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Rigid block and hole graphs with a single block

Tibor Jordán?

Abstract

A block and hole graph is obtained from the graph of a plane triangulation
by removing the interiors of some discs, defined by their boundary cycles, and
then rigidifying the vertex sets of some of these cycles by adding new vertices
and edges. These rigid parts form the so-called blocks, while the remaining
cycles define the holes. Cruickshank, Kitson, and Power proved that a a block
and hole graph G with a single block is generically minimally rigid in R3 if
and only if G is (3, 6)-sparse and has 3|V (G)| − 6 edges. This result implies
that there is an efficient algorithm for testing whether such a graph is rigid,
provided it has exactly 3|V (G)| − 6 edges.

In this paper we extend these results to block and hole graphs G with a
single block and an arbitrary number of edges. The extension is based on
a new formula for the degrees of freedom of such a graph. It also enables
us to find a smallest set of new edges whose addition makes G rigid. We
also point out that there is an underlying matroid which can be defined by
(3, 6)-sparsity.

1 Introduction

A d-dimensional framework (or geometric graph) is a pair (G, p), where G is a simple
graph and p : V (G) → Rd is a map. We also call (G, p) a realization of G in Rd.
The length of an edge uv in the framework is defined to be the distance between the
points p(u) and p(v). The framework is said to be rigid in Rd if every continuous
motion of its vertices in Rd that preserves all edge lengths preserves all pairwise
distances. A relization (G, p) is generic if the set of the d|V (G)| coordinates of the
vertices is algebraically independent over the rationals. It is known that for generic
frameworks rigidity in Rd depends only on the graph of the framework, for every
d ≥ 1. So we may call a graph G (generically) rigid in Rd if every (or equivalently,
if some) d-dimensional generic realization of G is rigid. We refer the reader to [9]
for more details on the theory of rigid frameworks and graphs.
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Section 1. Introduction 2

Finding a combinatorial characterization of rigid graphs and determining the com-
plexity of testing the rigidity of a graph in Rd, for d ≥ 3, are major open problems
in rigidity theory. In this paper we consider the three-dimensional case d = 3. Our
goal is to find further families of graphs for which we can test rigidity (and more
generally, compute the degrees of freedom) in polynomial time.

The starting point of our investigations is the following result due to Gluck. We
shall call a maximal planar graph with at least three vertices a triangulation. It is
known that a rigid graph G in R3 on at least three vertices has at least 3|V (G)| − 6
edges. If G is rigid and has exactly 3|V (G)| − 6 edges then it is called minimally
rigid.

Theorem 1.1. [5] Every triangulation is minimally rigid in R3.

Whiteley [10] initiated the study of the rigidity properties of modified triangu-
lations that may contain blocks and holes. Extending the results of Finbow-Singh
and Whiteley [4] on the single block and single hole case, Cruickshank, Kitson, and
Power [3] characterized the minimally rigid triangulations with a single block and
arbitrarily many holes.

To describe their result we need some definitions. Consider a planar embedding
of a triangulation G = (V,E). Note that G is 3-connected. A cycle C of G divides
the plane into two parts and hence it determines two subgraphs of G that share
the edges and vertices of C. Such a subgraph is called a disc. We say that it is
bounded by C, or that C is its boundary cycle. The interior of a disc consists of the
vertices and edges of the disc that do not belong to its boundary cycle. Two discs
are internally disjoint if their common edges or vertices, if they exist, are part of
their boundary cycles.

We say that a face graph Gf of G is obtained from (a planar embedding of) G by
choosing a collection of pairwise internally disjoint discs, removing the interiors of
these discs, and then labeling the non-triangular faces of the resulting (embedded)
planar graph by either b (block) or h (hole)1. We may restrict ourselves to discs
bounded by cycles of length at least four in G.

A block-and-hole graph G� with face graph Gf is obtained from Gf by adding
new vertices and edges that rigidify the vertex set of each block. This is achieved
as follows. Let C be the boundary cycle of a block-labeled face. We add two new
vertices xC and yC as well as edges that connect these new vertices to each vertex of
C. Then the vertex set V (C)∪ {xC , yC} induces a bipyramid, which is a minimally
rigid graph (a triangulation). We denote this subgraph by BC . The block and hole
graph is the union of the face graph and these bipyramids, one for each block-labeled
face2. See Figure 1.

We say that a graph G = (V,E) is (3, 6)-sparse if iG(X) ≤ 3|X|−6 for all X ⊆ V
with |X| ≥ 3. Here iG(X) denotes the number of edges in the subgraph of G induced

1The definition of face graphs in [3, Definition 3] is slightly different. However, the authors
(implicitely) use the definition given here.

2There are other ways to rigidify the block-labeled faces. Here we use this construction, which
is called the discus and hole graph in [3].
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(a) G

block
hole

(b) Gf

(c) G�

Figure 1: A triangulation G, a face graph Gf defined by two cycles of length five
and four, respectively, and the block and hole graph G�. Graph G� is rigid, but not
minimally rigid.

by the vertex set X. If G is a (3, 6)-sparse graph with |E| = 3|V | − 6 then G is
called (3, 6)-tight. Note that in a simple graph no subset X ⊆ V with |X| ≤ 4 can
violate the sparsity count. Moreover, the subsets X ⊆ V with |X| = 2 satisfy the
weaker bound i(X) ≤ 3|X|−5. A subgraph H = (V, F ) of G is said to be a maximal
(3, 6)-sparse subgraph of G it is (3, 6)-sparse but H + e is not (3, 6)-sparse for all
e ∈ E − F .

Example 1. Let G = (V,E) be the graph obtained from two disjoint triangles on
vertex sets {a1, a2, a3} and {b1, b2, b3}, respectively, by adding two vertices v1, v2 and
then new edges from vi to every other vertex, for i = 1, 2. See Figure 2. Graph G is
not (3, 6)-sparse, since 19 = |E| > 3|V |−6 = 18. The subgraphs G1 = G−v1v2 and
G2 = G− a1a2− b1b2 are both maximal (3, 6)-sparse subgraphs of G. The graph G1

is also (3, 6)-tight.

It is known that minimally rigid graphs in R3 are (3, 6)-tight, but there exist
non-rigid (3, 6)-tight graphs (e.g. the graph G1 in Example 1.). The next result
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Section 2. Rigid block and hole graphs with a single block 4

Figure 2: The graph of Example 1.

shows that for block and hole graphs with a single block this necessary condition is
also sufficient.

Theorem 1.2. [3, Theorem 36] Let G� be a block and hole graph with a single block.
Then G� is minimally rigid in R3 if and only if G� is (3, 6)-tight.

In order to extend Theorem 1.2 we recall the notion of the rigidity matroid of
a graph and a recent result which provides a further link between (3, 6)-sparsity
and rigidity. The 3-dimensional rigidity matroid, denoted by R3(G), of a graph
G = (V,E) is defined on the edge set E. The rank of this matroid, denoted by
r3(G), determines whether G is rigid, and more generally, the so-called degrees of
freedom of G. The graph G (with |V | ≥ 3) is rigid if r3(G) = 3|V | − 6 holds. See
e.g. [8] for more details on the rigidity matroid. Thus we can test the rigidity of G
if we can efficiently compute the rank of R3(G).

The following result is due to J. Cheng and M. Sitharam [2]. See also [6] for a
different proof and extensions to the higher dimensions.

Theorem 1.3. [2] Let H = (V, F ) be a maximal (3, 6)-sparse subgraph of graph
G = (V,E). Then r3(G) ≤ |F |.

2 Rigid block and hole graphs with a single block

We start with three simple observations.

2.1 Preliminary observations

We say that a graph G = (V,E) on at least three vertices is 2-connected if G− v is
connected for all v ∈ V .
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Lemma 2.1. Every face graph K is 2-connected.

Proof. Since K is a face graph, it can be obtained from a(n embedded) triangulation
G by removing the interiors of some discs. The graph G itself is a 2-connected (in
fact, 3-connected) face graph, and the removals can be done independently, so it
suffices to show that the removal of the vertices and edges of the interior of a disc
D from a 2-connected face graph K ′ preserves 2-connectivity.

Let C be the boundary cycle of D and let K denote the graph obtained by
removing the interior of D. The planarity and 2-connectivity of K ′ implies that for
each vertex w which does not belong to D there exist two paths from w to V (C)
avoiding the interior of D which are vertex-disjoint apart from w. The existence
of these paths and the cycle C in K show that it is impossible to disconnect K by
removing a single vertex. Thus K is 2-connected, as required.

The statement of the lemma can be reversed in the following sense.

Lemma 2.2. Let K be a 2-connected planar graph and let J be a non-triangular
face in some planar embedding of K. Then there is a triangulation G for which K
is a face graph of G in which J is a face.

Proof. Consider a planar embedding of K in which J is a face. Since K is 2-
connected, the boundary of each face is a cycle. Let G be a triangulation obtained
from K by adding edges so that each face of length at least four becomes triangu-
lated. Then K is the face graph of (this embedding of) G, where the discs that define
K correspond to the faces in the embedding of K. In particular, J is a face.

Lemma 2.3. Suppose that H = (V, F ) is a maximal (3, 6)-sparse subgraph of a
2-connected graph G = (V,E). Then H is 2-connected.

Proof. For a contradiction suppose that there is a partition {V1, V2, {t}} of V , where
V1, V2 ⊂ V are non-empty vertex sets and t ∈ V , such that there is no edge in
F between V1 and V2. Since G is 2-connected, there is an edge f = u1u2 with
f ∈ E − F and ui ∈ Vi, i = 1, 2. By the maximality of H the addition of f to H
destroys (3, 6)-sparsity. Hence there is a set X ⊆ V with |X| ≥ 3, {u1, u2} ⊆ X,
and iH(X) = 3|X| − 6. Let Xi = (X ∩ Vi) ∪ {t} and ni = |Xi| for i = 1, 2. Thus
|X| = n1 + n2 − 1. Since H is (3, 6)-sparse, we have

iH(X) = iH(X1) + iH(X2) ≤ 3n1 − 5 + 3n2 − 5 = 3(n1 + n2 − 1)− 7 = 3|X| − 7,

which contradicts the fact that iH(X) = 3|X| − 6.

2.2 The rank of a block and hole graph with a single block

We are ready to state the rank formula of block and hole graphs with a single block,
which is the main result of this section.
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Theorem 2.4. Let G� be block and hole graph with a single block B� and let H =
(V (G�), F ) be a maximal (3, 6)-sparse subgraph of G� with E(B�) ⊆ F . Then

r3(G
�) = |F | (1)

In particular, G� is rigid if and only if H is (3, 6)-tight.

Proof. Since B� is minimally rigid, it is (3, 6)-sparse. Thus we can extend (the
edge set of) the block to a maximal (3, 6)-sparse subgraph. Therefore a maximal
(3, 6)-sparse subgraph H = (V (G�), F ) with E(B�) ⊆ F indeed exists.

The inequality r3(G
�) ≤ |F | follows from Theorem 1.3. Let V = V (G�) and define

the number k(G�, H) := 3|V | − 6 − |F |. In order to show that equality holds, we
shall prove that it is possible to add a set L of new edges to G� with |L| = k(G�, H),
so that the resulting graph G+ is a block and hole graph with a single block B� in
which H +L is a minimally rigid spanning subgraph. If such a set L exists then the
rigidity of H + L implies that G+ is rigid, and hence we can use the lower bound
r3(G

�) ≥ r3(G
+)− |L| = 3|V | − 6− (3|V | − 6− |F |) = |F | to deduce that equality

holds in (1).
In the rest of the proof we shall fix a planar embedding of the face graph Gf

(inherited from the planar embedding of the triangulation), which also fixes the
planar embedding of its subgraph H− := H − {x, y}, where x and y are the new
vertices (i.e. the poles) of the bipyramid B�. We prove that the required set L
exists by induction on k(G�, H). First consider the base case k(G�, H) = 0. Then
L = ∅ is a good choice, which can be seen as follows. Since we add no edges, we have
G+ = G� and H+L = H. Thus H is (3, 6)-tight. To show that H is minimally rigid
we first use Lemmas 2.1 and 2.3 (and the fact that B� is 3-connected) to deduce
that H is 2-connected. It is easy to see that H− is also 2-connected. Moreover, the
facts that the edges of the block are all in H, H− is a subgraph of the (embedded)
face graph Gf , and Lemma 2.2 imply that H is a block and hole graph with a single
block B�. We can now apply Theorem 1.2 to the (3, 6)-tight graph H to deduce
that it is minimally rigid. This completes the proof of the base case.

We next consider the general case. Let k(G�, H) ≥ 1 and suppose that the
statement holds for all block and hole graphs G′ with a single block B� and maximal
(3, 6)-sparse subgraph H ′ with k(G′, H ′) < k(G�, H). Our goal is to show that there
is an edge f = uv with u, v ∈ V , for which G� + f is a block and hole graph with a
single block B�, and H+f is (3, 6)-sparse. This will imply the theorem by induction,
since k(G� + f,H + f) = k(G�, H)− 1.

Let us call a set X ⊆ V with |X| ≥ 3 tight if iH(X) = 3|X| − 6 holds. Let
H[X] denote the subgraph of H induced by X. Note that for a tight set X we have
that H[X] is a triangle (if |X| = 3) or H[X] has minimum degree at least three (if
|X| ≥ 4).

Claim 2.5. Let X, Y be tight sets with |X ∩ Y | ≥ 2. Then X ∪ Y is tight, unless
|X ∩ Y | = 2 and X ∩ Y induces an edge.
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Proof. First suppose |X∩Y | ≥ 3. The (3, 6)-sparsity of H and the supermodularity3

of iH imply that 3|X| − 6 + 3|Y | − 6 = iH(X) + iH(Y ) ≤ iH(X ∩ Y ) + iH(X ∪ Y ) ≤
3|X∩Y |−6+3|X∪Y |−6 = 3|X|−6+3|Y |−6. Thus equality holds everywhere. In
particular, X∪Y is tight. A similar argument shows that if iH(X∪Y ) ≤ 3|X∪Y |−7
then we must have iH(X∩Y ) ≥ 3|X∩Y |−5. Therefore |X∩Y | = 2 and iH(X∩Y ) =
1 must hold. It means that X ∩ Y induces an edge.

Since the vertex set of block B� is a tight set with more than two vertices, Claim
2.5 implies that the union T of all the tight sets that contain the (vertex set of
the) block B� is tight. Let GT denote the subgraph of Gf induced by T − {x, y}.
A proof similar to that of Lemma 2.3 shows that the subgraph of H induced by
T − {x, y}, and hence also GT , is 2-connected. Since k(G�, H) ≥ 1, we must have
T̄ := V −T 6= ∅. Therefore there is a face K of (the embedded) GT , with boundary
cycle C, for which the disc D bounded by C in (the embedded) Gf contains at least
one vertex of T̄ . Since the block B� is in T , K is different from the face that defines
the block. Let Vint (resp. Eint) denote the set of the internal vertices (resp. edges)
of D.

Claim 2.6. Eint ⊂ F .

Proof. Suppose that there is an edge e = ab with e ∈ Eint − F . By the maximality
of H the graph H + e is not (3, 6)-sparse. This implies that there is a tight set S
with {a, b} ⊂ S. Note that at least one of a and b is not in T , and hence T is a
proper subset of T ∪ S. Then Claim 2.5, the maximality of T , and the fact that
H[S] has minimum degree at least two imply that S is disjoint from {x, y}. Hence
H[S]+e is, as an (embedded) subgraph of Gf , planar. This is a contradiction, since
H[S] + e cannot have more than 3|S| − 6 edges by Euler’s formula.

Essentially the same proof leads to the following version, which shows that adding
a diagonal of an internal face of D to H preserves (3, 6)-sparsity.

Claim 2.7. Let a, b be a pair of vertices on the boundary cycle C ′ of some face of
D with a ∈ Vint. If ab /∈ E(Gf ) then H + ab is (3, 6)-sparse.

In the rest of the proof we consider two cases. In the first case we assume that
each face in the interior of D is triangular. We claim that |Eint| ≥ 3|Vint|. To see
this observe that the planar embedding of D, which is a near triangulation, can be
extended to a triangulation by adding a set E ′ of |C| − 3 edges, connecting pairs of
vertices in the exterior of the disc. With these edges we have 3(|C| + |Vint|) − 6 =
|Eint|+ |C|+ |E ′| = |Eint|+ |C|+ |C| − 3. Thus we have

|Eint| = 3|Vint|+ |C| − 3, (2)

and hence |C| ≥ 3 implies |Eint| ≥ 3|Vint|, as claimed. By using Claim 2.6 and
V (C) ⊆ T this yields iH(T ∪ Vint) ≥ 3|T | − 6 + 3|Vint| = 3|T ∪ Vint| − 6. Hence

3It is well-known and easy to check that for every graph G = (V,E) and for every pair X,Y ⊆ V
we have iG(X) + iG(Y ) ≤ iG(X ∩ Y ) + iG(X ∪ Y ).
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equality must hold and T ∪ Vint is tight. This contradicts the maximality of T and
shows that this case cannot occur.

Thus it remains to consider the case when there exists a non-triangular face in
D, bounded by some cycle C ′ (of length at least four). The next claim shows that
we can add a new diagonal to this face which is incident with a vertex of Vint.

Claim 2.8. There is a vertex pair {u, v} ∈ V (C ′) for which u ∈ Vint and for which
Gf + f is simple and planar, where f = uv.

Proof. Let us call an edge e of Gf which connects two non-consecutive vertices of
C ′ an outer diagonal. Since Vint 6= ∅, we have C 6= C ′, and hence at least one vertex
of C ′, say u, must belong to Vint. If there is no outer diagonal incident with u then
for the second neighbour v ∈ V (C ′) of u on C ′ the pair {u, v} satisfies the required
properties. So it remains to consider the case when there is an outer diagonal uw.
The cycle C ′ is divided into two internally disjoint subpaths P1, P2, connecting u to
w. The key observation, which follows from the structure of the planar embedding,
is that the set of the internal vertices of at least one of these paths, say P1, is disjoint
from C. In this case let us redefine u to be an internal vertex of P1 and let v be an
internal vertex of P2. The existence of the outer diagonal and the choice of u imply
that the pair {u, v} satisfies the required properties.

Let f be the edge of Claim 2.8. Then Gf + f is simple and planar. Furthermore,
by Claim 2.7, H+f is (3, 6)-sparse. Thus f is the desired edge: G�+f is a block and
hole graph with a single block B� in which H + f is (3, 6)-sparse. This completes
the proof.

Figure 3: A triangulated dome with a single hole and single block.

We obtain the following characterization as a corollary.

Theorem 2.9. Let G� be a block and hole graph with a single block. Then G� is
rigid if and only if it has a minimally rigid spanning subgraph which is a block and
hole graph with the same block.
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2.3 A matroid on the set of edges that triangulate the holes

We can deduce from Theorem 2.4 that the maximal (3, 6)-sparse subgraphs of G�

that contain the block have the same size4. In fact with a simple extra argument
we can show that the sparsity count defines a matroid on the missing edges of some
triangulation in the following sense.

Let G� be a block and hole graph on vertex set V with a single block B�. Consider
the underlying (embedded) face graph Gf . Let J be a set of edges that triangulate
the holes. Note that Gf + J ′ is a face graph (and G� + J ′ is a block and hole graph
with a single block) for every J ′ ⊆ J . Let H be the family of maximal (3, 6)-sparse
subgraphs H = (V, F ) of G� with E(B�) ⊆ F and define

I = {I ⊆ J : (V, F ∪ I) is (3, 6)-sparse for some H = (V, F ) ∈ H}

We show that I corresponds to the independent sets of a matroid5 on ground set J .

Theorem 2.10. (J, I) is a matroid.

Proof. We shall verify that each of the axioms (M1)-(M3) is satisfied by I. It is
easy to see that (M1) and (M2) hold. To prove (M3) let J ′ ⊆ J and let I ′, I ′′ be
maximal subsets of J with I ′, I ′′ ∈ I. By definition there exist maximal (3,6)-sparse
subgraphs H ′ = (V, F ′), H ′′ = (V, F ′′) of G� that contain the block and for which
H ′+ = (V, F ′ ∪ I ′) and H ′′+ = (V, F ′′ ∪ I ′′) are (3, 6)-sparse. Observe that H ′+ and
H ′′+ are both maximal (3, 6)-sparse subgraphs of G� + J ′. Since G� + J ′ is a block
and hole graph with a single block, Theorem 2.4 implies that |F ′ ∪ I ′| = |F ′′ ∪ I ′′|.
Moreover, we have |F ′| = |F ′′|, implying that |I ′| = |I ′′|, as required.

Remark 1. It is well-known that, in general, the edge sets of the (3, 6)-sparse
subgraphs of a graph do not form the family of independent sets of a matroid
on the edge set of a graph G. See Example 1. There are some rare exceptions: for
example, when G has maximum degree at most five, these edge sets define a matroid
[7]. Hence it may be interesting to note that, as it can be seen from Theorem 2.10,
the (3, 6)-sparsity count can be used to define a matroid on (the edge sets of the
triangulations of) block and hole graphs with a single block.

Remark 2. We sketch a slightly a different approach that can be used to deduce the
rank formula of Theorem 2.4, suggested by Csaba Király (private communication).
We use the notation of Theorem 2.4. Let us triangulate the holes of G� by adding
a set of new edges. The resulting graph G+ can be obtained from a triangulation
by adding a vertex (i.e. one of the poles of the block). Thus it is rigid in R3 by
Theorem 1.1 and the fact that adding a vertex of degree at least three to a rigid
graph preserves rigidity. Hence a maximal (3, 6)-sparse subgraph H+ of G+ that

4This is best possible: it is easy to construct a block and hole graph with two four-blocks and
one four-hole from graph G of Example 1 for which this property fails for each of the two blocks.

5Recall the following matroid axioms: (J, I) is a matroid if and only if (M1) ∅ ∈ I, (M2) if
I ′ ⊆ I and I ∈ I then I ′ ∈ I, (M3) for every J ′ ⊆ J and maximal subsets I ′, I ′′ of J ′ with
I ′, I ′′ ∈ I we have |I ′| = |I ′′|.
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contains H must be (3, 6)-tight by Theorem 1.3. It can be shown, as in the proof
of Theorem 2.4, that H+ is a block and hole graph with a single block. Hence it
is rigid by Theorem 1.2. From here the argument of the first part of the proof of
Theorem 2.4 can be used to obtain (1).

On one hand, this approach may lead to a somewhat shorter proof. On the other
hand the proof of Theorem 2.4 given in Section 2.2 gives more structural information.
We illustrate this by deducing the following single block and single hole theorem
mentioned in the Introduction. The following proof deduces (3, 6)-tightness from a
connectivity condition without using the so-called girth inequalities of [3].

Theorem 2.11. [4] Let G� be a block and hole graph with a single block of size k
and a single hole of size k. Then G� is minimally rigid if and only if there exist k
vertex disjoint paths connecting the vertex set of the block to the vertex set of the
hole.

Proof. First observe that |E(G�)| = 3|V (G�)| − 6. Necessity is easy to see: if the
k paths do not exist, then - by Menger’s theorem - there is a vertex set of size less
than k that separates the block and the hole. It is easy to show that in this case
G� is not (3, 6)-sparse, and hence it cannot be (minimally) rigid. To see sufficiency
suppose that the k disjoint paths do exist but G� is not rigid. Following the proof
(and the notation) of Theorem 2.4 we obtain that V − T is non-empty. Since there
is a single hole, there is a unique non-triangular face in the interior of disc D, which
must be equal to the single hole of G�. Moreover, it is separated from the block by
the vertex set of the boundary cycle C of D. Due to the existence of the k disjoint
paths, we must have |C| ≥ k. By triangulating the hole by adding k− 3 extra edges
and using (2) we obtain |Eint| ≥ 3|Vint|. As in the proof of the theorem, it leads to
a contradiction.

2.4 Algorithmic aspects

It is known that testing whether a given graph is (3, 6)-sparse can be done in poly-
nomial time. See e.g. [8] for the description of such an algorithm, which is based on
matroidal methods. With this algorithm in hand we can construct a maximal (3, 6)-
sparse subgraph H of G�, starting from the single block B�, in a greedy manner.
Theorem 2.4 implies that r3(G

�) is equal to the number of edges in H. The proof of
Theorem 2.4 also shows that we can determine, in polynomial time, a smallest set
L of new edges for which G� + L is rigid.

There exist other algorithmic approaches (e.g. the one based the degree con-
strained orientations [1]) which can be used in the single block setting to test (3, 6)-
sparsity and to obtain better running times. We omit the details.

3 Concluding remarks

Block and hole graphs with a single block can be used to model triangulated domes
with doors and windows, where the gounded part corresponds to the block and
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the doors and windows correspond to the holes, see Figure 3. The results of this
paper can be used to check whether such a structure is generically rigid (and more
generally, to compute its degrees of freedom), irrespectively of the number of bars.

One may also consider block and hole graphs with a single hole. Interestingly,
[3, Corollary 48] shows that a similar characterization applies: such a graph is
minimally rigid in R3 if and only if it is (3, 6)-tight. It is not clear how this kind of
duality can be used to obtain an efficient algorithm for testing whether a block and
hole graph with a single hole is rigid. This question remains open.
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