. Then global rigidity follows
by Theorem 4.

3The minimum degree condition implies that the number of vertices is at least eight, and equality
holds only if the graph is 5-regular. Thus the complement of the graph is isomorphic to one of
the following: (i) the disjoint union of a three-cycle and a five-cycle, (ii) the disjoint union of two
four-cycles, (iii) a cycle on eight vertices. In the first two cases a simple analysis shows that the
graph cannot be made planar by removing at most two edges. In the third case the graph is H(4).
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Section 5. Concluding remarks and conjectures 10

This leads us to the next question: is it possible to obtain a complete characteriza-
tion of redundantly globally rigid braced triangulations, at least in some special cases
(say, for doubly braced triangulations with two dihedral bracing edges)?

a b c d

G

C2

C1

Figure 5: A redundantly globally rigid doubly braced triangulation G with a 4-
separator S = {a, b, c, d}.

In this section we prove some necessary conditions and then formulate a conjecture.
A k-separator S in a connected graph G = (V,E) is a set of vertices with |S| = k
for which G − S is disconnected. For some X ⊆ V we use G[X] to denote the
subgraph of G induced by vertex set X. It is known that for a minimal separator S
in a triangulation G we have |S| ≥ 3, the graph G − S has exactly two connected
components, and G[S] is a cycle (see e.g. [8, Section 5]). For a separator S and
connected component C of G− S we say that G[C ∪ S] is an extended component of
S in G.

Lemma 8. Let G = (V,E∪B) be a redundantly globally rigid braced triangulation and
let S be a 4-separator in G. Suppose that S is a minimal separator in the underlying
triangulation (V, T ). Then for every component C of G−S there exists a bracing edge
incident with C.

Proof. Let T = (V,E). Since S is a minimal separator in T , the graph T − S (and
hence also G − S) has exactly two connected components C,D. For a contradiction
suppose that there is no bracing edge incident with C. Since T [S] induces a 4-cycle
the graph K obtained from the extended component G[C ∪ S] of S by adding the
edges that connect those vertex pairs of S which are not adjacent G, is a 4-connected
uni-braced triangulation in which S induces a K4. Let e be an edge of K incident with
C. Then K − e is a minimally rigid graph on at least five vertices. By Hendrickson’s
theorem K − e is not globally rigid. The fact that G− e can be obtained from K − e
by merging K − e and the other extended component G[D ∪ S] along a complete
graph (and, possibly, by deleting edges) implies that G− e is not globally rigid. This
contradiction completes the proof.
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The proof shows that the lemma holds even if redundantly globally rigid is weakened
to doubly redundantly rigid in the condition. If the underlying triangulation T is 4-
connected, then every 4-separator of G is obviously a minimal separator in T , so the
conditions of Lemma 8 are satisfied.

Let us consider the case when T is not 4-connected and G is doubly braced. Then
for every 3-separator S of T , and corresponding components C,D of T − S, both
bracing edges must connect C and D (for otherwise S is a 3-separator in G − e for
some bracing edge e, contradicting redundant global rigidity). Call the components
arising this way 3-separator components of T . It is not hard to see that this implies
that T has exactly two minimal 3-separator components C1 and C2, both bracing
edges connect C1 and C2, and that T can be made 4-connected by adding a single
edge (from C1 to C2). We believe that in this rather special case G is redundantly
globally rigid. Otherwise, when T is 4-connected, the necessary condition of Lemma
8, together with Hendrickson’s connectivity condition, might be sufficient.

Conjecture 3. Let G = (V,E ∪ B) be a doubly braced triangulation. Then G is
redundantly globally rigid in R3 if and only if
(i) G− e is 4-connected for all e ∈ E ∪B, and
(iia) either T = (V,E) has a 3-separator, or
(iib) for every 4-separator S of G and component C of G− S there is a bracing edge
incident with C.

Note that if G is doubly braced and the bracing edges induce two disjoint 4-blocks
then T must be 4-connected. Thus in this case the conjecture can be simplified.

We close this section by noting that an interesting related open problem is to
characterize globally rigid block and hole graphs (with no constraints on the size of
the block and the number of holes - see [2] for the definition). It is possible that
the global rigidity of these graphs can be characterized by Hendrickson’s necessary
conditions.

Conjecture 4. A block and hole graph with a single block is globally rigid in R3 if
and only if it is 4-connected and redundantly rigid in R3 .

A characterization of redundantly rigid block and hole graphs with a single block
can be obtained from a recent result in [6].
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