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Market Pricing for Matroid Rank Valuations

Kristóf Bérczi?, Naonori Kakimura??, and Yusuke Kobayashi? ? ?

Abstract

In this paper, we study the problem of maximizing social welfare in combi-
natorial markets through pricing schemes. We consider the existence of prices
that are capable to achieve optimal social welfare without a central tie-breaking
coordinator. In the case of two buyers with matroid rank valuations, we give
polynomial-time algorithms that always find such prices when one of the ma-
troids is a partition matroid or both matroids are strongly base orderable. This
result partially answers a question raised by Dütting and Végh in 2017. We fur-
ther formalize a weighted variant of the conjecture of Dütting and Végh, and
show that the weighted variant can be reduced to the unweighted one based on
the weight-splitting theorem for weighted matroid intersection by Frank. We
also show that a similar reduction technique works for M\-concave functions, or
equivalently, for gross substitutes functions.

1 Introduction

In this paper, we study the problem of maximizing social welfare in combinatorial
markets through pricing schemes. Let us consider a combinatorial market consisting
of indivisible goods and buyers, where each buyer has a valuation function that de-
scribes the buyer’s preferences over the subsets of items. The goal is to allocate the
items to buyers in such a way that the social welfare, that is, the total sum of the buy-
ers’ values, is maximized. Such an allocation can be found efficiently under reasonable
assumptions on the valuations [31]. As an application of the Vickrey–Clarke–Groves
(VCG) mechanism [6, 21, 36] for welfare maximization, the VCG auction is another
illustrious example. However, the problem becomes much more intricate if the opti-
mal welfare ought to be achieved using simpler mechanisms employed in real world
markets, such as pricing.

In a pricing scheme, the seller sets the item prices, and the utility of a buyer for a
given bundle of items is defined as the value of the bundle with respect to the buyer’s
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valuation, minus the total price of the items in the bundle. Ideally, the prices are set
in such a way that there exists an allocation of the items to buyers in which the market
clears and everyone receives a bundle that maximizes her utility. A pair of pricing
and allocation possessing these properties is called a Walrasian equilibrium1, while we
will refer to the price vector itself as Walrasian pricing. The fundamental notion of
Walrasian equilibrium first appeared in [37], and the definition immediately implies
that the allocation in a Walrasian equilibrium maximizes social welfare. Therefore,
the problem might seem to be settled for markets that admit such an equilibrium.

Cohen-Addad et al. [7] observed that Walrasian prices alone are not sufficient to
coordinate the market. The reason is that ties among different bundles have to be
broken up carefully by a central coordinator, in a manner consistent with the cor-
responding optimal allocation. However, in real markets, buyers walk into the shop
in an arbitrary sequential order and choose an arbitrary best bundle for themselves
without caring about social optimum. In their paper, it is shown that the absence
of a tie-braking rule may result in an arbitrarily bad allocation. In particular, no
static prices can give more than 2/3 of the social welfare when three buyers with
unit-demand valuations arrive sequentially.

To overcome these difficulties, Cohen-Addad et al. [7] introduced the notion of
dynamic pricing schemes. In this setting, the seller is allowed to dynamically update
the prices between buyer arrivals. Achieving optimal social welfare based on dynamic
pricing would be clearly possible if the order in which buyers arrive was known in
advance. Nevertheless, determining an optimal dynamic pricing scheme is highly
non-trivial when the prices need to be set before getting access to the preferences of
the next buyer.

The main open problem in [7] asked whether any market with gross substitutes
valuations has a dynamic pricing scheme that achieves optimal social welfare. A
market with gross substitutes valuations is known to be an important class of markets
having Walrasian prices [24]. It is worth noting that the existence of an optimal scheme
reduces to the existence of an appropriate initial price vector; an optimal allocation
then can be determined by induction. For a formal definition, we refer the reader
to [1].

As a starting step towards understanding the general case, we consider the exis-
tence of a static pricing scheme for a two-buyer market with matroid rank valuations,
because a matroid rank function is a fundamental example of gross substitutes val-
uations. Here, a matroid with a ground set S and a base family B is denoted by
M = (S,B) and we denote p(X) :=

∑
s∈X p(s) for p : S → R and X ⊆ S.

Conjecture 1.1. Let M1 = (S,B1) and M2 = (S,B2) be matroids with rank functions
r1 and r2, respectively. Then, there exists a function p : S → R (called a price vector)
satisfying the following conditions.

1. For B1 ∈ arg maxX⊆S(r1(X) − p(X)) and B2 ∈ arg maxY⊆S\B1
(r2(Y ) − p(Y )),

we have r1(B1) + r2(B2) = max{r1(X) + r2(Y ) | X, Y ⊆ S, X ∩ Y = ∅}.
1Walrasian equilibrium is often called competitive pricing, or market equilibrium in the literature.
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2. For B2 ∈ arg maxY⊆S(r2(Y ) − p(Y )) and B1 ∈ arg maxX⊆S\B2
(r1(X) − p(X)),

we have r1(B1) + r2(B2) = max{r1(X) + r2(Y ) | X, Y ⊆ S, X ∩ Y = ∅}.

This conjecture can be interpreted as follows. There are two buyers and each buyer
i ∈ {1, 2} has a valuation function ri. If buyer i comes to a shop first, then she chooses
an arbitrary bundle Bi that maximizes her utility ri−p, and the second buyer chooses
a best bundle in S \ Bi. The requirements mean that any choice of Bi results in an
allocation maximizing the social welfare. Thus, whoever comes first, we can achieve
the optimal social welfare.

As we will see in Lemma 2.6, Conjecture 1.1 can be reduced to the following con-
jecture.

Conjecture 1.2. Let M1 = (S,B1) and M2 = (S,B2) be matroids with a common
ground set S such that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2 with B1∪B2 = S.
Then, there exists a function p : S → R (called a price vector) satisfying the following
conditions.

1. For B1 ∈ arg minX∈B1 p(X), we have S \B1 ∈ B2.

2. For B2 ∈ arg minX∈B2 p(X), we have S \B2 ∈ B1.

In the conjecture, there are two buyers and each buyer i ∈ {1, 2} wants to buy a
set of items that forms a basis in Bi. If buyer i comes to a shop first, then she chooses
a cheapest set Bi in Bi with an arbitrary tie-breaking rule. The requirements mean
that, regardless of the choice of Bi, the remaining set S \ Bi is a desired set for the
other buyer.

Note that Conjecture 1.2 was first suggested by Dütting and Végh [11]. In their
original conjecture, the price vector p is chosen to have all different values, that
is, p(s1) 6= p(s2) for s1 6= s2, which implies that Bi ∈ arg minX∈Bi p(X) is unique for
i = 1, 2. However, this difference is not essential, because we can apply a perturbation
to p without affecting the requirements in Conjecture 1.2.

Previous work The notion of Walrasian equilibrium dates back to 1874 [37], origi-
nally defined for divisible goods. In their analysis of the matching problem, Kelso and
Crawford [24] introduced the so-called gross substitutes condition, and showed the
existence of Walrasian prices for gross substitutes valuations. Gul and Stacchetti [22]
later verified that, in a sense, this condition is necessary to ensure the existence of a
Walrasian equilibrium.2

It was first observed by Cohen-Addad et al. [7] and Hsu et al. [23] that Walrasian
prices are not sufficient to control the market, as ties must be broken in a coordinated
fashion that is consistent with maximizing social welfare. A natural idea for resolving
this issue would be trying to find Walrasian prices where ties do not occur. How-
ever, Hsu et al. showed that minimal Walrasian prices always induce ties. Even more,

2The simplest example of gross substitutes valuations are unit demand preferences, when each
agent can enjoy at most one item. Gul and Stacchetti showed that gross substitutes preferences form
the largest set containing unit demand preferences for which an existence theorem can be obtained.
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Section 1. Introduction 4

Cohen-Addad et al. proved that no static prices can give more than 2/3 of the so-
cial welfare when three buyers with unit-demand valuations arrive sequentially. As a
workaround, they proposed a dynamic pricing scheme for matching markets (i.e., unit-
demand valuations), where the prices are updated between buyer-arrivals based upon
the current inventory without knowing the identity of the next buyer. On the nega-
tive side, they presented a market with coverage valuations where Walrasian prices do
exist, but no dynamic pricing scheme can achieve the optimal social welfare. Mean-
while, Hsu et al. showed that, under certain conditions, minimal Walrasian equilibrium
prices induce low over-demand and high welfare. Recently, Berger et al. [1] considered
markets beyond unit-demand valuations, and gave a characterization of all optimal
allocations in multi-demand markets. Based on this, they provided a polynomial-time
algorithm for finding optimal dynamic prices up to three multi-demand buyers.

To overcome the limitations of Walrasian equilibrium, Feldman et al. [16] proposed a
relaxation called combinatorial Walrasian equilibrium in which the seller can partition
the items into indivisible bundles prior to sale, and they provided an algorithm that
determines bundle prices obtaining at least half of the optimal social welfare.

Another line of research concentrated on posted-price mechanisms in online set-
tings. As alternatives to optimal auctions, Blumrosen and Holenstein [2] studied
posted-price mechanisms and dynamic auctions in Bayesian settings under the ob-
jective of maximizing revenue. They gave a characterization of the optimal revenue
for general distributions, and provided algorithms that achieve the optimal solution.
Chawla et al. [3,4] developed a theory of sequential posted-price mechanisms, and pro-
vided constant-factor approximation algorithms for several multi-dimensional multi-
unit auction problems and generalizations to matroid feasibility constraints. In [15],
Feldman et el. verified the existence of prices that, in expectation, achieve at least
half of the optimal social welfare for fractionally subadditive valuations, a class that
includes all submodular functions. Dütting et al. [9, 10] provided a general frame-
work for posted-price mechanisms in Bayesian settings. Chawla et al. [5] showed
that static, anonymous bundle pricing mechanisms are useful when buyers’ prefer-
ences have complementarities. Ezra et al. [14] provided upper and lower bounds on
the largest fraction of the optimal social welfare that can be guaranteed with static
prices for several classes of valuations, such as submodular, XOS, or subadditive. A
setting related to online bipartite matching, called the Max-Min Greedy matching,
was considered in [12].

Our results In the present paper, we concentrate on combinatorial markets with
two buyers having matroid rank valuations, where the matroid corresponding to buyer
i is denoted byMi = (S,Bi) for i = 1, 2. Since this setting is reduced to Conjecture 1.2,
in which each buyer has to buy a set of items that forms a basis of a matroid, we
focus on Conjecture 1.2.

While Conjecture 1.2 remains open in general, we give polynomial-time3 algorithms

3In matroid algorithms, it is usually assumed that the matroids are accessed through independence
oracles, and the complexity of an algorithm is measured by the number of oracle calls and other
conventional elementary steps.
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for two important special cases. In the first one, one of the matroids is a partition
matorid. Although partition matroids have relatively simple structure, finding the
proper price vector p is non-trivial even in this seemingly simple case.

Theorem 1.3. If M1 is a partition matroid and M2 is an arbitrary matroid, then
Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be
computed in polynomial time.

Next we consider strongly base orderable matroids, a class of matroids with dis-
tinctive structural properties. Roughly, in a strongly base orderable matroid, for any
pair of bases, there exists a bijection between them satisfying a certain property (see
Section 2 for the formal definition). Note that various matroids appearing in com-
binatorial and graph optimization problems belong to this class, such as partition,
laminar, transversal matroids, or more generally, gammoids.

Theorem 1.4. If both M1 and M2 are strongly base orderable, then Conjectures 1.1
and 1.2 hold. Furthermore, a price vector p satisfying the conditions can be computed
in polynomial time if, for any pair of bases, the bijection between them can be computed
in polynomial time.

As an application of Theorem 1.4, we deduce a result to bipartite matchings that
might be of independent interest. For a vertex v in a graph, let δ(v) denote the set of
all the edges incident to v.

Corollary 1.5. For a bipartite graph G = (U, V ;E) containing a perfect matching,
there exists a weight function w : E → R satisfying the following conditions.

1. For each u ∈ U , let eu be a lightest edge in δ(u) with respect to w. Then,
{eu | u ∈ U} is a perfect matching in G.

2. For each v ∈ V , let ev be a heaviest edge in δ(v) with respect to w. Then,
{ev | v ∈ V } is a perfect matching in G.

Another contribution of this paper is to show the equivalence between Conjec-
ture 1.2 and its weighted counterpart as below.

Conjecture 1.6. For i ∈ {1, 2}, let Mi = (S,Bi) be a matroid and wi : S → R
be a weight function. Assume that there exist disjoint bases B1 ∈ B1 and B2 ∈ B2
with B1 ∪ B2 = S. Then, there exists a function p : S → R satisfying the following
conditions.

1. For B1 ∈ arg maxX∈B1(w1(X) − p(X)), we have that B1 is a maximizer of
w1(X) + w2(S \X) subject to X ∈ B1 and S \X ∈ B2.

2. For B2 ∈ arg maxX∈B2(w2(X) − p(X)), we have that B2 is a maximizer of
w1(S \X) + w2(X) subject to S \X ∈ B1 and X ∈ B2.

Clearly, Conjecture 1.2 is a special case of Conjecture 1.6; this follows easily by
setting w1 ≡ w2 ≡ 0. Somewhat surprisingly, the reverse implication also holds for
arbitrary matroids.
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Theorem 1.7. If Conjecture 1.2 is true, then Conjecture 1.6 is also true.

More generally, we prove that Theorem 1.7 can be generalized to the case with
gross substitutes valuations, i.e., M\-concave functions. See Theorem 6.3 in Section 6
for the details.

Based on Theorem 1.7 and the properties of partition and strongly base orderable
matroids, we have the following corollaries.

Corollary 1.8. If M1 is a partition matroid and M2 is an arbitrary matroid, then
Conjecture 1.6 holds, and a price vector p satisfying the conditions can be computed
in polynomial time.

Corollary 1.9. If both M1 and M2 are strongly base orderable, then Conjecture 1.6
holds. Furthermore, a price vector p satisfying the conditions can be computed in
polynomial time if, for any pair of bases, the bijection between them can be computed
in polynomial time.

Paper organization The rest of the paper is organized as follows. Basic definitions
and notation are given in Section 2. Theorems 1.3 and 1.4 are proved in Sections 3
and 4, respectively. The connection between unweighted and weighted variants of
the problem is discussed in Section 5. The reduction technique is extended to gross
substitutes valuations in Section 6. We conclude the paper in Section 7.

2 Preliminaries

Basic notation The sets of reals, non-negative reals, integers, and non-negative
integers are denoted by R, R+, Z, and Z+, respectively. Let S be a finite set. Given
a subset B ⊆ S and elements x, y ∈ S, we write B − x + y for short to denote the
set (B \ {x}) ∪ {y}. The symmetric difference of two sets X and Y is X4Y :=
(X \ Y ) ∪ (Y \X). For a function f : S → R, we use f(X) :=

∑
x∈X f(x). For two

vectors x, y ∈ RS, we denote x · y :=
∑

s∈S x(s)y(s).

Matroids and matroid intersection Matroids were introduced as an abstract
generalization of linear independence in vector spaces [32,38]. A matroid M is a pair
(S, I) where S is the ground set of the matroid and I ⊆ 2S is the family of independent
sets satisfying the independence axioms : (I1) ∅ ∈ I, (I2) X ⊆ Y ∈ I ⇒ X ∈ I, and
(I3) X, Y ∈ I, |X| < |Y | ⇒ ∃e ∈ Y \ X s.t. X + e ∈ I. A loop is an element
that is non-independent on its own. The rank of a set X ⊆ S is the maximum size
of an independent set contained in X, and is denoted by r(X). Here r is called the
rank function of M . Maximal independent sets of M are called bases and their set is
denoted by B. Alternatively, matroids can be defined through the basis axioms : (B1)
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Section 2. Preliminaries 7

B 6= ∅, and (B2) B1, B2 ∈ B, x ∈ B1 \ B2 ⇒ ∃y ∈ B2 \ B1 s.t. B1 − x + y ∈ B. In
this paper, a matroid is denoted by a pair (S,B), where S is a ground set and B is a
family of bases.

For a matroid M = (S,B) and for T ⊆ S, deleting T gives a matroid M ′ on the
ground set S \ T such that a subset of S \ T is independent in M ′ if and only if it is
independent in M . For T ⊆ S, contracting T gives a matroid M ′ on the ground set
S \ T whose rank function is r′(X) = r(X ∪ T )− r(T ), where r is the rank function
of M . Adding a parallel copy of an element s ∈ S gives a new matroid M ′ = (S ′,B′)
on ground set S ′ = S + s′ where B′ = {X ⊆ S ′ : either X ∈ B, or s /∈ X, s′ ∈
X and X − s′ + s ∈ B}. The direct sum M1 ⊕M2 of matroids M1 = (S1,B1) and
M2 = (S2,B2) on disjoint ground sets is a matroid M = (S1 ∪ S2,B) whose bases are
the disjoint unions of a basis M1 and a basis of M2. The sum or union M1 + M2

of M1 = (S,B1) and M2 = (S,B2) on the same ground set is a matroid M = (S,B)
whose independent sets are the disjoint unions of an independent set of M1 and an
independent set of M2.

For a basis B ∈ B, let us consider the bipartite graph G = (S,E[B]) defined by
E[B] := {(x, y) | x ∈ B, y ∈ S \B, B − x+ y ∈ B}. Krogdahl [25,26,27] verified the
following statement (see also [34, Theorem 39.13]).

Theorem 2.1 (Krogdahl). Let M = (S,B) be a matroid and let B ∈ B. Let B′ ⊆ S
be such that |B| = |B′| and E[B] contains a unique perfect matching on B4B′. Then
B′ ∈ B.

In the weighted matroid intersection problem, we are given two matroids M1 =
(S,B1) and M2 = (S,B2) on the same ground set together with a weight function
w : S → R, and the goal is to find a common basis maximizing w(B), that is,
B ∈ arg max{w(B) | B ∈ B1 ∩ B2}. The celebrated weight-splitting theorem of
Frank [17] gives a min-max relation for the weighted matroid intersection.

Theorem 2.2 (Frank). The maximum w-weight of a common basis of M1 = (S,B1)
and M2 = (S,B2) is equal to the minimum of max{w1(B) | B ∈ B1} + max{w2(B) |
B ∈ B2} subject to w = w1 + w2. In particular, for an optimal weight-splitting
w = w1 + w2, it holds that arg max{w(B) | B ∈ B1 ∩ B2} = arg max{w1(B) | B ∈
B1} ∩ arg max{w2(B) | B ∈ B2}.

A k-uniform matroid is a matroid M = (S,B) where B = {X ⊆ S | |X| = k} for
some k ∈ Z+. A partition matroid M = (S,B) is the direct sum of uniform matroids,
or in other words, B = {X ⊆ S | |X ∩ Si| = ki for i = 1, . . . , q} for some partition
S = S1 ∪ · · · ∪Sq of S and ki ∈ Z+ for i = 1, . . . , q. Each Si is called a partition class.

For further details on matroids and the matroid intersection problem, we refer the
reader to [33,34].

Dual matroids The dual of a matroid M = (S,B) is the matroid M∗ = (S,B∗)
where B∗ = {B∗ ⊆ S | S \ B∗ ∈ B}. Given one of the standard oracles for M , the
same oracle for M∗ can be constructed as well.
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We now rephrase Conjecture 1.2 by using dual matroids. Suppose that M1 and M2

are matroids as in Conjecture 1.2 and let M∗
2 = (S,B∗2) be the dual matroid of M2.

Then, we can see that S\B1 ∈ B2 is equivalent to B1 ∈ B∗2, and B2 ∈ arg minX∈B2 p(X)
is equivalent to S \ B2 ∈ arg maxX∈B∗2 p(X). Therefore, by replacing M2 and S \ B2

with M∗
2 and B2, respectively, Conjecture 1.2 is equivalent to the following conjecture.

Conjecture 2.3. Let M1 = (S,B1) and M2 = (S,B2) be matroids with a common
ground set S such that there exists a common basis B ∈ B1 ∩ B2. Then, there exists
a function p : S → R satisfying the following conditions.

1. For B1 ∈ arg minX∈B1 p(X), we have B1 ∈ B2.

2. For B2 ∈ arg maxX∈B2 p(X), we have B2 ∈ B1.

The motivation of the proposed problems is multifold. Conjecture 2.3 bears a lot
of similarities with the problem of packing common bases in the intersection of two
matroids. If M1 and M2 share two disjoint common bases, then setting the prices low
on one of them and high on the other gives a desired p.

When applied to w ≡ 0, the weight-splitting theorem of Frank (Theorem 2.2) asserts
the existence of prices p such that the set of common bases equals the intersection of
the minimum-cost bases in M1 and the maximum-cost bases in M2, with respect to
p; this trivially holds already for p = 0. Conjecture 2.3 asserts that one can choose
weights p with the stronger property that the minimum-cost bases in M1 are all in
M2, and the maximum-cost bases in M2 are all in M1.

Another motivation comes from polyhedral aspects of matroids. When the base
polyhedra of two matroids intersect in a common face, one can select an appropriate
price vector p as a separating direction. The conjecture asserts a strong separation
property for the general setting.

Strongly base orderable matroids A matroid M = (S,B) is strongly base order-
able if for any two bases B1, B2 ∈ B, there exists a bijection f : B1 → B2 such that
(B1 \ X) ∪ f(X) ∈ B for any X ⊆ B1, where we denote f(X) := {f(e) | e ∈ X}.
Davies and McDiarmid [8] observed the following (see also [34, Theorem 42.13]).

Theorem 2.4 (Davies and McDiarmid). Let M1 = (S,B1) and M2 = (S,B2) be
strongly base orderable matroids. If X ⊆ S can be partitioned into k bases in both
M1 and M2, then X can be partitioned into k common bases. Furthermore, such k
common bases can be computed in polynomial time if the bijection f can be computed
in polynomial time for any pair of bases.

The following technical lemma about strongly base orderable matroids will be used
in the proof of Corollary 1.9.

Lemma 2.5. Let M = (S,B) be a strongly base orderable matroid, q : S → R be
a function, and define a matroid M̂ = (S, B̂) by B̂ = arg maxX∈B q(X). Then M̂ is
strongly base orderable.

EGRES Technical Report No. 2021-07
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Proof. Let B1, B2 ∈ B̂. Since both B1 and B2 are bases of M = (S,B), there exists
a bijection f : B1 → B2 such that (B1 \ X) ∪ f(X) ∈ B for any X ⊆ B1. Since
q(B1) ≥ q((B1\X)∪f(X)) for any X ⊆ B1 by B1 ∈ B̂, it holds that q(X) ≥ q(f(X)).
In particular, q(x) ≥ q(f(x)) for any x ∈ B1. Since B2 ∈ B̂, we obtain q(B1) =
q(B2) = q(f(B1)), which shows that q(x) = q(f(x)) for any x ∈ B1. Therefore,
q(B1) = q((B1 \X) ∪ f(X)) for any X ⊆ B1, and hence (B1 \X) ∪ f(X) ∈ B̂. This
shows that M̂ is strongly base orderable.

Market model In a combinatorial market, we are given a set S of indivisible items
and a set J of buyers. Each buyer i ∈ J has a valuation function vi : 2S → R that
describes the buyer’s preferences over the subsets of items. Given prices p : S → R,
the utility of buyer i ∈ J for a subset X ⊆ S is defined by ui(X) = vi(X) − p(X).
The buyers arrive in an undetermined order, and the next buyer always picks a subset
of items that maximizes her utility. The goal is to set the prices in such a way that
no matter which buyer arrives next, the final allocation of items maximizes the social
welfare. In a dynamic pricing scheme, the prices can be updated between buyer
arrivals based on the remaining sets of items and buyers.

We focus on the case of two buyers with matroid rank functions as valuations.
Let M1 = (S,B1) and M2 = (S,B2) be matroids with rank functions r1 and r2,
respectively. The valuation of agent i is ri for i = 1, 2. The valuations are accessed
through one of the standard matroid oracles (e.g. independence or rank oracle). As
described in the introduction, this setting can be reduced to the case in which each
buyer always chooses a basis that maximizes her utility, that is, Conjecture 1.1 can
be reduced to Conjecture 1.2.

Lemma 2.6. If Conjecture 1.2 is true, then Conjecture 1.1 is also true.

Proof. Let M1 = (S,B1) and M2 = (S,B2) be matroids as in Conjecture 1.1 and let
B̂1 ∈ B1 and B̂2 ∈ B2 be a pair of bases that maximizes |B̂1 ∪ B̂2|. For i ∈ {1, 2},
let M ′

i be the matroid obtained from Mi by deleting S \ (B̂1 ∪ B̂2) and contracting
B̂1∩ B̂2. Then, M ′

1 = (S ′,B′1) and M ′
2 = (S ′,B′2) are matroids with a common ground

set S ′ := (B̂1 ∪ B̂2) \ (B̂1 ∩ B̂2) such that there exist disjoint bases B̂1 \ B̂2 ∈ B′1 and
B̂2 \ B̂1 ∈ B′2 whose union is S ′. Hence, by assuming that Conjecture 1.2 is true, there
exists a price vector p′ : S ′ → R with the following conditions.

1. For B′1 ∈ arg minX∈B′1 p
′(X), we have S ′ \B′1 ∈ B′2.

2. For B′2 ∈ arg minX∈B′2 p
′(X), we have S ′ \B′2 ∈ B′1.

We observe that we can modify the price vector p′ so that 0 < p′(s) < 1 for every
s ∈ S ′, by replacing p′(s) with α · p′(s) + β for some α > 0 and β ∈ R. By using such
a function p′, define p : S → R by

p(s) =


p′(s) if s ∈ S ′,
0 if s ∈ B̂1 ∩ B̂2,

1 if s ∈ S \ (B̂1 ∪ B̂2).
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For B1 ∈ arg maxX⊆S(r1(X)−p(X)), the definition of p shows that B1 = B′1∪(B̂1∩B̂2)
for some B′1 ∈ arg minX∈B′1 p

′(X). Since this implies S ′ \B′1 ∈ B′2, it holds that S ′ \B′1
is a maximal independent set of M2 in S\B1 by the maximality of |B̂1∪B̂2|. Therefore,
if B2 ∈ arg maxY⊆S\B1

(r2(Y )− p(Y )), then B2 = S ′ \B′1 and hence

r1(B1) + r2(B2) = |B′1|+ |B̂1 ∩ B̂2|+ |S ′ \B′1| = |B̂1 ∪ B̂2|
= max{r1(X) + r2(Y ) | X, Y ⊆ S, X ∩ Y = ∅},

which shows the first requirement of Conjecture 1.1. The same argument works for
B2 ∈ arg maxX⊆S(r2(X) − p(X)). Therefore, p satisfies the requirements in Conjec-
ture 1.1.

Note that a pair of bases B̂1 ∈ B1 and B̂2 ∈ B2 maximizing |B̂1 ∪ B̂2| can be
computed in polynomial time by applying a matroid intersection algorithm to M1 and
M∗

2 . Note also that the price vector p obtained in the above proof is not necessarily
a Walrasian price.

We also consider a weighted variant of the problem, formally defined as Conjec-
ture 1.6, where each buyer chooses a basis that maximizes her utility, and the goal is to
find a price vector p that achieves the optimal social welfare max{w1(X)+w2(S \X) |
X ∈ B1, S \ X ∈ B2}. Recently, Berger et al. [1] investigated the existence of op-
timal dynamic pricing schemes for k-demand valuations. A valuation v : 2S → R+

is k-demand if v(X) = max{
∑

s∈Z v(s) | Z ⊆ X, |Z| ≤ k}. Although this problem
is similar to our weighted variant for k-uniform matroids, our results do not directly
generalize their work because choosing a basis is a hard constraint in our setting.

3 Partition matroids

The aim of this section is to prove the existence of a required price vector p for
instances where M1 is a partition matroid. Our proof constructs a directed graph
based on exchangeability of items, which was also used in [7] for markets with unique
optimal allocations.

Theorem 3.1. If M1 is a partition matroid and M2 is an arbitrary matroid, then
Conjectures 1.1 and 1.2 hold, and a price vector p satisfying the conditions can be
computed in polynomial time.

Proof. Since Conjectures 1.2 and 2.3 are equivalent by replacing M2 with its dual M∗
2 ,

we show Conjecture 2.3. Let M1 = (S,B1) be a partition matroid defined by partition
S = S1 ∪ · · · ∪ Sq and upper bounds ki ∈ Z+ for i = 1, . . . , q so that |Si| ≥ ki, that
is, B1 = {X ⊆ S | |X ∩ Si| = ki for i = 1, . . . , q}. Let M2 = (S,B2) be an arbitrary
matroid such that M1 and M2 have a common basis.

Let B1 ∈ B1 ∩ B2 be an arbitrary common basis. Take another common basis
B2 ∈ B1 ∩ B2 (possibly B2 = B1) such that |B1 ∩ B2| is minimized. We consider a
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bipartite digraph D = (V,E) defined by

V = (B1 ∩B2) ∪ (S \ (B1 ∪B2)),

E = {(x, y) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), B1 − x+ y ∈ B1}(1)

∪ {(y, x) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), B2 − x+ y ∈ B2}.

Claim 3.2. The digraph D is acyclic.

Proof. Let x ∈ B1 ∩ B2 and y ∈ S \ (B1 ∪ B2). As M1 is a partition matroid,
B1 − x + y ∈ B1 implies that x and y are contained in the same partition class.
Therefore B1 − x+ y ∈ B1 if and only if B2 − x+ y ∈ B1.

Now suppose to the contrary that D contains a dicycle. Choose a dicycle C with
the smallest number of vertices, which implies that C has no chord. We claim that
B′2 := B24V (C) is a common basis of M1 and M2. To see B′2 ∈ B2, observe that the
bipartite graph corresponding to B2 contains a unique perfect matching on V (C) by
the choice of C, hence Theorem 2.1 applies. We also obtain B′2 ∈ B1 by the same
argument, since B1 − x + y ∈ B1 if and only if B2 − x + y ∈ B1 as described above.
Since |B1 ∩B′2| < |B1 ∩B2|, this contradicts that |B1 ∩B2| is minimized.

Let n = |S|. We now consider a function p : S → R satisfying the following: p(x) :=
0 for x ∈ B1\B2, p(x) := n+1 for x ∈ B2\B1, p(x) are distinct values in {1, 2, . . . , n}
for x ∈ V , and p(x) < p(y) for (x, y) ∈ E. Note that such a function exists by
Claim 3.2, which can be found easily by the topological sorting. In what follows, we
show that p satisfies that arg minX∈B1 p(X) = {B1} and arg maxX∈B2 p(X) = {B2}.

Claim 3.3. arg minX∈B1 p(X) = {B1} and arg maxX∈B2 p(X) = {B2}.

Proof. To see that B1 is a minimum weight basis of M1 with respect to p, it suffices
to show that p(x) ≤ p(y) holds for each pair x ∈ B1, y ∈ S \B1 with B1−x+ y ∈ B1;
see e.g. [19, Lemma 13.2.13]. However, this is a direct consequence of the definition
of p. Now suppose that there exists B′1 ∈ arg minX∈B1 p(X) different from B1, and let
x ∈ B1 \B′1. Clearly, 0 < p(x) < n+1, hence x is the unique element with its p-value.
By the symmetric exchange axiom, there exists y ∈ B′1 \B1 such that B1−x+ y ∈ B1
and B′1 + x− y ∈ B1. By both B1 and B′1 being optimal, this implies p(x) = p(y), a
contradiction.

A similar argument shows arg maxX∈B2 p(X) = {B2}.

Since B1, B2 ∈ B1 ∩ B2, this claim shows that p satisfies the requirements in Con-
jecture 2.3. Thus, Conjecture 2.3 holds, and hence Conjecture 1.2 also holds. In
the proof of Lemma 2.6, we modify given matroids by deleting and contracting some
elements, but this modification does not affect the assumption M1 being a partition
matroid. Therefore the above together with Lemma 2.6 shows that Conjecture 1.1
also holds.

Remark 3.4. Note that in the proof of Theorem 1.3, we fixed the basis B1 ∈ B1∩B2
arbitrarily. That is, for any B1 ∈ B1∩B2, the optimal price vector p can be set in such
a way that the maximum utility of the buyer corresponding to M1 is attained on B1.
It is not difficult to see that the analogous statement holds for any basis B2 ∈ B1∩B2
and the buyer corresponding to M2.
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Section 4. Strongly base orderable matroids 12

Remark 3.5. Even when B1 is a base family of a partition matroid as in Theo-
rem 1.3, if B2 is an arbitrary set family of S, then the requirements in Conjec-
ture 1.2 do not necessarily hold. To see this, suppose that S = {1, 2, 3, 4}, B1 =
{{1, 3}, {1, 4}, {2, 3}, {2, 4}}, and B2 = {{2, 4}, {1, 2}, {3, 4}}. Then, (B1, B2) =
({1, 3}, {2, 4}) is a unique pair of disjoint sets such that B1 ∈ B1, B2 ∈ B2, and
B1 ∪ B2 = S. If p satisfies the requirements in Conjecture 1.2, then p(1) < p(2) and
p(3) < p(4) hold by the first requirement and p(4) < p(1) and p(2) < p(3) hold by
the second requirement. This shows that such p does not exist.

4 Strongly base orderable matroids

In this section, we show that Conjectures 1.1 and 1.2 hold for strongly base orderable
matroids. The proof is based on a similar approach to that of Theorem 1.3. In
particular, we take two common bases of the given matroids. Nevertheless, there
are small but crucial differences. A key difference is that we use Theorem 2.4 for the
strongly base orderable case, while we use a property of partition matroids in the proof
of Theorem 1.3. In the following argument, to utilize Theorem 2.4, we add parallel
copies of some elements and sometimes regard the two common bases as disjoint sets.

Theorem 4.1. If both M1 and M2 are strongly base orderable, then Conjectures 1.1
and 1.2 hold. Furthermore, a price vector p satisfying the conditions can be computed
in polynomial time if, for any pair of bases, the bijection between them can be computed
in polynomial time.

Proof. In order to show Conjecture 1.2, we first show Conjecture 2.3 under the as-
sumption that M1 and M2 are strongly base orderable. Let M1 = (S,B1) and
M2 = (S,B2) be strongly base orderable matroids that have a common basis. We
take two common bases B1, B2 ∈ B1 ∩ B2 (possibly B1 = B2) such that |B1 ∩ B2| is
minimized. For each element x ∈ S, we add a parallel copy x′ of x to the matroid
Mi and denote the matroid thus obtained by M+

i = (S ∪ S ′,B+
i ) for i ∈ {1, 2}. We

denote X ′ := {x′ | x ∈ X} for X ⊆ S. Let 2M+
i = (S ∪ S ′, 2B+

i ) be the sum of
two copies of M+

i . As M+
i clearly has two disjoint bases, we have 2B+

i := {Y1 ∪ Y2 |
Y1 and Y2 are disjoint bases of M+

i }.

Claim 4.2. For i ∈ {1, 2}, 2M+
i is a strongly base orderable matroid.

Proof. Fix i ∈ {1, 2}. We can easily see that M+
i is strongly base orderable. Suppose

that we are given two bases X1, X2 ∈ 2B+
i , and suppose also that X1 = Y 1

1 ∪ Y 2
1 and

X2 = Y 1
2 ∪ Y 2

2 , where Y 1
1 , Y

2
1 , Y

1
2 , Y

2
2 ∈ B+

i . Since M+
i is strongly base orderable, for

j ∈ {1, 2}, there exists a bijection fj : Y j
1 → Y j

2 such that (Y j
1 \ X) ∪ fj(X) ∈ B+

i

for any X ⊆ Y j
1 . Then, f1 and f2 naturally define a bijection f : X1 → X2 such

that (X1 \X) ∪ f(X) ∈ 2B+
i for any X ⊆ X1. This shows that 2M+

i is strongly base
orderable.
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Section 4. Strongly base orderable matroids 13

Let X0 := (B1 ∪B2) ∪ (B1 ∩B2)
′. Then, X0 is a common basis of 2M+

1 and 2M+
2 .

We consider a bipartite digraph D+ = (V,E+) defined by

V = (B1 ∩B2) ∪ (S \ (B1 ∪B2)),

E+ = {(x, y) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), X0 − x+ y ∈ 2B+
1 }

∪ {(y, x) | x ∈ B1 ∩B2, y ∈ S \ (B1 ∪B2), X0 − x+ y ∈ 2B+
2 }.

Claim 4.3. The digraph D+ is acyclic.

Proof. Suppose to the contrary that D+ contains a dicycle. Choose a dicycle C with
the smallest number of vertices, which implies that C has no chord. Then, X04V (C)
is a common basis of 2M+

1 and 2M+
2 by Theorem 2.1. By Theorem 2.4 and Claim 4.2,

X04V (C) can be partitioned into two common bases of M+
1 and M+

2 . Let B̃1 and B̃2

be the sets in S corresponding to these common bases. Then, B̃1, B̃2 ∈ B1 ∩ B2 and
|B̃1 ∩ B̃2| < |B1 ∩B2|. This contradicts that |B1 ∩B2| is minimized.

We now consider the digraph D = (V,E) defined by (1). For x ∈ B1 ∩ B2 and
y ∈ S \ (B1 ∪ B2), we observe that B1 − x + y ∈ B1 implies X0 − x + y ∈ 2B+

1 and
B2−x+y ∈ B2 implies X0−x+y ∈ 2B+

2 . This shows that D is a subgraph of D+, and
hence D is acyclic by Claim 4.3. Therefore, we can find a function p : S → R such that
p(x) := 0 for x ∈ B1 \ B2, p(x) := |S|+ 1 for x ∈ B2 \ B1, p(x) are distinct values in
{1, 2, . . . , |S|} for x ∈ V , and p(x) < p(y) for (x, y) ∈ E. Then, Claim 3.3 shows that
arg minX∈B1 p(X) = {B1} and arg maxX∈B2 p(X) = {B2}. Since B1, B2 ∈ B1 ∩ B2, p
satisfies the requirements in Conjecture 2.3. Thus, Conjecture 2.3 holds.

This proof can be converted to a polynomial-time algorithm for computing p as
follows. We first pick up two arbitrary common bases B1, B2 ∈ B1 ∩B2 and construct
a digraph D+ as above. If D+ is acyclic, then we can find an appropriate function
p. Otherwise, the proof of Claim 4.3 shows that we can find B̃1, B̃2 ∈ B1 ∩ B2 with
|B̃1 ∩ B̃2| < |B1 ∩ B2|. Then, we update Bi ← B̃i for i ∈ {1, 2}, construct D+,
and repeat this procedure. Since |B1 ∩B2| decreases monotonically, this procedure is
executed at most |S| times.

Recall that Conjectures 1.2 and 2.3 are equivalent by replacing M2 with M∗
2 . Since

M2 is strongly base orderable if and only if M∗
2 is strongly base orderable, Conjec-

ture 1.2 also holds for strongly base orderable matroids.
This together with Lemma 2.6 shows that Conjecture 1.1 also holds. We note that,

if M1 and M2 are strongly base orderbale matroids, then the matroids M ′
1 and M ′

2

obtained by deletion and contraction in the proof of Lemma 2.6 are also strongly base
orderable.

Finally in this section, we show how Corollary 1.5 follows from Theorem 1.4.

Corollary 1.5. For a bipartite graph G = (U, V ;E) containing a perfect matching,
there exists a weight function w : E → R satisfying the following conditions.

1. For each u ∈ U , let eu be a lightest edge in δ(u) with respect to w. Then,
{eu | u ∈ U} is a perfect matching in G.
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2. For each v ∈ V , let ev be a heaviest edge in δ(v) with respect to w. Then,
{ev | v ∈ V } is a perfect matching in G.

Proof. Let B1 = {F ⊆ E | |F ∩ δ(u)| = 1 for any u ∈ U} and B2 = {F ⊆ E |
|F ∩ δ(v)| = 1 for any v ∈ V }. By definition, (E,B1) and (E,B2) are partition
matroids, and hence they are strongly base orderable matroids. Since Conjecture 2.3
holds for strongly base orderable matroids and B1 ∩B2 is the set of perfect matchings
in G, we obtain the corollary.

5 Reduction from the weighted case to the un-

weighted case

In this section, we show that the weighted problem can be reduced to the unweighted
one, and prove Theorem 1.7.

Theorem 5.1. If Conjecture 1.2 is true, then Conjecture 1.6 is also true.

Proof. Since Conjectures 1.2 and 2.3 are equivalent, it suffices to show that Conjec-
ture 1.6 is true by assuming that Conjecture 2.3 is true.

Suppose that we are given Mi = (S,Bi) and wi : S → R for i ∈ {1, 2} as in
Conjecture 1.6. We first consider the problem of finding a maximum weight common
basis of M1 and M∗

2 with respect to w1−w2, where M∗
2 = (S,B∗2) is the dual matroid

of M2. By Theorem 2.2, there exist two functions q1 : S → R and q2 : S → R with
q1 + q2 = w1 − w2 such that

(2) arg max
X∈B1∩B∗2

(w1(X)− w2(X)) =

(
arg max

X∈B1
q1(X)

)
∩
(

arg max
X∈B∗2

q2(X)

)
.

Define B̂1 = arg maxX∈B1 q1(X) and B̂2 = arg maxX∈B∗2 q2(X). Then, it is known

that M̂i = (S, B̂i) is also a matroid for i ∈ {1, 2} (see [13]). By (2), we obtain

(3) arg max
X∈B1∩B∗2

(w1(X)− w2(X)) = B̂1 ∩ B̂2.

This together with B1 ∩B∗2 6= ∅ shows that B̂1 ∩ B̂2 6= ∅, and hence M̂1 and M̂2 satisfy
the assumptions in Conjecture 2.3. Therefore, by assuming that Conjecture 2.3 is
true, there exists a function p̂ : S → R satisfying the following conditions.

(a) For any B1 ∈ arg minX∈B̂1 p̂(X), it holds that B1 ∈ B̂2.

(b) For any B2 ∈ arg maxX∈B̂2 p̂(X), it holds that B2 ∈ B̂1.

Let δ := min{|qi(X) − qi(Y )| | i ∈ {1, 2}, X, Y ⊆ S, qi(X) 6= qi(Y )} and let ε
be a positive number such that ε · |p̂(X)| < δ/2 for any X ⊆ S. We now show
that p := w1 − q1 + ε · p̂ satisfies the requirements of Conjecture 1.6. Let B1 be a
set in arg maxX∈B1(w1(X) − p(X)) = arg maxX∈B1(q1(X) − ε · p̂(X)). Since −δ/2 <
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ε · p̂(X) < δ/2 for any X ⊆ S, we have that B1 ∈ arg maxX∈B1 q1(X) = B̂1 and

B1 ∈ arg minX∈B̂1 p̂(X). Then (a) shows that B1 ∈ B̂2. Therefore,

B1 ∈ B̂1 ∩ B̂2 = arg max
X∈B1∩B∗2

(w1(X)− w2(X))

= arg max
X∈B1∩B∗2

(w1(X) + w2(S \X))

holds by (3), which means that p satisfies the first requirement in Conjecture 1.6.
Similarly, let B2 be a set in

arg max
X∈B2

(w2(X)− p(X)) = arg max
X∈B2

(−q2(X)− ε · p̂(X))

= arg max
X∈B2

(q2(S \X) + ε · p̂(S \X)).

This shows that S \ B2 ∈ arg maxX∈B∗2 q2(X) = B̂2 and S \ B2 ∈ arg maxX∈B̂2 p̂(X).

Then (b) shows that S \B2 ∈ B̂1. Therefore,

S \B2 ∈ B̂1 ∩ B̂2 = arg max
X∈B1∩B∗2

(w1(X)− w2(X))

= arg max
X∈B1∩B∗2

(w1(X) + w2(S \X))

holds by (3), which means that p satisfies the second requirement in Conjecture 1.6.
Therefore, Conjecture 1.6 is true if Conjecture 2.3 is true.

Remark 5.2. Algorithmically, if we can compute p̂, then we can compute p efficiently
as follows. Since w1 and w2 are rational-valued when they are given as a part of
input, by multiplying by the common denominator, we may assume that w1 and w2

are integral. Then, we can take q1 and q2 so that they are integral [17]. Therefore, we
have that δ ≥ 1, and hence ε := 1/(1 + 2

∑
s∈S |p̂(s)|) satisfies the conditions in the

proof. This shows that we can compute p := w1 − q1 + ε · p̂.

By Theorem 1.7, we obtain Corollaries 1.8 and 1.9 as follows. In the proof of
Theorem 1.7, we consider Conjecture 2.3 for matroids M̂i = (S, B̂i), where B̂1 =
arg maxX∈B1 q1(X) and B̂2 = arg maxX∈B∗2 q2(X). Observe that if M1 is a partition

matroid, then so is M̂1. Furthermore, Lemma 2.5 shows that if Mi is strongly base
orderable, then so is M̂i. Since Theorems 1.3 and 1.4 imply that Conjecture 2.3 also
holds for these cases, we obtain Corollaries 1.8 and 1.9.

6 Gross substitutes valuations

In this section, we show that the reduction technique in Section 5 works also for M\-
concave functions, or equivalently, gross substitutes functions. M\-concave functions
are introduced by Murota and Shioura [30] and play a central role in the theory of
discrete convex analysis. A function f : ZS → R ∪ {−∞} is said to be M\-concave if
it satisfies the following exchange property:
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(M\-EXC) ∀x, y ∈ domf, ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) ∪ {0}:

f(x) + f(y) ≤ f(x− χi + χj) + f(y + χi − χj),

where domf = {x ∈ ZS|f(x) > −∞}, supp+(x) = {i ∈ S | x(i) > 0}, supp−(x) =
{i ∈ S | x(i) < 0} for x ∈ ZS, χi is the characteristic vector of i ∈ S, and χ0 is the
all-zero vector 0. When we consider a function f on {0, 1}S, f can be regarded as a
function on ZS by setting f(x) = −∞ for x ∈ ZS \ {0, 1}S. It is shown by Fujishige
and Yang [20] that a function f on {0, 1}S is M\-concave4 if and only if it is a gross
substitutes function (see also [28, Theorem 6.34]). See survey papers [29,35] for more
details on M\-concave and gross substitutes functions. For a set Q ⊆ ZS, we define
a function fQ on ZS by fQ(x) = 0 if x ∈ Q and fQ(x) = −∞ otherwise. We say
that a set Q ⊆ ZS is M\-convex if fQ is an M\-concave function. It is known that
a set is M\-convex if and only if it is the set of integer points/vectors in an integral
g-polymatroid [18,19]. Let 1 denote the all-one vector in ZS.

We are interested in the existence of a pricing scheme for the two-buyer case with
gross substitutes valuations (or equivalently, M\-concave valuations), which is stated
as follows.

Conjecture 6.1. For i = 1, 2, let vi : {0, 1}S → R∪{−∞} be an M\-concave function.
Then, there exists a vector p ∈ RS satisfying the following conditions.

1. For x1 ∈ arg maxx∈{0,1}S(v1(x) − p · x), we have x1 ∈ arg maxx∈{0,1}S(v1(x) +
v2(1− x)).

2. For x2 ∈ arg maxx∈{0,1}S(v2(x)− p ·x), we have x2 ∈ arg maxx∈{0,1}S(v1(1−x) +
v2(x)).

In Conjecture 6.1, a set in S is represented by its characteristic vector. If buyer
i comes to a shop first, then she chooses an arbitrary set xi maximizing her utility
vi(x) − p · x. Then, the second buyer takes the set of all the remaining items whose
characteristic vector is 1− xi. Conjecture 6.1 asserts that, regardless of the choice of
xi, this mechanism gives an allocation maximizing the social welfare.

As an unweighted version of this conjecture, we consider the following conjecture.

Conjecture 6.2. For i = 1, 2, let Qi ⊆ {0, 1}S be an M\-convex set such that there
exist x1 ∈ Q1 and x2 ∈ Q2 with x1 + x2 = 1. Then, there exists a vector p ∈ RS

satisfying the following conditions.

1. For x1 ∈ arg minx∈Q1
(p · x), we have 1− x1 ∈ Q2.

2. For x2 ∈ arg minx∈Q2
(p · x), we have 1− x2 ∈ Q1.

In Conjecture 6.2, each buyer i has an admissible set Qi instead of a valuation.
More precisely, each buyer i wants to buy a set of items whose characteristic vector

4An M\-concave function f with domf ⊆ {x ∈ {0, 1}S | x(S) = k} for some k ∈ Z+ is called a
valuated matroid in the literature.
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xi belongs to a given M\-convex set Qi. We can easily see that Conjecture 6.2 is a
special case of Conjecture 6.1, in which vi = fQi

for i = 1, 2. We now prove that the
reverse implication also holds, which means that Conjecture 6.1 can be reduced to
the unweighted case.

Theorem 6.3. If Conjecture 6.2 is true, then Conjecture 6.1 is also true.

Proof. Let v∗2 : {0, 1}S → R ∪ {−∞} be the function defined by v∗2(x) = v2(1 − x)
for x ∈ {0, 1}S. Then, v∗2 is also an M\-concave function. Consider the problem
of maximizing v1(x) + v∗2(x) subject to x ∈ {0, 1}S. By the M-convex intersection
theorem (see [28, Theorem 8.17]), there exists a vector q ∈ RS such that

(4) arg max
x∈{0,1}S

(v1(x) + v∗2(x)) =

(
arg max
x∈{0,1}S

(v1(x)− q · x)

)
∩
(

arg max
x∈{0,1}S

(v∗2(x) + q · x)

)
.

Define Q1 = arg maxx∈{0,1}S(v1(x) − q · x), Q∗2 = arg maxx∈{0,1}S(v∗2(x) + q · x), and

Q2 = {1 − x | x ∈ Q∗2}. Then, it is known that Q1 and Q∗2 are M\-convex sets
(see [28, Theorem 6.30(2)]), and so is Q2 (see [28, Theorem 6.13(2)]). By (4), we
obtain arg maxx∈{0,1}S(v1(x) + v∗2(x)) = Q1 ∩ Q∗2. This shows that Q1 ∩ Q∗2 6= ∅, and
hence Q1 and Q2 satisfy the assumptions in Conjecture 6.2. Therefore, by assuming
that Conjecture 6.2 is true, there exists a vector p̂ ∈ RS satisfying the following
conditions.

(a) For any x1 ∈ arg minx∈Q1
(p̂ · x), it holds that 1− x1 ∈ Q2.

(b) For any x2 ∈ arg minx∈Q2
(p̂ · x), it holds that 1− x2 ∈ Q1.

Then, by the same argument as the proof of Theorem 1.7, p := q + ε · p̂ satisfies the
requirements in Conjecture 6.1, where ε is a sufficiently small positive number.

Remark 6.4. In a market model, it is common to assume that each valuation vi is
monotone and vi(∅) = 0. We note that these assumptions are not required in the
proof of Theorem 6.3. In return for this, the obtained price vector p is not necessarily
non-negative.

We note that Conjecture 1.2 is a special case of Conjecture 6.1, as the characteristic
vectors of all the bases of a matroid form an M\-convex set. This relationship supports
the importance of Conjecture 1.2. It is unknown whether the converse implication
holds, i.e., we do not know whether Conjecture 1.2 implies Conjecture 6.1.

7 Conclusion

We considered the existence of prices that are capable of achieving optimal social wel-
fare without a central tie-breaking coordinator. Although such pricing looks similar to
well-known Walrasian pricing, it is less understood even for two-buyer markets with
gross substitute valuations. This paper focuses on two-buyer markets with matroid
rank valuations, and we gave polynomial-time algorithms that always find such prices
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when one of the matroids is a partition matroid or both matroids are strongly base
orderable. This result partially answers a question of Dütting and Végh. However,
deciding the existence of optimal dynamic prices for more than two matroids remains
an interesting open problem. We further formalized a weighted variant of the conjec-
ture of Dütting and Végh, and showed that the weighted variant can be reduced to
the unweighted one based on the weight-splitting theorem of Frank. We also showed
that a similar reduction technique works for M\-concave functions, or equivalently, for
gross substitutes functions.
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