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Abstract

Dynamic pricing schemes were introduced as an alternative to posted-price
mechanisms. In contrast to static models, the dynamic setting allows to up-
date the prices between buyer-arrivals based on the remaining sets of items and
buyers, and so it is capable of maximizing social welfare without the need for
a central coordinator. In this paper, we study the existence of optimal dy-
namic pricing schemes in combinatorial markets. In particular, we concentrate
on multi-demand valuations, a natural extension of unit-demand valuations.
The proposed approach is based on computing an optimal dual solution of the
maximum social welfare problem with distinguished structural properties.

Our contribution is twofold. By relying on an optimal dual solution, we
show the existence of optimal dynamic prices in unit-demand markets and in
multi-demand markets up to three buyers, thus giving new interpretations of
results of Cohen-Addad et al. [8] and Berger et al. [2], respectively. Furthermore,
we provide an optimal dynamic pricing scheme for bi-demand valuations with
an arbitrary number of buyers. In all cases, our proofs also provide efficient
algorithms for determining the optimal dynamic prices.

1 Introduction

A combinatorial market consists of a set of indivisible goods and a set of buyers,
where each buyer has a valuation function that represents the buyer’s preferences
over the subsets of items. From an optimization point of view, the goal is to find
an allocation of the items to buyers in such a way that the total sum of the buyers’
values is maximized – this sum is called the social welfare. An optimal allocation
can be found efficiently in various settings [7, 16, 22, 24], but the problem becomes
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significantly more difficult if one would like to realize the optimal social welfare in an
automatic way through simple mechanisms.

A great amount of work concentrated on finding optimal pricing schemes. Given a
price for each item, we define the utility of a buyer for a bundle of items to be the value
of the bundle with respect to the buyer’s valuation, minus the total price of the items
in the bundle. A pair of pricing and allocation is called a Walrasian equilibrium if the
market clears (that is, all the items are assigned to buyers) and everyone receives a
bundle that maximizes her utility. Given any Walrasian equilibrium, the correspond-
ing price vector is referred to as Walrasian pricing, and the definition implies that the
corresponding allocation maximizes social welfare.

Although Walrasian equilibria have distinguished properties, Cohen-Addad et al. [8]
realized that the existence of a Walrasian equilibrium alone is not sufficient to achieve
optimal social welfare based on buyers’ decisions. Different bundles of items might
have the same utility for the same buyer, and in such cases ties must be broken by
a central coordinator in order to ensure that the optimal social welfare is achieved.
However, the presence of such a tie-breaking rule is unrealistic in real life markets and
buyers choose an arbitrary best bundle for themselves without caring about social
optimum.

Dynamic pricing schemes were introduced as an alternative to posted-price mecha-
nisms that are capable of maximizing social welfare even without a central tie-breaking
coordinator. In this model, the buyers arrive in a sequential order, and each buyer
selects a bundle of the remaining items that maximizes her utility. The buyers’ pref-
erences are known in advance, and the seller is allowed to update the prices between
buyer arrivals based upon the remaining set of items, but without knowing the iden-
tity of the next buyer. The main open problem in [8] asked whether any market with
gross substitutes valuations has a dynamic pricing scheme that achieves optimal social
welfare.

Related work Walrasian equilibria were introduced already in the late 1800s [25]
for divisible goods. A century later, Kelso and Crawford [19] defined gross substitutes
functions and verified the existence of Walrasian prices for such valuations. It is
worth mentioning that the class of gross substitutes functions coincides with that
of M\-concave functions, introduced by Murota and Shioura [21]. The fundamental
role of the gross substitutes condition was recognized by Gul and Stacchetti [17] who
verified that it is necessary to ensure the existence of a Walrasian equilibrium.

Cohen-Addad et al. [8] and independently Hsu et al. [18] observed that Walrasian
prices are not powerful enough to control the market on their own. The reason is that
ties among different bundles must be broken in a coordinated fashion that is consistent
with maximizing social welfare. Furthermore, this problem cannot be resolved by find-
ing Walrasian prices where ties do not occur as [18] showed that minimal Walrasian
prices necessarily induce ties. To overcome these difficulties, [8] introduced the notion
of dynamic pricing schemes, where prices can be redefined between buyer-arrivals.
They proposed a scheme maximizing social welfare for matching or unit-demand mar-
kets, where the valuation of each buyer is determined by the most valuable item in her
bundle. In each phase, the algorithm constructs a so-called ‘relation graph’ and per-
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forms various computations upon it. Then the prices are updated based on structural
properties of the graph.

Recently, Berger et al. [2] considered markets beyond unit-demand valuations, and
provided a polynomial-time algorithm for finding optimal dynamic prices up to three
multi-demand buyers. Their approach is based on a generalization of the relation
graph of [8] that they call a ‘preference graph’, and on a new directed graph termed
the ‘item-equivalence graph’. They showed that there is a strong connection between
these two graphs, and provided a pricing scheme based on these observations.

Further results on posted-price mechanisms considered matroid rank valuations
[1], relaxations such as combinatorial Walrasian equilibrium [15], and online settings
[3–6,9–11,13,14].

Our contribution In the present paper, we focus on multi-demand combinatorial
markets. In this setting, each buyer t has a positive integer bound b(t) on the number
of desired items, and the value of a set is the sum of the values of the b(t) most
valued items in the set. In particular, if we set each b(t) to one then we get back the
unit-demand case.

For multi-demand markets, the problem of finding an allocation that maximizes
social welfare is equivalent to a maximum weight b-matching problem in a bipartite
graph with vertex classes corresponding to the buyers and items, respectively. Note
that, unlike in the case of Walrasian equilibrium, clearing the market is not required
as a maximum weight b-matching might leave some of the items unallocated. The
high level idea of our approach is to consider the dual of this problem, and to define
an appropriate price vector based on an optimal dual solution with distinguished
structural properties.

Based on the primal-dual interpretation of the problem, we give a simpler proof
of a result of Cohen-Addad et al. [8] on unit-demand valuations. Although this can
be considered a special case of bi-demand markets, we discuss it separately as an
illustration of our techniques.

Theorem 1.1 (Cohen-Addad et al.). Every unit-demand market admits an optimal
dynamic pricing that can be computed in polynomial time.

When the total demand of the buyers exceeds the number of available items, en-
suring the optimality of the final allocation becomes more intricate. Therefore, we
consider instances satisfying the following property:

(OPT) each buyer t ∈ T receives exactly b(t) items in every optimal allocation.

While this is a restrictive assumption, it is a reasonable condition that holds for a
wide range of applications. For example, if the total number of items is not less than
the total demand of the buyers and the value of each item is strictly positive for each
buyer, then it is not difficult to check that (OPT) is satisfied.

The problem becomes significantly more difficult for larger demands. Berger et
al. [2] observed that bundles that are given to a buyer in different optimal allocations
satisfy strong structural properties. For markets up to three multi-demand buyers,
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they grouped the items into at most eight equivalence classes based on which buyer
could get them in an optimal solution, and then analyzed the item-equivalence graph
for obtaining an optimal dynamic pricing. We show that, when assumption (OPT) is
satisfied, these properties follow from the primal-dual interpretation of the problem,
and give a new proof of their result for such instances.

Theorem 1.2 (Berger et al.). Every multi-demand market with property (OPT) and
at most three buyers admits an optimal dynamic pricing scheme, and such prices can
be computed in polynomial time.

The main result of the paper is an algorithm for determining optimal dynamic prices
in bi-demand markets with an arbitrary number of buyers, that is, when the demand
b(t) is two for each buyer t. Besides structural observations on the dual solution, the
proof relies on uncrossing sets that are problematic in terms of resolving ties.

Theorem 1.3. Every bi-demand market with property (OPT) admits an optimal
dynamic pricing scheme, and such prices can be computed in polynomial time.

The paper is organized as follows. Basic definitions and notation are given in
Section 2, while Section 3 provides structural observations on optimal dynamic prices
in multi-demand markets. Unit- and multi-demand markets up to three buyers are
discussed in Section 4. Finally, Section 5 solves the bi-demand case under the (OPT)
condition.

2 Preliminaries

Basic notation. We denote the sets of real, non-negative real, integer, and positive
integer numbers by R, R+, Z, and Z>0, respectively. Given a ground set S and subsets
X, Y ⊆ S, the difference of X and Y is denoted by X − Y . If Y consists of a single
element y, then X−{y} and X∪{y} are abbreviated by X−y and X+y, respectively.
The symmetric difference of X and Y is X4Y := (X −Y )∪ (Y −X). For a function
f : S → R, the total sum of its values over a set X is denoted by f(X) :=

∑
s∈X f(s).

The inner product of two vectors x, y ∈ RS is x · y :=
∑

s∈S x(s)y(s). Given a set S,
an ordering of S is a bijection σ between S and the set of integers {1, . . . , |S|}. For
a set X ⊆ S, we denote the restriction of the ordering to S − X by σ|S−X . Given
orderings σ1 and σ2 of disjoint sets S1 and S2, respectively, we denote by σ = (σ1, σ2)
the ordering of S := S1∪S2 where σ(s) = σ1(s) for s ∈ S1 and σ2(s) + |S1| for s ∈ S2.

Let G = (S, T ;E) be a bipartite graph with vertex classes S and T and edge set
E. We will always denote the vertex set of the graph by V := S ∪ T . For a subset
X ⊆ V , we denote the set of edges induced by X by E[X], while G[X] stands for
the graph induced by X. The graph obtained from G by deleting X is denoted by
G − X. Given a subset F ⊆ E, the set of edges in F incident to a vertex v ∈ V
is denoted by δF (v). Accordingly, the degree of v in F is dF (v) := |δF (v)|. For a
set Z ⊆ T , the set of neighbors of Z with respect to F is denoted by NF (Z), that
is, NF (Z) := {s ∈ S | there exists and edge st ∈ F with t ∈ Z}. The subscript F is
dropped from the notation or is changed to G whenever F is the whole edge set.
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Section 3. Optimal allocations and maximum weight b-matchings 5

Market model. A combinatorial market consists of a set S of indivisible items and
a set T of buyers. We consider multi-demand1 markets, where each buyer t ∈ T has
a valuation vt : S → R+ over individual items together with an upper bound b(t) on
the number of desired items, and the value of a set X ⊆ S for buyer t is defined as
vt(X) := max{vt(X ′) | X ′ ⊆ X, |X ′| ≤ b(t)}. Unit-demand and bi-demand valuations
correspond to the special cases when b(t) = 1 and b(t) = 2 for each t ∈ T , respectively.

Given a price vector p : S → R+, the utility of buyer t for X is defined as ut(X) :=
vt(X) − p(X). The buyers, whose valuations are known in advance, arrive in an
undetermined order, and the next buyer always chooses a subset of at most her desired
number of items that maximizes her utility. In contrast to static models, the prices can
be updated between buyer-arrivals based on the remaining sets of items and buyers.
The goal is to set the prices at each phase in such a way that no matter in what order
the buyers arrive, the final allocation maximizes the social welfare. Such a pricing
scheme and allocation are called optimal. It is worth emphasizing that a buyer may
decide either to take or not to take an item which has 0 utility, that is, it might
happen that the bundle of items that she chooses is not inclusionwise minimal. This
seemingly tiny degree of freedom actually results in difficulties that one has to take
care of.

We may assume that all items are allocated in every optimal allocation, therefore
|S| ≤

∑
t∈T b(t). Indeed, if we take in optimal allocation that uses a minimum number

of items, then we can set the price of unused items to a large value so that no buyer
takes them. In particular, when (OPT) is assumed, then the number of items coincides
with the total demand of the buyers.

3 Optimal allocations and maximum weight b-matchings

A combinatorial market with multi-demand valuations can be naturally identified
with an edge-weighted complete bipartite graph G = (S, T ;E) where S is the set of
items, T is the set of buyers, and for every item s and buyer t the weight of edge
st ∈ E is w(st) := vt(s). We extend the demands to S as well by setting b(s) = 1
for every s ∈ S. Then an optimal allocation of the items corresponds to a maximum
weight subset M ⊆ E satisfying dM(v) ≤ b(v) for each v ∈ S ∪ T .

Let G = (S, T ;E) be a bipartite graph and recall that V := S ∪ T . Given an
upper bound b : V → Z+ on the vertices, a subset M ⊆ E is called a b-matching if
dM(v) ≤ b(v) for every v ∈ V . If equality holds for each v ∈ V , then M is called
a b-factor. Notice that if b(v) = 1 for each v ∈ V , then a b-matching or b-factor is
simply a matching or perfect matching, respectively. Kőnig’s classical theorem [20]
gives a necessary and sufficient condition for the existence of a perfect matching in a
bipartite graph.

Theorem 3.1 (Kőnig). There exists a perfect matching in a bipartite graph G =
(S, T ;E) if and only if |S| = |T | and |N(Y )| ≥ |Y | for every Y ⊆ T .

1Multi-demand valuations are special cases of weighted matroid rank functions for uniform ma-
troids, see [1].
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Let w : E → R be a weight function on the edges. A function π : V → R on the
vertex set V = S∪T is a weighted covering of w if π(s) +π(t) ≥ w(st) holds for every
edge st ∈ E. An edge st is called tight with respect to π if π(s)+π(t) = w(st). The total
value of the covering is π · b =

∑
v∈V π(v) · b(v). We refer to a covering of minimum

total value as optimal. The celebrated result of Egerváry [12] provides a min-max
characterization for the maximum weight of a matching or a perfect matching in a
bipartite graph.

Theorem 3.2 (Egerváry). Let G = (S, T ;E) be a graph, w : W → R be a weight
function. Then the maximum weight of a matching is equal to the minimum total
value of a non-negative weighted covering π of w. If G has a perfect matching, then
the maximum weight of a perfect matching is equal to the minimum total value of a
weighted covering π of w.

In general, a b-factor or even a maximum weight b-matching can be found in polyno-
mial time (even in non-bipartite graphs, see e.g. [23]). However, when b is identically
one on S, then a characterization follows easily from Kőnig’s and Egerváry’s theo-
rems2.

Theorem 3.3. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight
function, and b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S.

(a) G has a b-factor if and only if |S| = b(T ) and |N(X)| ≥ b(X) for every X ⊆ T .

(b) The maximum w-weight of a b-matching is equal to the minimum total value of
a non-negative weighted covering π of w.

Proof. Let G′ = (S ′, T ;E ′) denote the graph obtained from G by taking b(t) copies of
each vertex t ∈ T and connecting them to the vertices in NG(t). It is not difficult to
check that G has a b-factor if and only if G′ has a perfect matching, thus first part of
the theorem follows by Theorem 3.1.

To see the second part, for each copy t′ ∈ T ′ of an original vertex t ∈ T , define the
weight of edge st′ as w′(st′) := w(st). Then the maximum w-weight of a b-matching
of G is equal to the maximum w′-weight of a matching of G′. Now take an optimal
non-negative weighted covering π′ of w′ in G′. As the different copies of an original
vertex t ∈ T share the same neighbors in G′, each of them receive the same value
in any optimal weighted covering of w′ - define π(t) to be this value. Then π is a
non-negative weighted covering of w in G with total value equal to that of π′, hence
the theorem follows by Theorem 3.2.

Given a weighted covering π, the subgraph of tight edges with respect to π is denoted
by Gπ = (S, T ;Eπ). In what follows, we prove some easy structural results on the
relation of optimal b-matchings and weighted coverings.

Lemma 3.4. Let G = (S, T ;E) be a bipartite graph, w : E → R+ be a weight function,
and b : V → Z>0 be an upper bound function satisfying b(s) = 1 for s ∈ S.

2The same results follow by strong duality applied to the linear programming formulations of the
problems.
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(a) For any optimal non-negative weighted covering π of w, a b-matching M ⊆ E
has maximum weight if and only if M ⊆ Eπ and dM(v) = b(v) for each v with
π(v) > 0.

(b) For any optimal weighted covering π of w, a b-factor M ⊆ E has maximum
weight if and only if M ⊆ Eπ.

Proof. Let M be a maximum weight b-matching and π be an optimal non-negative
weighted covering. We have w(M) =

∑
st∈M w(st) ≤

∑
st∈M(π(s)+π(t)) ≤

∑
v∈V π(v)·

b(v), and equality holds throughout if and only if M consists of tight edges and
π(v) = 0 if dM(v) < b(v).

Now consider the b-factor case. Let M be a maximum weight b-factor and π be an
optimal weighted covering. We have w(M) =

∑
st∈M w(st) ≤

∑
st∈M(π(s) + π(t)) =∑

v∈V π(v) · b(v), and the inequality is satisfied with equality if and only if M consists
of tight edges.

Following the notation of [2], we call an edge st ∈ E legal if there exists a maximum
weight b-matching containing it, and say that s is legal for t. A subset F ⊆ δ(t) is
feasible if there exists a maximum weight b-matching M such that δM(t) = F ; in
this case NF (t) is called feasible for t3. Notice that a feasible set necessarily consists
of legal edges. The essence of the following technical lemma is that there exists an
optimal non-negative weighted covering for which Gπ consists only of legal edges, thus
giving a better structural understanding of optimal dual solutions; for an illustration
see Figure 1.

Lemma 3.5. The optimal π attaining the minimum in Theorem 3.3(b) can be chosen
such that

(a) an edge st is tight with respect to π if and only if it is legal, and

(b) π(v) = 0 for some v ∈ V if and only if there exists a maximum weight b-matching
M with dM(v) < b(v).

Furthermore, such a π can be determined in polynomial time.

Proof. In both cases, the ‘if’ part follows by Lemma 3.4. Let M and π be a maximum
weight b-matching and an optimal non-negative weighted covering, respectively. To
prove the lemma, we will modify π in two phases.

In the first phase, we ensure (a) to hold. Take an arbitrary ordering e1, . . . , em of the
edges, and set π0 := π and w0 := w. For i = 1, . . . ,m, repeat the following steps. Let
εi := max{wi−1(M) |M is a b-matching}−max{wi−1(M) |M is a b-matching containing ei}.
Notice that εi > 0 exactly if ei is not legal. Let wi denote the weight function obtained
from wi−1 by increasing the weight of ei by εi/2, and let πi be an optimal non-negative
weighted covering of wi. Due to the definition of εi, a b-matching M has maximum
weight with respect to wi if and only if it has maximum weight with respect to wi−1,
and in this case wi(M) = wi−1(M). That is, the sets of maximum weight b-matchings
with respect to w and wm coincide, and the weights of legal edges do not change,
therefore πm is an optimal non-negative weighted covering of w as well.

3The notion of feasibility is closely related to ‘legal allocations’ introduced in [2]. However, ‘legal
subsets’ are different from feasible ones, hence we use a different term here to avoid confusion.
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In the second phase, we concentrate on (b). Take an arbitrary ordering v1, . . . , vn
of the vertices, and consider πm and wm that the previous phase stopped with. For j =
1, . . . , n, repeat the following steps. Let δj := max{wm+j−1(M) |M is a b-matching}−
max{wm+j−1(M) | M is a b-matching, dM(vj) ≤ b(vj)− 1}. Notice that δj > 0 ex-
actly if the degree of vj is b(vj) in every maximum weight b-matching. Let wm+j de-
note the weight function obtained from wm+j−1 by decreasing the weight of the edges
incident to vj by δj/(b(vj) + 1), and let πm+j be an optimal non-negative weighted
covering of wm+j. Due to the definition of δj, a b-matching M has maximum weight
with respect to wm+j−1 if and only if it has maximum weight with respect to wm+j,
and in this case wm+j(M) = wm+j−1(M) − δj · b(vj). That is, the sets of maxi-
mum weight b-matchings with respect to w and wm+n coincide. Let π′ denote the
weighted covering of w obtained by increasing the value of πm+n(v`) by δ`/(b(v`) + 1)
for ` = 1, . . . , n. As the total value of π′ is greater than that of πm+n by exactly
max{w(M) | M is a b-matching} − max{wm+n(M) | M is a b-matching}, π′ is an
optimal non-negative weighted covering of w.

As εi > 0 whenever ei is not legal and δj > 0 whenever there is no a maximum
weight b-matchingM with dM(vj) < b(vj), π

′ satisfies both (a) and (b) as required.

Remark 3.6. If the market satisfies property (OPT), the lemma implies that there
exists an optimal non-negative weighted covering that is positive for every buyer and
every item.

Feasible sets play a key role in the design of optimal dynamic pricing schemes.
After the current buyer leaves, the associated bipartite graph is updated by deleting
the vertices corresponding to the buyer and her bundle of items, and the prices are
recomputed for the remaining items. It follows from the definitions that the scheme
is optimal if and only if the prices are always set in such a way that any bundle of
items maximizing the utility of an agent t forms a feasible set for t.

The high-level idea of our approach is as follows. First, we take an optimal non-
negative weighted covering π provided by Lemma 3.5. If we define the price of an item
s ∈ S to be π(s), then for any t ∈ T we have ut(s) = vt(s)−π(s) = w(st)−π(s) ≤ π(t)
and, by Lemma 3.5(a), equality holds if and only if s is feasible for t. This means that
each buyer prefers choosing items that are legal for her. For unit-demand valuations,
such a solution immediately yields an optimal dynamic pricing scheme as explained
in Section 4.1. However, when the demands are greater than one, a collection of legal
items might not form a feasible set, see an example on Figure 1. In order to control
the choices of the buyers, we slightly perturb the item prices by choosing an ordering
σ : S → {1, . . . , |S|} and set the price of item s to be π(s)+δ ·σ(s) for some sufficiently
small δ > 0. Here the value of σ(s) will be set in such a way that any bundle of items
maximizing the utility of a buyer will form a feasible set for her, as needed.

Given a bipartite graph G = (S, T ;E) and upper bounds b : V → Z>0 with
b(s) = 1 for s ∈ S, we call an ordering σ : S → {1, . . . , |S|} adequate for G if it
satisfies the following condition: for any t ∈ T , there exists a b-factor in G that
matches t to its first b(t) neighbors according to the ordering σ. For ease of notation,
we introduce the slack of π to denote ∆(π) := min

{
min{π(t) + π(s) − w(st) | st ∈

E, st is not tight}, min{π(v) | v ∈ V, π(v) > 0}
}

, where the minimum over an empty

EGRES Technical Report No. 2021-07



Section 3. Optimal allocations and maximum weight b-matchings 9

t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(a) Maximum weight b-matching M1 =
{t1s1, t1s3, t2s2, t2s5, t3s4, t3s6}.

t1 t2 t3

s1 s2 s3 s4 s6s5

1 4
3

1 33 2342

(b) Maximum weight b-matching M2 =
{t1s1, t1s4, t2s2, t2s3, t3s5, t3s6}

1 4
3

1 33 2342

1

0 0 3 2 2 1

11

(c) An optimal non-negative weighted
covering π. Notice that s1t1 is tight but
not legal, and π(s1) = π(s2) = 0 although
dM (s1) = dM (s2) = 1 for every maximum
weight b-matching.

1 4
3

1 33 2342

1
2

1
2

3
2

5
2

1
2

5
2

1
2

1
2

7
2

(d) An optimal non-negative weighted
covering satisfying the conditions of
Lemma 3.5.

Figure 1: A bipartite graph corresponding to a market with three buyers having
demand two and six items. The numbers denote the weights of the edges; all the
remaining edges have weight 0. There are two maximum weight b-matchings M1

(Figure 1a) and M2 (Figure 1b). Notice that both s3t1 and s4t1 are legal, but they
do not form a feasible set.

set is defined to be +∞. Using this terminology, the above idea is formalized in the
following lemma.

Lemma 3.7. Assume that (OPT) is satisfied. Let G = (S, T ;E) be the edge-weighted
bipartite graph associated with the market, π be a weighted covering provided by
Lemma 3.5, and σ be an adequate ordering for Gπ. For δ := ∆(π)/(|S| + 1), set-
ting the prices to p(s) := π(s) + δ · σ(s) results in optimal dynamic prices.

Proof. By (OPT), every optimal solution is a b-factor. Observe that for any s ∈ S
and t ∈ T , we have

ut(s) = vt(s)− p(s)
= w(st)− (π(s) + δ · σ(s))

≤ π(t)− δ · σ(s).

Here equality holds if and only if st is tight with respect to π, in which case ut(s) =
π(t)−δ ·σ(s) > π(t)−∆(π) · |S|/(|S|+1) > 0 by the choice of δ and by Lemma 3.5(b).
Furthermore, if st is tight and s′t is a non-tight edge of G, then ut(s

′) ≤ π(t)−∆(π) ≤
π(t) − δ(|S| + 1) < ut(s) by the choice of δ. Concluding the above, we get that no
matter which buyer arrives next, she strictly prefers legal items over non-legal ones,
and legal items have strictly positive utility values for her. That is, she chooses the
first b(t) of its neighbors in Gπ according to the ordering σ. As σ is adequate for Gπ,
the statement follows by Lemma 3.4(b).
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4 Unit- and multi-demand markets

4.1 Unit-demand markets

The existence of optimal dynamic prices for unit-demand valuations was settled in [8].
As an illustration of our approach, we give a simple algorithm that uses an optimal
dual solution.

Theorem 1.1 (Cohen-Addad et al.). Every unit-demand market admits an optimal
dynamic pricing that can be computed in polynomial time.

Proof. Consider the bipartite graph associated with the market, take an optimal cover
π provided by Lemma 3.5, and set the price of item s to be π(s). For a pair of buyer
t ∈ T and s ∈ S, we have

ut(s) = vt(s)− p(s)
= w(st)− p(s)
≤ (π(s) + π(t))− π(s)

= π(t).

By Lemma 3.5(a), strict equality holds if and only if st is legal. We claim that no
matter which buyer arrives next, she either chooses an item that is legal (and so forms
a feasible set for her), or she takes none of the items and the empty set is feasible for
her.

To see this, assume first that π(t) > 0. By Lemma 3.5(b), there exists at least one
item legal for t, and those items are exactly the ones maximizing her utility. Now
assume that π(t) = 0. By Lemma 3.5(b), the empty set is feasible for t. Furthermore,
for any item s ∈ S the utility ut(s) is negative unless s is legal for t, in which case
ut(s) = 0. Notice that a buyer may decide to take or not to take any item with
zero utility value. However, she gets a feasible set in both cases by the above, thus
concluding the proof.

4.2 Multi-demand markets up to three buyers

The aim of the section is to settle the existence of optimal dynamic prices in multi-
demand markets with a bounded number of buyers, under the assumption (OPT).

Theorem 1.2 (Berger et al.). Every multi-demand market with property (OPT) and
at most three buyers admits an optimal dynamic pricing scheme, and such prices can
be computed in polynomial time.

Proof. By Lemma 3.7, it suffices to show the existence of an adequate ordering for
Gπ, where π is an optimal non-negative weighted covering provided by Lemma 3.5.
For a single buyer, the statement is meaningless. For two buyers t1 and t2, |S| =
b(t1) + b(t2) by assumption (OPT). Let σ be an ordering that starts with items in
NGπ(t1)4NGπ(t2) and then puts the items in NGπ(t1) ∩ NGπ(t2) at the end of the
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Figure 2: Definition of the labeling Θ for three buyers. Notice that some parts might
be empty, e.g. if |X12| ≤ b2, then there are no items with label 1 and 3 in the
intersection of NGπ(t1) and NGπ(t2).

ordering. Then, after the deletion of the first b(ti) neighbors of ti according to σ, the
remaining b(t3−i) items are in NGπ(t3−i), hence σ is adequate.

Now we turn to the case of three buyers. Let t1, t2 and t3 denote the buyers, and
let bi, vi, and ui denote the demand, valuation, and utility function corresponding to
buyer ti, respectively. Without loss of generality, we may assume that b1 ≥ b2 ≥ b3.
The proof is based on the observation that a set is feasible if and only if its deletion
leaves ‘enough’ items for the remaining buyers, formalized as follows.

Claim 4.1. A set F ⊆ NGπ(ti) is feasible for ti if and only if |F | = bi and |NGπ(tj)−
F | ≥ bj for j 6= i.

Proof. The conditions are clearly necessary. To prove sufficiency, we show that the
constraints of Theorem 3.3(a) are fulfilled after deleting ti and F from Gπ, that is,
|S − F | = b(T ) − bi and |NGπ(Y ) − F | ≥ b(Y ) for Y ⊆ T − ti. By (OPT) and
the assumption that every item is legal for at least two buyers, |S − F | = b(T ) − bi
holds for Y = T − ti. Furthermore, one-element subsets have enough neighbors by
assumption, and the claim follows.

For I ⊆ {1, 2, 3}, let XI ⊆ S denote the set of items that are legal exactly for buyers
with indices in I, that is, XI :=

(⋂
i∈I NGπ(ti)

)
−
(⋃

i/∈I NGπ(ti)
)
. We may assume

that X1 = X2 = X3 = ∅. Indeed, given an adequate ordering for Gπ− (X1 ∪X2 ∪X3)
where the demands of ti is changed to bi − |Xi| for i ∈ {1, 2, 3}, putting the items in
X1 ∪X2 ∪X3 at the beginning of the ordering results in an adequate solution for the
original instance.

By assumption, |X12|+|X13|+|X23|+|X123| = b1+b2+b3. Furthermore, |Xij| ≤ bi+bj
holds for i 6= j, as otherwise in any allocation there exists an item that is legal only
for ti and tj but is not allocated to any of them, contradicting (OPT). We first define
a labeling Θ : S → {1, 2, 3, 4, 5} so that for each buyer i and set Xij, the number of
items in Xij with label at most 4 − i is max{0, |Xij| − bj}. We will make sure that
each buyer i selects all items with label at most 4− i that are legal for her, which will
be the key to satisfy the constraints of Claim 4.1, see Figure 2.
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All the items in X123 are labeled by 5. If |X12| ≤ b2, then all the items in X12 are
labeled by 4. If b1 ≥ |X12| > b2, then b2 items are labeled by 4 and the remaining
|X12|−b2 items are labeled by 3 in X12. If |X12| > b1, b2 items are labeled by 4, b1−b2
items are labeled by 3, and the remaining |X12| − b1 items are labeled by 1 in X12.
We proceed with X13 analogously. If |X13| ≤ b3, then all the items in X13 are labeled
by 4. If b1 ≥ |X13| > b3, then b3 items are labeled by 4 and the remaining |X13| − b3
items are labeled by 2 in X13. If |X13| > b1, b3 items are labeled by 4, b1−b3 items are
labeled by 2, and the remaining |X13| − b1 items are labeled by 1 in X13. Similarly,
if |X23| ≤ b3, then all the items in X23 are labeled by 4. If b2 ≥ |X23| > b3, then b3
items are labeled by 4 and the remaining |X23| − b3 items are labeled by 2 in X23.
If |X23| > b2, then b3 items are labeled by 4, b2 − b3 items are labeled by 2, and the
remaining |X23| − b2 items are labeled by 1 in X23.

Now let σ be any ordering of the items satisfying the following condition: if the
label of item s1 is strictly less than that of item s2, then s1 precedes s2 in the ordering,
that is, Θ(s1) < Θ(s2) implies σ(s1) < σ(s2). We claim that σ is adequate for Gπ. To
see this, it suffices to verify that the set F of the first b(ti) neighbors of ti according
to σ fulfills the requirements of Claim 4.1 for i = 1, 2, 3. Let {i, j, k} = {1, 2, 3}. First
we show that F contains all the items s ∈ Xij ∪Xik with Θ(s) ≤ 4− i.

Claim 4.2. We have |{s ∈ Xij ∪Xik | Θ(s) ≤ 4− i}| ≤ bi.

Proof. Suppose to the contrary that this does not hold. Then bi < max{0, |Xij| −
bj} + max{0, |Xik| − bk} by the definition of the labeling. Since |Xij| ≤ bi + bj and
|Xik| ≤ bi+bk, we have max{0, |Xij|−bj} ≤ bi and max{0, |Xik|−bk} ≤ bi. Therefore
if bi < max{0, |Xij| − bj}+ max{0, |Xik| − bk}, then both maximums must be positive
on the right hand side. However, this leads to bi+bj +bk < |Xij|+ |Xik|, contradicting
bi + bj + bk = |Xij|+ |Xik|+ |Xjk|+ |Xijk|.

By Claim 4.2, F contains all the items s ∈ Xij ∪ Xik with Θ(s) ≤ 4 − i, we have
|Xij − F | ≤ bj and |Xik − F | ≤ bk. Thus we get

|NGπ(tj)− F | = |Xij − F |+ |Xjk|+ |Xijk − F |
= |S| − |Xik − F | − |F |
≥ (bi + bj + bk)− bk − bi
= bj.

An analogous computation shows that |NGπ(tk) − F | ≥ bk. That is, F is indeed a
feasible set for ti, concluding the proof of the theorem.

5 Bi-demand markets

This section is devoted to the proof of the main result of the paper, the existence of
optimal dynamic prices in bi-demand markets. The algorithms aims at identifying
subsets of buyers whose neighboring set in Gπ is ‘small’, meaning that other buyers
should take no or at most one item from it. If no such set exists, then an adequate
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ordering is easy to find. Otherwise, by examining the structure of problematic sets,
the problem is reduced to smaller instances.

Theorem 1.3. Every bi-demand market with property (OPT) admits an optimal
dynamic pricing scheme, and such prices can be computed in polynomial time.

Proof. Let G = (S, T ;E) and w be the bipartite graph and weight function associated
with the market. Take an optimal non-negative weighted covering π of w provided by
Lemma 3.5, and consider the subgraph Gπ = (S, T ;Eπ) of tight edges. For simplicity,
we call a subset M ⊆ Eπ a (1, 2)-factor if dM(s) = 1 for every s ∈ S and dM(t) = 2 for
every t ∈ T . By (OPT), Lemma 3.4, and the assumption that all items are allocated
in every optimal allocation, there is a one-to-one correspondence between optimal
allocations and (1, 2)-factors of Gπ. Therefore, by Lemma 3.7, it suffices to show the
existence of an adequate ordering σ for Gπ.

We prove by induction on |T |. The statement clearly holds when |T | = 1, hence we
assume that |T | ≥ 2. As there exists such a solution by assumption, |NGπ(Y )| ≥ 2|Y |
for every Y ⊆ T by Theorem 3.3(a). We distinguish three cases.

Case 1. |NGπ(Y )| ≥ 2|Y |+ 2 for every ∅ 6= Y ( T .
For any t ∈ T and s1, s2 ∈ NGπ(t), the graph Gπ − {s1, s2, t} still satisfies the

conditions of Theorem 3.3(a), hence {s1, s2} is feasible for t. Therefore σ can be
chosen arbitrarily.

Case 2. |NGπ(Y )| ≥ 2|Y | + 1 for ∅ 6= Y ( T and there exists Y for which equality
holds.

We call a set Y ⊆ T dangerous if |NGπ(Y )| = 2|Y |+ 1. By Theorem 3.3(a), a pair
{s1, s2} ⊆ NGπ(t) is not feasible for buyer t if and only if there exists a dangerous
set Y ⊆ T − t with s1, s2 ∈ NGπ(Y ). In such case we say that Y belongs to buyer t.
Notice that the same dangerous set might belong to several buyers.

Claim 5.1. Assume that Y1 and Y2 are dangerous sets with Y1 ∪ Y2 ( T .

(a) If Y1 ∩ Y2 = ∅ and NGπ(Y1) ∩ NGπ(Y2) 6= ∅, then |NGπ(Y1) ∩ NGπ(Y2)| = 1 and
Y1 ∪ Y2 is dangerous.

(b) If Y1 ∩ Y2 6= ∅, then both Y1 ∩ Y2 and Y1 ∪ Y2 are dangerous.

Proof. Observe that

(2|Y1|+ 1) + (2|Y2|+ 1) = |NGπ(Y1)|+ |NGπ(Y2)|
= |NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1) ∪NGπ(Y2)|
= |NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1 ∪ Y2)|.

Assume first that Y1∩Y2 = ∅. Then |NGπ(Y1)∩NGπ(Y2)| ≤ 1 as otherwise |NGπ(Y1∪
Y2)| ≤ 2(|Y1|+|Y2|) = 2|Y1∪Y2|, contradicting the assumption of Case 2. If |NGπ(Y1)∩
NGπ(Y2)| = 1, then |NGπ(Y1 ∪ Y2)| = 2|Y1 ∪ Y2|+ 1 and so Y1 ∪ Y2 is dangerous.

Now consider the case when Y1 ∩ Y2 6= ∅. Then

|NGπ(Y1) ∩NGπ(Y2)|+ |NGπ(Y1 ∪ Y2)| ≥ |NGπ(Y1 ∩ Y2)|+ |NGπ(Y1 ∪ Y2)|
≥ (2|Y1 ∩ Y2|+ 1) + (2|Y1 ∪ Y2|+ 1)

= (2|Y1|+ 1) + (2|Y2|+ 1).
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Therefore we have equality throughout, implying that both Y1 ∩ Y2 and Y1 ∪ Y2 are
dangerous.

Let Z be an inclusionwise maximal dangerous set.

Subcase 2.1. There is no dangerous set disjoint from Z.
First we show that if a pair s1, s2 ∈ NGπ(t) is not feasible for a buyer t ∈ T − Z,

then s1, s2 ∈ NGπ(Z). Indeed, if {s1, s2} is not feasible for t, then there is a dangerous
set X belonging to t with s1, s2 ∈ NGπ(X). Since t /∈ X ∪ Z and Z ∩X 6= ∅ by the
assumption of the subcase, Claim 5.1(b) can be applied and we get that X ∪ Z is
dangerous as well. The maximal choice of Z implies X ∪ Z = Z, hence Z belongs to
t and s1, s2 ∈ NGπ(Z).

Now take an arbitrary buyer t0 ∈ T − Z who shares a neighbor with Z and let
s0 ∈ NGπ(t0) ∩NGπ(Z). Let σ′ be an arbitrary ordering of the items in S −NGπ(Z).
Furthermore, Let G′′ be the graph obtained by deleting the items in S−(NGπ(Z)−s0)
and the buyers in T − Z. As every edge is contained in a (1, 2)-factor, G′′ admits a
(1, 2)-factor as well. By induction, there exists an adequate ordering σ′′ of the items
in G′′. Finally, let σ′′′ denote the trivial ordering of the single element set {s0}. Let
σ := (σ′, σ′′, σ′′′). Then any buyer t ∈ T − Z will choose at most one item from
NGπ(Z), hence the adequateness of σ follows from that of σ′′ and the assumption of
the subcase.

Subcase 2.2. There exists a dangerous set disjoint from Z.
Let X be an inclusionwise minimal dangerous set disjoint from Z.

Subcase 2.2.1. For any t ∈ X and for any s1, s2 ∈ NGπ(t), the set {s1, s2} is feasible.
Take an arbitrary buyer t0 ∈ T − X who shares a neighbor with X and let s0 ∈

NGπ(t0)∩NGπ(X). Let G′ denote the graph obtained by deleting X ∪ (NGπ(X)− s0).
As every edge is contained in a (1, 2)-factor, G′ admits a (1, 2)-factor as well. By
induction, there exists an adequate ordering σ′ of the items in G′. Let σ′′ be an
arbitrary ordering of the items in NGπ(X) − s0, and define σ := (σ′, σ′′). Then t0
chooses at most one item from NGπ(X) (namely s0) as she has at least one neighbor
outside of NGπ(X) and those items have smaller indices in the ordering. Thus the
adequateness of σ follows from that of σ′ and from the assumption that any pair
s1, s2 ∈ NGπ(t) form a feasible set for t ∈ X.

Subcase 2.2.2. There exists t0 ∈ X and s1, s2 ∈ NGπ(t) such that {s1, s2} is not
feasible.

The following claim is the key observation of the proof.

Claim 5.2. X ∪ Z = T and NGπ(X) ∩NGπ(Z) = {s1, s2}.

Proof. Let Y ⊆ T − t0 be a dangerous set with s1, s2 ∈ NGπ(t0). As t0 ∈ T − (Z ∪ Y )
and Z is inclusionwise maximal, either Y ⊆ Z or Y ∩ Z = ∅ by Claim 5.1(b).
In the latter case, X and Y are dangerous sets with X ∪ Y ( T . Furthermore,
|NGπ(X)∩NGπ(Y )| ≥ 2 since s1 and s2 are contained in both. Hence, by Claim 5.1(a),
X∩Y 6= ∅. But then X∩Y is dangerous by Claim 5.1(b), contradicting the minimality
of X. Therefore Y ⊆ Z. By Claim 5.1(a), X ∪ Z = T . As |NGπ(X)| = 2|X| + 1,
|NGπ(Z) = 2|Z|+ 1, and |S| = 2|T | = 2|T |+ 2|Z|, the claim follows.
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(a) The graph of tight edges corre-
sponding to the instance on Figure 1,
where Z is an inclusionwise maximal
dangerous set, and X is an inclusion-
wise minimal dangerous set disjoint
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(b) The graphs G′ = Gπ−(X∪(NGπ(X)−s1))
and G′′ = Gπ − (Z ∪ (NGπ(Z)− s1)), together
with an adequate ordering σ′ and an arbitrary
ordering σ′′, respectively.
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(c) Construction of the ordering σ =
(σ′, σ′′|NGπ (X)−s2 , σ

′′′), where σ′′′ is
the trivial ordering of the one ele-
ment set {s2}.

Figure 3: An illustration of the inductive step in Subcase 2.2.2.

Let G′ and G′′ denote the graphs obtained by deleting X ∪ (NGπ(X) − s1) and
Z ∪ (NGπ(Z)− s1), respectively, see Figure 3. As every edge is contained in a (1, 2)-
factor, G′ admit a (1, 2)-factor. By induction, there exists an adequate ordering σ′

of the items in G′. Let σ′′ be an arbitrary ordering of the items in NGπ(X) − s2.
Finally, let σ′′′ denote the trivial ordering of the single element set {s2}. Let σ :=
(σ′, σ′′|NGπ (X)−s1 , σ

′′′). We claim that σ is adequate. Indeed, if a buyer t ∈ Z arrives
first, then she chooses two items from NGπ(Z)− s2 according to σ′. As σ′ is adequate
for G′ and G′′ − s1 + s2 has a (1, 2)-factor, the remaining graph has a (1, 2)-factor as
well. If a buyer t ∈ X arrives first, then she chooses two items from NGπ(X)− s2 that
form a feasible set, since the only pair that might not be feasible for her is {s1, s2} by
Claim 5.2.

Case 3. |NGπ(T ′)| = 2|T ′| for some ∅ 6= T ′ ( T .
We claim that there exists a set T ′ satisfying the assumption if and only if Gπ is

not connected. Indeed, if Gπ is not connected, then necessarily the number of items
is exactly twice the number of buyers in every component as the graph is supposed
to have a (1, 2)-factor. To see the other direction, let S ′ := NGπ(T ′), T ′′ := T − T ′,
S ′′ := S − S ′, and consider the subgraphs G′ := Gπ[T ′ ∪ S ′] and G′′ := Gπ[T ′′ ∪ S ′′].
As every tight edge is legal and all the vertices in S ′ are matched to vertices in T ′ in
any optimum b-matching, Gπ contains no edges between T ′′ and S ′. Therefore Gπ is
not connected, and it is the union of G′ and G′′. By induction, there exist adequate
orderings σ′ and σ′′ of S ′ and S ′′, respectively. Then the ordering σ := (σ′, σ′′) is
adequate with respect to π.
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Algorithm 1 Determining an adequate ordering for bi-demand markets with prop-
erty (OPT).

Input: Graph Gπ of tight edges, upper bounds b(t) = 2 for t ∈ T and b(s) = 1 for
s ∈ S.
Output: Adequate ordering σ of the items.

1: if |NGπ(Y )| ≥ 2|Y |+ 2 for every ∅ 6= Y ( T then
2: Let σ be an arbitrary ordering of S.
3: else if |NGπ(Y )| ≥ 2|Y |+ 1 for every ∅ 6= Y ( T , and there exists Y for which equality

holds then
4: Determine an inclusionwise maximal dangerous set Z.
5: if there exists no dangerous set disjoint from Z then
6: Take an item s0 ∈ NGπ(Z) that has a neighbor t0 ∈ T − Z.
7: Let σ′ be an arbitrary ordering of S −NGπ(Z).
8: Determine an adequate ordering σ′′ for G′′ := Gπ[Z ∪ (NGπ(Z)− s0)].
9: Let σ′′′ be the trivial ordering of the single item s0.

10: Set σ := (σ′, σ′′, σ′′′).
11: else
12: Determine an inclusionwise minimal dangerous set X disjoint from Z.
13: if {s1, s2} is feasible for any t ∈ X and s1, s2 ∈ NGπ(t) then
14: Take an item s0 ∈ NGπ(X) that has a neighbor t0 ∈ T −X.
15: Determine an adequate ordering σ′ for G′ := Gπ − (X ∪ (NGπ(X)− s0)).
16: Let σ′′ be an arbitrary ordering of NGπ(X)− s0.
17: Set σ := (σ′, σ′′).
18: else (Observation: X ∪ Z = T and NGπ(X) ∩NGπ(Z) = {s1, s2}.)
19: Determine an adequate ordering σ′ for G′ := Gπ − (X ∪ (NGπ(X)− s1)).
20: Let σ′′ be an arbitrary ordering of the items in G′′ := Gπ−(Z∪(NGπ(Z)−s1)).
21: Let σ′′′ be the trivial ordering of the single item s2.
22: Set σ := (σ′, σ′′|NGπ (X)−s1 , σ

′′′).

23: else (Observation: the graph Gπ is not connected.)
24: Let ∅ 6= T ′ ( T be a set with |NGπ(T ′)| = 2|T ′|.
25: Determine an adequate ordering σ′ for G′ := Gπ[T ′ ∪NGπ(T ′)].
26: Determine an adequate ordering σ′′ for in G′′ := Gπ − (T ′ ∪NGπ(T ′)).
27: Set σ := (σ′, σ′′).

28: return σ

By Lemma 3.5, π can be determined in polynomial time, hence the graph of tight
edges is available. The algorithm for determining an adequate ordering for Gπ is
presented as Algorithm 1. To see that all steps can be performed in polynomial time,
it suffices to show how to decide whether a pair {s1, s2} of items forms a feasible set
for a buyer t, and how to find an inclusionwise maximal or minimal dangerous set, if
exists, efficiently. Checking the feasibility of {s1, s2} for t reduces to finding a (1, 2)-
factor in Gπ − {s1, s2, t}. Dangerous sets can be found as follows: take two copies
of each vertex t ∈ T , and connecting them to the vertices in NGπ(t). Furthermore,
add a dummy vertex w0 to the graph and connect it to every vertex in S. Let
G′ = (S ′, T ′;E ′) denote the graph thus obtained. For a set Y ⊆ T , let Y ′ ⊆ T ′ consist
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of the copies of the vertices in Y plus the vertex w0. It is not difficult to check that
Y ⊆ T is an inclusionwise minimal or maximal dangerous set of Gπ if and only if Y ′ is
an inclusionwise minimal or maximal subset of T ′ with |NG′(Y ′)| = |Y ′|. Hence Y can
be determined, for example, by relying on Kőnig’s alternating path algorithm [20].
When an inclusionwise minimal dangerous set X is needed that is disjoint from Z,
then the same approach can be applied for the graph Gπ − Z.

Remark 5.3. Theorem 1.3 settles the existence of optimal dynamic prices when the
demand of each buyer is exactly two. However, the proof can be straightforwardly
extended to the case when the demand of each buyer is at most two.

6 Conclusions and open problems

Dynamic pricing schemes were introduced as an alternative to posted-price mech-
anisms that is capable of maximizing social welfare without the need for a central
coordinator. This paper focuses on the existence of optimal dynamic prices for multi-
demand valuations. By relying on structural properties of an optimal dual solution,
we gave polynomial-time algorithms for determining such prices in unit-demand mar-
kets and in multi-demand markets up to three buyers under a technical assumption,
thus giving new interpretations of results of Cohen-Addad et al. and Berger et al. We
also proved that any bi-demand market satisfying the same technical assumption has
a dynamic pricing scheme that achieves optimal social welfare. It remains an inter-
esting open question whether an analogous approach works when the total demand of
the buyers exceeds the number of available items. Another open problem is to decide
the existence of optimal dynamic prices in multi-demand markets in general.
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