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Globally rigid powers of graphs

Tibor Jordán? and Shin-ichi Tanigawa??

Abstract

The characterization of rigid graphs in Rd for d ≥ 3 is a major open problem
in rigidity theory. The same holds for globally rigid graphs. In this paper our
goal is to give necessary and/or sufficient conditions for the (global) rigidity
of the square G2 (and more generally, the power Gk) of a graph G in Rd, for
some values of k, d. Our work is motivated by some results and conjectures of
M. Cheung and W. Whiteley from 2008, the Molecular Theorem of N. Katoh
and S. Tanigawa from 2011, which settled the case of rigidity for k = 2, d = 3,
and the potential applications in molecular conformation and sensor network
localization.

We first characterize those graphs G for which Gd is globally rigid in Rd,
for all d ≥ 1, and then focus on the case when k = d − 1. We provide a
new, direct proof for the 3-dimensional bar-and-joint version of the Molecular
Theorem (d = 3) and a necessary condition for the rigidity of Gd−1 in Rd, for
all d ≥ 3. We conjecture that this condition is also sufficient.

The global rigidity of square graphs in R3 is still an open problem. We for-
mulate a Molecular Global Rigidity Conjecture, which proposes a combinatorial
characterization of globally rigid square graphs in terms of vertex partitions and
edge count conditions. We prove that the condition is necessary. For the general
case we give a best possible connectivity based sufficient condition by showing
that if G is 3-edge-connected then Gd−1 is globally rigid in Rd, for all d ≥ 3.

Our results imply affirmative answers to the conjectures of M. Cheung and
W. Whiteley in two special cases.

1 Introduction

Informally speaking, a graph G is said to be rigid in Rd if a bar-and-joint framework
(or geometric graph) with underlying graph G has no continuous deformation that
preserves the bar (edge) lengths. It is globally rigid, if such a framework has no defor-
mation at all: the edge lengths determine all pairwise distances. (Precise definitions
will be given in the next section.)
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Section 1. Introduction 2

Figure 1: A graph G, its square G2, and its cube G3.

The characterization of rigid graphs in Rd for d ≥ 3 is a major open problem in
rigidity theory. The same holds for globally rigid graphs. In this paper our goal is to
give necessary and/or sufficient conditions for the (global) rigidity of the square G2

(and more generally, the power Gk) of a graph G in Rd, for some values of k, d.
The k’th power of a graph G is obtained from G by adding a new edge uv for all

non-adjacent vertex pairs u, v of G with distance at most k in G. Thus the square G2

of G is obtained from G by adding a new edge uv for all non-adjacent vertex pairs u, v
of G with a common neighbour. See Figure 1. Squares of graphs (sometimes called
molecular graphs) and powers of graphs are used e.g. in the study of the (global)
rigidity properties of molecules and wireless sensor networks, see e.g. [13, 23, 32].

The investigation of rigid squares of graphs in R3 became a central problem in
rigidity theory when T. Tay and W. Whiteley proposed the Molecular Conjecture in
1984. The solution (Theorem 1.2 below) was obtained in 2011. The study of (globally)
rigid powers of graphs in a more general setting was initiated by M. Cheung and
W. Whiteley [3] in their 2008 paper which included several interesting results and
conjectures. Our work is motivated by these results, conjectures, and the applications
mentioned above.

The following result, and its proof, shows that the required characterization of
rigidity (global rigidity, resp.) is not hard to obtain if the power is large enough
compared to d.

Proposition 1.1 ([3]). Let G be a graph and let d ≥ 1 be an integer. Then
(i) Gd is rigid in Rd if and only if G is connected,
(ii) Gd+1 is globally rigid in Rd if and only if G is connected.

A key conjecture in [3] says that, roughly speaking, one can achieve (global) rigidity
in the next dimension by raising the power.

Conjecture 1 ([3]). Suppose that Gk is rigid (resp. globally rigid) in Rd for some
positive integers k, d. Then Gk+1 is rigid (resp. globally rigid) in Rd+1.

They also posed the following even stronger version.

Conjecture 2 ([3]). Suppose that Gk is rigid in Rd for some d ≥ 2. Then Gk+1 is
globally rigid in Rd+1.
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Section 2. Preliminaries 3

The underlying general question is to give a characterization of the rigidity or the
global rigidity of Gk in Rd in terms of a combinatorial property of G. In this paper,
our main target is to obtain necessary and/or sufficient conditions for the (global)
rigidity of Gk in Rd for k = d− 1 and k = d.

A well-known result of this type (k = 2, d = 3) follows from the Molecular Theorem
due to N. Katoh and S. Tanigawa [22]. Their result, which is about d-dimensional
panel-and-hinge frameworks, has the following corollary.

Theorem 1.2 (Molecular Theorem [22]). Let G be a graph with minimum degree at
least two. Then G2 is rigid in R3 if and only if 5G contains six edge-disjoint spanning
trees, where 5G is obtained from G by replacing each edge e by five parallel copies of
e.

The new results of this paper are as follows. We first characterize those graphs G
for which Gd is globally rigid in Rd, for all d ≥ 1, and then focus on the case when
k = d − 1. We provide a new, direct proof for the stronger, defect form of Theorem
1.2 and a necessary condition for the rigidity of Gd−1 in Rd, for arbitrary d ≥ 3. We
conjecture that this condition is also sufficient.

The global rigidity of square graphs in R3 is still an open problem. We prove
a combinatorial necessary condition, in terms of vertex partitions and edge count
conditions, and conjecture that it is also sufficient. For the general case we give a
best possible connectivity based sufficient condition by showing that if G is 3-edge-
connected then Gd−1 is globally rigid in Rd, for all d ≥ 3. Our results also imply
affirmative answers to Conjectures 1, 2 in two special cases.

The following table gives a summary of the results on the (global) rigidity of Gk in
Rd for k ≥ d− 1.

k rigidity of Gk in Rd global rigidity of Gk in Rd

≥ d+ 1 Proposition 1.1 [3] Proposition 1.1 [3]
d Proposition 1.1 [3] Theorem 3.5

d = 2 : Geiringer–Laman’s theorem d = 2 : Jackson–Jordán’s theorem [12]
d− 1 d = 3 : Molecular Theorem [22] d = 3 : Conjecture 4

general: Conjecture 3

2 Preliminaries

2.1 Rigidity and global rigidity

A d-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V,E) is a
graph1 and p is a map from V to Rd. We consider the framework to be a straight
line realization of G in Rd. Two realizations (G, p) and (G, q) of G are equivalent if
||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all pairs u, v with uv ∈ E, where ||.|| denotes

1By a graph we mean a simple graph. If we allow parallel edges, we call it a multigraph.
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2.2 Necessary and sufficient conditions for global rigidity 4

the Euclidean norm in Rd. Frameworks (G, p), (G, q) are congruent if ||p(u)−p(v)|| =
||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V .

We say that (G, p) is globally rigid in Rd if every d-dimensional realization of G
which is equivalent to (G, p) is congruent to (G, p). The framework (G, p) is rigid if
there exists an ε > 0 such that, if (G, q) is equivalent to (G, p) and ||p(v)− q(v)|| < ε
for all v ∈ V , then (G, q) is congruent to (G, p). Intuitively, this means that if we
think of a d-dimensional framework (G, p) as a collection of bars and joints where
points correspond to joints and each edge to a rigid (i.e. fixed length) bar joining
its end-points, then the framework is globally rigid if its bar lengths determine the
realization up to congruence. It is rigid if every continuous motion of the joints that
preserves all bar lengths must preserve all pairwise distances between the joints.

It is a hard problem to decide if a given framework is rigid or globally rigid. We
obtain more tractable problems if we consider generic frameworks i.e. frameworks
in which the set of coordinates of the vertices is algebraically independent over the
rationals.

It is known that for every d ≥ 1 the rigidity (resp. global rigidity) of frameworks
in Rd is a generic property, that is, the rigidity (global rigidity) of (G, p) depends
only on the graph G and not the particular realization p, if (G, p) is generic [2, 4, 8].
We say that the graph G is rigid (resp. globally rigid) in Rd if every (or equivalently,
if some) generic realization of G in Rd is rigid (resp. globally rigid). The problem
of characterizing when a graph is rigid (resp. globally rigid) in Rd has been solved
for d = 1, 2. For d ≥ 3 they remain major open problems in rigidity theory. For a
detailed survey of rigid and globally rigid d-dimensional frameworks and graphs, and
their applications, we refer the reader to [13, 18, 21, 26, 31].

We shall frequently use the following elementary and well-known tools for analyzing
the rigidity and global rigidity of graphs.

Lemma 2.1 (Extension lemma). Let G be a graph obtained from a graph H by adding
a new vertex v with k edges incident to v.

If H is rigid in Rd and k ≥ d, then G is rigid in Rd.
If H is globally rigid in Rd and k ≥ d+ 1, then G is globally rigid in Rd.

Lemma 2.2 (Gluing lemma). Let G1 and G2 be graphs with |V (G1) ∩ V (G2)| = k,
and let G = G1 ∪G2.

If G1 and G2 are rigid in Rd and k ≥ d, then G is rigid in Rd.
If G1 and G2 are globally rigid in Rd and k ≥ d+ 1, then G is globally rigid in Rd.

2.2 Necessary and sufficient conditions for global rigidity

Hendrickson [9] proved two key necessary conditions for the global rigidity of a graph
in Rd. We say that G is redundantly rigid in Rd if removing any edge of G results in
a rigid graph.

Theorem 2.3 ([9]). Let G be a globally rigid graph in Rd. Then either G is a complete
graph on at most d+ 1 vertices, or G is
(i) (d+ 1)-connected, and
(ii) redundantly rigid in Rd.
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Section 3. The global rigidity of Gd in Rd 5

The necessary conditions of Theorem 2.3 together are also sufficient to imply the
global rigidity of the graph in Rd for d = 1, 2 (see [12]) but this implication is no
longer valid in higher dimensions.

We also have two sufficient conditions that work in all dimensions and provide
another link between rigidity and global rigidity. We say that graph G = (V,E) is
vertex-redundantly rigid in Rd if G− v is rigid in Rd for all v ∈ V .

Theorem 2.4 ([27]). If G is vertex-redundantly rigid in Rd then it is globally rigid
in Rd.

For some graph H and X ⊆ V (H) let H+K(X) denote the graph obtained from H
by adding new edges connecting all pairs of non-adjacent vertices of X. The neighbour
set of X consists of those vertices in V (H)−X which are connected to X by an edge.
It is denoted by NH(X). If X = {v} then we simply write NH(v).

Theorem 2.5. [27] Suppose that G − v is rigid and G − v + K(NG(v)) is globally
rigid in Rd for some v ∈ V (G). Then G is globally rigid in Rd.

3 The global rigidity of Gd in Rd

In this section we characterize, for every positive integer d, those graphs G for which
Gd is globally rigid in Rd. Up to dimension three the following previous results provide
necessary and sufficient conditions. The next lemma is folklore.

Lemma 3.1. Let G be a connected graph. Then G1 is globally rigid in R1 if and only
if G is 2-vertex-connected.

The next two theorems were announced in [3]. The corresponding proofs (for weaker
versions) appeared in [1].

Theorem 3.2. [3] Let G be a connected graph. Then G2 is globally rigid in R2 if and
only if for every separating edge e in G one of the two components of G− e is a single
vertex.

Theorem 3.3. [3] Let G be a connected graph. Then G3 is globally rigid in R3 if and
only if for every separating vertex v of degree two in G one of the two components of
G− v is a single vertex.

We shall unify and extend these results to all d. A k-chain in a graph G is a path
with k vertices for which every internal vertex has degree two in G. A k-chain P
with end-vertices v1, v2 is said to be separating if G can be obtained from P and two
disjoint connected graphs H1, H2, on at least two vertices, by identifying a vertex of
Hi and vi, for i = 1, 2. See Figure 2.

For example, a separating 1-chain is a cut-vertex of G. A separating 2-chain cor-
responds to a cut-edge e of G for which each component of G − e has at least two
vertices. The middle vertex of a separating 3-chain is a cut-vertex v of degree two in
G for which both components of G− v are non-trivial.
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Section 3. The global rigidity of Gd in Rd 6

It is clear that if Gd is globally rigid in Rd then G has no separating d-chain P ,
since the vertex set of P is a vertex separator in Gd of size d (and hence Gd does
not satisfy the necessary connectivity condition of d-dimensional global rigidity, c.f.
Theorem 2.3). For d ≤ 3 there are no other obstacles by Lemma 3.1, and Theorems
3.2 and 3.3. We shall prove that the same holds for all d. It will be convenient to
have the following lemma, which settles a special case.

Figure 2: A separating 4-chain.

Lemma 3.4. Let G1, G2 be two disjoint graphs and vi ∈ V (Gi), i = 1, 2. Let H be
the graph obtained from G1 and G2 by identifying the vertices v1, v2. Suppose that Gd

1

and Gd
2 are globally rigid in Rd for some d ≥ 2. Then Hd is globally rigid in Rd if and

only if H has no separating d-chains.

Proof. As we noted above, necessity is clear. To prove sufficiency, suppose that H
has no separating d-chains. Let v ∈ V (H) be the (cut-)vertex created by the 1-sum
operation.

Pick vertices wi ∈ V (Gi)− vi for which the distance distGi
(vi, wi) to vi in Gi is as

large as possible. If
distG1(v1, w1) + distG2(v2, w2) ≤ d (1)

then each vertex of G1 is connected to each vertex of G2 in Hd and hence all pairwise
distances are fixed in Hd. Thus Hd is globally rigid in Rd, as required. In what
follows suppose that (1) does not hold. Then, without loss of generality, we may
assume distG1(v1, w1) ≥ dd+1

2
e.

For j ≥ 0, let Uj = {u ∈ V (G2) : distG2(u, v2) = j}. Let I0 = Gd
1 and Ij be the

subgraph of Hd induced by V (G1) ∪
⋃

i≤j Ui for j = 1, . . . , d. I0 is globally rigid by
the assumption of the lemma. We shall inductively show the global rigidity of Ij for
j = 1, . . . , d.

Let r = d − distG1(w1, v1). We first prove the global rigidity of Ij for any j with
j ≤ r. (This case occurs only when r ≥ 0.) Since 2r ≤ 2d− 2dd+1

2
e ≤ d− 1, any pair

of vertices in
⋃

j≤r Uj is within distance d in H, and any pair of a vertex in G1 and
that in

⋃
j≤r Uj is also within distance d in H by r + distG1(w1, v1) = d. Thus the

global rigidity of Gd
1 implies the global rigidity of Ij for any j ≤ r.

Hence we may focus on the case when j > r, i.e., j + distG1(w1, v1) ≥ d + 1. Take
any vertex u ∈ Uj. By j + distG1(w1, v1) ≥ d + 1, a shortest path Pu between u and
w1 in H has length at least d + 1. Let Su = (u = x0, x1, . . . , xd) be the subpath of
Pu starting from u and having length d. By 1 ≤ j ≤ d, v1 is an internal vertex of Su.
Let S−u = Su \ {u}.
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Section 3. The global rigidity of Gd in Rd 7

Since S−u is in V (Ij−1) and |S−u | = d, Ij contains d edges from u to d vertices in
Ij−1. We show that there is at least one more vertex in V (Ij−1) whose distance from
u is at most d.

If an internal vertex of Su is incident to a vertex a ∈ V (G1) \ Su, then we are
done. So assume this is not the case. Then, from the fact that H has no separating
d-chain and that S−u forms a path with d vertices in H, an internal vertex of S−u must
have degree at least three in H. In other words, there is a vertex a ∈ V (G2) \ Su

incident to an internal vertex of S−u . Since a is incident to an internal vertex of S−u ,
distH(v1, a) ≤ i − 1 and distH(u, a) ≤ i holds. Thus Ii contains d + 1 edges between
u and S−u ∪ {a} ⊆ V (Ii−1), implying the global rigidity of Ii by the extension lemma.

We have shown that Id is a globally rigid subgraph of Hd. Also Gd
2 is globally rigid.

Since |V (Id) ∩ V (Gd
2)| ≥ d+ 1 and V (Id) ∪ V (Gd

2) = V (H), it follows from the gluing
lemma that Hd is globally rigid in Rd, as required.

Theorem 3.5. Let G be a connected graph. Then Gd is globally rigid in Rd if and
only if G does not contain a separating d-chain.

Proof. Necessity is clear, as we noted above. We prove sufficiency.

Claim 3.6. If G is 2-connected then Gd is globally rigid in Rd.

Proof. If G is 2-connected then G − v is connected for all v ∈ V , which implies, by
Proposition 1.1(i), that (G− v)d is rigid. Since (G− v)d ⊆ Gd − v, it follows that Gd

is vertex-redundantly rigid. Hence Gd is globally rigid by Theorem 2.4.

We prove the theorem by induction on |V |. We may assume that G has at least
one cut-vertex. Let W be an end-block2 of G which is connected to the rest of the
graph along the cut-vertex v. Since W is 2-connected (or is isomorphic to K2), W

d is
globally rigid by Claim 3.6.

Now focus on J = G − (V (W ) − v), the graph obtained by detaching W along
vertex v. If J has no separating d-chain then Jd is globally rigid by induction. Hence
Gd is globally rigid by Lemma 3.4.

Next suppose that J has a separating d-chain P . Since G has no separating d-
chains, by our assumption, and W has only one attachment vertex v in J , it follows
that v is an internal vertex of P . Thus v is a cut-vertex in G, along which three
subgraphs of G are merged: a connected subgraph J1 of J that contains the left side
of P (up to v), a connected subgraph J2 of J that contains the right side of P (from
v), and W , which also includes v.

Now detach J2 from G along v. We claim that both graphs obtained by this oper-
ation are free of separating d-chains. First consider J2. Suppose it has a separating
d-chain P . The key observation is that such a d-chain cannot be eliminated by at-
taching a subgraph along a leaf vertex. Since v is a leaf in J2, that would mean G has
a separating d-chain, a contradiction.

Next consider the union of J1 and W , denoted by K. Suppose it has a separating
d-chain P . The key observation here is that such a d-chain can be eliminated by

2An end-block is a maximal 2-connected subgraph of G which contains at most one cut-vertex of
G.
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Section 4. The rigidity of Gd−1 in Rd 8

attaching a subgraph along one vertex only if it is attached to some internal vertex
w of P . Observe that an internal vertex of P has degree two in the graph and is
not incident with a leaf. But v is part of an end-block W in K (note that W is an
end-block in K, too) and hence either it has degree at least three in K or is incident
with a leaf in K. Therefore the existence of a separating d-chain in G follows, a
contradiction.

The theorem now follows from Lemma 3.4, applied to K and J2.

Observe that if a graph G contains no separating d-chain then it does not contain
separating (d+ 1)-chains either. Thus the theorem implies that if Gd is globally rigid
in Rd then Gd+1 is globally rigid in Rd+1. Therefore we can use it to verify the case
k = d of the globally rigid version of Conjecture 1. Note also that it is easy to test,
in polynomial time, whether a graph G has a separating d-chain.

We can also deduce that Conjecture 2, in its most general form, is false. Let
k = d ≥ 2. Then Gd is rigid in Rd if and only if G is connected, by Proposition 1.1.
However, (the easy direction of) Theorem 3.5 shows that there exist connected graphs
G for which Gd+1 is not globally rigid in Rd+1

By rereading the previous proofs and observing that the operations used – extension,
gluing, etc. – preserve vertex-redundant rigidity (as well as global rigidity), we can
deduce that for every graph G the d’th power Gd is globally rigid in Rd if and only if
it is vertex-redundantly rigid in Rd, for all d ≥ 1. It may be interesting to find further
families of graphs with this property.

4 The rigidity of Gd−1 in Rd

The characterization of the graphs G for which Gd−1 is rigid in Rd is a challenging
problem. For d = 2 it amounts to finding the characterization of rigid graphs in R2,
which is the celebrated result of Pollaczek-Geiringer, resp. Laman, see e.g. [26]. The
3-dimensional case is Theorem 1.2, which follows from the Molecular Theorem [22],
whose proof is given in terms of d-dimensional hinge-coplanar body-hinge frameworks.
Whiteley [29] pointed out that the 3-dimensional case has equivalent forms in terms of
”molecular graphs” and squares of graphs, which can be used to deduce Theorem 1.2.
Further results and a proof for the easier direction of Theorem 1.2, in terms of squares
of graphs, have been obtained in [15, 16]. Since the proof of the Molecular Theorem is
more general and rather lengthy, and most of its applications are in terms of bar-and-
joint frameworks and squares of graphs, a shorter direct proof of (a strengthening of)
Theorem 1.2 may be of interest. In this section we provide such a proof. The cases
d ≥ 4 remain open. We shall close this section with a conjectured characterization
for the general case and the proof of necessity.

4.1 A new proof of the Molecular Theorem

In order to state a refined, stronger version of Theorem 1.2 we need a few more
definitions. We first recall the three-dimensional versions of some basic notions of
rigidity theory in Section 4.1.1, and then introduce some combinatorial results on
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4.1 A new proof of the Molecular Theorem 9

tree-connectivity in Section 4.1.2. We then state the defect form of the Molecular
Theorem in Section 4.1.3.

4.1.1 Degree of freedom of graphs

The rigidity matrix R(G, p) of a 3-dimensional realization (G, p) of graph G = (V,E) is
a matrix of size |E|×3|V |. For each edge vivj ∈ E the entries in the row corresponding
to edge vivj are defined as follows: the three columns corresponding to the vertex vi
(resp. vj) contain the three coordinates of p(vi) − p(vj) (resp. p(vj) − p(vi)), the
remainig entries are zeros. Suppose that G has at least three vertices. Then the rank
of the rigidity matrix of a realization of G cannot be more than 3|V |−6. We say that
(G, p) is infinitesimally rigid if the rank of R(G, p) is equal to 3|V | − 6. The rank of
the rigidity matrix is the same for all generic realizations of G. We denote this rank
by r(G) and call it the rank of G. If G has at least three vertices then G is rigid
if and only if r(G) = 3|V | − 6. See [26] for more details on infinitesimal rigidity of
d-dimensional frameworks.

More generally, we shall call the number 3|V | − 6 − r(G) the degree of freedom
of G and denote it by dof(G). (The degree of freedom of a framework is defined
analogously, by replacing the rank of the graph by the rank of its rigidity matrix.)
This number measures the flexibility of a generic realization of the graph. We say
that an edge uv with u, v ∈ V (G) is in the closure of a graph G, denoted by cl(G), if
dof(G+ uv) = dof(G) holds.

We shall use the following observation in the proof of the Molecular Theorem.

Lemma 4.1. Let (G, p) be a framework in R3 for which (G − u, p) is infinitesi-
mally rigid for some u ∈ V (G) and p is injective. Suppose that p(v1), p(v2), p(v3) are
collinear for v1, v2, v3 ∈ V (G)\{u}, and uv1, uv2 ∈ E(G). Then rank R(G+uv3, p) =
rank R(G, p).

Proof. The statement is obvious if (G, p) is infinitesimally rigid. Suppose that it is not
the case. Then, since (G−u, p) is infinitesimally rigid and uv1, uv2 ∈ E(G), (G, p) has
one degree of freedom, and any nontrivial infinitesimal motion fixing (G− u, p) is an
infinitesimal rotation about the line through p(v1) and p(v2). Since p(v1), p(v2), p(v3)
are collinear, this infinitesimal rotation also satisfies the edge-constraint given by
uv3.

4.1.2 Tree-connectivity

Let H = (V,E) be a multigraph. For a partition P of V let EH(P) denote the set, and
eH(P) the number of edges of H connecting distinct members of P . For a partition
P of V let

defH(P) = 6|P| − 6− 5eH(P) (2)

and let def(H) := max{defH(P) : P is a partition of V }. Note that def(H) ≥ 0,
since defH({V }) = 0. A partition P with defH(P) = def(H) is called tight. We say
that H is 6

5
-tree-connected if def(G) = 0. If defH(P) ≤ −1 for all partitions P with

|P| ≥ 2 then H is called highly 6
5
-tree-connected.
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4.1 A new proof of the Molecular Theorem 10

For a graph H and positive integer k the multigraph obtained from H by replacing
each edge e of H by k parallel copies of e is denoted by kH. A theorem of Nash-
Williams [25] and Tutte [28] implies that H is 6

5
-tree-connected (resp. highly 6

5
-tree-

connected) if and only if 5H (resp. 5H − e, for all e ∈ E(5H)) contains six pairwise
edge-disjoint spanning trees. It can also be deduced from this result that def(H) is
equal to the minimum number of edges which have to be added to 5H in order to
obtain a graph which has six pairwise edge-disjoint spanning trees.

4.1.3 The defect form of the Molecular Theorem

Theorem 1.2 asserts that G2 is rigid in R3 if and only if def(G) = 0. The following
stronger form provides the exact relationship between the degree of freedom of G2

and the deficiency of G. Thus it implies that dof(G2) can be expressed by a purely
combinatorial parameter of G that is defined by counting edges between members of
partitions of V . This parameter will also show up in our conjectured characterization
for globally rigid squares in the next section.

Theorem 4.2 (Molecular Theorem (defect form) [22]). Let G be a graph with mini-
mum degree at least two. Then

dof(G2) = def(G).

It is easy to extend Theorem 4.2 to the case where G may have vertices of degree
one, see [16, Lemma 4.2].

Before presenting a complete proof of Theorem 4.2 in Section 4.1.5, we need to
recall a few more standard tools from rigidity theory in the next subsection.

4.1.4 Basic Operations

In the proof of Theorem 4.2, we shall apply two well-known operations of rigidity
theory: vertex splitting and 1-extension. We shall only use the 3-dimensional versions,
which are defined as follows. Let G = (V,E) be a graph. Given a vertex v1 ∈ V and
a partition {U01, U0, U1} of NG(v1) with |U01| = 2, the vertex splitting operation at v1
with respect to {U01, U0, U1} removes the edges connecting v1 to U0 and inserts a new
vertex v0 as well as new edges between v0 and {v1} ∪ U01 ∪ U0. If U01 = {a, b}, the
operation is said to be a vertex splitting along v1a and v1b. Whiteley proved that the
vertex splitting operation preserves the rigidity of a graph. In fact his proof implies
the following stronger, infinitesimally rigid version.

Theorem 4.3 ([30]). Let (G, p) be an infinitesimally rigid framework in R3, and let
H be a graph obtained from G by a vertex splitting operation at vertex v1 along v1a
and v1b. Let v0 be the new vertex created by the operation, and let d be a vector in
R3. Suppose that the vectors {d, p(a) − p(v1), p(b) − p(v1)} are linearly independent.
Then the map p can be extended from V (G) to V (H) by specifying p(v0) such that
p(v0) = p(v1) + td for some nonzero scalar t ∈ R and so that (H, p) is infinitesimally
rigid in R3.
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4.1 A new proof of the Molecular Theorem 11

This result has the following corollaries: if G is rigid and H is obtained from G by
a vertex splitting operation then dof(H) ≤ dof(G). In particular, if G is rigid then
so is H. We shall simply refer to Theorem 4.3 when we use these corollaries.

Another well-known operation, that can be performed on a graph G or a framework
(G, p), is called 1-extension. This operation removes an edge xy from the graph and
adds a new vertex v, along with four edges vx, vy, vw, vz, where w and z are different
vertices of V (G)−{x, y}. When it is applied to a realization of G, the position p(v) of
the new vertex should be on the line through p(x), p(y). It is known that 1-extension
preserves the rigidity of a graph G, and – assuming that the four neighbours of v
are not coplanar – the infinitesimal rigidity of a framework on G in R3 [31, Theorem
9.2.2].

4.1.5 Proof of Theorem 4.2

We begin with the following simple combinatorial fact. More general versions of the
next lemma appeared in [17, 22]. We give a proof for completeness. A subgraph H
of G is said to be proper if E(H) 6= ∅ and H 6= G.

Lemma 4.4. Let G = (V,E) be a graph with minimum degree at least two, and
suppose that G has no proper 6

5
-tree-connected subgraph. Then G has two degree-two

vertices which are adjacent.

Proof. It follows from known results concerning highly tree-connected graphs (see e.g.
[14]) that if 5(G−e) has at least 6|V |−6 edges for some e ∈ E then 5(G−e) contains
a 6

5
-tree-connected subgraph, which is proper in G. Hence we have

5|E| ≤ 6|V | − 2. (3)

Let n = |V |, m = |E|, and let ni be the number of vertices of degree i in G. Since the
minimum degree of G is at least two, we have n =

∑
i≥2 ni and 2m =

∑
i≥2 ini. Sup-

pose that G has no adjacent vertices of degree two. Then 2n2 ≤
∑

i≥3 ini. Combining
this with n =

∑
i≥2 ni, we get

2n ≤
∑
i≥3

(i+ 2)ni. (4)

On the other hand, by 2m =
∑

i≥2 ini and n =
∑

i≥2 ni, we have 2m = 2n+
∑

i≥3(i−
2)ni. Combining this with (4), 10m = 10n+

∑
i≥3 5(i− 2)ni ≥ 10n+

∑
i≥3(i+ 2)ni ≥

12n, implying 5m ≥ 6n. This contradicts (3).

It was proved in [16, Theorem 4.1], by a direct argument using squares of graphs,
that for a graph G with minimum degree at least two we have dof(G2) ≥ def(G).
Thus it suffices to prove the next result (which was the missing part before the paper
by Katoh and Tanigawa [22]) in order to complete a new direct proof of Theorem 4.2.

Theorem 4.5. Let G be a graph with minimum degree at least two. Then

dof(G2) ≤ def(G).
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4.1 A new proof of the Molecular Theorem 12

v′

vH

v′

vH

Figure 3: The graph on the left has a leg with three (thick) edges. The figure on the
right also shows the additional (dashed) edges incident with the internal vertices of
the leg in its square graph.

Proof. Suppose, for a contradiction, that the assertion is false and let G be a smallest
counter-example. Let def(G) = k, for some integer k ≥ 0. Then dof(G2) > k.

Claim 4.6. G has no proper 6
5
-tree-connected subgraph H.

Proof. Suppose that G has such a subgraph H. We may assume that H is a proper
6
5
-tree-connected subgraph of G for which |V (H)| is maximal. The minimum degree

of H is at least two, and hence we have dof(H2) ≤ def(H) = 0 by induction. Thus
H2 is rigid. If V (H) = V (G), then G2 is rigid as well, which gives k < dof(G2) = 0,
a contradiction. So we must have V (H) 6= V (G). Hence we can also assume that H
is an induced subgraph of G. Let G/H be the graph obtained from G by contracting
the vertices of H into one vertex vH . Since H is 6

5
-tree-connected, it is not hard to

see3 that def(G/H) ≤ def(G) = k. Furthermore, the maximality of H implies that
G/H is simple. Note that it has less edges than G. By induction dof((G/H)2) ≤ k.

Let X = NG(V (H)) = NG/H(vH) and Y = NG(V (H)∪X) be the sets of neighbours
and second neighbours of vH in H. Let I = NG(V − V (H)). Since H is 6

5
-tree-

connected, each vertex has degree at least two in H. Hence, for each u ∈ X, G2

contains at least three edges between u and V (H). Therefore V (H) ∪ X induces a
rigid subgraph in G2 that we denote by K. We shall consider two cases separately,
depending on whether X has at least two vertices or not.

First suppose that |X| ≤ 1. Suppose that |X| = 1 (the case when X is empty is
similar, but simpler). In this case vH has degree one in G/H. Let P be a maximal path
in G/H starting with vH for which each internal vertex has degree two in G/H. We
call it a leg. See Figure 3. Since G has minimum degree two, the other end-vertex v′ of
P has dG/H(v′) = dG(v′) ≥ 3. Let ` = |V (P )| and J = G−(V (H)∪(V (P )−{v′})). By
induction, we have dof(J2) ≤ def(J). Furthermore, it is easy to check (see Figure 3)
that dof((G/H)2) = dof(J2) + ` − 2 and def(G/H) = def(J) + ` − 1. (See also
[16, Lemma 4.2] for a formal proof). By observing that G2 can be obtained from
(G/H)2 by gluing a rigid graph (namely, K) along an edge (the first edge of P ), we
obtain dof(G2) = dof((G/H)2) + 1. By putting these inequalities together we get
dof(G2) ≤ def(G/H) = k, a contradiction.

It remains to consider the case when |X| ≥ 2. Our strategy is to construct a graph
G′ from (G/H)2 by a sequence of vertex splitting operations that replace vH by a set

3Perhaps the simplest way to see this is by using the equivalent edge-disjoint spanning trees
characterization of the deficiency mentioned earlier.
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4.1 A new proof of the Molecular Theorem 13

of |I| vertices, such that

(i) I ∪X induces a rigid subgraph in G′, and

(ii) the set of edges between Y and I in G′ is the same as that in G2.

This will allow us to apply the General isostatic substitution principle4 to argue that
replacing G′ by K does not change the degree of freedom (which will give the desired
contradiction).

We need one more observation. Let I = {v1, v2, . . . , vt}, Xi = NG(vi) ∩ X, and
Yi = NG(Xi) ∩ Y for 1 ≤ i ≤ t. We claim that

Xi ∩Xj = ∅ and Yi ∩ Yj = ∅ (5)

for 1 ≤ i 6= j ≤ t. To see this, suppose that u ∈ Xi ∩Xj. Then V (H)∪ {u} is 6
5
-tree-

connected and hence the maximality of H implies that V (G) = K = V (H) ∪ {u}.
Thus G2 is rigid, a contradiction. We obtain Yi ∩ Yj = ∅ by a similar argument. The
definition of I, the minimum degree condition on G, the maximality of H, and (5)
imply that {X1, . . . , Xt} and {Y1, . . . , Yt} are partitions of X and Y , respectively, and
no member of these partitions is empty.

Next we describe the algorithm that constructs G′.

• Initially, let G′ = (G/H)2. Let vt = vH .

• For i = 1, 2, . . . , t− 1, do the following:

– Apply a vertex splitting operation in G′ at vt along the edges x1vt, x2vt,
where x1, x2 ∈ X. Denote the two vertices created by the split by vi and vt.
Perform the operation in such a way that each vertex in Yi gets connected
to vi and each vertex in

⋃
j>i Yj remains connected to vt.

In the resulting graph G′ we identify I with {v1, v2, ..., vt}. Since X ∪ {vH} induces
a rigid subgraph in (G/H)2 and the vertex splitting operation preserves rigidity by
Theorem 4.3, property (i) follows. The construction implies property (ii).

To complete the proof of this case replace the rigid subgraph of G′ on vertex set
I ∪ X by K (keeping the common vertices I ∪ X fixed) to obtain a graph G′′. By
(ii), the graph G′′ is isomorphic to G2. Since the vertex splitting operations do not
increase the degree of freedom and by the General isostatic substitution principle, we
have dof(G2) = dof(G′′) ≤ dof((G/H)2) ≤ k, a contradiction. This completes the
proof of the claim.

We henceforth assume that G has no proper 6
5
-tree-connected subgraph. Then G

has two adjacent vertices x, y of degree two by Lemma 4.4, Let NG(x) = {a, y} and

4This principle asserts that if we replace a rigid subgraph on vertex set X in a graph G, with
|X| ≥ 3, by another rigid graph, whose vertex set contains X, then the degree of freedom remains
the same. See e.g. [6].
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4.1 A new proof of the Molecular Theorem 14

NG(y) = {b, x}. The theorem is easy to verify directly if G is a cycle5, so we may
suppose that G is not a cycle. Then, since G has minimum degree at least two, we
may suppose that dG(b) ≥ 3. From the fact that G has no proper 6

5
-tree-connected

subgraph, we can also observe that a 6= b, ab /∈ E(G), and that G/xy is simple. It is
not hard to see that def(G/xy) ≤ def(G) = k. Hence we have dof((G/xy)2) ≤ k by
induction. For simplicity we denote the vertex of G/xy obtained by the contraction
of xy by y.

Claim 4.7. ab /∈ cl(G2) and dof((G/xy)2 − ab) > k.

Proof. Observe that G2 +ab is obtained from (G/xy)2 by a vertex splitting at y along
ay and by. Hence, if ab ∈ cl(G2), then dof(G2) = dof(G2 + ab) = dof((G/xy)2) ≤ k,
contradicting dof(G2) > k.

Similarly, observe that G2 is obtained from (G/xy)2 − ab by a vertex splitting at y
along ay and by. Hence, dof((G/xy)2 − ab) ≥ dof(G2) > k.

Let H = G− x− y. Let H ′ be the graph obtained from H2 + ab by a 1-extension
by splitting ab with new vertex y and two new edges between y and NG(b) \ {y}.

Claim 4.8. dof(H2) = k + 3 and dof(H ′ + ab) = k + 1.

Proof. Since H is obtained from G by removing x and y and the three edges incident
to them, we have def(H) + 2 · 6 − 3 · 5 ≤ def(G), meaning def(H) ≤ k + 3. By
induction,

dof(H2) ≤ k + 3. (6)

To see the equality, we first observe

dof(H ′ + ab) ≥ k + 1. (7)

Indeed, to see this, suppose dof(H ′ + ab) ≤ k. A subgraph of G2 can be obtained
from H ′ + ab by applying a 1-extension by splitting ab and adding x, so dof(G2) ≤ k
follows, a contradiction.

We next show
dof(H ′ + ab) ≤ dof(H2)− 2. (8)

ByH2 ⊆ G2 and Claim 4.7, ab /∈ cl(H2). Hence dof(H ′) ≤ dof(H2+ab) = dof(H2)−1.
Observe that H ′ is a subgraph of (G/xy)2. Since dof((G/xy)2) ≤ k, Claim 4.7 implies
that ab /∈ cl(H ′), implying (8).

By using the inequalities (6), (7), and (8), we can deduce that equality must hold
everywhere, from which the statement of the claim follows.

Claim 4.9. dG(a) ≥ 3.

5Consider a cycle Ck of length k ≥ 3. It is well-known and easy to check that dof(C2
k) = def(Ck) =

max{k − 6; 0}. Since the maximum degree of C2
k is at most four, the degree of freedom of C2

k can
also be deduced from a result of [10].
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4.2 A conjecture for the d-dimensional version 15

Proof. Suppose not. Let S be the maximal adjacent sequence of degree two vertices
containing a, x, y in G. Then, in H, S \ {x, y} and the vertex incident to S \ {x, y}
form a leg. So we have

dof(H2) = dof((G− S)2) + (|S \ {x, y}|+ 1− 2) = dof((G− S)2) + |S| − 3.

On the other hand, G − S is obtained from G by removing |S| vertices and |S| + 1
edges, and so

def(G− S) ≤ def(G)− 6|S|+ 5(|S|+ 1) = k − |S|+ 5.

By induction, def(G− S) = dof((G− S)2). By combining these equations we obtain
dof(H2) ≤ k + 2, which contradicts Claim 4.8.

Consider H ′+ ab. See Figure 4(a). H ′+ ab is a subgraph of (G/xy)2, and dof(H ′+
ab) = k + 1 > k ≥ dof((G/xy)2) by Claim 4.8. Hence (G/xy)2 contains an edge e
with e /∈ cl(H ′ + ab). Since every edge in E((G/xy)2) \ E(H ′ + ab) is incident to y,
e is incident to y. Note also that, in H ′ + ab, NG(b) ∪ {b} induces a rigid subgraph,
and hence every edge between y and NG(b) belongs to cl(H ′+ ab). Hence, e connects
y and a neighbor c of a.

Let G1 = H ′ + ab + e. See Figure 4(b). We have dof(G1) = k. Next we apply
a 1-extension so that we split the edge e in G1 by adding a new vertex x′ and two
new edges x′a and x′d for some d ∈ NG(a) \ {x, c}. (This is possible by Claim 4.9.)
Let G2 be the resulting graph. See Figure 4(c). Let (G2, p) be a generic realization
of G2. We perform the vertex splitting operation at a with respect to the partition
{{c, d}, {x′, y, b}, NG(a) \ {x, c, d}} of NG2(a) to get a new framework (G3, p

′). Let x
be the new vertex obtained by the vertex splitting as in Figure 4(d). We perform this
vertex splitting operation such that p′ is an extension of p and p′(x) is in the interior
of the line segment between p(a) and p(x′). By Theorem 4.3, we can do this without
increasing the degree of freedom, i.e., dof(G3, p

′) ≤ k.
Let G4 = G3 − yx′ + ya. See Figure 4(e). In (G4, p

′), {x′, x, a, c, d} induces a
rigid subframework. Since p(x′), p(x), p(a) are collinear, we have rank R(G4, p

′) =
rank R(G4 + yx′, p′) ≥ rank R(G3, p

′) by Lemma 4.1. Hence, dof(G4) ≤ k. Note
that x′ has degree three in G4. Thus dof(G4 − x′) ≤ k. Finally, by observing that
G4− x′ ⊆ G2, we obtain dof(G2) ≤ k. This final contradiction completes the proof of
the theorem.

4.2 A conjecture for the d-dimensional version

Let G = (V,E) be a graph. Recall that a k-chain in G is a path with k vertices for
which every internal vertex has degree two in G (and the end-vertices of the path are
distinct). For a vertex v ∈ V and non-negative integer k let N≤kG (v) := {u ∈ V :
distG(u, v) ≤ k} denote the set of vertices u for which a shortest path from v to u in
G has at most k edges.

Lemma 4.10. Let v be a vertex in G with dG(v) ≥ 3 and d ≥ 3. Then the subgraph
of Gd−1 induced by the vertex set N≤d−2G (v) is rigid in Rd.
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Figure 4: (a) H ′ + ab, (b) G1, (c) G2, (d) G3, (e) G4, (f) G4 − x′ = G2.

Proof. Let X = NG(v) ∪ {v} and Y = N≤d−2G (v). We have X ⊆ Y . Consider a
maximal subset X ′ ⊆ Y for which X ⊆ X ′ and the subgraph of Gd−1 induced by X ′

is rigid in Rd. Since X induces a complete (and hence rigid) subgraph in Gd−1, such
a set indeed exists. We are done if X ′ = Y holds, so we may assume that there is a
vertex w ∈ Y − X ′. We can also assume that there is an edge from w to X ′ in G.
Let Z = X ′ ∪ {w}. First suppose that for all x ∈ X ′ the distance from w to x in
G[Z], i.e. the subgraph of G induced by Z, is at most d− 1. Then w is connected to
each vertex of X ′ in Gd−1, implying that Z induces a rigid subgraph in Gd−1. This
contradicts the choice of X ′. Next suppose that there is a vertex q ∈ X ′ for which a
shortest path P from w to q in G[Z] has at least d edges. Since v has at least three
neighbours in G, there is a vertex r ∈ X which does not belong to P . It follows that
w is connected to d− 1 vertices of P as well as to vertex r in Gd−1. We can now use
the extension lemma to deduce that Z induces a rigid subgraph of Gd−1, contradicting
the maximality of X ′.

We next define a graph BG = (XG, E) in which the vertices correspond to certain
subsets of V . Formally, the vertex set of BG is

XG := {V (C) : C is a d-chain in G} ∪ {N≤d−2(v) : v ∈ V, dG(v) ≥ 3},

and there is an edge connecting two vertices X1, X2 ∈ XG if |X1 ∩ X2| ≥ d − 1.
Moreover, if |X1 ∩ X2| ≥ d, then BG contains two copies of the edge between X1

and X2. Note that if C is a d-chain then V (C) induces a complete (and hence rigid)
subgraph of Gd−1. Furthermore, for each vertex v ∈ V with dG(v) ≥ 3 the set
N≤d−2(v) induces a rigid subgraph in Gd−1 by Lemma 4.10. Thus we may think of
the vertices of BG as d-dimensional rigid bodies (as subgraphs of Gd−1). In this sense
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Section 5. Global rigidity of squares of graphs 17

each edge of BG represents a hinge between two such bodies (and the existence of
parallel edges shows that the union of the corresponding bodies is rigid).

With this definition, we can now formulate our conjecture. It is not hard to see
that when d = 3 the condition is equivalent to that of Theorem 1.2.

Conjecture 3. Let d be a positive integer with d ≥ 3 and G = (V,E) be a connected
graph with at least d+1 vertices. Then Gd−1 is rigid in Rd if and only if

((
d+1
2

)
− 1
)
BG

contains
(
d+1
2

)
edge-disjoint spanning trees.

We sketch the proof of necessity. Consider the union of the complete graphs K(X)
on vertex sets X, over all X ∈ XG, and let H be the resulting graph on V . Let
(H, p) be a generic d-dimensional realization of H. This realization determines a
(non-generic) body-hinge framework in Rd by regarding each K(X) as a body and
the intersection K(X1 ∩ X2) with |X1 ∩ X2| = d − 1 as a hinge. If |X1 ∩ X2| ≥ d
holds then K(X1) ∪ K(X2) is rigid, which is represented by the two copies of the
edge (i.e. two hinges) between X1 and X2. In this sense the underlying multigraph of
this d-dimensional body-hinge structure is exactly BG. Hence, if

((
d+1
2

)
− 1
)
BG does

not contain
(
d+1
2

)
edge-disjoint spanning trees, then we can use a theorem of Tay and

Whiteley (see e.g. [31]) to deduce that any body-hinge framework with underlying
multigraph BG is infinitesimally flexible. This implies that there is a map ṗ : V → Rd

such that the restriction of ṗ to each X ∈ XG is an infinitesimal congruence on X
but ṗ itself is not an infinitesimal congruence. Thus, by using that every edge in H
is induced by some X ∈ XG, we obtain that ṗ is a nontrivial infinitesimal motion of
(H, p).

We claim that ṗ is a nontrivial infinitesimal motion of (Gd−1, p). This can be
checked by observing Gd−1 ⊆ H. To see this, consider any edge uv in Gd−1. Then
distG(u, v) ≤ d − 1. If G has a vertex w of degree at least three such that u, v ∈
N≤d−2(w), then uv ∈ E(H) holds. Hence, suppose there is no such a vertex w. Then,
by distG(u, v) ≤ d− 1, every path between u and v forms a chain. Since |V | ≥ d+ 1,
there is a d-chain that contains u and v, implying uv ∈ E(H). This implies the claim
and completes the proof of necessity.

5 Global rigidity of squares of graphs

Finding the characterization of those graphs G for which Gd−1 is globally rigid in Rd

seems to be a rather difficult problem. Obtaining the counterpart of the Molecular
Theorem (d = 3) is already challenging. In this section we focus on the global rigidity
of G2 in R3, and offer the Molecular Global Rigidity Conjecture. We also give a proof
of the necessity of the conjectured condition along with some further remarks and
examples. Our conjecture is as follows.

Conjecture 4 (Molecular Global Rigidity Conjecture). Let G be a graph on at least
five vertices with minimum degree at least two. Then G2 is globally rigid in R3 if and
only if G2 is 4-connected and G is highly 6

5
-tree-connected.
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Section 5. Global rigidity of squares of graphs 18

We note that similar, but somewhat weaker or incomplete versions of Conjecture
4 appeared earlier in [5, 19, 21]. Moreover, both implications in the conjectured
characterizations remained open.

Before proving the ”only if” direction we give some examples that illustrate the
difficulties and the connections to Theorem 1.2. It is clear from Theorem 2.3 that the
4-connectivity of G2 is a necessary condition. The graph in Figure 5 shows that this
condition cannot be omitted even if G is highly 6

5
-tree connected.

Figure 5: A graph G for which G is highly 6
5
-tree connected but G2 is not 4-connected.

The vertex of degree four is sticky.

Theorem 2.3 also implies that if G2 is globally rigid then it is redundantly rigid.
Characterizing the redundant rigidity of the square of a graph in R3 is also an open
problem. It was pointed out in [15] that the high 6

5
-tree-connectivity of G is, in

general, not sufficient to guarantee the redundant rigidity of G2. On the other hand,
the body-hinge version of the Theorem 1.2 and the characterization of globally rigid
body-hinge graphs in [20] may suggest that the high 6

5
-tree-connectivity of G is a

necessary condition for redundant rigidity. The graph in Figure 6 shows that it is not
the case.

Figure 6: A graph G (solid edges) for which G is not highly 6
5
-tree connected, but G2

is redundantly rigid.

Note that the square of graph G in Figure 6 is 4-connected. However, as it will
follow from the main theorem of this section, G2 is not globally rigid. Hence G2 is
another example which shows that the necessary conditions in Hendrickson’s theorem
are not sufficient to imply global rigidity in R3. (See [20] for a more detailed discussion
on such examples.)
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Section 5. Global rigidity of squares of graphs 19

In the rest of this section we verify the ”only if” direction of Conjecture 4. We start
with a simple lemma. A cut-vertex v of a connected graph G is called sticky if there
is a connected component C of G− v on at least three vertices, for which the number
of edges connecting C to v is exactly two. (See Figure 5 for an example.) Since we
only need the easier ”only if” direction of the lemma, the proof is omitted.

Lemma 5.1. Let G be a graph with minimum degree at least two. Then G2 is 4-
connected if and only if
(i) G is 2-edge-connected, and
(ii) G has no sticky cut-vertex.

Let G = (V,E) be a graph. Following [11] we define a cover of G as a collection
X of subsets of V , each of size at least two, such that

⋃
X∈X E(X) = E. A cover

X = {X1, X2, ..., Xm} is 2-thin if |Xi ∩ Xj| ≤ 2 for all 1 ≤ i < j ≤ m. For Xi ∈ X
let f(Xi) = 1 if |Xi| = 2 and f(Xi) = 3|Xi| − 6 if |Xi| ≥ 3. Let H(X ) be the set of
all pairs of vertices uv such that Xi ∩Xj = {u, v} for some 1 ≤ i < j ≤ m. For each
uv ∈ H(X ) let h(uv) be the number of sets Xi in X with {u, v} ⊆ Xi and put

val(X ) =
∑
X∈X

f(X)−
∑

uv∈H(X )

(h(uv)− 1).

We say that a 2-thin cover X of graph G = (V,E) is independent if the edge set of
the graph (V,H(X )) is independent in R3(G).

Lemma 5.2 ([11]). Let G be a graph and let X be an independent 2-thin cover of G.
Then r3(G) ≤ val(X ).

The next two lemmas follow from the proof of [16, Theorem 3.4] and [16, Lemma
3.2], respectively. Recall (2), and the definition of a tight partition.

Lemma 5.3 ([16]). Let G = (V,E) be a graph with minimum degree at least two.
Suppose that P = {P1, P2, ..., Pt} is a tight partition of V . Let Xi = Pi ∪ NG(Pi) for
1 ≤ i ≤ t and let X = {X1, . . . , Xt}. Then X is an independent 2-thin cover of G2.
Furthermore, we have H(X ) = {uv : uv ∈ EG(P)}, h(uv) = 2 for all uv ∈ H(X ),
and |Xi| ≥ 3 and |NG(Pi)| = dG(Pi) for 1 ≤ i ≤ t.

Lemma 5.4 ([16]). Let G be a graph with minimum degree at least two. The (multi)graph
obtained from G by contracting the members of a tight partition has no cycles of length
at most five.

We are ready to state the main result of this section.

Theorem 5.5. Let G = (V,E) be a graph with minimum degree at least two and
|V | ≥ 5. Suppose that G2 is globally rigid in R3. Then G2 is 4-connected and G is
highly 6

5
-tree-connected.

Proof. The necessity of 4-connectivity follows from Theorem 2.3. Since global rigidity
implies rigidity, we may assume, by (the easier direction of) Theorem 1.2, that G is
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6
5
-tree-connected. For a contradiction suppose that G is not highly 6

5
-tree-connected.

Let H = 5G. Then there is a tight partition P = {P1, P2, ..., Pt} of V with t ≥ 2,
which satisfies

eH(P) = 5eG(P) = 6(t− 1). (9)

Equality (9) implies that there exists a member of P , call it P1, with dG(P1) = 2. Let
e = x1x2 and f = y1y2 be the edges incident with P1 in G, with x1, y1 ∈ P1.

Suppose that e and f have a vertex v in common. Then v ∈ P1 must hold by
Lemma 5.4. A similar argument shows that |V − P1| ≥ 3. Then P1 = {v} follows,
since otherwise v is a sticky cut-vertex, contradicting the 4-connectivity of G2 and
Lemma 5.1.

So either (i) P1 is a singleton or (ii) the four vertices xi, yi, i = 1, 2 are pairwise
distinct. In the rest of the proof we shall consider a special cover of G2 and an
associated upper bound on the rank of G2. By slightly refining and modifying an
analysis of [16] we shall deduce that, roughly speaking, there is an edge induced by
P1 ∪ NG(P1) in G2 which is not redundant. It will contradict the fact that G2 is
globally rigid.

Let Xi = Pi ∪ NG(Pi) for 1 ≤ i ≤ t and let X = {X1, . . . , Xt}. By Lemma 5.3, X
is an independent 2-thin cover of G2 and we have

val(X ) =
t∑

i=1

f(Xi)−
∑

uv∈H(X )

(h(uv)− 1) =
t∑

i=1

(3|Xi| − 6)− |EG(P)| =

=
t∑

i=1

3(|Pi|+ dG(Pi))− |EG(P)| − 6t = 3|V |+ 6|EG(P)| − |EG(P)| − 6t =

= 3|V |+ 5eG(P)− 6t = 3|V | − 6.

First we consider case (i) when P1 is a singleton. Then X1 induces a complete
graph on three vertices in G2, namely, a triangle with edges e = x1x2, f = y1y2, and
a third edge q. We have x1 = y1 and the two hinges in X1 correspond to e and f .
Consider the cover X ′ = {X −X1} ∪ {x1, x2} ∪ {y1, y2}. Observe that X ′ is a cover
of G2 − q and the hinge sets of X and X ′ are the same. Furthermore, by inspecting
the count above we observe that val(X ′) = val(X ) − 1. By using Lemma 5.2 this
gives r3(G

2 − q) ≤ val(X ′) < val(X ) = 3|V | − 6. Hence q is not redundant in G2,
contradicting the fact that G2 is globally rigid (and Theorem 2.3).

It remains to consider case (ii), when the vertices xi, yi, i = 1, 2 are pairwise distinct.
In this case we apply a similar argument after slightly modifying the graph and the
cover.

Let W = P1−{x1, y1} and G∗ = G2−W+K({x1, x2, y1, y2}). Let X ∗ = {X −X1}∪
{x1, x2} ∪ {y1, y2} ∪ {x1, y1} ∪ {x1, y2} ∪ {x2, y1}. Note that X ∗ covers G∗− x2y2, and
the hinge sets of X ∗ and X are the same. (To see this note that x1y2 and y1x2 cannot
be hinges by the no short cycle property.) A count similar to that of the previous
case gives that val(X ∗) ≤ val(X ∗) < 3|V (G∗)| − 6. By using Lemma 5.2 this gives
r3(G

∗ − x2y2) < 3|V (G∗)| − 6, which implies that x2y2 is not redundant in G∗. Thus
G∗ is not globally rigid by Theorem 2.3. Since G2 is obtained from G∗ by attaching
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the set W of vertices along a complete subgraph (and possibly deleting some edges),
G2 is not globally rigid. This contradiction completes the proof.

6 A sufficient edge-connectivity condition

In this section we prove that if G is 3-edge-connected then Gd−1 is globally rigid in
Rd, for all d ≥ 3. This is the strongest possible sufficient condition in terms of the
edge- or vertex-connectivity of G, which follows from the fact that for a cycle Cn on
n vertices, with n large enough, Cd−1

n is not even rigid in Rd.
In R3 a weaker sufficient condition was obtained by Gortler, Gotsman, Liu, and

Thurston [7], who proved that the square of a 4-vertex-connected graph is globally
rigid6 in R3.

The main result of this section is as follows.

Theorem 6.1. Let G = (V,E) be a 3-edge-connected graph and let d ≥ 3. Then Gd−1

is globally rigid in Rd for all d ≥ 3.

In some parts of the proof of Theorem 6.1 the cases d = 3 and d ≥ 4 are completely
separated, while in some other parts the proofs of the higher dimensional versions are
substantially more complicated. Thus the reader may find it useful to first read the
proof by assuming that d = 3.

Proof of Theorem 6.1. We shall prove the theorem by induction on |V |. The smallest
3-edge-connected graph is K4, for which the statement is obvious. Thus we may
assume that |V | ≥ 5. We may also assume that G is minimally 3-edge-connected,
that is, G − e is not 3-edge-connected for all e ∈ E. Therefore, by a well-known
result of Lick [24], G has a vertex v with d(v) = 3. Our basic strategy is to apply
Theorem 2.5 at v. To this end, we claim that Gd−1− v is rigid in Rd. Since the proof
method depends on whether d = 3 or d > 3, we give it in two separate claims.

Claim 6.2. Let v be a vertex of degree three in G. Then G2 − v is rigid in R3.

Proof. We show that (G−v)2 is rigid. Since (G−v)2 is a spanning subgraph of G2−v,
this will imply the claim. Let H = G− v. For a contradiction suppose that H2 is not
rigid. Now the minimum degree of H is at least two, so we can use Theorem 1.2 to
deduce that there is a partition P = {X1, X2, ..., Xt} of V (H) with t ≥ 2 for which

5eH(P) ≤ 6t− 7. (10)

Since G is 3-edge-connected and dG(v) = 3, we have dH(Xi) ≥ 2 for all 1 ≤ i ≤ t, and
dH(Xi) ≥ 3 for all but at most three members of P . This implies

5eH(P) = 5

(∑
i dH(Xi)

2

)
≥ 5(3t− 3)

2
=

15t− 15

2
(11)

6A different proof for this result is as follows: if G is 4-vertex-connected then G − v is 3-vertex-
connected for all v ∈ V (G). Thus 5(G − v) is 15-edge-connected, which implies, by the results of
Nash-Williams and Tutte [25, 28], that it contains 6 edge-disjoint spanning trees. Hence (G − v)2

(and also G2 − v) is rigid for all v ∈ V (G) by Theorem 1.2. Therefore G2 is globally rigid in R3 by
Theorem 2.4.

EGRES Technical Report No. 2021-05



Section 6. A sufficient edge-connectivity condition 22

It is easy to check that we cannot have (10) and (11) at the same time. This contra-
diction shows that H2 is rigid in R3, as claimed.

Next we deduce the same conclusion for d ≥ 4 by using a different approach.

Claim 6.3. Let v be a vertex of degree three in G. Suppose that d ≥ 4. Then Gd−1−v
is rigid in Rd.

Proof. Let H = G − v. Since Hd−1 is a spanning subgraph of Gd−1 − v, it suffices
to show that Hd−1 is rigid. Let X be the set of vertices of degree two in H and let
Y = V (H) − X. Since G is 3-edge-connected, |X| ≤ 3. Consider a vertex u ∈ Y .
Then N≤d−2H (u) induces a rigid subgraph in Hd−1 by Lemma 4.10. We denote this
subgraph of H by Bu.

If V (Bu) = V (H) for some u ∈ Y then we are done. So we may assume that for
every u ∈ Y there is a vertex w with distH(u,w) > d − 2. We claim that for all
u1, u2 ∈ Y with u1u2 ∈ E(H) we have

|N≤d−2H (u1) ∩N≤d−2H (u2)| ≥ d. (12)

To see this, let s be the farthest point in H from u1, and take a shortest path P =
w1, w2, . . . , wk starting from w1 = u1 and ending at wk = s. Since distH(u1, s) > d−2,
we can take the subpath P ′ = w1, w2, . . . , wd−1 of length d − 2. Note that V (P ′) ⊆
N≤d−2H (u1). Note also that, since u1 has degree at least three in H, there is at least one
vertex t ∈ NH(u1) \ (V (P ′) ∪ {u2}). This vertex t belongs to N≤d−2H (u1) ∩N≤d−2H (u2)
by the assumption d ≥ 4. If u2 is not on P ′, then {u2, t, w1 = u1, w2, . . . , wd−2}
is in N≤d−2H (u1) ∩ N≤d−2H (u2). On the other hand, if u2 is on P ′, then {t, w1 =
u1, w2, . . . , wd−2, wd−1} is in N≤d−2H (u1) ∩N≤d−2H (u2). Hence, (12) follows.

(12) implies that Bu1 ∪ Bu2 is rigid in Rd (by the gluing lemma). Thus, for each
connected component C of H −X,

⋃
u∈C Bu forms a rigid subgraph of Hd−1.

Since G is 3-edge-connected, each vertex in X is adjacent to a vertex in Y in H.
If H − X is connected, then

⋃
u∈Y Bu is a rigid subgraph of Hd−1 spanning V (H),

implying the rigidity of H. Hence we can assume that H −X is not connected. By
the fact that G is 3-edge-connected, v has degree three in G, and X is the set of
degree two vertices in H, it can be checked that H − X consists of two connected
components C1 and C2 and X consists of three vertices w1, w2, w3, each of which is
adjacent to each component Ci in H. In other words, H has three paths aiwibi with
ai ∈ C1, wi ∈ X, bi ∈ C2 for i = 1, 2, 3.

Note that all of ai, wi, bi for i = 1, 2, 3 are contained in both
⋃

u∈C1
Bu and

⋃
u∈C2

Bu,

and hence their intersection has size at least 5. In fact, we further have N≤d−4C2
(bi) ⊆

N≤d−2H (ai), which implies that
∣∣(⋃u∈C1

Bu) ∩ (
⋃

u∈C2
Bu)
∣∣ ≥ 5 + (d − 4) = d + 1 or

V (C2) ⊆
⋃

u∈C1
Bu. In either case,

⋃
u∈C1

Bu ∪
⋃

u∈C2
Bu is a rigid spanning subgraph

of H. This completes the proof.

Let v be a vertex of degree three in G and suppose that G − v + K(NG(v)) is
3-edge-connected. Consider the graph J := Gd−1 − v + K(NGd−1(v)). The vertex set
NGd−1(v) consists of the three neighbours of v in G as well as the second (third, and
so on, up to d− 1) neighbours of v in G. Thus the vertices of NGd−1(v) are pairwise
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adjacent in J . This observation shows that (G − v + K(NG(v)))d−1 is a spanning
subgraph of J . Now (G−v+K(NG(v)))d−1 is globally rigid in Rd by induction (since
G−v+K(NG(v)) is 3-edge-connected), implying that so is J . Then the global rigidity
of Gd−1 follows from Claims 6.2, 6.3, and Theorem 2.5, and we are done.

This argument shows that in the rest of the proof we may assume that

for all v ∈ V with d(v) = 3 the graphG−v+K(NG(v)) is not 3-edge-connected. (13)

We say that two adjacent degree three vertices v, v′ in G are partners if NG(v′) =
(NG(v)− v′) ∪ {v}. Note that it is indeed a symmetric relation.

Claim 6.4. Let v be a vertex of degree three in G. Then either
(i) G has a cut-vertex, or
(ii) v has a partner.

Proof. Let H = G− v+K(NG(v)) and let T be the triangle on NG(v) in H. By (13)
the graph H can be separated by removing a set F of at most two edges. The edge cut
F must intersect the edge set of T , for otherwise it is also an edge cut in G, which is not
possible, since G is 3-edge-connected. It follows that F consists of two edges e, f of T ,
with a common end-vertex v′, say. The two connected components of H−{e, f} define
a bipartition of V (G)− v. If there are more vertices on the v′-side of this bipartition
then v′ is a cut-vertex in G. If not, then v′ satisfies NG(v′) = (NG(v)− v′) ∪ {v}. So
v′ is a partner of v.

Claim 6.5. Let v and v′ be partners in G and let NG(v)− v′ = {a, b}. Then either
(i) G has a cut-vertex, or
(ii) ab is not an edge in G.

Proof. Let e = ab. Suppose that e ∈ E(G). First consider the case when a and b are in
the same connected component of G−{v, v′}− e. Then there exist four edge-disjoint
paths in G from a to b, and hence G − e is 3-edge-connected. This contradicts the
minimality of G. Next suppose that a and b are in different connected components
of G − {v, v′} − e. Then, since G has at least five vertices, at least one of a, b is a
cut-vertex in G.

Consider two degree three vertices v and v′, which are partners, and let NG(v)−v′ =
{a, b} and e = ab. Suppose that G has no cut-vertices and that Q = G − {v, v′} + e
is 3-edge-connected. Note that Q is simple by Claim 6.5. Then Qd−1 is globally rigid
by induction. Let Q̄ be obtained from Qd−1 by adding v′ and all edges from v′ to
NGd−1(v′)− {v}. Observe that Q̄ is a spanning subgraph of Gd−1 − v +K(NGd−1(v)).
Moreover, since a and b have at least three neighbours in Q, v′ is connected to all, or
to at least d + 1 vertices of Qd−1 in Q̄. (To see this consider a shortest path P from
v′ to some vertex x in G − v which is farthest from v′. Suppose it contains b. If P
has less than d vertices then v′ is connected to all vertices in the power. Otherwise
v′ is connected to d − 1 vertices of P , a, and another neighbour of b.) Thus Q̄, and
hence also Gd−1−v+K(NGd−1(v)), is globally rigid in Rd. So in this case the theorem
follows from Claims 6.2, 6.3, and Theorem 2.5. In what follows we may therefore
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assume that if G has no cut-vertices then no partners satisfy that Q = G−{v, v′}+ e
is 3-edge-connected (using the previous notation).

Claim 6.6. There is a cut-vertex in G.

Proof. Suppose that there is no cut-vertex in G. Then each degree three vertex has
a partner by Claim 6.4. Consider two degree three vertices v, v′, which are partners,
and let NG(v)−v′ = {a, b}. The edge e = ab is not present in G by Claim 6.5(ii). The
first observation is that if some vertex has two or more partners then we are done.
To see this suppose, without loss of generality, that a is a partner of v. Then, since
G has at least five vertices, b is a cut-vertex in G. It also follows that the degree of a
(and b) is at least four in G.

Hence the degree three vertices of G can be partitioned into pairs, so that the
vertices in each pair are partners. Replace each pair v, v′ by a pair of parallel edges
connecting the vertices of NG(v) − v′ (which is equal to NG(v′) − v). Let H be the
resulting multigraph.

Our assumption given right before the claim, saying that G − {v, v′} + ab is not
3-edge-connected for all pairs of partners, implies that there is no other pair u, u′ of
partners with NG(u) − u′ = {a, b}. Since G has at least five vertices, it also implies
that H has at least three vertices.

We claim that H is minimally 3-edge-connected. To see this first suppose that there
is an edge-cut F of size at most two in H. Then, since G is 3-edge-connected, F must
contain a pair e, e′ of parallel edges in H. Then at least one of the end-vertices of e
is a cut-vertex in H. It follows from the construction of H that this vertex is also a
cut-vertex in G, which is a contradiction.

Minimality can be seen as follows. Our assumption saying that for all pairs v, v′ of
partners G − {v, v′} + e is not 3-edge-connected implies that the two parallel edges
e, e′ are both critical: removing one of them destroys the 3-edge-connectivity of H.
For an edge f in H which is also an edge of G the minimality of G implies that f
belongs to an edge cut of size three in G. If the edges of F are all present in H then
F verifies that f is critical in H, too. Otherwise, if F contains an edge incident with
a degree three vertex v in G, then, since NG(v) ∪ {v} induces a 2-edge-connected
subgraph in G, F contains two edges from this subgraph. But then f , together with
the two parallel edges on the common neighbours of v and its partner give rise to a
3-edge-cut containg f in H.

Now we can use the fact that H is minimally 3-edge-connected to deduce that there
is a vertex w in H with dH(w) = 3. Since our construction of H from G preserves the
vertex degrees, and the end-vertices of the added parallel edge pairs are of degree at
least four in G, we also have dG(w) = 3. But in this case H would not contain w, a
contradiction. This proves the claim.

By Claim 6.6 G has a cut-vertex v. It means G = G1 ∪G2, with V (G1)∩ V (G2) =
{v}. Now G1, G2 are also 3-edge-connected and hence, by induction, Gd−1

1 and Gd−1
2

are globally rigid in Rd. Furthermore, v has at least three neighbors ai, bi, ci in Gi

for each i = 1, 2. For j = 0, . . . , d − 2, let H1,j be the subgraph of Gd−1 induced by
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V (G1) and N≤jG2
(v). The graphs H2,j are defined similarly, by interchanging the role

of G1 and G2.

Claim 6.7. For i = 1, 2 and j = 0, . . . , d− 2, Hi,j is globally rigid.

Proof. By symmetry it suffices to consider the case i = 1. We shall show that H1,j

is globally rigid by induction on j. The base case j = 0 follows from the fact that
H1,0 = Gd−1

1 .
Consider the case when 1 ≤ j ≤ d − 2. Let G1,j be the subgraph of G induced

by V (H1,j−1). Suppose that the diameter of G1,j is at most d − 3. Then H1,j is a
complete graph, which implies the claim. So we may assume that the diameter of G1,j

is at least d− 2. We split the proof into two cases depending on the size of V (H1,j−1).
The first case is when |V (H1,j−1)| ≤ d. A shortest path in G between any two

vertices of H1,j−1 misses at least two vertices from the set {a1, a2, b1, b2, c1, c2} if j ≥ 2.
Since the diameter ofG1,j−1 is at least d−2, we have |V (H1,j−1)| ≥ d+1 if j ≥ 2. Hence
we must have j = 1. Then, a shortest path between any two vertices in G1,j−1 misses
at least one vertex from the set {a1, b1, c1, v}. So, by the assumption |V (H1,j−1)| ≤ d,
the diameter of G1,j−1 is d−2. Since j = 1, any pair of vertices in G1,j has distance at
most d− 1. (Note that, by j = 1, any two vertices in V (G1,j)\V (G1,j−1) has distance
at most two in G1,j.) So H1,j is a complete graph, completing the proof in the first
case.

The second case is when |V (H1,j−1)| ≥ d + 1. Since H1,j−1 is globally rigid by
induction, it suffices to show that, for any u ∈ V (H1,j) \ V (H1,j−1), there are at least
d + 1 edges between u and V (H1,j−1) in H1,j (by the extension lemma). Consider a
vertex u ∈ V (H1,j)\V (H1,j−1). Let Gu be the subgraph of G induced by V (H1,j−1) and
u. If distGu(u,w) ≤ d−1 holds for all w ∈ V (H1,j−1), then there are at least d+1 edges
between u and V (H1,j−1) by the assumption |V (H1,j−1)| ≥ d+ 1. If distGu(u,w) ≥ d
holds for some w ∈ V (G1,j−1), then consider a shortest path P between u and w in
Gu. Let P ′ be the subpath of P of length d− 1 starting at u. Then P ′ misses at least
two vertices from the set {a1, b1, c1}. Hence, |(V (P ′) \ {u}) ∪ {a1, b1, c1}| ≥ d + 1.
Since each vertex of (V (P ′) \ {u}) ∪ {a1, b1, c1} is within distance d − 1 from u by
j ≤ d− 2, there are at least d+ 1 edges between u and V (H1,j−1), as required.

By Claim 6.7, Gd−1
i,d−2 is globally rigid for i = 1, 2. Since v has degree at least six

in G, V (Gd−1
1,d−2) ∩ V (Gd−1

2,d−2) ≥ 2(d − 2) + 5 ≥ d + 1 holds, unless Gd−1
1,d−2 ⊆ Gd−1

2,d−2 or

Gd−1
2,d−2 ⊆ Gd−1

1,d−2. Thus, by the gluing lemma, it follows that Gd−1
1,d−2∪G

d−1
2,d−2 is globally

rigid. Since Gd−1
1,d−2 ∪ G

d−1
2,d−2 is a spanning subgraph of Gd−1, it follows that Gd−1 is

globally rigid, as required.

We close this section by deducing some corollaries in the three-dimensional case.
First we observe that it is easy to extend the theorem to the case when the graph is
obtained from a 3-edge-connected graph by attaching some leaves.

Theorem 6.8. Let G = (V,E) be a connected graph and let L = {v ∈ V : d(v) = 1}.
If G− L is 3-edge-connected then G2 is globally rigid in R3.
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Proof. Since G is simple, G−L is either a single vertex or it has at least four vertices.
In the former case G2 is complete, and hence it is globally rigid in R3. In the latter
case G2 can be obtained from (G−L)2 by a sequence of vertex additions so that each
new vertex is connected to at least four vertices. By Theorem 6.1 (G−L)2 is globally
rigid in R3. Thus G2 is also globally rigid in R3.

Next we verify Conjecture 2 in the case when k = 1, d = 2.

Theorem 6.9. Let G = (V,E) be a rigid graph in R2. Then G2 is globally rigid in
R3.

Proof. It suffices to verify global rigidity for the squares of minimally rigid graphs.
We do this by induction on |V |.

The statement is obvious for |V | ≤ 3, so we may assume that |V | ≥ 4. Now G
is 2-connected and each vertex has degree at least two in G. Furthermore, since
|E| = 2|V | − 3, G has a vertex v of degree at most three. If there exists a vertex with
d(v) = 2 then G− v is minimally rigid and hence (G− v)2 is globally rigid in R3 by
induction. It is easy to check that v is connected to at least four vertices of G− v in
G2, for otherwise G has a cut-vertex. This implies that G2 is globally rigid in R3.

So we may assume that the minimum degree of G is equal to three. Then G is
3-edge-connected (see e.g. [12]). Thus G2 is globally rigid in R3 by Theorem 6.1.

Another corollary of Theorem 6.1 is that if a graph G with |V | ≥ 4 has at least
2|V | − 3 edges then G2 has a globally rigid subgraph on at least four vertices in R3.

7 Concluding remarks

We conclude the paper by recalling another conjecture. It was conjectured in [5] that
for every d there is a smallest integer cd such that every cd-connected graph is globally
rigid in Rd. The special case of this conjecture, when the graph is a square and d = 3,
is still open.
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