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Globally rigid graphs are fully reconstructible

Dániel Garamvölgyi?, Steven J. Gortler??, and Tibor Jordán? ? ?

Abstract

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and
p is a map from V to Rd. The length of an edge uv ∈ E in (G, p) is the distance
between p(u) and p(v). The framework is said to be globally rigid in Rd if the
graph G and its edge lengths uniquely determine (G, p), up to congruence. A
graph G is called globally rigid in Rd if every d-dimensional generic framework
(G, p) is globally rigid.

In this paper, we consider the problem of reconstructing a graph from the
set of edge lengths arising from a generic framework. Roughly speaking, a graph
G is strongly reconstructible in Cd if it is uniquely determined by the set of
(unlabeled) edge lengths of any generic framework (G, p) in d-space, along with
the number of its vertices. It is known that if G is globally rigid in Rd on at
least d + 2 vertices, then it is strongly reconstructible in Cd. We strengthen this
result and show that under the same conditions, G is in fact fully reconstructible
in Cd, which means that the set of edge lengths alone is sufficient to uniquely
reconstruct G, without any constraint on the number of vertices.

We also prove that if G is globally rigid in Rd on at least d + 2 vertices,
then the d-dimensional generic rigidity matroid of G is connected. This result
generalizes Hendrickson’s necessary condition for global rigidity and gives rise
to a new combinatorial necessary condition.

Finally, we provide new families of fully reconstructible graphs and use them
to answer some questions regarding unlabeled reconstructibility posed in recent
papers.

1 Introduction

A (d-dimensional) framework is a pair (G, p) where G = (V,E) is a graph and
p : V → Rd is a map that assigns a point in Rd to each vertex of G. The length of an
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tibor.jordan@ttk.elte.hu

May 9, 2021



Section 1. Introduction 2

edge uv in (G, p) is the Euclidean distance between p(u) and p(v). We also call (G, p)
a realization of G in Rd. The framework is generic if the set of the coordinates of its
points is algebraically independent over Q. We say that a d-dimensional framework
(G, p) is globally rigid if every other realization (G, q) of G in Rd in which corresponding
edges have the same length is congruent to (G, p). That is, the graph G and its edge
lengths in (G, p) uniquely determine the pairwise distances of all vertices in (G, p). It
is known that for generic d-dimensional frameworks, global rigidity depends only on
the graph G, for all d ≥ 1. We say that G is (generically) globally rigid in Rd if every
(equivalently, if some) generic realization of G in Rd is globally rigid. In the rest of
this section we give a brief overview of our main results. Most of the definitions and
more details are given in the next section.

Unlabeled rigidity is the study of what combinatorial and geometric information
is determined by the (multi)-set of edge lengths arising from some d-dimensional
framework (G, p). In [10], it was shown that if (G, p) is a generic globally rigid
framework with n vertices in Rd, where n ≥ d + 2, then there can be no distinct
realization (H, q) of any graph H with n vertices in Rd that produces the same edge
lengths, up to trivialities. This result is essentially tight: if H is allowed to have more
vertices or if G is not globally rigid, then p cannot be determined. To prove this result,
it was sufficient to study the following, related graph reconstruction question.

The d-dimensional measurement variety Md,G of a graph G is the Zariski-closure of
the set of all vectors arising as the squared edge lengths of d-dimensional realizations
of G. It is natural to look for conditions under which the measurement variety itself
determines the underlying graph. As this is dealing with varieties, it is simpler to do
this analysis in the complex setting. Formally, we call G strongly reconstructible in
Cd if for each pair of generic frameworks (G, p) and (H, q) in Cd with the same set
of edge lengths and the same number of vertices, we have that G is isomorphic to H
and the corresponding edges have the same length. This means, essentially, that the
graph G, as well as the association between edges and coordinate axes, is uniquely
determined by Md,G (see Theorem 2.18).

In [10], it was shown that for d ≥ 2, globally rigid graphs in Rd on at least d + 2
vertices are strongly reconstructible in Cd. Although this result was sufficient to answer
the original question of [10], as a pure reconstruction question, the dependence on n
remains unsatisfying. To this end, we call a graph G fully reconstructible in Cd if it is,
roughly speaking, strongly reconstructible even when we do not require that G and H
have the same number of vertices in the above definition. In [10], the question was
posed whether global rigidity in Rd implies full reconstructibility in Cd. For d = 2, the
question was answered affirmatively in [6]. In this paper, as one of our main results,
we substantially strengthen the previous results and show that for all d ≥ 2,

if G is globally rigid in Rd on n ≥ d+ 2 vertices, then G is fully reconstructible in Cd.

Results in [6] show that for d = 2, this is tight: if a graph is not globally rigid in R2,
then it is not even strongly reconstructible in C2. The d = 1 case is slightly different
but also fully characterizable using 3-connectivity. For d ≥ 3, a characterization of
full reconstructibility seems more elusive. In particular, we show that global rigidity
in Rd is not necessary for full reconstructibility in Cd. We also prove some positive
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and negative results regarding possible sufficient and possible necessary conditions for
strong and full reconstructibility. These answer a number of questions that were posed
in [10] and [6].

To prove our result on full reconstructibility we also prove a combinatorial theorem,
interesting on its own right. We say that a graph is M-connected in Rd if its d-
dimensional (generic) rigidity matroid is connected (see next section for detailed
definitions). A combinatorial characterization of globally rigid graphs in Rd is known
only for d = 1, 2, and is a major open problem for d ≥ 3. In higher dimensions,
Hendrickson’s theorem (see Theorem 2.2) gives combinatorial necessary conditions
that link global rigidity to connectivity and local rigidity properties of G. In this
paper, as another main result, we strengthen one of Hendrickson’s necessary conditions
(redundant rigidity) by proving that for all d ≥ 1,

if G is globally rigid in Rd on n ≥ d+ 2 vertices, then it is M-connected in Rd.

This result may lead to a better understanding of higher dimensional global rigidity.
In particular, we use it to find new examples of so-called H-graphs, graphs that satisfy
Hendrickson’s conditions but are not globally rigid.

The rest of the paper is laid out as follows. In Section 2, we recall the definitions and
results from rigidity theory and algebraic geometry that we shall use throughout the
paper. Section 3 contains our main results: after making some structural observations
about the measurement variety of graphs, we show that globally rigid graphs in Rd

on at least d+ 2 vertices are M -connected in Rd (Theorem 3.5) and, for d ≥ 2, fully
reconstructible in Cd (Theorem 3.6). In Section 4, we illustrate the results of the
previous section with several examples. In particular, we use Theorem 3.5 to give
new examples of H-graphs. We also answer questions from [6] and [10] related to the
unlabeled reconstructibility problem, as well as pose new open questions. Finally, in
Section 5 we prove some new results regarding M -connected graphs in Rd.

2 Preliminaries

We start by fixing some conventions. In the following, graphs will be understood
to be simple, that is, without parallel edges and loops. For a graph G = (V,E),
we shall use RE and CE to denote the |E|-dimensional real (complex, respectively)
Euclidean space with axes labelled by the edges of G. We shall also often refer to the
configuration spaces Rnd and Cnd, where n denotes the number of vertices of G and
d ≥ 1 is some dimension. We shall really think of these spaces as (Rd)V and (Cd)V , i.e.
as n-tuples of d-dimensional vectors, indexed by the vertices of G. Nonetheless, as it
is less cumbersome, we shall use the notation Rnd and Cnd.

2.1 Real and complex frameworks

Let G = (V,E) be a graph on n vertices and d ≥ 1 some fixed integer. A d-
dimensional realization of G is a pair (G, p) where p : V → Rd maps the vertices of G
into Euclidean space. We call such a point a configuration and we say that the pair
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2.1 Real and complex frameworks 4

(G, p) is a framework. Two d-dimensional frameworks (G, p) and (G, q) are equivalent
if ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖ for every edge uv ∈ E, and congruent if the same
holds for every pair of vertices u, v ∈ V . Here ‖·‖ denotes the Euclidean norm.

A framework is (locally) rigid if every continuous motion of the vertices which
preserves the edge lengths takes it to a congruent framework, and globally rigid if
every equivalent framework is congruent to it.

We say that a configuration p ∈ Rnd is generic if its n ·d coordinates are algebraically
independent over Q. It is known that in any fixed dimension d, both local and global
rigidity are generic properties of the underlying graph, in the sense that either every
generic d-dimensional framework is locally/globally rigid or none of them are (see
[4, 8]). Thus, we say that a graph is rigid (respectively globally rigid) in d dimensions
if every (or equivalently, if some) generic d-dimensional realization of the graph is rigid
(resp. globally rigid).

The function mapping the realizations of a graph to the sequence of its Euclidean
squared edge lengths is called the rigidity map or edge measurement map. Let
G = (V,E) be a graph on n vertices. We denote the d-dimensional rigidity map
of G by md,G : Rnd → RE, that is, for a d-dimensional realization (G, p) of G, the
coordinate of md,G(p) corresponding to the edge uv ∈ E is ‖p(u)− p(v)‖2.

Analogously to the real case, we define a d-dimensional complex framework to be a
pair (G, p), where G = (V,E) is a graph and p : V → Cd is a complex mapping. Given
an edge e = uv of G, its complex squared length in (G, p) is

muv(p) = (p(u)− p(v))T · (p(u)− p(v)) =
d∑

k=1

(p(u)k − p(v)k)2,

where k indexes over the d dimension-coordinates. Note that in this definition we do
not use conjugation. For real frameworks, this coincides with the usual (Euclidean)
squared length, and it follows that we can extend md,G to Cnd → CE function by
letting

md,G(p) =
(
muv(p)

)
uv∈E.

We say, as in the real case, that two frameworks (G, p) and (G, q) are equivalent if
md,G(p) = md,G(q), and they are congruent if md,KV

(p) = md,KV
(q), where KV is the

complete graph on the vertex set V . A configuration p ∈ Cnd is, again, generic, if the
coordinates of p are algebraically independent over Q. A point p ∈ Rnd is generic as a
real configuration precisely if it is generic as a complex one.

Using these notions one can define the analogues of rigidity and global rigidity for
complex frameworks. It turns out that, as in the real case, the (global) rigidity of
generic complex frameworks only depends on the underlying graph, and the graph
properties obtained in this way coincide with their real counterpart.

Theorem 2.1. [9, 10] Complex rigidity and global rigidity are generic properties and
a graph G is rigid (respectively globally rigid) in Cd if and only if it is rigid (resp.
globally rigid) in Rd.

In light of Theorem 2.1, the terms “(globally) rigid in Rd” and “(globally) rigid in
Cd” are interchargeable for a graph. We shall always use the former to emphasize that,
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2.2 The rigidity matrix and the rigidity matroid 5

although we often work in the complex setting, our results are related to the standard
(real) notion of global rigidity.

It follows from the definitions that globally rigid graphs are rigid. The following
much stronger necessary conditions of global rigidity are due to Hendrickson [11]. We
say that a graph is redundantly rigid in a given dimension if it remains rigid after
deleting any edge. A graph is k-connected for some k ≥ 2 if it has at least k + 1
vertices and it remains connected after deleting any set of less than k vertices.

Theorem 2.2. [11] Let G be a graph on at least d+2 vertices for some d ≥ 1. Suppose
that G is globally rigid in Rd. Then G is (d+ 1)-connected and redundantly rigid in
Rd.

In d = 1, 2 dimensions the conditions of Theorem 2.2 are, in fact, sufficient for
global rigidity [12]. This fails in the d ≥ 3 case and a combinatorial characterization
of globally rigid graphs in these dimensions is a major open question.

2.2 The rigidity matrix and the rigidity matroid

The rigidity matroid of a graph G is a matroid defined on the edge set of G which
reflects the rigidity properties of all generic realizations of G. For a general introduction
to matroid theory we refer the reader to [17]. Let (G, p) be a realization of a graph
G = (V,E) in Rd. The rigidity matrix of the framework (G, p) is the matrix R(G, p)
of size |E| × d|V |, where, for each edge vivj ∈ E, in the row corresponding to vivj , the
entries in the d columns corresponding to vertices vi and vj contain the d coordinates
of (p(vi)− p(vj)) and (p(vj)− p(vi)), respectively, and the remaining entries are zeros.
In other words, it is 1/2 times the Jacobian of the rigidity map md,G. The rigidity
matrix of (G, p) defines the rigidity matroid of (G, p) on the ground set E by linear
independence of rows. It is known that any pair of generic frameworks (G, p) and
(G, q) have the same rigidity matroid. We call this the d-dimensional rigidity matroid
Rd(G) = (E, rd) of the graph G. We can define the rigidity matrix R(G, p) for complex
frameworks in the same way as in the real case. This, again, allows us to define the
rigidity matroid of the framework. It is not difficult to show that the rigidity matroid
of a generic framework in Cd is, again, the d-dimensional rigidity matroid Rd(G).

We denote the rank of Rd(G) by rd(G). A graph G = (V,E) is M-independent in
Rd if rd(G) = |E| and it is an M -circuit in Rd if it is not independent but every proper
subgraph G′ of G is independent. When the dimension d is clear from the context, we
shall simply write M -independent and M -circuit, respectively. An edge e of G is an
M-bridge in Rd if rd(G− e) = rd(G)− 1 holds.

Gluck characterized rigid graphs in terms of their rank.

Theorem 2.3. [7] Let G = (V,E) be a graph with |V | ≥ d + 1. Then G is rigid in
Rd if and only if rd(G) = d|V | −

(
d+1
2

)
.

LetM be a matroid on ground set E with rank function r. We can define a relation
on the pairs of elements of E by saying that e, f ∈ E are equivalent if e = f or
there is a circuit C of M with {e, f} ⊆ C. This defines an equivalence relation. The
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2.3 Affine maps and conics at infinity 6

equivalence classes are the connected components of M. The matroid is said to be
connected if there is only one equivalence class, and separable otherwise. We shall use
the fact that M is separable if and only if there is a partition E = E1 ∪ E2 of E into
two non-empty subsets for which

r(M) = r(M1) + r(M2), (1)

holds, where Mi denotes the restriction of M to Ei, i = 1, 2.
Given a graph G = (V,E), the subgraphs induced by the edge sets of the connected

components of Rd(G) are the M -connected components of G in Rd. The graph is said
to be M -connected in Rd if Rd(G) is connected, and M -separable in Rd otherwise. See
Figure 1 for an example of an M -separable graph in R3.

Theorem 2.4. [12] Let G be a graph without isolated vertices and d ∈ {1, 2}. Then

(a) If G is globally rigid in Rd on at least d+ 2 vertices, then it is M -connected in
Rd.

(b) If G is M -connected in Rd, then it is redundantly rigid in Rd.

Since an edge e is an M -bridge if and only if {e} is the edge set of an M -connected
component of G, and a rigid graph is redundantly rigid if and only if it has no M -
bridges, part (a) of Theorem 2.4 is a strengthening of the second part of Theorem 2.2
in the d ≤ 2 case. We shall show (Theorem 3.5) that this strengthening remains true
in the d ≥ 3 case. On the other hand, it is known that part (b) of Theorem 2.4 is not
true in d ≥ 3 dimensions.

Let G = (V,E) be a graph on n vertices and (G, p) a framework in Cd. The elements
of ker(R(G, p)) ⊆ Cnd are the infinitesimal motions of (G, p), while the elements
of ker(R(G, p)T ) ⊆ CE are the equilibrium stresses of (G, p). We shall also use the
notation S(G, p) = ker(R(G, p)T ). By basic linear algebra, S(G, p) is the orthogonal
complement of span(R(G, p)) in CE. Since the elements of S(G, p) capture the row
dependences of R(G, p), we have that G is M -independent in Rd if and only if for
every generic realization (G, p) in Cd, we have S(G, p) = {0}, and G is an M -circuit
in Rd if and only if every generic realization (G, p) has a unique (up to scalar multiple)
non-zero equilibrium stress ω and ω is non-zero on every edge of G.

Suppose that G is M -separable in Rd and let E = E1 ∪ E2 be a partition of E
into non-empty subsets such that for the graphs Gi induced by Ei, i = 1, 2, we have
rd(G) = rd(G1) + rd(G2). It is not difficult to see that in this case for any generic
realization (G, p) in Cd, we have span(R(G, p)) = span(R(G1, p))⊕ span(R(G2, p)) as
linear subspaces of CE, under the identification CE = CE1 × CE2 . This also implies
S(G, p) = S(G1, p)⊕ S(G2, p) under the same identification.

2.3 Affine maps and conics at infinity

We say that a framework (G, p) in Cd has full affine span if the affine span of the
image of the vertices under p is all of Cd. A configuration q ∈ Cnd, viewed as a point
q = (qv)v∈V , is an affine image of p if qv = Apv + b, v ∈ V for some matrix A ∈ Cd×d
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2.3 Affine maps and conics at infinity 7

Figure 1: A 3-connected, redundantly rigid and M -separable graph in R3. This graph
satisfies r3(G) = 36 = 27 + 9 = r3(G

o) + r3(K5), where Go is the outer ring of K5’s
and K5 is the subgraph induced by the black (filled) vertices.

and vector b ∈ Cd. We say that p and q are strongly congruent if q can be obtained as
the affine image of p under a rigid motion, i.e. an affine map x 7→ Ax+ b, such that
ATA is the identity matrix.

Two frameworks (G, p) and (G, q) in Rd are strongly congruent if and only if they
are congruent. This is not always the case for frameworks in Cd. However, congruent
frameworks that have full affine span are strongly congruent, see [9, Corollary 8].

Let (G, p) be a framework in Cd. We say that the edge directions of (G, p) lie on a
conic at infinity if there is a non-zero symmetric matrix Q such that for every edge uv
of G, (p(u)− p(v))TQ(p(u)− p(v)) = 0. The following lemma is implied by results of
Connelly (see e.g. [4, Proposition 4.2]). For completeness, we give a proof.

Lemma 2.5. Let G = (V,E) be a graph and (G, p) a framework in Cd such that its
edge directions do not lie on a conic at infinity. Let (G, q) be a framework such that q
is an affine image of p. Then md,G(q) = md,G(p) if and only if q and p are congruent.

Proof. The “if” direction is immediate. In the other direction, suppose that md,G(q) =
md,G(p). Let x 7→ Ax+ b be an affine transformation that sends p to q. It follows from
the definitions that for any pair of vertices u, v ∈ V ,

muv(q) = (p(u)− p(v))TATA(p(u)− p(v)),

where the definition of muv is extended to all (possibly non-adjacent) vertex pairs u, v
in a natural way. Therefore we have

muv(q)−muv(p) = (p(u)− p(v))T (ATA− I)(p(u)− p(v)). (2)

By assumption, for every edge uv ∈ E, the left-hand side of (2) is zero. Since the edge
lengths of (G, p) do not lie on a conic at infinity, this implies ATA− I = 0, so that
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2.4 Algebraic geometry background 8

the left-hand side is zero for every pair of vertices u, v ∈ V , which is what we wanted
to show.

The following lemma is stated in [4] for frameworks in Rd, but the same proof works
for frameworks in Cd.

Lemma 2.6. [4, Proposition 4.3] Let G be a graph in which each vertex has degree
at least d. Then for every generic realization (G, p) in Cd, the edge directions of (G, p)
do not lie on a conic at infinity.

The following lemma is folklore.

Lemma 2.7. Let (G, p), (G, q) be frameworks in Cd and suppose that q is an affine
image of p. Then S(G, p) ⊆ S(G, q). If both (G, p) and (G, q) have full affine span,
then S(G, p) = S(G, q).

Proof. Let x 7→ Ax+ b be the affine transformation that maps p to q and let A′ be the
nd× nd block matrix with n copies of A in its diagonal and zeroes elsewhere, where
n denotes the number of vertices of G. In other words, A′ is the Kronecker product
In ⊗ A of the n× n identity matrix and A.

Direct calculation shows that R(G, q) = R(G, p)A′, which immediately implies
S(G, p) = ker(R(G, p)T ) ⊆ ker(R(G, q)T ) = S(G, q). If (G, p) and (G, q) have full
affine span, then the affine map sending p to q must necessarily be invertible, so that
p is an affine image of q as well, implying S(G, q) ⊆ S(G, p).

Finally, we shall use the following property of globally rigid graphs which is easy to
deduce from previous results on global rigidity and maximum rank stress matrices.
We sketch the proof and refer the reader to [4, 8] for the definitions and key theorems.

Theorem 2.8. Let G be a globally rigid graph on n ≥ d+ 2 vertices in Cd, for some
d ≥ 1 and (G, p) a generic realization of G in Cd. For every realization (G, q) in Cd

with S(G, p) = S(G, q) we must have that q is an affine image of p.

Proof. Since G is globally rigid in Cd, it is also globally rigid in Rd. Let (G, p0) be a
generic realization of G in Rd. It was shown in [8] that there exists an equilibrium
stress ω0 for (G, p0) for which the associated stress matrix has rank n− d− 1. The
complex version of [8, Lemma 5.8] then implies that (G, p) has an equilibrium stress ω
such that the associated stress matrix has rank n− d− 1.

If S(G, p) = S(G, q) for some realization (G, q), then ω is a stress for (G, q) as well.
Then (the complex version of) [4, Proposition 1.2] implies that q is an affine image of
p.

2.4 Algebraic geometry background

We briefly recall the notions from algebraic geometry that we shall use. For a more
detailed exposition, see [10, Appendix A] or [6, Section 2.2]. We say that a subset
X ⊆ Cm is a variety if it is the set of simultaneous vanishing points of some polynomials
f1, . . . , fk ∈ C[x1, . . . , xm]. The varieties in Cm form the closed sets of the so-called
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2.5 The measurement variety 9

Zariski topology1. We denote by I(X) ⊆ C[x1, . . . , xm] the set of polynomials that
vanish on X. We say that X is irreducible if it cannot be written as the proper union of a
finite number of varieties, and it is defined over Q if I(X) has a generating set consisting
of polynomials with rational coefficients. The dimension of an irreducible variety X
is the largest number k such that there exists a chain X0 ( X1 ( · · · ( Xk = X of
irreducible varieties.

Let X ⊆ Cm be an irreducible variety. At each point x ∈ X, we define the Zariski
tangent space of X at x, denoted by TxX, to be the kernel of the Jacobian matrix of a
set of generating polynomials of I(X), evaluated at x. Thus, TxX is a linear subspace
of Cm. We say that x is smooth if dim(TxX) = dim(X). If X is homogeneous (i.e. it
can be defined by homogenous polynomials, or equivalently, tx ∈ X for every x ∈ X
and t ∈ C) and x ∈ X is a smooth point, we define the Gauss fiber corresponding to x
to be the set {y ∈ X : y is smooth and TyX = TxX}.2

Let X ⊆ Cm be a variety defined over Q. We say that a point x ∈ X is generic in
X if the only polynomials with rational coefficients satisfied by x are those in I(X).
Note that a framework (G, p) in Cd is generic if and only if p is generic as a point of
the variety Cnd. It is known that if a point of X is generic, then it is smooth. We shall
also need the following result.

Lemma 2.9. [10, Lemma A.6] Let X ⊆ Y be irreducible varieties, with Y defined
over Q. Suppose that X has at least one point which is generic in Y . Then the points
in X which are generic in Y are Zariski-dense in X.

2.5 The measurement variety

Recall that for a graph G = (V,E), we denote its d-dimensional edge measurement
map by md,G : Cnd → CE.

Definition 2.10. The d-dimensional measurement variety of a graph G (on n vertices),
denoted by Md,G, is the Zariski-closure of md,G(Cnd).

We shall frequently use the following lemma on generic points. It follows by applying
[10, Lemmas 4.4, A.7, A.8] to the varieties Cnd, Md,G and the map md,G.

Lemma 2.11. Let x ∈Md,G be a point in the measurement variety of G. Then x is
generic in Md,G if and only if there is a generic point p ∈ Cnd for which x = md,G(p).

It is known that the measurement variety, being the closure of the image of an
irreducible variety defined over Q, is also an irreducible variety defined over Q. It
follows from the definition and basic topological considerations that if E ′ ⊆ E is

1Throughout the paper, unless otherwise noted, we shall work with the Zariski topology. In
particular, given a subset X ⊆ Cd of some complex Euclidean space, we shall simply say that X is
open (closed, respectively) to mean that it is Zariski-open (Zariski-closed, respectively), and we shall
use X to denote the Zariski-closure of X in Cd.

2In other words, the Gauss fiber corresponding to x is the fiber over TxX of the rational function
X 99K Gr(dim(X),Cm), defined by the mapping x 7→ TxX on the smooth locus of X. Here,
Gr(dim(X),CE) denotes the Grassmannian variety of dim(X)-dimensional linear subspaces of Cn.
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2.6 Unlabeled reconstruction 10

a subset of edges inducing a subgraph G′ of G, then Md,G′ = πE′(Md,G), where
πE′ : CE → CE′

is the projection onto the coordinate axes corresponding to E ′, see [6,
Lemma 3.8].

In what follows we shall frequently compare the measurement varieties of different
graphs. In this case by writing Md,G = Md,H (Md,G ⊆ Md,H , respectively) we mean
that there is a bijection ψ : E(G)→ E(H) between the edge sets of G and H such that
Ψ(Md,G) = Md,H (Ψ(Md,G) ⊆ Md,H , respectively), where Ψ : CE(G) → CE(H) is the
mapping induced by ψ in the natural way. When we want to be more explicit about
the underlying edge bijection, we shall write Md,G = Md,H under the edge bijection ψ.
Moreover, if we write both Md,G = Md,H and md,G(p) = md,H(q) in the same context,
we shall mean that these equalities are satisfied under the same edge bijection.

The following results show that Rd(G) is “encoded” in the measurement variety in
some sense. This has been observed before, see e.g. [6, 10, 18]. Using the terminology
of the latter paper, the situation can be summarized by saying that the algebraic
matroid corresponding to the variety Md,G is isomorphic to Rd(G).

Lemma 2.12. Let G be a graph on n vertices. Then

dim(Md,G) = rd(G). (3)

In particular, when n ≥ d+ 1 we have dim(Md,G) ≤ nd−
(
d+1
2

)
and equality holds if

and only if G is rigid in d dimensions. Moreover, G is M -independent in Rd if and
only if Md,G = CE.

Theorem 2.13. Let G and H be graphs with the same number of edges and suppose
that Md,G = Md,H under some edge bijection ψ. Then ψ defines an isomorphism
between Rd(G) and Rd(H).

The following result shows that the measurement variety also encodes the space of
stresses of generic frameworks. This follows from the fact that S(G, p) is the orthogonal
complement of span(R(G, p)) in CE using standard results in differential geometry,
see [8, Lemma 2.21] or [10, Lemma 4.10].

Lemma 2.14. Let G be a graph and (G, p) a generic realization in Cd for some
d ≥ 1. Let x = md,G(p) ∈Md,G. Then the space of stresses S(G, p) is the orthogonal
complement of the tangent space Tx(Md,G) in CE.

The lemma implies that if (G, p) and (G, q) are generic frameworks in Cd, then
S(G, p) 6= S(G, q) if and only if the Gauss fibers corresponding to md,G(p) and md,G(q)
are different. We shall use this corollary later.

2.6 Unlabeled reconstruction

In what follows it will be convenient to use the following notions. We say that two
frameworks (G, p) and (H, q) are length-equivalent (under the bijection ψ) if there is
a bijection ψ between the edge sets of G and H such that for every edge e of G, the
length of e in (G, p) is equal to the length of ψ(e) in (H, q).
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2.6 Unlabeled reconstruction 11

Definition 2.15. Let (G, p) be a generic realization of the graph G in Cd. We say
that (G, p) is strongly reconstructible if for every generic framework (H, q) in Cd

that is length-equivalent to (G, p) under some edge bijection ψ, where H has the
same number of vertices as G, there is an isomorphism ϕ : V (G)→ V (H) for which
ψ(uv) = ϕ(u)ϕ(v) for all uv ∈ E.

In this paper we shall also consider the following stronger property, where the
condition on the number of vertices of H is omitted.

Definition 2.16. Let G be a graph without isolated vertices and let (G, p) be a generic
realization of G in Cd. We say that (G, p) is fully reconstructible if for every generic
framework (H, q) in Cd that is length-equivalent to (G, p) under some edge bijection
ψ, where H has no isolated vertices, there is an isomorphism ϕ : V (G)→ V (H) for
which ψ(uv) = ϕ(u)ϕ(v) for all uv ∈ E.

Note that, since we assume (G, p) to be generic, its edge lengths are pairwise
distinct, and hence the bijection ψ is unique in the above definitions. Also note
that in the definition of full reconstructibility it is essential to only consider generic
length-equivalent frameworks (H, q), since for any (G, p) and any forest H with |E|
edges, we can find a (not necessarily generic) realization (H, q) that is length-equivalent
to (G, p). In the case of strong reconstructibility, we can omit this genericity condition
when G is rigid in Rd, see [6, Theorem 3.6].

As Theorem 2.18 below shows, both strong and full reconstructibility of a generic
framework can be characterized in terms of a certain uniqueness condition on the
measurement variety Md,G of the underlying graph. This also implies that these notions
are generic properties of a graph in the sense that if there is a generic framework (G, p)
in Cd which is strongly (resp. fully) reconstructible, then every generic realization of G
in Cd is strongly (resp. fully) reconstructible. This motivates the following definition.

Definition 2.17. A graph G is said to be (generically) strongly reconstructible (re-
spectively (generically) fully reconstructible) in Cd if every generic realization (G, p) of
G in Cd is strongly (respectively fully) reconstructible.

Theorem 2.18. Let G be a graph and d ≥ 1 be fixed. The following are equivalent.

(i) G is generically strongly reconstructible (generically fully reconstructible, respec-
tively) in Cd.

(ii) There exists some generic framework (G, p) in Cd that is strongly reconstructible
(fully reconstructible, respectively).

(iii) Whenever Md,G = Md,H under an edge bijection ψ for some graph H, where
H has the same number of vertices as G (where H has an arbitrary number of
vertices, respectively), ψ is induced by a graph isomorphism.

The “strongly reconstructible” part of Theorem 2.18 is [6, Theorem 3.4]. The same
proof works for the “fully reconstructible” version after omitting the condition on the
number of vertices of H.

We close this section by recalling the main result of [10].
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Section 3. Necessary conditions for global rigidity 12

Theorem 2.19. [10, Theorem 3.4] Let G be a graph on at least d+ 2 vertices, where
d ≥ 1. Suppose that

• d = 1 and G is 3-connected, or

• d ≥ 2 and G is globally rigid in Rd.

Then G is strongly reconstructible in Cd.

In the next section, we shall strengthen this result by proving that globally rigid
graphs on at least d+ 2 vertices are, in fact, fully reconstructible in Cd for d ≥ 2. The
cases d = 1, 2 were already settled in [6] by verifying the following equivalence.

Theorem 2.20. [6, Theorem 5.19, Corollary 5.22, Theorem 5.1] Let G be a graph
on at least d + 2 vertices and without isolated vertices, where d ∈ {1, 2}. Then the
following are equivalent.

• d = 2 and G is globally rigid in Rd (or d = 1 and G is 3-connected).

• G is strongly reconstructible in Cd.

• G is fully reconstructible in Cd.

In Section 4, we shall give examples showing that for d ≥ 3, there are fully re-
constructible graphs in Cd (on at least d + 2 vertices) that are not globally rigid in
Rd.

3 Necessary conditions for global rigidity

In this section we prove our main results: globally rigid graphs in Rd on at least d+ 2
vertices are M -connected in Rd (Theorem 3.5) and fully reconstructible in Cd (Theorem
3.6). We start with some technical results about the structure of the measurement
variety that we shall use in these proofs. Apart from Lemma 3.1, the lemmas in the
next subsection are implicit in [10].

3.1 The structure of the measurement variety

The next lemma implies that the measurement variety of an M -separable graph G is
the product of the measurement varieties of its M -connected components. A special
case of this statement when G contains an M -bridge was proved in [6, Theorem 3.13].

Lemma 3.1. Let d ≥ 1 and letG = (V,E) be a graph. Suppose that there is a partition
E = E1∪E2 of E into non-empty subsets such that rd(E) = rd(E1)+rd(E2). Let G1 and
G2 be the subgraphs induced by E1 and E2, respectively. Then Md,G = Md,G1 ×Md,G2

(under the identification CE = CE1 × CE2).
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3.1 The structure of the measurement variety 13

Proof. For i = 1, 2, Md,Gi
arises as the closure of the projection of Md,G onto the

coordinate axes corresponding to Ei, so we have that Md,G ⊆ Md,G1 ×Md,G2 . By
[19, Chapter 3, Theorem 1.6], Md,G1 ×Md,G2 is an irreducible variety of dimension
rd(E1) + rd(E2). Since this dimension equals the dimension rd(E) of the irreducible
variety Md,G, the two varieties must be equal.

Lemma 3.2. Let G be a graph and (G, p) a generic framework in Cd with full affine
span. Let A ⊆ Cnd denote the set of affine images of p, and let F ⊆ Md,G be the

Gauss fiber corresponding to md,G(p). Then md,G(A) ⊆ F .

Proof. For clarity, we shall write m and M instead of md,G and Md,G in the following.
For any q ∈ A, if q has full affine span, then by Lemma 2.7 we have S(G, p) = S(G, q).

Let Ag denote the set of frameworks in A that are generic. Since (G, p) is generic,
this set is non-empty, and since A is irreducible (being a linear space), Lemma 2.9
implies Ag = A. Now for any q ∈ Ag, we have S(G, q) = S(G, p) by Lemma 2.7, and
it follows by Lemma 2.14 that Tm(q)M = Tm(p)M , or in other words, m(q) ∈ F .

This shows that m(Ag) ⊆ F . Taking closures and using the continuity of m, we
have

F ⊇ m(Ag) = m(Ag) = m(A),

as desired.

Although we shall not use this fact, we note that by [10, Lemma 4.6], md,G(A) is
a linear space, and in particular it is closed, so in the above lemma we could have
written md,G(A) instead of md,G(A).

Let G be a graph and d ≥ 1. We say that a Gauss fiber F of Md,G is generic if it
contains a point that is generic in Md,G.

Lemma 3.3. Let G be a graph and d ≥ 2.

a) If G is not M -independent in Rd, then there exists a point x ∈Md−1,G ⊆Md,G

that is generic in Md−1,G and such that there are an infinite number of generic
Gauss fibers F of Md,G with x ∈ F .

b) If G is globally rigid in Rd on at least d+ 2 vertices and x ∈Md,G \Md−1,G, then
there are at most a finite number of generic Gauss fibers F of Md,G with x ∈ F .

Proof. a) [Following [10, Proposition 4.21]] For clarity, we shall write m instead of
md,G in the following. We note first that since G is not M -independent, it has at least
d+ 2 vertices and consequently any generic realization of G in Cd has full affine span.

Let (G, p) be a generic framework in Cd and let (G, q) be the framework in Cd−1

obtained by projecting the image of each vertex in (G, p) onto the first d−1 coordinate
axes. Then (G, q) is generic in Cd−1, and consequently x = md,G(q) ∈ Md−1,G is
generic in Md−1,G by Lemma 2.11. It is enough to find an infinite sequence of generic
frameworks (G, pi), i ∈ N, with corresponding (generic) Gauss fibers Fi, i ∈ N, such
that Fi 6= Fj for i 6= j and such that q is an affine image of pi, since by Lemma 3.2
this implies x ∈ F i.

We shall do this inductively. For the base case, let p1 = p. Now suppose that for
some i > 1, we have already found suitable frameworks (G, pj), j < i. Since G is not
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3.2 Globally rigid graphs are M -connected 14

M -independent, each of these frameworks has a non-zero stress ωj . By varying the last
coordinate of the image of some vertices in (G, p), we can find a generic framework
(G, pi) that does not satisfy any of the stresses ωj, j < i and whose projection onto
the first d− 1 coordinate axes is q.3 This implies that S(G, pi) 6= S(G, pj) for j < i.
Let Fi denote the Gauss fiber corresponding to m(pi). By Lemma 2.14 we must have
Tm(pi)Md,G 6= Tm(pj)Md,G, and hence Fi 6= Fj for j < i.

b) This is an immediate consequence of Proposition 4.20 and Remark 4.8 of [10].

Corollary 3.4. Let G be a globally rigid graph in Rd on at least d + 2 vertices for
some d ≥ 2 and suppose that Md,G = Md,H under some edge bijection ψ for some
graph H not necessarily on the same number of vertices as G. Then Md−1,H ⊆Md−1,G
under ψ.

Proof. It follows from Theorem 2.2 that G has no M -bridges, which means it cannot
be M -independent. Thus part a) of Lemma 3.3 implies that there is a generic point
x ∈ Md−1,H ⊆ Md,H such that there is an infinite number of generic Gauss fibers
F ⊆ Md,H with x ∈ F . Part b) of the same lemma then implies that x is in Md−1,G.
Now from the fact that x is generic in Md−1,H we have that every polynomial with
rational coefficients satisfied by the points of Md−1,G must also be satisfied by the
points of Md−1,H . Since both Md−1,H and Md−1,G are defined over Q, we must have
Md−1,H ⊆Md−1,G, as desired.

3.2 Globally rigid graphs are M-connected

We are ready to prove the first main result of this section.

Theorem 3.5. Let G = (V,E) be a globally rigid graph in Rd on n ≥ d+ 2 vertices.
Then G is M -connected in Rd.

Proof. Let (G, p) be a generic framework in Cd. We shall show that if G is not M -
connected in Rd, then there is a framework (G, q) in Cd such that S(G, p) = S(G, q)
but where q is not an affine image of p. Then, from Theorem 2.8, G cannot be globally
rigid in Rd, and we are done.

If G is not M -connected in Rd, there must be a partition E = E1 ∪ E2 of E into
non-empty subsets with rd(E) = rd(E1) + rd(E2). Let G1 and G2 be the subgraphs
consisting of full vertex set and the edge sets E1 and E2, respectively. Let (G1, p), (G2, p)
denote the respective sub-frameworks.

If G has an M -bridge e, then we may assume that E2 = {e} and G1 = G− e. By
Theorem 2.2, G is (d+ 1)-connected, so in this case the minimum degree of G1 is at
least d. Thus, by Lemma 2.6, the edge directions of (G1, p) do not lie on a conic at
infinity. If G contains no M -bridges, then G1 contains an M -circuit, so in particular it
has a subgraph of minimum degree at least d. Thus, by Lemma 2.6, applied to this
subgraph, the edge directions of (G1, p) do not lie on a conic at infinity.

3The existence of such a “generic lifting” follows from the basic fact that for any finite set S ⊆ C
that is algebraically independent over Q, the numbers x ∈ C for which S ∪ {x} is also algebraically
independent form a dense subset of C.
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3.3 Globally rigid graphs are fully reconstructible 15

Now we find our promised (G, q). By Lemma 3.1, Md,G = Md,G1 ×Md,G2 . Let
md,G(p) = (x1, x2) ∈ Md,G. Now x2 ∈ Md,G2 implies 4x2 ∈ Md,G2 and consequently
(x1, 4x2) ∈Md,G. Since (G, p) was generic, (x1, x2) is generic in Md,G by Lemma 2.11,
and this implies that (x1, 4x2) is generic in Md,G as well. Using Lemma 2.11, it follows
that there is a generic framework (G, q) in Cd with md,G(q) = (x1, 4x2).

Let us consider the sub-frameworks (G1, q) and (G2, q). Both of these frameworks
are generic. Also note that (G1, q) is equivalent to (G1, p) and (G2, q) is equivalent
to (G2, 2p). Since S(G, p) = S(G, 2p), this implies S(G, p) = S(G1, p) ⊕ S(G2, p) =
S(G1, q)⊕ S(G2, q) = S(G, q), as desired.

We have that (G1, q) is equivalent to (G1, p). As established above, the edge
directions of (G1, p) do not lie on a conic at infinity, Thus it follows from Lemma 2.5
that if q is an affine image of p, then q must be congruent to p. But q is clearly not
congruent to p as (G2, p) is not equivalent to (G2, q). Thus p is not an affine image of
q, as desired.

Theorem 3.5 was known to hold in R1 (where global rigidity, 2-connectivity and
M -connectivity are equivalent) and in R2, see [12] (c.f. Theorem 2.4 above). It is
conjectured in [15] that globally rigid graphs in Rd are “non-degenerate” (for the
definition see [15]). Since non-degenerate graphs are M -connected ([15, Lemma 3.2]),
Theorem 3.5 gives an affirmative answer to a weaker, M -connected version of this
conjecture.

Underlying the proof of Theorem 3.5 is the following structural observation on the
measurement variety of G, which we give without details. Since G is globally rigid, [8,
Theorem 4.4] and [10, Lemma 4.24, Remark 4.25] imply that for any generic Gauss
fiber F of Md,G we have dim(F ) =

(
d+1
2

)
. On the other hand, it follows from the

definitions that if Md,G = Md,G1 ×Md,G2 , then F = F1×F2 where F1 and F2 are some
generic Gauss fibers of Md,G1 and Md,G2 , respectively. Using Lemma 3.2 it can be
shown that under the assumptions on G1 made in the proof of Theorem 3.5, we have
dim(F1) ≥

(
d+1
2

)
. Since dim(F2) ≥ 1, this gives(
d+ 1

2

)
= dim(F ) = dim(F1) + dim(F2) >

(
d+ 1

2

)
,

a contradiction.

3.3 Globally rigid graphs are fully reconstructible

Our goal in this subsection is to prove the following result, which gives an affirmative
answer to [10, Question 7.5].

Theorem 3.6. Let d ≥ 2 and let G be a graph on n ≥ d+ 2 vertices that is globally
rigid in Rd. Then G is fully reconstructible in Cd.

Theorem 4.7, below, will lead to examples that show that global rigidity is not
necessary for full reconstructibility.

Our proof of Theorem 3.6 uses Theorem 3.5. In fact, as the following theorem shows,
the former result is a strengthening of the latter.
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Theorem 3.7. Let G = (V,E) be a graph without isolated vertices and suppose that
G is fully reconstructible in Cd. Then G is M -connected in Rd.

Proof. Suppose, for a contradiction, that there is a partition E = E1 ∪ E2 of E into
non-empty subsets with rd(E) = rd(E1) + rd(E2), and let G1 and G2 be the subgraphs
induced by E1 and E2, respectively. By Lemma 3.1, this implies Md,G = Md,G1×Md,G2 .
If G1 and G2 have at least one vertex in common, then let H be the graph consisting
of disjoint copies of G1 and G2. Otherwise, let H be the graph obtained from
disjoint copies of G1 and G2 by identifying some vertex of G1 and some vertex of
G2. In both cases, we have md,H(Cn′d) = md,G1(Cn1d) × md,G2(Cn2d), where n′, n1

and n2 denote the number of vertices of H, G1 and G2, respectively. It follows that
Md,H = Md,G1 ×Md,G2 .

4 Since by construction G and H are not isomorphic, Theorem
2.18 then implies that G is not fully reconstructible, as desired.

This theorem is similar in spirit to the following result from [6]: if G is strongly
reconstructible in Cd, then it cannot have an M -bridge in Rd. Example 4.6 below
shows that M -connectivity together with other natural conditions is not sufficient for
strong reconstructibility.

We start by giving an outline of our proof of Theorem 3.6. By Theorem 2.18, to
show that the globally rigid graph G is fully reconstructible, we need to show that
whenever Md,G = Md,H for some graph H without isolated vertices, we have that H is
isomorphic to G (and the isomorphism induces the appropriate edge bijection). Let n
and n′ denote the number of vertices of G and H, respectively. If n = n′, then we are
done by the strong reconstructibility of G (Theorem 2.19). If n′ < n, then Md,H must
necessarily be of lower dimension than Md,G, which is impossible. The only remaining
possibility to be ruled out is that n′ > n; note that in this case Md,G = Md,H (and in
particular the equality of dimensions) implies that H is locally flexible in Cd.

We rule this out as follows. From Md,G = Md,H and Md−1,H ⊆Md−1,G (which follows
from Corollary 3.4) we get lower bounds on the generic dimension of the space of
infinitesimal motions of H in d and d − 1 dimensions. We shall also show (Lemma
3.10) that as we decrease d, this generic dimension cannot decrease “too much”, which
gives us a lower bound on the number k1 of one-dimensional infinitesimal motions of
H. On the other hand, using Theorem 3.5, we can deduce that H is M -connected, and
in particular connected, so that k1 = 1, contradicting the lower bound we obtained
previously.

The crux of our argument is a technical result (Lemma 3.9) which describes a
particular infinitesimal rotation in d dimensions that, generically, cannot be decomposed
into two (d− 1)-dimensional infinitesimal rotations in a particular way. To prove this,
we need the following lemma about the affine span of a certain variety.

Lemma 3.8. Let G = (V,E) be a graph on n vertices and consider the mapping
f : C2n → CE defined by

p =
(
p(1)v , p(2)v

)
v∈V 7−→

(
(p(1)v − p(1)u )(p(2)v − p(2)u )

)
uv∈E .

4This follows from the basic fact that for any U ⊆ CE1 , V ⊆ CE2 we have U × V = U × V , where
closures are meant in the respective Zariski topologies, see e.g. [6, Lemma 2.4].
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Then f(C2n) (and consequently f(C2n) itself) is not contained in any (linear) hyper-
plane in CE.

Proof. By direct calculation5 we have that f = m2,G ◦ α where α : C2n → C2n is
defined by

p =
(
p(1)v , p(2)v

)
v∈V 7−→

(
p
(1)
v + p

(2)
v

2
,
p
(1)
v − p(2)v

2
√
−1

)
v∈V

.

Since α is a linear automorphism of C2n, this implies that f(C2n) = m2,G(C2n),

and thus f(C2n) = M2,G. Let H be an arbitrary hyperplane in CE whose orthogonal
complement is generated by some non-zero ω ∈ CE. We can find a generic framework
(G, p) in C2 such that ω is not an equilibrium stress of (G, p). By Lemma 2.14, ω is not
in the orthogonal complement of the tangent space of M2,G at m2,G(p). It follows that
this tangent space is not contained in H, which implies that M2,G is not contained in
H either, as desired.

We introduce the following notation. Let d ≥ 3 and let G = (V,E) be a graph
on n vertices. For a framework (G, p) in Cd, let W1(G, p) ≤ Cnd denote the set of
infinitesimal motions of (G, p) that are supported on the first d− 1 coordinates, that
is, infinitesimal motions of the form (qv, 0)v∈V , where qv ∈ Cd−1 for each vertex v.
Similarly, let W2(G, p) denote the set of infinitesimal motions that are supported on
the last d− 1 coordinates.

Lemma 3.9. Let d ≥ 3 and let G = (V,E) be a graph on n vertices that is not M -

independent in Rd−2. Then there is a generic configuration p =
(
p
(1)
v , . . . , p

(d)
v

)
v∈V
∈

Cnd such that the infinitesimal rotation ϕ = ϕ(p) of (G, p) defined by

ϕv = (−p(d)v , 0, . . . , 0, p(1)v ) ∀v ∈ V

is not in the subspace W (G, p) of Cnd spanned by W1(G, p) ∪W2(G, p). In particular,
W (G, p) is a proper subspace of the set of infinitesimal motions of (G, p).

Proof. Consider an arbitrary realization (G, p) in Cd and let p̃ ∈ Cn(d−2) denote the
projection of p onto the middle d − 2 coordinate axes. Suppose that ϕ(p) can be

written as ϕ(p) = q+ r, where q ∈ W1(G, p) and r ∈ W2(G, p). Then qv = (−p(d)v , q̃v, 0)
for every vertex v ∈ V , where q̃ = (q̃v)v∈V ∈ Cn(d−2). The assumption that q is an
infinitesimal motion of (G, p) means that

(p(1)v − p(1)u )(p(d)v − p(d)u ) = (p̃v − p̃u) · (q̃v − q̃u), ∀uv ∈ E. (4)

Now let (G, p̃) be a fixed generic realization in Cd−2. We shall show that we can
choose p(1), p(d) ∈ Cn in such a way that the framework (G, p) defined (coordinate-wise)
by p = (p(1), p̃, p(d)) is generic in Cd and (4) does not hold for any choice of q̃ ∈ Cn(d−2).
It follows that for such a p, ϕ(p) cannot be in W (G, p).

5This was already observed in [2].
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Consider the linear subspace H of CE defined as the image of Cn(d−2) under the
linear mapping

q̃ = (q̃v)v∈V 7−→ R(G, p̃)q̃ =
(
(p̃v − p̃u) · (q̃v − q̃u)

)
uv∈E.

Since G is not M -independent in Rd−2, (G, p̃) has a non-zero equilibrium stress
ω ∈ CE. Thus we have ωR(G, p̃) = 0, which implies that H is contained in the
orthogonal complement of ω in CE, and in particular it is a proper subspace of CE.
By Lemma 3.8, we can find p(1), p(d) ∈ Cn such that(

(p(1)v − p(1)u )(p(d)v − p(d)u )
)
uv∈E /∈ H.

Moreover, we can choose p(1) and p(d) in such a way that p = (p(1), p̃, p(d)) is generic in
Cd; this is because the set of pairs (p(1), p(d)) for which the framework p obtained in
this way is generic is a dense subset of C2n. By the above discussion, for such a choice
of p we have that the infinitesimal rotation ϕ = ϕ(p) is not contained in W (G, p), as
required.

Lemma 3.10. Let d ≥ 3 and let G be a graph on n vertices that is not M -independent
in Rd−2. For i = 1, . . . , d, let ki denote the dimension of the set of infinitesimal motions
of a generic realization of G in Ci. Then for i = 1, . . . , d−2, we have ki ≥ 2ki+1−ki+2+1.

Proof. The assumption that G is not M -independent in Rd−2 implies that it is not M -
independent in Ri for all 1 ≤ i ≤ d− 2. Thus, it is sufficient to prove for i = d− 2. By
Lemma 3.9, there is a generic realization (G, p) in Cd such that the subspace W (G, p) ⊆
Cnd generated by the subspaces W1(G, p) and W2(G, p) is a proper subset of the set
of infinitesimal motions of (G, p). Note that dim(W1(G, p)) = dim(W2(G, p)) = kd−1,
and by the choice of (G, p), we have dim(W (G, p)) ≤ kd − 1. Moreover, the subspace
W ′ = W1(G, p) ∩ W2(G, p) consists of the infinitesimal motions of (G, p) that are
supported on the middle d− 2 coordinates. This implies dim(W ′) = kd−2. By basic
linear algebra we have

dim(W ′) + dim(W (G, p)) = dim(W1(G, p)) + dim(W2(G, p)).

Substituting the above equalities and inequality and then rearranging gives

kd−2 ≥ 2kd−1 − kd + 1,

as desired.

If G is M -independent in Rd−2, then the conclusion of Lemma 3.10 does not hold.
In this case G is M -independent in Rd−1 and Rd as well, so we have ki = ni− |E| for
d− 2 ≤ i ≤ d, so that kd−2 = 2kd−1 − kd.

The following combinatorial lemma lets us turn the recursive bound on ki given in
Lemma 3.10 into a lower bound that only depends on kd and kd−1.

Lemma 3.11. Let d ≥ 2 be an integer and let k1, k2, . . . , kd ∈ Z be a sequence of
integers with kd =

(
d+1
2

)
+ x and kd−1 =

(
d
2

)
+ y for some x, y ∈ Z. Suppose that

for 1 ≤ i ≤ d − 2 we have ki ≥ 2ki+1 − ki+2 + 1. Then for 1 ≤ i ≤ d − 2 we have
ki ≥

(
i+1
2

)
+ (d− i)(y − x) + x.
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Proof. Let ki =
(
i+1
2

)
+ li for some numbers li ∈ Z, i = 1, . . . , d; in particular, we have

ld = x and ld−1 = y. For convenience, we also define ld+1 = 2x − y. We shall prove
the following stronger statement: if the assumptions of the lemma hold, then we have
li ≥ 2li+1 − li+2 and li ≥ (d − i)(y − x) + x, for all i = 1, . . . , d − 1. We proceed by
induction on j = d− i. The j = 1 case immediately follows from the way we defined
ld+1. Now let 1 < j < d. By using the lower bound on ki we obtain

ki ≥ 2ki+1 − ki+2 + 1

= (2

(
i+ 2

2

)
−
(
i+ 3

2

)
+ 1) + (2li+1 − li+2)

=

(
i+ 1

2

)
+ (2li+1 − li+2),

where we used the fact that for all a ≥ 1,
(
a
2

)
= 2
(
a+1
2

)
−
(
a+2
2

)
+ 1. This shows that

li ≥ 2li+1 − li+2. By the induction hypothesis, this also gives

li − li+1 ≥ li+1 − li+2 ≥ li+2 − li+3 ≥ · · · ≥ ld−1 − ld = y − x,

so that li ≥ li+1 + y − x ≥ (d− i)(y − x) + x, as required.

Proof of Theorem 3.6. The d = 2 case follows from Theorem 2.20, so we only prove
for d ≥ 3. Let H be a graph on n′ vertices, without isolated vertices and such
that Md,G = Md,H under some edge bijection ψ. Then by Corollary 3.4, we also
have Md−1,H ⊆ Md−1,G under ψ. Observe that since G is globally rigid, it is M -
connected in Rd by Theorem 3.5, and thus so is H by Theorem 2.13 and the equality
of the measurement varieties. In particular, H is a connected graph and it is not
M -independent in Rd and thus not M -independent in Rd−2.

Let s = n′ − n and let ki denote the dimension of the set of infinitesimal motions
of a generic realization of H in Ci for 1 = 1, . . . , d. By considering the dimension of
Md,G = Md,H (using Lemma 2.12) and using the assumption that G is (globally) rigid,
we get n′d−kd = nd−

(
d+1
2

)
, implying kd = sd+

(
d+1
2

)
. Similarly, from Md−1,H ⊆Md−1,G

we have n′(d− 1)− kd−1 ≤ n(d− 1)−
(
d
2

)
, so that kd−1 ≥ s(d− 1) +

(
d
2

)
. Note that

here we used the fact that if G is (globally) rigid in Rd, then it is rigid in Rd−1, which
follows from the coning theorem, discussed in Section 5.

Since kd ≥
(
d+1
2

)
, we must have s ≥ 0. This establishes that n′ ≥ n. On the other

hand, from Lemmas 3.10 and 3.11 we get (substituting x = sd and y ≥ s(d− 1) into
Lemma 3.11)

ki ≥
(
i+ 1

2

)
− (d− i)s+ sd =

(
i+ 1

2

)
+ si

for 1 ≤ i ≤ d− 2, and in particular, k1 ≥ s+ 1. But since H is connected, we know
that generically the only 1-dimensional infinitesimal motions of H are translations,
so that k1 = 1. It follows that s = 0, so G and H have the same number of vertices.
By Theorem 2.19, G is strongly reconstructible in Cd, so ψ is induced by a graph
isomorphism ϕ : G→ H, as desired.
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Applying Theorem 3.6 to a globally rigid subgraph of a graph, we obtain the
following corollary.

Corollary 3.12. Let d ≥ 2 and let (G, p) and (H, q) be generic frameworks in Cd

that are length-equivalent under the edge bijection ψ. Let G0 = (V0, E0) be a globally
rigid subgraph of G = (V,E) and let H0 denote the subgraph of H induced by ψ(E0).
Then ψ|E0

is induced by an isomorphism ϕ : V (G0) → V (H0) and the frameworks
(G0, p|V0

) and (H0, q|V (H0)
◦ ϕ) are congruent.

The d = 2 case of Corollary 3.12 can be found in [6, Corollary 5.2].

4 Examples and open questions

In this section, we examine various examples related to M -connected and M -separable
graphs, as well as the unlabeled reconstruction problem.

4.1 New examples of H-graphs

Following [13], we say that a graph G is an H-graph in Rd if it is (d + 1)-connected
and redundantly rigid in Rd (i.e. it satisfies the necessary conditions of Theorem 2.2),
but it is not globally rigid in Rd. There are no H-graphs for d = 1, 2 but for d ≥ 3
they exist and finding more examples may lead to a better understanding of higher
dimensional global rigidity. For a long time, the complete bipartite graph K5,5 was the
only known H-graph in R3 (identified in [3]), until infinite families had been found in
[13], see also [16].

Theorem 3.5 can be used to give new examples of H-graphs which are M -separable
in R3. These also demonstrate that redundant rigidity and (d+1)-connectivity together
do not imply M -connectivity in d ≥ 3 dimensions.

Example 4.1. Consider the construction illustrated in Figure 2(a). It is easy to see
that the graph G in the figure is 4-connected.

Claim. G is redundantly rigid and M -separable in R3.

Proof. We show that G is rigid by showing that a spanning subgraph of G can be
reduced to K4 by a sequence of the following operations: (i) deletion of a vertex of
degree at least three, (ii) deletion of a vertex v of degree four and the addition of a new
edge between two neighbours of v, (iii) the contraction of an edge uv for which u and
v have exactly two common neighbours. It is well-known that the inverse operations
(0- and 1-extension and vertex splitting) preserve rigidity in R3, see e.g. [21]. Thus,
since K4 is rigid, it will follow that G is also rigid.

First, delete the nine vertices of degree four from G and then delete one edge from
each of the remaining copies of K5. The resulting graph has 28 vertices and 78 edges.
We shall reduce it to its internal K4 subgraph. By the symmetry of the graph we can
perform the reduction steps in groups of four in a symmetric way. First we contract
four edges of the outer ring that do not belong to the four copies of K5 − e, one from
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each “corner”. These operations create a vertex of degree four in each corner, so we
can apply operation (ii) at each of them to obtain a graph on 20 vertices and 54 edges,
in which the four edges added form a four-cycle. After that we again apply operation
(ii) in three rounds, decreasing the number of vertices by four in each round. If the
added edges are chosen appropriately, we obtain a graph on 8 vertices, consisting of
the internal K4, a disjoint four-cycle C4, and eight more edges that connect them (so
that they span an 8-cycle). From here we apply operations (ii), (i), (ii), and then
again (i) to get the K4 subgraph.

Thus G is indeed rigid, that is, r3(G) = 3|V (G)| − 6 = 105. Note that G is also
redundantly rigid, because every edge of G belongs to a K5 subgraph. To see that
G is M -separable, first observe that if we remove one edge from each copy of K5 in
the outer ring Go (say, one edge incident with each vertex of degree four) then we
do not decrease its rank and obtain a spanning subgraph of Go with 96 edges. Thus
r3(G

o) ≤ 96. The inner K5 has rank 9. Hence we must have r3(G) = r3(G
o) + r3(K5),

showing that G is indeed M -separable.

Since M -separable graphs are not globally rigid by Theorem 3.5, G is indeed an
H-graph in R3. We can obtain an infinite family of H-graphs in R3 from Example
4.1 by replacing the inner K5 in Figure 2 with another 4-connected redundantly rigid
graph K ′ in R3 on at least five vertices (as in Figure 2(b), where K ′ = K6 − e).

(a) (b)

Figure 2: Graphs that are 4-connected, redundantly rigid and M -separable in R3. The
graph shown in (a) satisfies r3(G) = 105 = 96 + 9 = r3(G

o) + r3(K5), where Go is the
outer ring of K5’s.

We note that some of the H-graphs obtained in [13] (for example, the “6-ring”
depicted in Figure 3) show that 4-connectivity, redundant rigidity, and M -connectivity
together do not imply global rigidity in R3.
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It is also interesting to note that every known H-graph in R3, except K5,5, has a
4-separator.

Question 4.2. Is every 5-connected and redundantly rigid graph, other than K5,5,
globally rigid in R3?

The following related question also seems to be open.

Question 4.3. Is every 5-connected and redundantly rigid graph M -connected in R3?

Given a graph G, the cone of G is obtained by adding a new vertex v to G, along
with new edges from v to every vertex of G. It is known that the cone of an H-graph
in Rd is an H-graph in Rd+1. We can use this fact to construct further families
of H-graphs. However, these graphs will no longer be M -separable (see Theorem
5.3). Instead, we can use higher dimensional body-hinge graphs [13] to generalize the
M -separable construction of Figure 2 to d ≥ 4. We omit the details.

4.2 Unlabeled reconstructibility and small separators

In [10, Question 7.2] the authors asked whether every graph G that is 3-connected and
redundantly rigid in Rd is determined by its measurement variety; that is, whether
Md,G = Md,H under some edge bijection ψ implies that G and H are isomorphic (note
that here we do not require that the isomorphism induces ψ). Such a graph was
called “weakly reconstructible in Cd” in [6]. In the other direction, in [6, Section
7], the authors asked whether every graph on at least d+ 2 vertices that is strongly
reconstructible in Cd for some d ≥ 3 is globally rigid in Cd, or (more weakly) whether
it is (d+ 1)-connected.

In this subsection we provide negative answers to each of these questions for d ≥ 3.
Throughout this section we shall use the following (folklore) result which also appears
in the proof of [6, Theorem 5.21].

Lemma 4.4. Let G and H be graphs on at least three vertices with G connected
and let ϕ1, ϕ2 : V (G)→ V (H) be injective graph homomorphisms. Suppose that ϕ1

and ϕ2 induce the same edge map ψ : E(G) → E(H). Then ϕ1(v) = ϕ2(v) for all
v ∈ V (G).

Proof. Let v ∈ V (G) be a vertex of degree at least two and let vu, vu′ ∈ E(G) be a
pair of edges incident to v. Now ϕ1(v) is the unique vertex in H that is an end-vertex
of both ψ(vu) and ψ(vu′). Since ϕ2(v) can be described in the same way, we have
ϕ1(v) = ϕ2(v). Note that in a connected graph on at least three vertices, every edge
has at least one end-vertex with degree at least two. This shows that ϕ1 and ϕ2 send
at least one vertex of each edge in G to the same vertex in H. Since they also send
each edge in G to the same edge in H, they must agree on every vertex of G.

Example 4.5. Consider again the graph G shown in Figure 2(a). As we have seen in
Example 4.1, G is 4-connected, redundantly rigid and M -separable in R3.

Claim. G is not strongly reconstructible in C3.
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Proof. By the M -separability of G and Lemma 3.1, we have Md,G = Md,Go ×Md,K5 ,
where K5 denotes the complete subgraph of G induced by the inner five vertices. Let ψ
be a permutation of the edges of G that leaves the edges of Go in place and permutes
the edges of K5 according to some permutation of its five vertices. Then Md,G = Md,G

under ψ, i.e. Md,G is invariant under the permutation of the coordinate axes in CE(G)

induced by ψ. However, ψ is not induced by a graph automorphism of G: since it
leaves the edges of Go in place, by Lemma 4.4 such an automorphism would have to
leave the vertices of Go in place and thus be the identity map on G, which does not
induce ψ. By Theorem 2.18, this shows that G is not strongly reconstructible.

It can be shown similarly that the graph G′ shown in Figure 2(b) is not even weakly
reconstructible in C3: the graph obtained by adding the missing edge to the inner K6

and removing a different edge from it has the same measurement variety as G′, even
though the two graphs are not isomorphic. These examples can also be generalized to
higher dimensions using the results on body-hinge graphs in [13].

The graphs considered in Example 4.5 are all M -separable. The next example is of
an M -connected graph that is not strongly reconstructible.

v
a

cb

d

Figure 3: A graph that is 4-connected, redundantly rigid in R3 and M -connected in
R3, but not globally rigid in R3.

Example 4.6. Let G be the 6-ring of K5’s shown in Figure 3. As noted before, it is
4-connected, redundantly rigid in R3 and M -connected in R3.

Claim. G is not strongly reconstructible in C3.

Proof. Let v be a vertex of degree four and let us denote the vertices of the K5

subgraph that contains v by {v, a, b, c, d}, where the edges ab and cd are shared by
neighbouring K5’s. Let H = G − v. It is easy to check that the edges ac, ad, bc, bd
are all M -bridges in H. Thus by Lemma 3.1, we have Md,H = Md,H′ ⊕ C4, where
H ′ = H − {ac, ad, bc, bd}. Let (G, p) be a generic realization of G and (by a slight
abuse of notation) let (H, p) be its restriction H.
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Consider the permutation ψ of the edges of H that leaves the edges of H ′ in
place and maps ac, ad, bc, bd to bd, bc, ad, ac, respectively. Since Md,H is invari-
ant under the permutation of coordinate axes induced by ψ, Lemma 2.11 implies
that there exists a generic realization (H, q) of H in C3 such that (H ′, q|V (H′)) and
(H ′, p|V (H′)) are equivalent and mac(p) = mbd(q), mbd(p) = mac(q), mbc(p) = mad(q),
and mad(p) = mbc(q). This implies that the point configurations (p(a), p(b), p(c), p(d))
and (q(b), q(a), q(d), q(c)) are congruent, i.e. the points in them have the same pairwise
squared distances. Since by genericity they have full affine span, this also implies that
they are strongly congruent, in other words, there is a rigid motion of C3 that maps
p(a), p(b), p(c), p(d) to q(b), q(a), q(d), q(c), respectively.

Let us extend (H, q) to a realization (G, q) by defining q(v) to be the image of
p(v) under this rigid motion, and let us also extend ψ to all of E(G) by mapping
va, vb, vc, vd to vb, va, vd, vc, respectively. Then md,G(p) = md,G(q) under the edge
permutation ψ. On the other hand, ψ is not induced by a graph automorphism of G:
since it leaves the edges of H ′ in place, by Lemma 4.4 such an automorphism would
leave the vertices of H ′ in place and consequently it would have to be the identity map
on G, which does not induce ψ. By Theorem 2.18, this shows that G is not strongly
reconstructible in C3, as desired.

Finally, we construct examples of fully reconstructible graphs with small separators.
In the next proof, we shall use the following fact. Let G1, G2 be rigid graphs in Rd

on at least d + 1 vertices and let G be obtained from G1 and G2 by identifying k
pairs of vertices. Then if 0 ≤ k ≤ d− 1, we have rd(G) = d|V (G)| −

(
d+1
2

)
−
(
d−k+1

2

)
,

and if k ≥ d, then G is rigid. This follows e.g. from the “gluing lemma” [21, Lemma
11.1.9], or it can be seen directly by considering the infinitesimal motions of a generic
realization of G in Rd.

Theorem 4.7. Let G = (V,E) be a graph with induced subgraphs G1 = (V1, E1) and
G2 = (V2, E2) for which V1 ∪ V2 = V and V1 ∩ V2 induces a connected subgraph of
G on at least three vertices. Let d ≥ 1. If G1 and G2 are fully reconstructible rigid
graphs on at least d+ 1 vertices in Cd, then G is fully reconstructible in Cd.

Proof. By Theorem 2.18, it suffices to show that if for some graph H we have Md,G =
Md,H under some edge bijection ψ, then ψ is induced by a graph isomorphism ϕ :
V (G) → V (H). Let H1, H2 be the subgraphs of H induced by ψ(E1) and ψ(E2),
respectively. Now for i = 1, 2, Md,Gi

= Md,Hi
, so by the full reconstructibility of

Gi, there is a graph isomorphism ϕi : Vi → V (Hi) that induces ψ|Ei
. Since V1 ∩ V2

induces a connected subgraph of G, Lemma 4.4 applies to ϕ1|V1∩V2 and ϕ2|V1∩V2 , giving
ϕ1(v) = ϕ2(v) for all v ∈ V1 ∩ V2.

It follows that H is the union of two subgraphs H1, H2 which are isomorphic to
G1, G2, respectively, and have k ≥ |V1 ∩ V2| vertices in common. Let ` = |V1 ∩ V2| ≥ 3.
We first show that k = `. Note that |V (G)| = |V (G1)| + |V (G2)| − ` and |V (H)| =
|V (G1)|+ |V (G2)| − k, and hence |V (H)| − |V (G)| = k − l.

Let us first consider the k ≤ d− 1 case. Since by Theorem 2.13 the d-dimensional
rigidity matroids of G and H are isomorphic, we obtain

d|V (G)|−
(
d+ 1

2

)
−
(
d− `+ 1

2

)
= rd(G) = rd(H) = d|V (H)|−

(
d+ 1

2

)
−
(
d− k + 1

2

)
.
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This gives(
d+ 1

2

)
+

(
k

2

)
= dk +

(
d− k + 1

2

)
= d`+

(
d− `+ 1

2

)
=

(
d+ 1

2

)
+

(
`

2

)
,

where the second equality comes from the previous equation and the first and third
equalities from direct calculation. It follows that k = `. An analogous argument shows
that k = ` holds in the k ≥ d case as well.

This implies that the only vertices of H that are in the image of both ϕ1 and ϕ2

are those in the image of V (G1) ∩ V (G2), where ϕ1 and ϕ2 agree. Hence we can
“glue” ϕ1 and ϕ2, i.e. the mapping ϕ : V → V (H) defined by ϕ|Vi

= ϕi, i = 1, 2 is
well-defined and is an isomorphism (in particular, it is injective). Then ϕ induces ψ,
as required.

We can slightly generalize Theorem 4.7 by only requiring that each connected
component of the graph induced by V1 ∩ V2 has at least three vertices.

Example 4.8. Let d ≥ 1 and let Gd be the graph obtained by gluing two copies of
the complete graph Kd+2 along three pairs of vertices. Theorems 3.6 and 4.7 imply
that Gd is fully reconstructible in Cd. This example shows that fully (or strongly)
reconstructible graphs need not be (d+ 1)-connected in the d ≥ 3 case, which gives a
negative answer to a question posed in [6, Section 7]. Also note that for d ≥ 4, Gd is
not even rigid in Rd. It is unclear whether there exist non-rigid fully reconstructible
graphs in C3.

4.3 Monotonicity of unlabeled reconstructibility

The graph Gd of Example 4.8 also shows that for d ≥ 4, edge addition does not
necessarily preserve strong (or full) reconstructibility in Cd. Indeed, Gd is fully
reconstructible in Cd, but for any pair of non-neighbouring vertices u, v ∈ V (Gd), uv is
an M -bridge in Gd + uv. [6, Theorem 5.21] states that strongly reconstructible graphs
(on at least d + 2 vertices and without isolated vertices) do not contain M -bridges,
so that Gd + uv is not strongly reconstructible in Cd. It would be interesting to see
whether this phenomenon can only happen if the newly added edge is an M -bridge.

Question 4.9. Let d ≥ 1 and let G = (V,E) be a graph on at least d+ 2 vertices that
is strongly reconstructible in Cd (fully reconstructible in Cd, respectively). Is it true
that if for some pair of vertices u, v ∈ V we have uv /∈ E and rd(G) = rd(G+uv), then
G+ uv is strongly reconstructible in Cd (fully reconstructible in Cd, respectively)?

We can prove the following weaker result. We say that a pair {u, v} of vertices in
a graph G is globally linked in G in Cd if for every generic framework (G, p) in Cd

and every equivalent realization (G, q), the squared distance between p(u) and p(v) is
equal to the squared distance between q(u) and q(v).

Lemma 4.10. Let G = (V,E) be a strongly reconstructible graph in Cd and suppose
that a pair of vertices u, v ∈ V is globally linked in G in Cd. Then G′ = G + uv is
strongly reconstructible in Cd. Moreover, if G is fully reconstructible in Cd, then so is
G′.
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Proof. By Theorem 2.18, it is sufficient to show that if Md,G′ = Md,H′ under some edge
bijection ψ, where H ′ is a graph on the same number of vertices as G′, then ψ is induced
by a graph isomorphism. Let H denote H ′ − ψ(uv). Then Md,G = Md,H under the
edge bijection ψ|E(G), and thus (using the same theorem) the strong reconstructibility
of G implies that ψ|E(G) is induced by a graph isomorphism ϕ : V (G)→ V (H). It is
sufficient to show that ψ(uv) = ϕ(u)ϕ(v). After composing ψ with the edge bijection
induced by ϕ−1, this amounts to showing that if Md,G+uv = Md,G+u′v′ under the edge
bijection that fixes the edges of G and sends uv to u′v′, then {u′, v′} = {u, v}.

Let (G, p) be a generic realization of G in Cd. By Lemma 2.11, there is a generic
realization (G, q), equivalent to (G, p) and such that ‖p(u)− p(v)‖ = ‖q(u′)− q(v′)‖.
Since {u, v} is globally linked in G, we must also have ‖p(u)− p(v)‖ = ‖q(u)− q(v)‖.
It follows from the genericity of q that {u, v} = {u′, v′}, as required.

The same proof works when G is fully reconstructible in Cd.

We may also consider the effect of edge deletion on unlabeled reconstructibility. The
analogue of Question 4.9 for deleting edges is not true: it is not difficult to find an
example of a graph G that is strongly (or fully) reconstructible in Cd but for which
G− uv is not strongly (or fully) reconstructible for some edge uv ∈ E, even though
rd(G−uv) = rd(G). This can happen e.g. if G is globally rigid and G−uv contains an
M -bridge. However, it is possible that the analogue of Lemma 4.10 for edge deletions
is true.

Question 4.11. Let d ≥ 3 and let G = (V,E) be strongly reconstructible in Cd (fully
reconstructible in Cd, respectively). Is it true that if for some edge uv ∈ E we have
that {u, v} is globally linked in G− uv, then G− uv is strongly reconstructible in Cd

(fully reconstructible in Cd, respectively)?

The characterization of strong and full reconstructibility in C1 and C2 given by
Theorem 2.20 shows that for d = 2, the answer to Question 4.11 is positive, while
for d = 1, it is negative: let G be a 3-connected graph and suppose that G − uv is
not 3-connected for some edge uv ∈ E(G). Then G is fully reconstructible in C1 and
{u, v} is globally linked in G− uv (in fact, G− uv is globally rigid in C1), but G− uv
is not strongly reconstructible in Cd.

5 Graphs with nonseparable rigidity matroids

In light of Theorem 3.5, the combinatorial properties of M -connected graphs in Rd

may be of interest in studying global rigidity. However, not much seems to be known
about these graphs in the d ≥ 3 case. In this section, we collect three results related
to this notion.

Theorem 5.1. Let G = (V,E) be an M -connected graph in Rd. Then G is M -
connected in Rd′ for all 1 ≤ d′ ≤ d.

Proof. It suffices to consider the d ≥ 2 case and show that G is M -connected in Rd−1.
We may also assume that G is an M -circuit in Rd. Consider a generic realization (G, p)
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of G in Rd. Since G is an M -circuit, there exists a unique, (up to scalar multiplication)
non-zero stress ω = (ωe)e∈E of (G, p), which is non-zero on every edge e ∈ E.

For a contradiction, suppose that G is M -separable in Rd−1 and let A,B be a
separation, that is, A ∪B = E and rd−1(A) + rd−1(B) = rd−1(E).

Let (G, pi) be the (d − 1)-dimensional realization of G obtained from (G, p) by a
projection along the i-axis, for 1 ≤ i ≤ d. These projected frameworks are also generic
in Rd−1 and ω is a stress on each (G, pi). Let R(G, pi) be the matrix obtained from the
rigidity matrix of (G, p) by replacing the |V | columns corresponding to coordinate i
by all-zero columns. Thus the rigidity matrix of (G, pi) can be obtained from R(G, pi)
by removing these zero columns.

Since A,B is a separation, we must have
∑

e∈A ωeRe(G, pi) = 0 for all 1 ≤ i ≤ d+ 1,
where Re(G, pi) is the row of the edge e in R(G, pi). This gives

(d− 1)
∑
e∈A

ωeRe(G, p) =
d∑

i=1

∑
e∈A

ωeRe(G, pi) = 0,

implying that the restriction of ω to A is a non-zero stress on a proper subframework
of (G, p). Then extending this restricted stress to all of E by setting it zero on every
e ∈ B gives another stress of (G, p), contradicting the uniqueness of ω.

Our next result is a characterization of M -connected cone graphs. Recall that the
cone of a graph G = (V,E), which we shall denote by Gv, is obtained by adding a
new vertex v to G, along with the edges uv, u ∈ V . We shall use the following basic
result on coning, due to W. Whiteley [20, 21], that we shall refer to as the coning
theorem. Let (Gv, p) be a realization in Rd+1 for some d ≥ 1 and let (G, q) be a
realization in Rd that is obtained from (Gv, p) by projecting p(u), u ∈ V through
p(v) onto some hyperplane H not containing p(v). Then (Gv, p) is independent (i.e.
rank(R(Gv, p)) = |E(Gv)|) in Rd+1 if and only if (G, q) is independent in Rd. This also
implies that G is M -independent in Rd if and only if Gv is M -independent in Rd+1.

We shall also use the fact that G is an M -circuit in Rd if and only if Gv is an
M -circuit in Rd+1. Although this result seems to be folklore, we could not find any
proofs in the literature, so we provide one (due to W. Whiteley [22]) for completeness.

Lemma 5.2. Let d ≥ 1 and let G be a graph and Gv its cone graph. Then G is an
M -circuit in Rd if and only if Gv is an M -circuit in Rd+1.

Proof. If Gv is an M -circuit in Rd+1, then by the coning theorem G is M -dependent in
Rd. On the other hand, for every edge uw ∈ E(G) we have that (G− uw)v = Gv − uw
is M -independent in Rd+1, so G− uw is M -independent in Rd. This shows that G is
an M -circuit, as desired.

Now let G be an M -circuit in Rd. Again by the coning theorem, rd+1(G
v) =

|E(Gv)| − 1 = rd+1(G
v − uw) for any edge uw ∈ E(G). Thus, we only need to prove

that rd+1(G
v − uv) = rd+1(G

v) for any edge uv incident to the cone vertex.
Let uv ∈ E(Gv) be such an edge and consider a framework (Gv, p) in which the

vertices of G lie in the xd+1 = 0 hyperplane in a generic position and p(v) lies outside
of this hyperplane. Let w be a neighbour of u in G. The coning theorem implies that

rank(R(Gv, p)) = rd+1(G
v) = rd+1(G

v − uw) = rank(R(Gv − uw, p)).
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Now consider a framework (G, q) obtained from (G, p) by changing the last coordinate
of p(w) by a sufficiently small amount, so that rank(R(Gv − uw, q)) = rd+1(G

v) =
rank(R(Gv, q)) still holds. Then there is an equilibrium stress ω of (Gv, q) that is
non-zero on uw. This stress must be non-zero on uv as well, since in this framework,
the rest of the edges incident to u all lie in the xd+1 = 0 hyperplane. This shows that

rank(R(Gv − uv, q)) = rank(R(Gv, q)) = rd+1(G
v),

which implies rd+1(G
v − uv) = rd+1(G

v), as desired.

Theorem 5.3. Let G be a graph and let Gv denote its cone graph. Then Gv is
M -connected in Rd+1 if and only if G is connected and it has no M -bridges in Rd.

Proof. For the “only if” direction, observe that coning takes an M -bridge in Rd to an
M -bridge in Rd+1,6 and that an M -connected graph (on at least two edges) has no
M -bridges. Moreover, M -connected graphs are 2-connected,7 while the cone graph of
a disconnected graph is not.

To prove the “if” direction, let us first observe that for any edge xy of G, xy is in
the same M -connected component of Gv as vx and vy. Indeed, since xy is not an
M -bridge in G, it is contained in some subgraph of G that is an M -circuit in Rd, and
by Lemma 5.2, the cone of this subgraph is an M -circuit in Rd+1 which contains all
three of these edges.

Thus it is sufficient to prove that any pair of cone edges vx, vy is in the same
M -connected component of Gv. By assumption, there is a path x = u0, u1, . . . , uk = y
in G. Now by the previous observation vui and vui+1 are in the same M -connected
component of Gv, for all 0 ≤ i < k. By transitivity, we get that vx and vy are also in
the same M -connected component, as desired.

For a graph G = (V,E) let dofd(G) = d|V | −
(
d+1
2

)
− rd(G) denote its “degrees of

freedom” in the context of d-dimensional generic rigidity. The next theorem verifies a
general combinatorial property of highly connected M -separable graphs and may be
useful in the construction of further families of examples.

Theorem 5.4. Let d ≥ 1 and let G be a (d+1)-connected and redundantly rigid graph
in Rd. Suppose that G is M -separable in Rd and let H1, H2,...,Hq be the M -connected
components of G. Then

q∑
1

dofd(Hi) ≥
(
d+ 1

2

)
.

Proof. Let Xi = V (Hi)− ∪j 6=iV (Hj) denote the set of vertices belonging to no other
M -connected component than Hi, and let Yi = V (Hi) − Xi for 1 ≤ i ≤ q. Let

6In order to see this first note that the coning theorem implies that G is rigid in Rd if and only if
Gv is rigid in Rd+1. This fact easily implies that if e is an M -bridge in G, and G is rigid in Rd, then
e is an M -bridge in Gv in Rd+1. If G is not rigid, then make it rigid by adding a set of M -bridges
and then apply the previous argument.

7This follows e.g. from Theorem 5.1 by recalling that in R1, a graph is M -connected if and only if
it is 2-connected.
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ni = |V (Hi)|, xi = |Xi|, yi = |Yi|. Clearly, ni = xi + yi and |V | =
∑q

i=1 xi + | ∪qi=1 Yi|.
Moreover, we have

∑q
i=1 yi ≥ 2| ∪qi=1 Yi|. Since G is redundantly rigid, every edge of G

is in some M -circuit. Every M -circuit in Rd has at least d+ 2 vertices. Thus we have
that ni ≥ d+ 2 for 1 ≤ i ≤ q. Furthermore, since G is (d+ 1)-connected, yi ≥ (d+ 1)
holds for all M -components.

Let us choose a base Bi in each rigidity matroid R(Hi). Using the above inequalities
we have

d|V | −
(
d+ 1

2

)
= | ∪q

i=1 Bi| =
q∑

i=1

|Bi| =
q∑

i=1

(
dni −

(
d+ 1

2

)
− dofd(Hi)

)

= d

q∑
i=1

ni −
(
d+ 1

2

)
q −

q∑
1

dofd(Hi)

=

(
d

q∑
i=1

xi +
d

2

q∑
i=1

yi

)
+

(
d

2

q∑
i=1

yi −
(
d+ 1

2

)
q

)
−

q∑
1

dofd(Hi)

≥ d|V | −
q∑
1

dofd(Hi)

Thus we must have
∑q

1 dofd(Hi) ≥
(
d+1
2

)
, as claimed.

The graph of Figure 2(a) shows that Theorem 5.4 is, in some sense, tight: it has a
unique non-rigid M -connected component in R3 with six degrees of freedom. Note
that for d = 1, 2 the M -connected components of a graph are rigid. Thus the theorem
implies that for d ≤ 2 the (d+ 1)-connected redundantly rigid graphs are M -connected,
which was shown in [12, Theorem 3.2] by a similar argument.
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