
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2021-01. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Rotor-routing reachability is easy,
chip-firing reachability is hard

Lilla Tóthmérész

April 2021



EGRES Technical Report No. 2021-01 1

Rotor-routing reachability is easy, chip-firing
reachability is hard

Lilla Tóthmérész ? ??

Abstract

Chip-firing and rotor-routing are two well-studied examples of Abelian net-
works. We study the complexity of their respective reachability problems. We
show that the rotor-routing reachability problem is decidable in polynomial
time, and we give a simple characterization of when a chip-and-rotor configura-
tion is reachable from another one. For chip-firing, it has been known that the
reachability problem is in P if we have a class of graphs whose period length is
polynomial (for example, Eulerian digraphs). Here we show that in the general
case, chip-firing reachability is hard in the sense that if the chip-firing reacha-
bility problem were in P for general digraphs, then the polynomial hierarchy
would collapse to NP.

1 Introduction

Chip-firing and rotor-routing are two well-studied examples of Abelian networks.
Abelian networks are asynchronous networks of processors that sit in the vertices
of a digraph and communicate through the edges. They are called “Abelian” be-
cause the final state of the network does not depend on the order in which different
processors process their input data. For an introduction to Abelian networks, see [4].

In this paper, we study the complexity of the reachability problem of chip-firing
and rotor-routing. Previously, the chip-firing reachability problem was shown to be
in co−NP [8], and in the special case of polynomial period length (which includes
for example Eulerian digraphs), it was shown to be in P [8, 12]. Here we show that in
general the chip-firing reachability problem is hard: if it were solvable in polynomial
time, then the polynomial hierarchy would collapse to NP. (See Theorem 2.3.) To
show this, we use the NP-hardness of the related chip-firing halting problem, which
was proved in [5].

For rotor-routing, reachability was known to be in P in the special case when the
target configuration is recurrent [13]. Here we show that rotor-routing reachability

?MTA-ELTE Egerváry Research Group
??Supported by the National Research, Development and Innovation Office of Hungary – NKFIH,

grant no. 132488. LT was partially supported by the Counting in Sparse Graphs Lendület Research
Group of Rényi Institute.

April 2021



1.1 Preliminaries on graphs 2

is also decidable in polynomial time in the general case, and we give a combinatorial
characterization for the reachability. (See Theorem 3.3.) We note that, similarly to the
case of chip-firing on Eulerian digraphs, it remains open whether one can determine
the stopping configuration of a bounded rotor-routing game in polynomial time.

1.1 Preliminaries on graphs

Throughout this paper, G will denote a directed graph with vertex set V (G) and
edge set E(G). We allow multiple edges, but no loops. We denote by deg+(v) the
out-degree of vertex v, and by d(u, v) the number of edges pointing from u to v. When
G is an input to some algorithm, we always encode it by its adjacency matrix. This
means that for each u, v ∈ V (G), we write down the number d(u, v). Hence |E(G)|
might be exponential in the input size, but log |E(G)| is always polynomial.

A digraph is said to be strongly connected if for each u, v ∈ V (G) there is a directed
path leading from u to v. Each digraph has a unique decomposition into strongly
connected components. A component is called a sink component, if there is no edge
leaving the component. Note that a digraph always has at least one sink-component.
A vertex is called a sink if its out-degree is zero. In this case, it is a one-element sink
component.

We denote by ZV (G) the set of integer vectors whose coordinates are indexed by the
vertices of G. ZV (G)

≥0 denotes the set of vectors with nonnegative integer coordinates.
For a vertex v, 1v denotes the vector where the coordinate of v is 1, and the rest of
the coordinates are 0.

Both for chip-firing and for rotor-routing, the Laplacian matrix of the graph will
play an important role. We denote the Laplacian matrix of the digraph G by LG.
This is the matrix with coordinates

(LG)uv =

{
− deg+(v) if u = v,
d(v, u) if u 6= v.

0 is always an eigenvalue of the Laplacian matrix. A non-negative vector p ∈ ZV (G)
≥0

will be called a period vector for G if LGp = 0. A non-zero period vector is called
primitive if its entries have no non-trivial common divisor. The following is known.

Proposition 1.1. [2, 3.1 and 4.1] For a strongly connected digraph G there exists
a unique primitive period vector pG, moreover, its coordinates are positive. For a
general digraph G, if G1, . . . , Gk are the sink components of G and a vector z ∈ ZV (G)

satisfies Lz = 0 then z =
∑k

i=1 λipi, where for i ∈ {1, . . . , k}, λi ∈ Z and pi is the
primitive period vector of Gi restricted to V (Gi) and zero elsewhere.

For a strongly connected digraph G, let us denote the sum of the coordinates of pG
by per(G). For a general digraph G let per(G) =

∑`
i=1 per(Gi) where G1, . . . , G` are

the strongly connected components of G.

Example 1.2. It is easy to see that for a connected Eulerian digraph, the constant 1
vector is the primitive period vector, hence in this case per(G) = |V (G)|. However, in
general per(G) may be exponentially large (for an example see the class of digraphs
constructed in the proof of Theorem 2 in [9]).

EGRES Technical Report No. 2021-01



Section 2. Chip-firing 3

Proposition 1.3. The primitive period vectors of the strong components can be com-
puted in polynomial time.

Proof. By Tarjan’s algorithm [10], the strongly connected components, and hence the
sink components can be computed in polynomial time. By [6, Theorem 1.4.21], we
can compute in polynomial time an integer solution p̃i for LGi

p = 0 where G1 . . . Gk

are the sink components. One can then compute the greatest common divisor of the
coordinates for each p̃i and divide to get pi.

2 Chip-firing

In a chip-firing game we consider a digraph G with a pile of chips on each of its nodes.
A position of the game, called a chip configuration is described by a vector x ∈ ZV (G),
where x(v) is interpreted as the number of chips on vertex v ∈ V (G), which might be
negative.

The basic move of the game is firing a vertex. It means that this vertex passes a
chip to its neighbors along each outgoing edge, and so its number of chips decreases
by its out-degree. In other words, firing a vertex v transforms the chip configuration
x to x+ LG1v.

The firing of a vertex v ∈ V is legal with respect to a chip configuration x, if v
has a non-negative amount of chips after the firing (i.e. x(v) ≥ deg+(v)). A legal
game is a sequence of configurations in which each configuration is obtained from the
previous one by a legal firing. For a legal game, let us call the vector f ∈ ZV (G)

≥0 , where
f(v) equals the number of times v has been fired, the firing vector of the game. A
game terminates if no firing is legal with respect to the last configuration. The most
appealing property of the chip-firing game is the following “Abelian” property.

Theorem 2.1. [3, Remark 2.4] From a given initial chip configuration, either every
legal game can be continued indefinitely, or every legal game terminates after finitely
many steps. The firing vector of every maximal legal game is the same.

In this section we will be interested in the complexity of the chip-firing reachability
problem. We say that a chip configuration x2 is reachable from a chip configuration
x1 if there is a legal game starting in x1 and ending in x2. We denote this by x1  x2.

The reachability problem asks whether for chip configurations x1 and x2 on a di-
graph G we have x1  x2. In the case if the period length of a graph class is
polynomial, the reachability problem is known to be in P.

Theorem 2.2. [12, Theorem 2.3.13]. Let G be a digraph, and x and y chip configu-
rations on G. There is an algorithm that decides whether x  y, and has a running
time which is a polynomial of the input size and the period length of G.

Here, we show that unless the polynomial hierarchy collapses to NP, there cannot
be a polynomial algorithm for the reachability problem for general digraphs.

Theorem 2.3. Unless the polynomial hyerarchy collapses to NP, there is no polyno-
mial algorithm that decides the chip-firing reachability problem on strongly connected
digraphs.

EGRES Technical Report No. 2021-01



Section 2. Chip-firing 4

To show this, we first show that deciding recurrence is easier than deciding reacha-
bility, then we show that deciding recurrence already has the above mentioned com-
plexity.

Let us call a chip configuration x recurrent if starting from x, there is a nonempty
legal game leading back to x.

Claim 2.4. If there were a polynomial algorithm for deciding the reachability problem
for strongly connected digraphs, then we could decide in polynomial time whether a
given chip configuration x on a strongly connected digraph is recurrent.

For this, we need a couple of definitions and lemmas.

Lemma 2.5. [2, Lemma 4.3] Let p be a period vector of a digraph G, and suppose
that α = (v1, v2, . . . , vs) is a legal sequence of firings on G from some initial chip
configuration. Let α′ be the sequence obtained from α by deleting the first p(v) oc-
currence of each vertex v (if v occurs less than p(v) times in α, then we delete all
of its occurrences). Then α′ is also a legal sequence of firings from the same initial
configuration.

For a given vector b ∈ ZV (G)
≥0 , let us call the following game b-bounded chip-firing

game: We are only allowed to make legal firings, and each vertex v can be fired at
most b(v) times during the whole game. The b-bounded game also has an “Abelian”
property.

Lemma 2.6. [2, Lemma 1.4] For a given bound b ∈ ZV (G)
≥0 and initial chip configura-

tion x, each maximal b-bounded chip-firing game with initial chip configuration x has
the same firing vector.

Proof of Claim 2.4. Since our digraph G is strongly connected, the primitive period
vector pG is unique. Hence by Lemma 2.5, x is recurrent if and only if there is a legal
game with firing vector pG. By Lemma 2.6, this is equivalent to the fact that the
maximal pG-bounded game started from x has firing vector pG.

Check if there is any vertex v with x(v) ≥ deg+(v). If not, then x is stable, hence
not recurrent. If yes, then choose such a vertex v and fire it. We show that x is
recurrent if and only if x+ L1v  x.

Again by Lemmas 2.5 and 2.6, x+L1v  x is equivalent to the fact that the firing
vector of the (pG − 1v)-bounded game from initial configuration x + L1v has firing
vector pG − 1v. The claim now follows from the Abelian property of the pG-bounded
game.

We prove that if deciding whether a chip configuration on a strongly connected
digraph is recurrent were in P then the polynomial hierarchy would collapse to NP.
By Claim 2.4, this implies Theorem 2.3.

To prove our statement about the decision of recurrence, we need to examine the
chip-firing halting problem. The chip-firing halting problem asks whether for a given
digraph G and chip configuration x, the game with initial configuration x on the
digraph G terminates after finitely many steps. By Theorem 2.1, this indeed depends

EGRES Technical Report No. 2021-01



Section 2. Chip-firing 5

only on x and G. Let us call a chip configuration x on a digraph G halting, if the chip-
firing game started from x terminates after finitely many steps, and call it non-halting
otherwise. The halting problem is known to be hard:

Theorem 2.7. [5, Corollary 3.2] The chip-firing halting problem is NP-complete for
strongly connected digraphs.

We show the following.

Proposition 2.8. If there were a polynomial algorithm deciding whether a chip con-
figuration on a strongly connected digraph is recurrent, then the chip-firing halting
problem would be in co−NP for strongly connected digraphs.

Before proving this statement, let us point out why it implies Theorem 2.3.

Proof of Theorem 2.3. By Claim 2.4 and Proposition 2.8, the existence of a polyno-
mial algorithm for the reachability problem on strongly connected digraphs would
imply that the chip-firing halting problem would be in co−NP. By Theorem 2.7,
this means that an NP-complete problem were in co−NP. This would imply
NP = co−NP which in turn inplies that the polynomial hierarchy collapses to
NP.

For proving Proposition 2.8, we need a definition and a lemma.

Definition 2.9 (Linear equivalence [1]). Let G be a strongly connected digraph. For

x, y ∈ ZV (G), let x ∼ y if there exists z ∈ ZV (G)
≥0 such that y = x + LGz. In this case

we say that x and y are linearly equivalent.

One can easily check that for a strongly connected digraph, linear equivalence is
indeed an equivalence relation on ZV (G). The only nontrivial property is symmetry,
which holds because the primitive period vector has strictly positive entries for a
strongly connected digraph.

Lemma 2.10. [5, Lemma 2.1] Let G be a strongly connected digraph and let x and
y be chip configurations on G. If x ∼ y, then x is terminating if and only if y is
terminating.

Proposition 2.11. [8, Proposition 8] There is a polynomial algorithm that for a given

digraph G and chip configurations x and y decides whether there exists an f ∈ ZV (G)
≥0

such that y = x + Lf , and if such a vector exists, it computes a reduced such firing
vector. Specifically, for strongly connected digraphs, linear equivalence is decidable in
polynomial time.

Proof. By [6, Theorem 1.4.21], we can decide in polynomial time if the equation
Lg = y − x has an integer solution, and if it does, compute one. By Proposition 1.1,
a nonnegative solution exists if and only if the g we got from solving Lg = y − x has
nonnegative coordinates on the non-sink components. If g is nonnegative on the non-
sink components, we can make it nonnegative and reduced by adding an appropriate
period vector to it. (By Proposition 1.3 we can compute the primitive period vectors
of the sink components.)

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 6

Proof of Proposition 2.8. Our certificate for the non-halting property of the game
with initial configuration x is a recurrent configuration y linearly equivalent to x.

We claim that if the game with initial configuration x is non-halting then there
exist such a y. Indeed, play a legal game starting from x. As a vertex can only loose
chips when it is fired, and in such a case it cannot go into negative, during the legal
game, the number of chips on any vertex v is at least min{x(v), 0} at any time. As the
number of chips stays constant, there are only finitely many possible configurations
we can see. As we can play indefinitely, we will eventually see a configuration y for
the second time. This means we returned to this configuration by a legal game, hence
y is recurrent. As we also had x y, in particular we had x ∼ y.

Also, the existence of a recurrent y such that x ∼ y implies that x is non-halting.
Indeed, y is non-halting since we can repeat the legal game transforming y to itself
indefinitely. Now Lemma 2.10 implies that x is also non-halting.

If recurrence were checkable in polynomial time, then this proof was also checkable
in polynomial time, since x ∼ y can be checked in polynomial time by Proposition
2.11.

3 Rotor-routing

In this section, we show that the rotor-routing reachability problem can be decided
in polynomial time.

The rotor-routing game is played on a ribbon digraph. A ribbon digraph is a digraph
together with a fixed cyclic ordering of the outgoing edges from v for each vertex v.
For an edge e with tail t, denote by e+ the outgoing edge following e in the cyclic
order at t. From this point, we always assume that our digraphs have a ribbon digraph
structure.

Let G be a ribbon digraph. A rotor configuration on G is a function % that assigns
to each non-sink vertex v an edge with tail v. We call %(v) the rotor at v. For a
rotor configuration %, we call the subgraph with edge set {%(v) : v ∈ V (G)} the rotor
subgraph. See Figure 1, where the rotor-edges are shown with bold. We emphasize
that we need not have any sink in the graph.

A configuration of the rotor-routing game is a pair (x, %), where x is a chip con-
figuration, and % is a rotor configuration on G. We call such pairs chip-and-rotor
configuration.

Given a chip-and-rotor configuration (x, %), a routing at a non-sink vertex v results
in the configuration (x′, %′), where %′ is the rotor configuration with

%′(u) =

{
%(u) if u 6= v,
%(u)+ if u = v,

and x′ = x − 1v + 1v′ where v′ is the head of %+(v). See Figure 1 for an example.
Routing at a sink vertex has no effect.

We call the routing at v legal (with respect to the configuration (x, %)), if x(v) > 0,
i.e. the routing at v does not create a negative entry at v. Note that other vertices
might have a negative number of chips. A legal game is a sequence of configurations

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 7

0

0

1 0

1

0

0 0

0

1

0 0

Figure 1: Let the ribbon structure be the one coming from the positive orientation of
the plane. On the left panel, the leftmost vertex can be legally routed since it has a
chip. The routing results in the configuration of the middle panel, where the upper
vertex can be routed. Routing that vertex gives the rightmost configuration.

such that each configuration is obtained from the previous one by a legal routing.
For a legal game, we call the vector o ∈ ZV (G)

≥0 where for each v ∈ V (G), o(v) is the
number of times v has been routed in the game, the odometer of the game.

We say that a chip-and-rotor configuration (x2, %2) is reachable from a chip-and-
rotor configuration (x1, %1) if there is a legal game starting in (x1, %1) and ending
in (x2, %2). We denote this by (x1, %1)  (x2, %2). The rotor-routing reachability
problem asks whether for two given chip-and-rotor configurations (x1, %1) and (x2, %2)
on a digraph G, we have (x1, %1) (x2, %2).

We prove the following statement:

Theorem 3.1. The rotor-routing reachability problem can be decided in polynomial
time, even for multigraphs.

To analyze legal rotor-routing games, it is sometimes convenient to allow non-legal
moves. We call a routing an unconstrained routing if we perform a routing step so
that the routed vertex might not have positive amount of chips.

For some chip-and-rotor configuration (x, %) and vector r ∈ ZV (G)
≥0 , we denote by

πr(x, %) the chip-and-rotor configuration obtained after routing (in an unconstrained
way) each vertex v exactly r(v) times from initial configuration (x, %). Note that this
is well-defined, and πr(x, %) is computable in polynomial time since we can compute
both the chip configuration and the rotor configuration by a simple calculation.

Similarly to the chip-firing game, it is useful to think about which vectors r have
πr(x, %) = (x, %) for some (x, %). Clearly, in such a case each rotor needs to make some
full turns, hence we need to have r(v) = f(v) ·deg+(v) for each vertex. (If some vertex
has deg+(v) = 0, then this formula gives r(v) = 0, but the routing of these vertices
has no effect, so this is reasonable.) For a vector of the form r(v) = f(v) · deg+(v),
routing r has the same effect on the chip configuration as firing the firing vector f .
Hence we get back to (x, %) if any only if r is of the form r(v) = p(v) · deg+(v) for
each v ∈ V where p is a period vector of G. We will call vectors of this form routing
period vector.

We call a vector routing reduced, if it is not coordinatewise greater or equal to any

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 8

routing period vector. Clearly, a vector r is routing reduced, if for the vector f with
f(v) = b r(v)

deg+(v)
c for each vertex v, f is a reduced firing vector.

We say that (x2, %2) is reachable from (x1, %1) in the unconstrained sense if there is
a vector r ≥ 0 such that πr(x1, %1) = (x2, %2). Clearly, in this case r can be chosen to
be routing reduced (by subtracting an appropriate routing period vector).

Reachablity in the unconstrained sense is a necessary condition for “legal” reachabil-
ity. Fortunatelly, reachability in the unconstrained sense can be decided in polynomial
time:

Proposition 3.2. There is a polynomial algorithm that for a given digraph G and
chip-and-rotor configuations (x1, %1) and (x2, %2) decides whether there exists a non-
negative integer vector r such that πr(x1, %1) = (x2, %2). If such a vector exists, a
routing reduced r can be computed in polynomial time.

Proof. At each vertex v, we need at least as many routings so that the rotor at v
turns into the position %2(v). We can achieve this by routing each vertex v some
r1(v) < deg+(v) times. Now we are in a chip-and-rotor configuration (y, %2) for
some chip configuration y. We need to determine if there exist a nonnegative vector
transforming (y, %2) to (x2, %2). For this, we need a vector r2 ≥ 0 such that r2(v) is
a multiple of deg+(v) for each v. Hence the suitable vectors are exactly of the form

r2(v) = z(v) · deg+(v) for each v where z ∈ ZV (G)
≥0 is a solution to Lz = x2 − y. By

Proposition 2.11, the existence of such a z can be decided in polynomial time, and if
the answer is yes, a reduced z can also be computed. Now r = r1 + r2, and as z was
reduced and r1 ≤ deg+, r will also be routing reduced.

Now we can state our condition for the reachability of chip-and-rotor configurations.
Note that by Proposition 3.2, the following condition can be checked in polynomial
time.

Theorem 3.3. Suppose that (x, %x) and (y, %y) are two chip-and-rotor configurations
on the digraph G. Then (x, %x) (y, %y) if and only if (y, %y) is reachable from (x, %x)
in the unconstrained sense and for the routing reduced vector r transforming (x, %x)
to (y, %y), we have

S1 = {v ∈ V : y(v) < 0 and r(v) > 0} = ∅

and

S2 ={v ∈ V : y(v) = 0, r(v) > 0, and in the subgraph %y, no vertex u

is reachable from v with either y(u) > 0 or with r(u) = 0} = ∅.

For proving this theorem, we need some lemmas that are analogous to what we
have seen for chip-firing.

Lemma 3.4. Let p be a routing period vector of a digraph G, and suppose that
α = (v1, v2, . . . , vs) is a legal sequence of routings on G from some initial chip-and-
rotor configuration. Let α′ be the sequence obtained from α by deleting the first p(v)

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 9

occurrence of each vertex v (if v occurs less than p(v) times in α, then we delete all
of its occurrences). Then α′ is also a legal sequence of routings from the same initial
chip-and-rotor configuration.

Proof. The proof is analogous to [2, Lemma 4.3]. Let α′ = (vi1 , . . . , vim). Suppose by
induction that routing (vi1 , . . . vik−1

) was legal for some k. We show that routing vik
is also legal.

In the game α, one can legally route vik , hence at that moment, there is a positive
amount of chips in it. Compared to α, in α′ up to this point the vertex vik was routed
p(vik) times less, hence it gave out p(vik) less chips. Up to this point, any in-neighbor
u of vik routed at most p(u) times less than in α. As p is a routing period vector, if
each in-neighbor u routed exactly p(u) times less than in α, then vik would have the
same number of chips at its turn as in α. If some in-neighbor decreased its number of
routings by less than p(u), then vik can potentially have more chips at this point than
in α. Hence vik necessarily has the required amount of chips to be able to perform
the routing.

Corollary 3.5. If (x, %x) (y, %y), then there exist a legal game transforming (x, %x)
to (y, %y) with a routing reduced odometer.

We have already seen that one can compute in polynomial time whether (y, %y) is
reachable from (x, %x) in the unconstrained sense, and if yes, give the routing reduced
vector transforming (x, %x) to (y, %y). Hence for deciding reachability it is now enough
to decide if there is a legal game with the given routing reduced vector as odometer.
To answer this question, we introduce the bounded game for rotor-routing.

Fix a vector r ≥ 0. The r-bounded rotor-routing game proceeds as follows: If there
is a vertex v with positive number of chips such that v has been routed less than r(v)
times, then choose one such vertex and route it. If each vertex v either has at most
0 chips or has been routed r(v) times, then the bounded game stops. This bounded
game also has the Abelian property:

Lemma 3.6. For any initial configuration (x, %) and r ≥ 0, any maximal r-bounded
rotor-routing game with initial configuration (x, %) ends in the same chip-and-rotor
configuration, and the odometer is the same in each maximal running.

We note that this follows from the general “Abelian theorem” of [4] as the bounded
rotor-routing game is also an Abelian network. Still, for completeness we include a
direct proof by a variant of an argument of Thorup [11], as this is also very simple.

Proof. Suppose that there are two maximal bounded games where the odometers are
different. Suppose that the odometer of the first running is o1 and the odometer of
the second running is o2. By symmetry, we can suppose that there exist a vertex v0
such that o1(v0) < o2(v0). Play the running with odometer o2 and stop it at the first
moment when some vertex v is to be routed for the o1(v) + 1th time. So far, v has
transmitted as many chips as altogether in the running with odometer o1. However, all
other vertices transmitted at most as many. As the two runnings start from the same
initial configuration, the multiset of edge traversals by chips in the stopped second

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 10

run is a subset of of the multiset of edge traversals by chips in the first run. Hence in
particular, v has received at most as many chips in the stopped second run as in the
first run. In the second run, v can be routed at this moment, hence it has at least
one chip. Thus, v has a chip at the end of the first run, which means o1(v) = r(v)
contradicting the assumption that r(v) ≥ o2(v) > o1(v).

We denote by odom(x, %; r) the maximal odometer in the r-bounded rotor-routing
game, started from (x, %).

Corollary 3.7. (x, %x) (y, %y) is equivalent to the property that (y, %y) is reachable
from (x, %x) in the unconstrained sense, and for the routing reduced vector r trans-
forming (x, %x) to (y, %y), we have odom(x, %x; r) = r.

Proof of Theorem 3.3. We first show that the conditions are necessary. Unconstrained
reachability is clearly necessary for the reachability, as it means reachability in the
weaker sense where no nonnegativity is required for the routings.

We claim that if (x, %x)  (y, %y), then for any v with r(v) > 0 we need to have
y(v) ≥ 0. Indeed, by Corollary 3.5, in this case there is a legal rotor-routing game
from (x, %x) to (y, %y) with odometer r. If v is routed in a legal game, then after the
moment of the first routing, it has a nonnegative amount of chips. Moreover, v can
only loose chips by routings, and it cannot go negative by a legal routing. Hence after
its first routing, v always has a nonnegative number of chips, thus, y(v) ≥ 0. This
implies S1 = ∅.

We also claim that if a legal game leads from (x, %x) to (y, %y) and has odometer r,
then in the rotor subgraph %y, from each routed vertex v some vertex u with either
y(u) > 0 or with r(u) = 0 is reachable. This can be proved by induction for the number
of routings. There is nothing to prove if there are no routings. If the statement is
true after some routings and we make one more routing, then the additionally routed
vertex v has at least one chip before the additional routing. After the routing, the
rotor at v points to the vertex u where the chip was transmitted. Either u had at
least 0 chips before the routing, in which case now it has a positive amount of chips,
or u had a negative number of chips, but then it has not been routed yet. Hence the
statement is true for v. The rotor-edges of vertices other than v do not change. If v
was reachable from some vertex w in the rotor subgraph, then u is reachable from w
after the routing. Hence the condition stays true for all other routed vertices. This
implies that S2 = ∅, hence we have proved the necessity of the conditions.

For the sufficiency, it is enough to show that if (x, %x) 6 (y, %y) but (y, %y) is
reachable from (x, %x) in the unconstrained sense via the primitive routing vector r,
moreover, S1 = ∅, then there is a cycle C in %y with y(v) = 0 for each v ∈ C, but
where each vertex v ∈ C has r(v) > 0. In this case all vertices of C are in S2 since in
%y only the vertices of C are reachable from them.

By Corollary 3.7, if (x, %x) 6 (y, %y) but (y, %y) = πr(x, %x), then the r-bounded
rotor-routing game ends so that there there is a nonempty set Z ⊆ V of vertices such
that each v ∈ Z has been routed less than r(v) times, but currently has at most 0
chips. This also implies that r(v) > 0 for each v ∈ Z. Suppose that this bounded
game ends with chip-and-rotor configuration (z, %z).

EGRES Technical Report No. 2021-01



Section 3. Rotor-routing 11

Now do the remaining routings in some order, such that each vertex gets routed
r(v) times altogether. This will not be a legal game, but nevertheless, at the end, the
configuration will be (y, %y). Each vertex v ∈ Z starts from z(v) ≤ 0 and ends with
y(v) ≥ 0 (since r(v) > 0, and we supposed that S1 = ∅). As only the vertices of Z
are routed in this second phase, in the second phase, vertices of Z can only gain chips
from vertices in Z. As z(Z) ≤ 0 and y(Z) ≥ 0, we conclude that in the second phase
vertices only pass chips to vertices in Z, and each vertex of Z receives as many chips
as it passes away. Specifically, each vertex v ∈ Z has z(v) = y(v) = 0. The final rotor
configuration %y shows for each vertex the edge through which it transmitted its last
chip. Hence for each vertex v ∈ Z, %y(v) is an edge pointing to some vertex in Z.
This means that each vertex v ∈ Z has out-degree at least one in %y, and no edge
leaves Z in %y. Hence %y has a cycle C that only contains vertices of Z. As y|Z ≡ 0 by
our previous argument, this implies that %y contains a cycle with no chips, but with
r(v) > 0 for v ∈ C. Hence C ⊆ S2.

Notice that Theorem 2.3 can be rephrased like this (note that though the vector r
was routing reduced in the previous proof, we did not use this property).

Corollary 3.8. Take a chip-and-rotor configuration (x, %x) and vector r ≥ 0. Then
the r-bounded rotor-routing game started from (x, %x) has maximal odometer r if and
only if

S1 = {v ∈ V : y(v) < 0 and r(v) > 0} = ∅

and

S2 ={v ∈ V : y(v) = 0 and in the subgraph %y, no vertex u is reachable

from v with either y(u) > 0 or with r(u) = 0} = ∅.

More generally, one could ask what is the complexity of computing the maximal
odometer odom(x, %x; r) for a bounded rotor-routing game. Note that even though we
can decide the reachability problem in polynomial time, it is unclear how to compute
odom(x, %x; r).

We note that the computation of the rotor-routing action of Holroyd et al [7] is a
similar problem, whose complexity is also open.

Finally, we note that this situation is similar to what can be seen for the chip-firing
reachability problem for Eulerian digraphs: There also, the reachability problem can
be solved in polynomial time, but the computation of the maximal odometer of the
bounded game is open [8].

Acknowledgement

I would like to thank Lionel Levine, Swee Hong Chan, Viktor Kiss and Bálint Hujter
for inspiring discussions.

EGRES Technical Report No. 2021-01



References 12

References

[1] Matthew Baker and Serguei Norine. Riemann–Roch and Abel–Jacobi theory on
a finite graph. Adv. Math., 215(2):766–788, 2007.

[2] Anders Björner and László Lovász. Chip-firing games on directed graphs. J.
Algebraic Combin., 1(4):305–328, 1992.

[3] Anders Björner, László Lovász, and Peter W. Shor. Chip-firing games on graphs.
European J. Combin., 12(4):283–291, 1991.

[4] Benjamin Bond and Lionel Levine. Abelian networks I. Foundations and exam-
ples. SIAM J. Discrete Math., 30(2):856–874, 2016.

[5] Matthew Farrell and Lionel Levine. CoEulerian graphs. Proc. Amer. Math. Soc.,
144:2847–2860, 2016.

[6] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 1988.

[7] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James
Propp, and David B. Wilson. Chip-firing and rotor-routing on directed graphs. In
Vladas Sidoravicius and Maria Eulália Vares, editors, In and Out of Equilibrium
2, volume 60 of Progress in Probability, pages 331–364. Birkhäuser Basel, 2008.

[8] Bálint Hujter, Viktor Kiss, and Lilla Tóthmérész. On the complexity of the chip-
firing reachability problem. Proceedings of the American Mathematical Society,
145:3343–3356, 2017.

[9] Trung Van Pham. Orbits of rotor-router operation and stationary distribution of
random walks on directed graphs. Advances in Applied Mathematics, 70:45–53,
2015. arXiv:1403.5875.

[10] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972.

[11] Mikkel Thorup. Firing games. Technical Report 94/15, University of Copen-
hagen, 1994.

[12] Lilla Tóthmérész. The chip-firing game. PhD thesis,
http://web.cs.elte.hu/ tmlilla/tezis.pdf, 2017.

[13] Lilla Tóthmérész. Algorithmic aspects of rotor-routing and the notion of linear
equivalence. Discrete Applied Mathematics, 236:428 – 437, 2018.

EGRES Technical Report No. 2021-01


	Introduction
	Preliminaries on graphs

	Chip-firing
	Rotor-routing

