
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2020-24. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Fair integral submodular flows

András Frank and Kazuo Murota

December 2020

EGRES Technical Report No. 2020-24 1

Fair integral submodular flows

András Frank? and Kazuo Murota??

Abstract

Integer-valued elements of an integral submodular flow polyhedron Q are
investigated which are decreasingly minimal (dec-min) in the sense that their
largest component is as small as possible, within this, the second largest com-
ponent is as small as possible, and so on. As a main result, we prove that the
set of dec-min integral elements of Q is the set of integral elements of another
integral submodular flow polyhedron arising from Q by intersecting a face of
Q with a box. Based on this description, we develop a strongly polynomial al-
gorithm for computing not only a dec-min integer-valued submodular flow but
even a cheapest one with respect to a linear cost-function. A special case is the
problem of finding a strongly connected (or k-edge-connected) orientation of a
mixed graph whose in-degree vector is decreasingly minimal.

1 Introduction

For an integral polyhedron Q, let
....

Q denote the set of integral elements of Q. We

are interested in finding the most fair element z of
....

Q where fairness wants to reflect
the intuitive feeling that the components of z are distributed as equitably as possible.
There may be several ways to formally capture fairness. For example, if the difference
of the largest and the smallest components of z is minimum, then z is felt rather fair.
The square sum of the components is another, more global measure for fairness. In
this work we are interested in a third natural possibility: decreasing minimality. Let

us call an element z ∈
....

Q decreasingly minimal (dec-min) if the largest component of
z is as small as possible, within this, the second largest component (possibly with the
same value as the largest component) is as small as possible, within this, the third
largest component of z is small as possible, and so on. Actually, it is more convenient
to work with the following slightly more general concept. Let F be a specified subset

of the coordinates. We say that z ∈
....

Q is decreasingly minimal on F (or F -dec-
min for short) if the restriction of z to F is decreasingly minimal. For the trivial

special case F = ∅, the set of F -decmin elements of
....

Q is
....

Q itself.

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University,
Pázmány P. s. 1/c, Budapest, Hungary, H-1117. e-mail: frank@cs.elte.hu . The research was
partially supported by the Hungarian Scientific Research Fund - OTKA, No. NKFIH-FK128673.

??Department of Economics and Business Administration, Tokyo Metropolitan University, Tokyo
192-0397, Japan, e-mail: murota@tmu.ac.jp . The research was supported by JSPS KAKENHI
Grant Number 20K11697.

December 2020

1.1 Main results 2

In [14] and [15], we characterized dec-min elements of an M-convex set (which is, by

an equivalent definition, the set
....

B of integral elements of an integral base-polyhedron
B [21, 22]) and described a strongly polynomial algorithm to compute a cheapest dec-
min element with respect to a linear cost function. In [16], an analogous investigation
was carried out for network flows. In the present work, we consider decreasingly
minimal integer-valued submodular flows, a common generalization of network flows
and base-polyhedra.

Submodular flows were introduced by Edmonds and Giles [6] while the term itself
was suggested by Zimmermann [25]. The notion became a standard tool in discrete
optimization, see the books [10, 19, 22, 24]. Originally, Edmonds and Giles used
submodular functions for the definition but supermodular functions could equally well
be used, and in applications one often needs supermodular functions. Therefore, in the
present paper, we replace the term submodular flow by base-flow (but emphasize that
these are the same). From this point of view, the term base-polyhedron is adequate
since it refers to neither submodular nor supermodular functions. Our newly suggested
term base-flow is intended to capture this neutrality. In Section 1.2, we recall the
formal definitions of base-polyhedra and base-flows, along with their basic properties.

1.1 Main results

One of our main goals is to provide a complete description of the set of F -dec-min

elements of
....

Q for an integral base-flow polyhedron Q. Roughly, the theorem states
that this set is the set of integral elements of a base-flow polyhedron obtained from
Q by intersecting a face of Q with a box which is ‘narrow’ on F . In what follows, Z
denotes the set of integers while Z := Z ∪ {+∞} and Z := Z ∪ {−∞}. Throughout
we use R to denote the set of reals.

THEOREM 1.1. Let D = (V,A) be a digraph endowed with integer-valued lower
and upper bound functions f : A → Z and g : A → Z for which f ≤ g. Let B
be an integral base-polyhedron for which the base-flow polyhedron Q = Q(f, g;B) is
non-empty. Let F ⊆ A be a specified subset of edges such that both f and g are
finite-valued on F . Then there exists a face B∇ of B and there exists a pair (f ∗, g∗)
of integer-valued bounding functions on A with f ≤ f ∗ ≤ g∗ ≤ g such that an element

z ∈
....

Q is F -dec-min if and only if z ∈
....

Q(f ∗, g∗;B∇). Moreover, 0 ≤ g∗(e)− f ∗(e) ≤ 1
for every e ∈ F .

The proof will be prepared in Sections 2 and 3, and completed in Section 4. It
should be noted that in the general case, when the finiteness of f and g on F is not
assumed, it may be the case that no F -dec-min element exists at all. In Section 6 we
describe a characterization for the existence of F -dec-min integral feasible base-flow,
and show that Theorem 1.1 extends to this case, as well.

It is a known and easy property [8] that the intersection of two (integral) g-
polymatroids is an (integral) base-flow polyhedron. Therefore Theorem 1.1 can be
specialized to the following.

EGRES Technical Report No. 2020-24

1.2 Basic notions and notation 3

Corollary 1.2. Let Q1 and Q2 be two integral g-polymatroids in RS for which their
intersection Q is non-empty. Let F ⊆ S be a specified subset of ground-set S. Then
there exists a face Q∇ of Q and there exists an integral box T = T (f ∗, g∗) in RS

such that an element z ∈
....

Q is F -dec-min if and only if z ∈
....

Q∇ ∩ T . Moreover,
0 ≤ g∗(s) − f ∗(s) ≤ 1 for every element s ∈ F , and f ∗(s) = −∞, g∗(s) = +∞ for
every element s ∈ S − F .

Recall that an M-convex set is the set of integral elements of an integral base-
polyhedron. In Discrete convex analysis [21, 22], the set of integral elements of an
integral g-polymatroid is called an M\-convex set (pronounce M-nat-convex or M-
natural-convex). As a base-polyhedron is a special g-polymatroid, an M-convex set
is M\-convex. Furthermore, the intersection of two M-convex (resp., M\-convex) sets
is called an M2-convex (resp., M\

2-convex) set. It was proved by Frank [8] that the
intersection of two integral g-polymatroids is an integral polyhedron, implying that
an M\

2-convex set is the set of integral elements of the intersection of two integral
g-polymatroids. Therefore, Corollary 1.2 can be interpreted as a characterization of
the set of F -dec-min elements of an M\

2-convex set.
Our second main goal is to develop a strongly polynomial algorithm for computing

the bounding functions f ∗ and g∗ in the theorem, as well as the face B∇ of B. Once
these data are available, with the help of a standard base-flow algorithm [7, 10], one

can compute an F -dec-min element of
....

Q. Even more, with the help of a minimum

cost base-flow algorithm [4, 20] a minimum cost F -dec-min element of
....

Q can also
be computed in polynomial time, with respect to a linear cost-function c : A → R.
Indeed, by Theorem 1.1, this latter problem is nothing but a minimum cost (f ∗, g∗)-
bounded base-flow problem, which can be solved in polynomial time. (See, e.g. [4, 20],
and the book of Schrijver [24] (p. 1019)).

This approach gives rise to an algorithm in the special base-flow problem when the
goal is to find a (minimum cost) k-edge-connected and in-degree-bounded orientation
of a mixed graph for which the in-degree vector is decreasingly minimal.

1.2 Basic notions and notation

Let S be a finite ground-set. Two subsets X and Y of S are intersecting if X∩Y 6= ∅.
They are properly intersecting if none of X ∩ Y , X − Y , Y − X is empty. If, in
addition, S − (X ∪ Y) is also non-empty, we speak of a crossing pair.

For a vector x ∈ RS or a function x : S → R, the set-function x̃ : 2S → R is
defined by

x̃(Z) :=
∑

[x(s) : s ∈ Z] (Z ⊆ S).

Such a function is modular in the sense that the modular equality

x̃(X) + x̃(Y) = x̃(X ∩ Y) + x̃(X ∪ Y) (1.1)

holds for every pair {X, Y } of subsets of S.
Unless stated otherwise, we assume throughout for a set-function that its value on

the empty set is zero. Let p : S → Z be a set-function on S. When p(S) is finite, the

EGRES Technical Report No. 2020-24

1.2 Basic notions and notation 4

set-function p defined by
p(X) := p(S)− p(S −X)

is called the complementary set-function or just the complement of p. Clearly,
p(∅) = 0 and p(S) = p(S), and the complement of p is p itself.

The supermodular inequality for X, Y ⊆ S is as follows:

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y). (1.2)

The set-function p is called fully supermodular or just supermodular if (1.2)
holds for every pair of subsets X, Y ⊆ S. We say the p is intersecting (crossing)
supermodular if (1.2) holds for every intersecting (crossing) pair of subsets of S.

For a set-function b : S → Z, the submodular inequality is as follows:

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y). (1.3)

Function b is called fully (intersecting, crossing) submodular if (1.3) holds for every
(intersecting, crossing) pair of subsets. Clearly, the complement of a fully (crossing)
supermodular function is fully (crossing) submodular.

With a set function h with finite h(S), we associate two polyhedra:

B′(h) := {x ∈ RS : x̃(S) = h(S) and x̃(Z) ≥ h(Z) for all Z ⊂ S},

B(h) := {x ∈ RS : x̃(S) = h(S) and x̃(Z) ≤ h(Z) for all Z ⊂ S}.

Obviously, B(h) = B′(h) and B′(h) = B(h).
For a (fully) supermodular function p with finite p(S), the polyhedron B := B′(p)

is called a base-polyhedron. We say that B is a 0-base-polyhedron if p(S) = 0,
or equivalently, x̃(S) = 0 for each x ∈ B. A base-polyhedron can also be described
with the help of a submodular function b, namely, B = B(b) where b and p are
complementary set-functions. The empty set, by convention, is also considered a
base-polyhedron although it cannot be defined by a fully sub- (or supermodular)
function (which is equivalent to saying that B′(p) is never empty).

A basic property of non-empty base-polyhedra is that they uniquely determine their
bounding fully supermodular (or submodular) function. Namely,

p(Z) = min{x̃(Z) : x ∈ B} (or b(Z) = max{x̃(Z) : x ∈ B}). (1.4)

This formula is particularly important from an algorithmic point of view since an
algorithm developed for the case when the base-polyhedron B is defined by a fully su-
permodular p, the same algorithm can be used for an arbitrarily given base-polyhedron
(defined, for example, by a crossing supermodular function) provided that a subrou-
tine is available to compute p(Z) in (1.4) for any input subset Z ⊆ S.

A rich overview of properties of base-polyhedra can be found in the books [10, 19].
For example, if p is integer-valued, then the base-polyhedron B′(p) is an integral
polyhedron. Furthermore, the face of a base-polyhedron, its translate by a vector,
its intersection with a box are also base-polyhedra, as well as the direct sum and
the Minkowski sum of base-polyhedra. For an arbitrary chain C of subsets of S, the

EGRES Technical Report No. 2020-24

1.2 Basic notions and notation 5

polyhedron {x ∈ B′(p) : x̃(Z) = p(Z) for each Z ∈ C} is a face of B′(p) and every
face of B′(p) arises in this way.

In applications it is fundamental that crossing supermodular (or submodular) func-
tions also define (possibly empty) base-polyhedra. The non-emptyness in this case
was characterized by an elegant theorem of Fujishige [18]. For a general overview
of base-polyhedra, see the book [10]. More recent results [1, 2] indicate that base-
polyhedra defined by even weaker functions also show up in several applications. It is
essential to see that formulating and proving results for base-polyhedra is significantly
easier when the bounding set-function defining B is fully supermodular (or submod-
ular) but in applications it is typical that B is described by a weaker function. For
such situations it is a typical task to modify appropriately the algorithm developed
for base-polyhedra given by fully supermodular functions.

Let D = (V,A) be a loopless digraph endowed with integer-valued functions f :
A → Z and g : A → Z for which f ≤ g. Here f and g are serving as lower and
upper bound functions, respectively. An edge e is called tight if f(e) = g(e). The
polyhedron T (f, g) := {x : f ≤ x ≤ g} is called a box.

Let %D(Z) = %A(Z) denote the number of edges of D entering Z ⊆ V while δD(Z) =
δA(Z) is the number of edges of D leaving Z. For a function x : A → R %x(v) :=∑

[x(uv) : uv ∈ A] and δx(v) :=
∑

[x(vu) : vu ∈ A]. We call x feasible if f ≤ x ≤ g.
It is a simple property that f ≤ g implies that %g − δf is a fully submodular function.
Define function ψx : V → R by ψx(v) = %x(v) − δx(v). The function ψx on V
is sometime called the net in-flow of x. Define the set-function Ψx by Ψx(Z) :=
%x(Z)− δx(Z) for Z ⊆ V . Clearly, Ψ(∅) = Ψx(V) = 0.

Let b be a crossing submodular function. A function x : A → R is called a
submodular flow if Ψx ≤ b. When f ≤ x ≤ g, we speak of an (f, g)-bounded or
feasible submodular flow. If there is a submodular flow x, then Ψx(V) = 0 implies
that b(V) ≥ 0. If b(V) > 0, then b(V) can be reduced to 0 since this affects neither the
(crossing) submodularity of b nor the requirement Ψx ≤ b. Therefore we shall assume
throughout that b(V) = 0, that is, the base-polyhedron B(b) is a 0-base-polyhedron
(with zero component-sum of each vector in B). The set

Q = {x ∈ RA : f ≤ x ≤ g,Ψx ≤ b}

of (f, g)-feasible submodular flows is called a submodular flow polyhedron.
It is immediate from the definitions that x is a submodular flow precisely if its net

in-flow vector ψx belongs to the 0-base-polyhedron B described by b. Since a base-
polyhedron can also be defined with the help of a supermodular function, it follows
that submodular flows can be defined with supermodular functions, as well, namely,
if p is a crossing supermodular function, then the polyhedron

Q := {x ∈ RA : f ≤ x ≤ g,Ψx ≥ p} (1.5)

is also a submodular flow polyhedron. Therefore the role of submodular and super-
modular functions in defining a submodular flow is completely symmetric, and hence
a submodular flow could also be called as a supermodular flow. This is why we sug-
gested in Section 1.1 the term base-flow rather than submodular flow. Actually, the

EGRES Technical Report No. 2020-24

Section 2. L-upper-minimal base-flows 6

point is that in the definition of a base-flow it is the 0-base-polyhedron B that plays
the essential role and not the way how B is given. Therefore a function (or vector)
x : A→ R is a base-flow if ψx ∈ B while a base-flow polyhedron

Q(f, g;B) := {x ∈ RA : f ≤ x ≤ g, ψx ∈ B} (1.6)

is the set of feasible base-flows. When the 0-base-polyhedron B = B′(p) is defined by
a supermodular function p (with p(V) = 0), we speak of a p-base-flow.

A fundamental result of Edmonds and Giles [6] states for a crossing submodular
function b that the linear system

{f ≤ x ≤ g, %x(Z)− δx(Z) ≤ b(Z) for every Z ⊆ V }

describing a base-flow polyhedron is totally dual integral (TDI), implying that Q is
an integral polyhedron whenever f, g, b are integer-valued.

An important feature of base-flows is that, given a subset F ⊆ A, the projection
of a base-flow polyhedron Q to RF (that is, the restriction to F) is itself a base-flow
polyhedron. The face of a base-flow polyhedron is also a base-flow polyhedron.

When B consists of a single element m (with m̃(V) = 0), a base-flow is a modular
flow or mod-flow, which is a standard circulation when m ≡ 0. Decreasingly minimal
mod-flows were investigated in [16]. Note that the projection of a mod-flow polyhedron
is a base-flow polyhedron but typically not a mod-flow polyhedron.

Frank [7, 10] provided a necessary and sufficient condition for the non-emptyness of
a base-flow polyhedron. For general crossing supermodular (or submodular) functions
this condition is rather complicated but when p is fully supermodular, the formulation
(and the proof of its necessity) is pretty straightforward.

THEOREM 1.3. When p is fully supermodular, the p-base-flow polyhedron Q defined
in (1.5) is non-empty if and only if %g − δf ≥ p, that is,

%g(X)− δf (X) ≥ p(X) for every subset X ⊆ V. (1.7)

Note that in the special case of circulations (when p ≡ 0), we are back at Hoffman’s
circulation theorem.

2 L-upper-minimal base-flows

Let D, f, g, B, and Q = Q(f, g;B) be the same as in Theorem 1.1, but in this section
we do not use F . Let L be a subset of A for which f and g are finite-valued on
L (that is, f(e) may be −∞ and g(e) may be +∞ only if e ∈ A − L.) We say

that z ∈
....

Q is L-upper-minimal or that z is an L-upper-minimizer if the number
of g-saturated edges in L is as small as possible, where an edge e ∈ L is called g-
saturated if z(e) = g(e). In this section, we are interested in characterizing the

L-upper-minimizer elements of
....

Q.

EGRES Technical Report No. 2020-24

2.1 Upper bound for the number of g-saturated edges 7

For a chain C of subsets of V , we call an edge e C-entering (respectively, C-leaving)
if e enters (resp., leaves) a member of C, and e is C-neutral when e neither enters
nor leaves any member of C. For a subset I of edges, let %I(C) (C ⊆ V) denote the
number of edges in I entering C, and let %I(C) denote the number of C-entering edges
in I. When this number is positive, we say that I enters C.

One of the goals of this section is to prove the following characterization of L-upper
minimizer base-flows. This will serve as a main tool in proving Theorem 1.1.

THEOREM 2.1. Let Q = Q(f, g;B) be a non-empty integral base-flow polyhedron
and L a subset of edges on which both f and g are finite-valued. There is a face BL

of B and there are bounds fL : A → Z and gL : A → Z with f ≤ fL ≤ gL ≤ g

such that an element z ∈
....

Q is an L-upper minimizer if and only if z ∈
....

QL where
QL = Q(fL, gL;BL).

The proof will be prepared in this section and completed in Section 3.

If there is an edge e ∈ L with f(e) = g(e), then x(e) = g(e) for each x ∈ Q.
Therefore a base-flow x is g-saturated on L if and only if it is g-saturated on L′ := L−e,
and hence x is L-upper minimal precisely if it is L′-upper minimal. Therefore it suffices
to prove the theorem for L′, and hence we can assume that L contains no tight edges,
or in other words,

−∞ < f(e) < g(e) < +∞ for every edge e ∈ L. (2.1)

We shall also show how the chain determining the face BL and the bounds (fL, gL)
occurring in the theorem can be computed in polynomial time in the case when a
subroutine is available to compute p(Z) for any given subset Z ⊆ S, where p denotes
the unique fully supermodular function p for which B = B′(p).

2.1 Upper bound for the number of g-saturated edges

Our first goal is to show how a chain C of subsets of V provides a lower bound for
the number of g-saturated edges in L. Let p denote the unique fully supermodular
function defining B, that is, B = B′(p). Let BC be the face of B defined by C. Define
the bounding pair (fC(e), gC(e)) for each edge e ∈ A, as follows. For e ∈ L, let

(fC(e), gC(e)) :=


(g(e), g(e)) if e enters at least two members of C,
(g(e)− 1, g(e)) if e enters exactly one member of C,
(f(e), f(e)) if e is C-leaving,

(f(e), g(e)− 1) if e is of C-neutral.

(2.2)

For e ∈ A− L, let

(fC(e), gC(e)) :=


(g(e), g(e)) if e is C-entering,

(f(e), f(e)) if e is C-leaving,

(f(e), g(e)) if e is C-neutral.

(2.3)

EGRES Technical Report No. 2020-24

2.1 Upper bound for the number of g-saturated edges 8

It follows from this definition that f ≤ fC ≤ gC ≤ g. Note that these data define a
base-flow polyhedron Q(fC, gC;BC) included in Q(f, g;B).

Consider the following optimality criteria.



(O1) x(e) = f(e) if e ∈ A is C-leaving

(O2) x(e) = g(e) if e ∈ A− L is C-entering

(O3) g(e)− 1 ≤ x(e) ≤ g(e) if e ∈ L enters exactly one member of C
(O4) x(e) = g(e) if e ∈ L enters at least two members of C
(O5) f(e) ≤ x(e) ≤ g(e)− 1 if e ∈ L is C-neutral

(O6) %x(C)− δx(C) = p(C) if C ∈ C.
(2.4)

An easy case-checking immediately shows the following.

Claim 2.2. Let x ∈ Q. The union of the first five optimality criteria in (2.4) is
equivalent to the requirement fC ≤ x ≤ gC. Criterion (O6) is equivalent to stating
that ψx ∈ BC.

Lemma 2.3. Let Q = Q(f, g;B) be a non-empty base-flow polyhedron and let p
denote the unique supermodular function defining the 0-base-polyhedron B (that is,
B = B′(p)). Let L be a subset of A meeting (2.1). Let x be an arbitrary element of
Q and let

X := {e ∈ L : x(e) = g(e)}. (2.5)

Let C be a chain of subsets of V . Then

|X| ≥ %L(C) −
∑

[%g(C)− δf (C)− p(C) : C ∈ C]. (2.6)

Moreover, (2.6) is met by equality if and only if the optimality criteria hold in (2.4),
or, equivalently, x ∈ Q(fC, gC;BC).

Proof. If %g(C)− δf (C)− p(C) = +∞, then (2.6) trivially holds, so we can assume
that %g(C) < +∞, δf (C) > −∞, and p(C) > −∞. Observe that, for any set I of
edges, ∑

C∈C

%I(C) ≥ %I(C), (2.7)

(where %I(C) denotes the number of C-entering elements of I) and∑
C∈C

%I(C) = %I(C) ⇔ each edge in I enters at most one member of C. (2.8)

By applying (2.7) to I := L−X, the assumption x ∈ Q implies

∑
C∈C

p(C) ≤
∑
C∈C

[%x(C)−δx(C)] ≤
∑
C∈C

[%g(C)−δf (C)−%L−X(C)] ≤
∑
C∈C

[%g(C)−δf (C)]−%L−X(C)

(2.9)

EGRES Technical Report No. 2020-24

2.1 Upper bound for the number of g-saturated edges 9

=
∑
C∈C

[%g(C)− δf (C)]− %L(C) + %X(C),

from which
|X| ≥ %X(C) ≥ %L(C) +

∑
C∈C

[p(C)− %g(C) + δf (C)], (2.10)

and hence (2.6) follows.

To see the second part of the lemma, suppose first that equality holds in (2.6), and
want to prove that the optimality criteria hold in (2.4). Equality in (2.6) implies that
both inequalities in (2.10) are met with equalities. Therefore

|X| = %X(C), (2.11)

and each inequality in (2.9) is met with equalities, that is,∑
C∈C

p(C) =
∑
C∈C

[%x(C)− δx(C)], (2.12)

∑
C∈C

[%x(C)− δx(C)] =
∑
C∈C

[%g(C)− %L−X(C)− δf (C)], (2.13)

∑
[%L−X(C) : C ∈ C] = %L−X(C) (2.14)

Here (2.12) holds precisely if p(C) = %x(C)− δx(C) for each C ∈ C, which is exactly
(O6).

Equality (2.13) implies that δx(C) = δf (C) for each C and hence (O1) follows.
(2.13) also implies for each C-entering edge e ∈ A− L that x(e) = g(e), that is, (O2)
holds. Furthermore, (2.13) implies for each C-entering edge e ∈ L that g(e) − 1 ≤
x(e) ≤ g(e) (namely, x(e) = g(e) when e ∈ X, and x(e) = g(e)− 1 when e ∈ L−X),
that is, (O3) holds.

Equality (2.14) and (2.8) imply that e ∈ L − X entering C enters exactly one
member of C. Therefore, if an edge e ∈ L enters at least two members of C, then
e ∈ X, that is, x(e) = g(e), showing that (O4) holds.

Finally, (2.11) means that every g-saturated edge means that every g-saturated
edge in L enters C. Therefore, if an edge e ∈ L does not enter C, then x(e) ≤ g(e)−1,
showing that (O5) holds.

To see the reverse implication, suppose that the element x of Q and the chain C
meet the six optimality criteria in the lemma. We have to show that (2.6) holds with
equality. What we are going to prove is that both inequalities in (2.10) are met with
equality.

Claim 2.4. |X| = %X(C).

EGRES Technical Report No. 2020-24

2.1 Upper bound for the number of g-saturated edges 10

Proof. Suppose, indirectly, that |X| > %X(C) which means that there is an edge
e ∈ X which is not C-entering. Then x(e) = g(e) > f(e) and (O1) imply that e is not
C-leaving either. That is, e is C-neutral and hence (O5) implies that x(e) ≤ g(e)− 1,
a contradiction.

Therefore the first inequality in (2.10) is met indeed by equality. The second in-
equality in (2.10) holds with equality precisely if each of the three inequalities in (2.9)
holds with equality. Consider these three inequalities separately.

Criterion (O6) states that %x(C) − δx(C) = p(C) for each C ∈ C, implying (2.12),
which shows that the first inequality in (2.9) holds with equality.

Claim 2.5. The second inequality in (2.9) holds with equality, that is,∑
C∈C

[%x(C)− δx(C)] =
∑
C∈C

[%g(C)− δf (C)− %L−X(C)]. (2.15)

Proof. Observe first that (O1) implies∑
C∈C

δx(C) =
∑
C∈C

δf (C). (2.16)

Let C be a member of C. For an edge e ∈ A − L entering C, (O2) implies that
x(e) = g(e). Furthermore, the definition of X shows that x(e) = g(e) for e ∈ X. By
integrating these observations, we get the following:

%x(C)

=
∑

[x(e) : e ∈ A− (L−X), e enters C] +
∑

[x(e) : e ∈ L−X, e enters C]

=
∑

[g(e) : e ∈ A− (L−X), e enters C] +
∑

[g(e)− 1 : e ∈ L−X, e enters C]

= %g(C)− %L−X(C).

Therefore ∑
C∈C

%x(C) =
∑
C∈C

[%g(C)− %L−X(C)].

This and (2.16) imply (2.15).

Claim 2.6.
∑

[%L−X(C) : C ∈ C :] = %L−X(C).

Proof. The claim is equivalent to stating that every edge in L−X entering C enters
exactly one member of C. But this is true since if an edge e ∈ L − X, indirectly,
enters at least two members of C, then (O4) implies that x(e) = g(e), that is, e ∈ X,
a contradiction.

Claim 2.6 immediately implies that the third inequality in (2.9) also holds with
equality. This and Claim 2.4 imply that both inequalities in (2.10) are met with
equalities and hence we have equality in (2.6), as well.

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 11

3 Min-max formula for L-upper-minimizers

In this section we provide a min-max theorem for the minimum number of g-saturated

L-edges of a member of
....

Q. In Lemma 2.3, we did not need the unique supermodular
funtion p defining the 0-base-polyhedron B in question. However, in formulating and
proving the min-max theorem below, we shall rely on p. It will also be shown how the
optima can be computed with the help of a standard algorithm to compute a cheapest
integer-valued feasible base-flow.

THEOREM 3.1. Let Q = Q(f, g;B) be a non-empty base-flow polyhedron and let p
denote the unique supermodular function defining 0-base-polyhedron B (that is, B =
B′(p)). Let L be a subset of A meeting (2.1). The minimum number of g-saturated
L-edges of an (f, g)-bounded integer-valued p-base-flow is equal to

max{%L(C) −
∑
C∈C

[%g(C)− δf (C)− p(C)]}, (3.1)

where the maximum is taken over all chains C of subsets C of V with p(C) > −∞
and %g(C) − δf (C) < +∞. In particular, if the minimum is zero, the maximum is
attained at the empty chain.

Proof. The first part of Lemma 2.3 implies that min ≥ max .
For proving the reverse direction, consider the primal optimization problem which

is to find an integral (f, g)-bounded base-flow which saturates (with respect to g) a
minimum number of elements of L. We show that this is a minimum cost feasible
base-flow problem on a modified digraph. To this end, we introduce a parallel copy
e′ of each e ∈ L. Let L′ denote the set of new edges. Let

A1 := A ∪ L′, D′ := (V, L′), and D1 := (V,A1).

Define gL on A by gL := g − χL, that is, we reduce g(e) by 1 for each e ∈ L. Since L
contains no tight edges, gL ≥ f follows. Let f1 and g1 be bounding functions and c1
a cost function defined on A1 as follows.

f1(e) := f(e), g1(e) := gL(e), and c1(e) := 0 if e ∈ A,

f1(e
′) := 0, g1(e

′) := 1, and c1(e
′) := 1 if e′ ∈ L′.

Claim 3.2. The problem of finding an (f, g)-bounded integer-valued p-base-flow on
A admitting a minimum number of g-saturated L-edges is equivalent to finding a
minimum c1-cost (f1, g1)-bounded integer-valued p-base-flow on A1.

Proof. First, let x ∈
....

Q and let X := {e ∈ L : x(e) = g(e)} denote the set of g-
saturated elements of L. Let X ′ := {e′ : e ∈ X} denote the subset of L′ corresponding
to X. Define a p-base-flow x1 on A1 as follows.

x1(e) :=

{
x(e) if e ∈ A−X,
g(e)− 1 if e ∈ X,

x1(e
′) :=

{
1 if e′ ∈ X ′,
0 if e′ ∈ L′ −X ′.

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 12

Then x1 is an (f1, g1)-bounded p-base-flow on A1 whose c1-cost is |X|.
Conversely, let x1 be a minimum cost integer-valued (f1, g1)-bounded p-base-flow

on A1. Observe that if x1(e
′) = 1 for some e′ ∈ L′, then x1(e) = g1(e) = g(e) − 1

where e is the edge in L corresponding to e′. Indeed, if we had x1(e) ≤ g(e)− 2, then
the p-base-flow obtained from x1 by adding 1 to x1(e) and subtracting 1 from x1(e

′)
would be of smaller cost. It follows that the p-base-flow x on A defined by

x(e) :=

{
x1(e) + x1(e

′) if e ∈ L,
x1(e) if e ∈ A− L

(3.2)

is an (f, g)-bounded p-base-flow in D, for which the number of g-saturated L-edges is
exactly the c1-cost of x1.

By Claim 3.2, we investigate the minimum of the c1-cost of integer-valued (f1, g1)-
bounded p-base-flows on A1. In order to describe the dual optimization problem, let
N be a {0,±1}-matrix whose columns correspond to the elements of A (the edge-set
of D) while its rows correspond to the members of

P := {Z ⊆ V : p(Z) > −∞}.

The entry of N corresponding to Z ∈ P and e ∈ A is +1 if e enters Z, −1 if e
leaves Z, and 0 otherwise. Note that, for a vector x ∈ A → R, the requirement
%x(Z) − δx(Z) ≥ p(Z) for every Z ⊆ V is equivalent to Nx ≥ p. Let N ′ denote the
matrix associated analogously with D′, and let N1 = [N,N ′].

The primal linear program is as follows:

min{c1x1 : N1x1 ≥ p, x1 ≥ f1, −x1 ≥ −g1}. (3.3)

The dual linear program is as follows:

max{yp+ z1f1 − w1g1 : yN1 + z1 − w1 = c1, y ≥ 0, z1 ≥ 0, w1 ≥ 0} (3.4)

where yp =
∑

[y(Z)p(Z) : Z ∈ P]. Note that the components of z1 = (z, z′)
correspond to the edges in A and in L′, respectively, and the analogous statement
holds for w1 = (w,w′).

A fundamental theorem of Edmonds and Giles [6] states that the linear system in
(3.3) is totally dual integral (TDI). In the present case, when each of f, g, p, and c1
is integer-valued, the TDI-ness implies that both the primal and the dual program
have an integer-valued optimal solution. In addition, since p is fully supermodular,
the optimal y∗ in (3.4) can be chosen in such a way that the sets C for which y∗(C)
is positive form a chain. Therefore we consider only those vectors y occurring in the
constraint of (3.4) which are chained in the sense that C = {C ⊆ V : y(C) > 0} is a
chain. We refer to C as the support chain of y. The dual solution (y, z1, w1) is said
to be simple if y is chained and min{z1(e), w1(e)} = 0 for every edge e ∈ A1.

Claim 3.3. There exists an integer-valued optimal dual solution to (3.4) which is
simple.

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 13

Proof. We indicated already that there a dual integral solution (y, z1, w1) where y
is chained. If both z1(e) and w1(e) are positive on an edge e ∈ A1, then by reducing
both z1(e) and w1(e) by min{z1(e), w1(e)} we obtain another dual solution whose dual
cost is larger by g1(e)− f1(e) ≥ 0 than the dual cost yp+ z1f1 −w1g1 of (y, z1, w1).

Let (y, z1, w1) be a simple (integer-valued) dual solution. Since z1 and w1 are non-
negative vectors, y uniquely determines them. We describe explicitly how z1 and w1

can be expressed by y. Recall that chain C consist of subsets Z ⊆ V for which y(Z)
is positive. Define a function πy : V → Z as follows:

πy(v) :=
∑

[y(C) : v ∈ C ∈ C]. (3.5)

Define ∆y : A1 → Z as follows. For a = uv ∈ A1, let

∆y(a) := πy(v)− πy(u).

Then ∆y(a) > 0 (respectively, ∆y(a) < 0) if and only if a is C-entering (resp., C-
leaving) and hence ∆y(a) = 0 precisely when a is C-neutral.

Claim 3.4. Let e = uv be an edge of D1. Then

∆y(a) + z1(a)− w1(a) = c1(a). (3.6)

Proof. It follows from the definition of ∆y that

∆y(a) =
∑

[y(C) : C ∈ C is entered by a] when a is C-entering, (3.7)

∆y(a) = −
∑

[y(C) : C ∈ C is left by a] when a is C-leaving. (3.8)

∆y(a) = 0 when a is C-neutral. (3.9)

These and the constraint yN1 + z1 − w1 = c1 in (3.4) imply (3.6).

Claim 3.5. Let e = uv ∈ A.

If e is C-neutral, then

{
z1(e) = 0

w1(e) = 0,
(3.10)

if e is C-entering, then

{
z1(e) = 0

w1(e) = ∆y(e),
(3.11)

if e is C-leaving, then

{
z1(e) = −∆y(e)

w1(e) = 0.
(3.12)

Proof. Since c1(e) = 0 and (y, z1, w1) is simple, the claim follows by applying (3.6)
to e in place of a.

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 14

Claim 3.6. Let e′ = uv ∈ L′.

If e′ is C-neutral, then

{
z1(e

′) = 1

w1(e
′) = 0,

(3.13)

if e′ is C-entering, then

{
z1(e

′) = 0

w1(e
′) = ∆y(e

′)− 1,
(3.14)

if e′ is C-leaving, then

{
z1(e

′) = −∆y(e
′) + 1

w1(e
′) = 0.

(3.15)

Proof. Since c1(e
′) = 1 and (y, z1, w1) is simple, the claim follows by applying (3.6)

to e′ in place of a.

Claim 3.7. z1f1 =
∑

[y(C)δf (C) : C ∈ C].

Proof. Since f1(e
′) = 0 for e′ ∈ L′, we have

z1f1 =
∑
e∈A

z1(e)f1(e) +
∑
e′∈L′

z1(e
′)f1(e

′) =
∑
e∈A

z1(e)f1(e)

=
∑

[z1(e)f(e) : e ∈ A, z1(e) > 0] =
∑

[−∆y(e)f(e) : e ∈ A is C-leaving]

=
∑

[y(C)δf (C) : C ∈ C].

Claim 3.8. w1g1 =
∑

[y(C)%g(C) : C ∈ C]− %L(C).

Proof. Observe first that∑
[∆y(e)g1(e) : e ∈ A is C-entering]

=
∑

[∆y(e)g(e) : e ∈ A− L is C-entering] +
∑

[∆y(e)(g(e)− 1) : e ∈ L is C-entering]

=
∑

[∆y(e)g(e) : e ∈ A is C-entering] −
∑

[∆y(e) : e ∈ L is C-entering]

=
∑
C∈C

y(C)%g(C)−
∑

[∆y(e) : e ∈ L is C-entering].

Second,∑
[∆y(e

′)− 1 : e′ ∈ L′ is C-entering] =
∑

[∆y(e)− 1 : e ∈ L is C-entering]

=
∑

[∆y(e) : e ∈ L is C-entering] −
∑

[1 : e ∈ L is C-entering]

=
∑

[∆y(e) : e ∈ L is C-entering] − %L(C).

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 15

Since g1(e
′) = 1 for e′ ∈ L′, we have

w1g1

=
∑
e∈A

w1(e)g1(e) +
∑
e′∈L′

w1(e
′)g1(e

′) =
∑

[w1(e)g1(e) : e ∈ A,w1(e) > 0] +
∑
e′∈L′

w1(e
′)

=
∑

[∆y(e)g1(e) : e ∈ A is C-entering] +
∑

[∆y(e
′)− 1 : e′ ∈ L′ is C-entering]

=
∑
C∈C

y(C)%g(C)−
∑

[∆y(e) : e ∈ L is C-entering]

+
∑

[∆y(e) : e ∈ L is C-entering] − %L(C)

=
∑
C∈C

y(C)%g(C)− %L(C).

Claim 3.9. For a function y : P → Z+, let z1 : A1 → Z+ and w1 : A1 → Z+ be the
vectors associated with y in Claims 3.5 and 3.6. Then the cost of the dual solution
(y, z1, w1) in (3.4) is as follows.

yp+ z1f1 − w1g1 = %L(C)−
∑
C∈C

y(C)[%g(C)− δf (C)− p(C)]. (3.16)

Proof. By Claims 3.7 and 3.8, we have

yp+ z1f1 − w1g1

=
∑
C∈C

y(C)p(C) +
∑
C∈C

y(C)δf (C)−
∑
C∈C

y(C)%g(C) + %L(C)

= %L(C)−
∑
C∈C

y(C)[%g(C)− δf (C)− p(C)].

Claim 3.10. Let (y, z1, w1) be a simple integer-valued (possibly not optimal) solution
to the dual problem (3.4). Let C denote the support chain of y, and let z1 and w1 be
the vectors associated with y in Claims 3.5 and 3.6. Assume that y(C1) ≥ 2 for a
member C1 of C. Let y′ be the function arising from y by reducing the value y(C1) by
1, and let z′1 and w′1 be the vectors associated with y′ as described in Claims 3.5 and
3.6. Then

y′p+ z′1f1 − w′1g1 ≥ yp+ z1f1 − w1g1.

Proof. By applying Claim 3.9 to (y, z1, w1) and to (y′, z′1, w
′
1), we get:

y′p+ z′1f1 −w′1g1 = yp+ z1f1 −w1g1 + [%g(C1)− δf (C1)− p(C1)] ≥ yp+ z1f1 −w1g1,

where the last inequality follows from (1.7).

EGRES Technical Report No. 2020-24

Section 3. Min-max formula for L-upper-minimizers 16

Proposition 3.11. Let (y, z1, w1) be a simple integer-valued optimal solution to the
dual problem (3.4) with support chain CL of y, where z1 and w1 are the vectors
associated with y in Claims 3.5 and 3.6. Define the function yL : P → {0, 1} to be
1 on the members of CL and 0 otherwise, and let z′1 and w′1 be the vectors associated
with yL as described in Claims 3.5 and 3.6. Then (yL, z

′
1, w

′
1) is also a simple integer-

valued optimal solution to the dual problem (3.4).

Proof. By repeated applications of Claim 3.10, we obtain that yLp + z′1f1 − w′1g1 ≥
yp+z1f1−w1g1, but here we must have equality due to the hypothesis that (y, z1, w1)
is a dual optimum, and this equality shows, that (yL, z

′
1, w

′
1) is also a dual optimum.

Let x∗1 be an integer-valued primal optimum in (3.3), that is, x∗1 is a minimum
c1-cost (f1, g1)-bounded p-base-flow on the edge-set A1 of D1. Let x∗ be the (f, g)-
bounded p-base-flow on D defined in (3.2). As noted in the proof of Claim 3.2, x∗ is
L-upper-minimizer, and the number of g-saturated L-edges of x is c1x1.

Let (yL, z
′
1, w

′
1) be a dual optimum in (3.4) ensured by Proposition 3.11, where

yL is (0, 1)-valued with support chain CL. By Claim 3.9, the min-max theorem of
Edmonds and Giles implies that the minimum number of g-saturated L-edges of an
(f, g)-bounded integer-valued p-base-flow is equal to

c1x
∗
1 = yLp+ z′1f1 − w′1g1 = %L(CL)−

∑
C∈C

[%g(C)− δf (C)− p(C)],

completing the proof of Theorem 3.1.

Proof of Theorem 2.1. Let CL be an optimal chain in Theorem 3.1, and let (fL, gL)
be the pair of bounding functions associated with CL in (2.2) and (2.3) (with CL in
place of C), that is, fL := fCL and gL := gCL . Let BL (:= BCL) be the face of B
determined by CL, and let QL := Q(fL, gL;BL). Theorem 3.1 and Lemma 2.3 imply

that an element x of
....

Q is L-upper minimal if and only if x ∈
....

QL, as required for
Theorem 2.1.

Remark 3.12. The proofs in this section and Section 2 are a bit technical and
lengthy but the underlying ideas are pretty standard. Our objective of this detailed
description is to make easier to check the proofs. We note that the second part of
Lemma 2.3 can also be proved on the basis of the complementary slackness condition
for the dual linear programs (3.3) and (3.4) in the proof of Theorem 3.1. We also
remark that the approach of introducing parallel edges in the proof of Theorem 3.1 is
a well-known technique and is equivalent to considering a convex cost which is equal
to 1 if x(e) = g(e) and 0 if f(e) ≤ x(e) ≤ g(e)− 1. •

Algorithmic aspects. Since the cost-function c1 is {0, 1}-valued, the algorithm of
Cunningham and Frank [4] computes in strongly polynomial time these primal and
dual optima, provided a subroutine is available to minimize a submodular function.
A simpler and more efficient submodular flow algorithm, based on a push-relabel
approach, appeared in [11]. These algorithms actually work for the more general

EGRES Technical Report No. 2020-24

Section 4. Description of F -dec-min base-flows 17

setting when the bounding set-function is only crossing (sub- or) supermodular. Since
in the present situation p is fully supermodular, as mentioned above, the sets on which
y is positive form a chain CL of non-empty proper subsets of V . Observe that for
determining the base-flow polyhedron QL = Q(fL, gL;BL) what we need is only a
chained optimal dual solution y since this determines its support chain CL, which in
turn gives rise to (fL, gL) as given in (2.2) and (2.3).

It should be emphasized that the same algorithmic approach works for an arbitrarily
(or implicitly) given base-polyhedron B, for example, when B is defined by a crossing
supermodular function. The only expectation is that a subroutine be available to
compute

p(Z) = min{x̃(Z) : x ∈ B} (3.17)

for any input set Z ⊂ V . But a minimization problem over a base-polyhedron can
be solved with an extension of Edmonds’ greedy algorithm concerning polymatroids.
See, for example, Section 14.5 in [10] along with the geometric view of the greedy
algorithm on Page 488, which explains how the greedy algorithm can be implemented
for base-polyhedra given implicitly. All what we need is an oracle for minimizing a
submodular function.

We also remark that the submodular flow (= base-flow) algorithms in the literature
work with crossing submodular functions. But these algorithms can be extended to
the case when the 0-base-polyhedron B defining the base-flow polyhedron is given
in an implicit form. What is really needed is a subroutine that is capable to find an

integral element of B, and to decide for an element z of
....

B and a pair {s, t} of elements
of the ground-set whether z′ := z − χs + χt is in B.

4 Description of F -dec-min base-flows

Let D = (V,A), F , (f, g), and B be the same as in Theorem 1.1. In this section,
we prove this theorem by describing the set of F -dec-min integral elements of a non-
empty integral base-flow polyhedron Q = Q(f, g;B). When F = ∅, each element of
....

Q is dec-min. In this case, the theorem is trivially true, so we assume henceforth that
F is non-empty.

A natural reduction step consists of removing a tight edge e from F . This simply
means that we replace F by F ′ := F − e (but keep e in the digraph itself). Obviously,

a member z of
....

Q is F -dec-min if and only if z is F ′-dec-min. Therefore, we may
always assume that F contains no tight edges, that is,

f(e) < g(e) for every e ∈ F . (4.1)

Removing tight edges from F will be used not only at the starting step of the proof
(and the algorithm) but it is a basic tool in later phases, as well, when the bounds
(f, g) are tightened and new tight edges arise in F . It is this reduction step that
makes the current F smaller and smaller (see, Theorem 4.3).

EGRES Technical Report No. 2020-24

4.1 Pre-decreasing minimality on F 18

Moreover, we assume that both f and g are finite-valued on F , that is,

−∞ < f(e) < g(e) < +∞ for every e ∈ F , (4.2)

which ensures the existence of an F -dec-min element of Q. When (4.2) is not assumed,

it is possible that
....

Q has no F -dec-min element at all. We shall characterize this
situation in Section 6.

4.1 Pre-decreasing minimality on F

Let p denote the unique fully supermodular function defining the 0-base-polyhedron

B, that is, B = B′(p). Let β = βF denote the smallest integer for which
....

Q has an
element z that is β-covered on F (meaning that z(e) ≤ β for every edge e ∈ F),
that is,

βF = min{max{z(e) : e ∈ F} : z ∈
....

Q(f, g;B)}. (4.3)

In the next section, we shall work out an algorithm to compute βF in strongly poly-

nomial time. Since we are interested in F -dec-min members of
....

Q, we may assume
that the largest g-value of the edges in F is this β. Let

Lβ := {e ∈ F : g(e) = β}. (4.4)

By the definition of β, Lβ is non-empty. Now Condition (1.7) holds but, since F
contains no tight edges and since β is minimal, after decreasing the g-value of the
elements of Lβ from β to β − 1, the resulting function g− := g − χLβ violates (1.7),
that is, Q(f, g−;B) = ∅. Summing up, we shall rely on the following notation and
assumptions. 

F is non-empty and contains no (f, g)-tight edges,

β := max{g(e) : e ∈ F},
Lβ := {e ∈ F : g(e) = β},
g− := g − χLβ ,
....

Q =
....

Q(f, g;B) is non-empty,
....

Q(f, g−;B) is empty.

(4.5)

As a preparation for deriving the main result Theorem 1.1, we need the following

relaxation of decreasing minimality. We call a member z of
....

Q pre-decreasingly
minimal (pre-dec-min, for short) on F if the number µ of edges e in Lβ with
z(e) = β is as small as possible. Obviously, z is pre-dec-min on F precisely if z
is Lβ-upper minimizer. It is also straightforward that if z is F -dec-min, then z is
pre-dec-min on F .

Apply Theorem 2.1 to this L := Lβ, and consider the base-flow polyhedron

QL = (fL, gL;BL)

EGRES Technical Report No. 2020-24

4.1 Pre-decreasing minimality on F 19

ensured by the theorem. Recall that the face BL of B was defined by a chain CL while
(fL, gL) was defined in (2.2) and (2.3). In the present special case of L = Lβ, the
definition of (fL, gL) in (2.2) and (2.3) specializes as follows. For e ∈ L, let

(fL(e), gL(e)) :=


(β, β) if e enters at least two members of CL,

(β − 1, β) if e enters exactly one member of CL,

(f(e), f(e)) if e is CL-leaving,

(f(e), β − 1) if e CL-neutral.

(4.6)

For e ∈ A− L, let

(fL(e), gL(e)) :=


(g(e), g(e)) if e is CL-entering,

(f(e), f(e)) if e is CL-leaving,

(f(e), g(e)) if e is CL-neutral.

(4.7)

The optimality criteria (2.4), when applied to z ∈
....

Q in place of x, are as follows.



(O1) z(e) = f(e) if e ∈ A is CL-leaving

(O2) z(e) = g(e) if e ∈ A− L is CL-entering

(O3) β − 1 ≤ z(e) ≤ β if e ∈ L enters exactly one member of CL
(O4) z(e) = β if e ∈ L enters at least two members of CL
(O5) f(e) ≤ z(e) ≤ β − 1 if e ∈ L is CL-neutral

(O6) %z(Z)− δz(Z) = p(Z) if Z ∈ CL.

(4.8)
By Lemma 2.3 and Theorem 2.1, we have the following.

Claim 4.1. For an element z ∈
....

Q, the following properties are equivalent.
(A) z is pre-dec-min on F ,
(B) (4.8) holds,

(C) z ∈
....

QL.

Claim 4.2. An element z of
....

Q is F -dec-min if and only if z is an F -dec-min element

of
....

QL.

Proof. Suppose first that z is an F -dec-min element of
....

Q. Then z is surely F -pre-

dec-min in
....

Q and hence, by Claim 4.1, z is in
....

QL. If, indirectly,
....

QL had an element z′

which is decreasingly smaller on F than z, then z could not have been an F -dec-min

element of
....

Q.

Conversely, let z′ be an F -dec-min element of
....

QL and suppose indirectly that z′ is

not an F -dec-min element of
....

Q. Then any F -dec-min element z of
....

Q is decreasingly

smaller on F than z′. But any F -dec-min element of
....

Q is pre-dec-min on F and

EGRES Technical Report No. 2020-24

4.1 Pre-decreasing minimality on F 20

hence, by Claim 4.1, z is in
....

QL, contradicting the assumption that z′ was an F -dec-

min element of
....

QL.
For wider applicability, we must emphasize that, similarly to Theorem 1.1, the

formulation of the next result relies on the 0-base-polyhedron B itself, but not on the
unique fully supermodular function p defining B. (The proof, however, does refer to
p.)

THEOREM 4.3. Let D, (f, g), F , and B be the same as in Theorem 1.1, and let
L := Lβ (defined in (4.4)). Given (4.5), there is a set F ′ ⊂ F for which an element

z of
....

Q is an F -dec-min member of
....

Q if and only if z is an F ′-dec-min member of
....

QL =
....

Q(fL, gL;BL). In addition, the box T (fL, gL) is narrow on F − F ′ in the sense
that 0 ≤ gL(e)− fL(e) ≤ 1 holds for every e ∈ F − F ′.

Proof. Apply Theorem 2.1 to L = Lβ, and consider the face BL of B ensured by the
theorem. Let CL be the chain describing BL (that is, BL = {x ∈ B : x̃(C) = p(C)
for each C ∈ C} where p denotes the fully supermodular function p defining B).
Let (fL, gL) be the pair of bounding functions defined in (4.6) and (4.7), and let
....

QL :=
....

Q(fL, gL;BL).

Claim 4.4. The subset L′ ⊆ L consisting of the CL-entering elements of L is non-
empty.

Proof. Let z be an element of
....

Q which is pre-dec-min on F . By Claim 4.1, z ∈
....

QL.
By (4.5), there is an edge e in F , for which z(e) = β = g(e), and hence e ∈ L.
Since g(e) = z(e) ≤ gL(e) ≤ g(e) and F contains no (f, g)-tight edges, we have
f(e) < g(e) = gL(e) = β. This and definition (4.6) imply that e is CL-entering.

Since L′ 6= ∅ by the claim, we have that

F ′ := F − L′ is a proper subset of F .

We are going to show that (fL, gL) and F ′ meet the requirements of the theorem.
Call two vectors in ZA value-equivalent on L′ if their restrictions to L′ (that is, their
projection to ZL′), when both arranged in a decreasing order, are equal.

Claim 4.5. The members of
....

QL are value-equivalent on L′.

Proof. By Claim 4.1, the members of
....

QL are exactly those elements of
....

Q which are

pre-dec-min on F . Hence each member z of
....

QL has the same number µ of edges in L
for which z(e) = β.

As F contains no (f, g)-tight edges, we have z(e) ≤ gL(e) ≤ β − 1 for every edge
e ∈ L− L′ and hence each element e of L with z(e) = β belongs to L′, from which

|{e ∈ L′ : z(e) = β}| = µ.

Furthermore, we have fL(e) ≥ β − 1 for every element e of L′, from which L′ has

exactly |L′|−µ edges with z(e) = β− 1, implying that the members of
....

QL are indeed
value-equivalent on L′.

EGRES Technical Report No. 2020-24

4.2 Proof of the main result 21

Claim 4.2 implies that the F -dec-min elements of
....

Q are exactly the F -dec-min

elements of
....

QL, and hence it suffices to prove that an element z of
....

QL is an F -dec-

min member of
....

QL if and only if z is an F ′-dec-min member of
....

QL. But this latter
equivalence is an immediate consequence of Claim 4.5.

To prove the last part of Theorem 4.3, recall that F − F ′ = L′ and L′ consisted
of the CL-entering elements of L. But the definition of (fL, gL) in (4.6) implies that
β − 1 ≤ fL(e) ≤ gL(e) = β for every element e of L′, that is, the box T (fL, gL) is
indeed narrow on F − F ′.

4.2 Proof of the main result

After these preparations, we are in a position to prove our main result formulated in
Section 1.

Proof of Theorem 1.1. We use induction on |F |. Since f ∗ := f , g∗ := g, and
p∗ := p clearly meet the requirements of the theorem when F = ∅, we can assume
that F is non-empty. As before, we may assume that F contains no (f, g)-tight edges.

By Theorem 4.3, it suffices to prove the theorem for
....

Q(fL, gL;BL) and F ′. But this
follows by induction since F ′ is a proper subset of F .

4.3 Graph orientations

One of the starting points of the present investigation was the paper of Borradaile et al.
[3], in which they considered (among others) strongly connected orientation of an undi-
rected graph for which the indegree vector is decreasingly minimal (equitable in their
term). They formulated a conjecture for characterizing dec-min strongly connected
orientations. The conjecture has been proved in [14] in a more general framework
concerning k-edge-connected in-degree constrained orientations. The characterization
immediately gave rise to an algorithm for computing a dec-min orientation in ques-
tion. The approach of [14], however, does not say anything about strongly connected
dec-min orientations of a mixed graph.

It is known, however, (see, for example, [10]) that even the more general problem of
finding a k-edge-connected in-degree constrained orientation of a mixed graph can be
formulated as a special base-flow polyhedron problem (where the base-flow is defined
by a crossing supermodular function). Therefore both Theorem 1.1 and the algorithm
developed for computing minimum cost dec-min base-flow can be specialized to this
dec-min orientation problem.

5 Algorithm for minimizing the largest base-flow

value on F

Our next task is to describe a strongly polynomial algorithm to compute the bounding
pair (f ∗, g∗) and the face B∇ of B in Theorem 1.1, the main result of the paper. In

EGRES Technical Report No. 2020-24

5.1 Computing the smallest good µ 22

Section 4 we derived Theorem 1.1 from Theorem 4.3. This derivation showed that
if an algorithm is available to compute the face BL of B and the bounds (fL, gL)
occurring in Theorem 4.3, then at most |F | applications of this algorithm results in
the requested (f ∗, g∗) and B∇. Therefore our main task is to show how the bounds
(fL, gL) and face BL in Theorem 4.3 can be computed.

Theorem 4.3 itself was derived by applying Theorem 2.1 in the special case L := Lβ.
Therefore, we can apply the algorithm outlined at the end of Section 3 once we are
able to compute βF defined in (4.3). Recall from Section 4.1 that βF is nothing but

the smallest integer for which
....

Q has an element z that is βF -covered on F , or in other
words, every component of z in F is at most βF .

As a preparation to computing β := βF , let S be a finite ground-set, h : 2S → Z
and b : 2S → Z+ be set-functions. We call an integer µ good with respect to b and
h if µb(X) ≥ h(X) for every X ⊆ S. An integer that is not good is called bad. The
non-negativity of b implies that if µ is good, then so is every integer larger than µ.
We assume that

h(X) ≤ 0 whenever b(X) = 0, (5.1)

which is equivalent to requiring that there is a good µ. We also assume that

there exists a subset Y ⊆ S with h(Y) > 0, (5.2)

which is equivalent to requiring that the value µ = 0 is bad. Let µmin denote the
smallest good integer.

5.1 Computing the smallest good µ

We recall an algorithm from [16] to compute µmin. (In order to avoid confusion, here
we use letter h for the function p used in [16].) The number µmin is nothing but the
maximum of dh(X)/b(X)e over the subsets X of S with b(X) > 0, and hence the
algorithm may be viewed as a variant of the Newton-Dinkelbach algorithm.

The algorithm works if a subroutine is available to

find a subset X ⊆ S maximizing h(X)− µb(X) for any fixed integer µ ≥ 0.
(5.3)

This routine will actually be needed only for special values of µ when µ = dh(X)/`e
≥ 0 with X ⊆ S and 1 ≤ ` ≤M , where M denotes the largest finite value of b.

The algorithm starts with the bad µ0 := 0. Let

X0 ∈ arg max{h(X)− µ0b(X) : X ⊆ S},

that is, X0 is a set maximizing the function h(X) − µ0b(X) = h(X). Note that the
badness of µ0 implies that h(X0) > 0. Since, by assumption, there is a good µ, it
follows that µb(X0) ≥ h(X0), and hence b(X0) > 0.

The procedure determines one by one a series of pairs (µj, Xj) for subscripts j =
1, 2, . . . where each integer µj is a tentative candidate for µ while Xj is a non-empty
subset of S with b(Xj) > 0. Suppose that the pair (µj−1, Xj−1) has already been

EGRES Technical Report No. 2020-24

5.2 Computing βF in strongly polynomial time 23

determined for a subscript j ≥ 1. Let µj be the smallest integer for which µjb(Xj−1) ≥
h(Xj−1), that is,

µj :=

⌈
h(Xj−1)

b(Xj−1)

⌉
.

If µj is bad, then let

Xj ∈ arg max{h(X)− µjb(X) : X ⊆ S},

that is, Xj is a set maximizing the function h(X)−µjb(X). Since µj is bad, we have
h(Xj)− µjb(Xj) > 0, which implies b(Xj) > 0 by the assumption (5.1).

It was proved in [16] (Claim 7.1) that if µj is bad for some subscript j ≥ 0, then
µj < µj+1. This implies that there is a first subscript ` ≥ 1 during the run of the
algorithm for which µ` is good. Theorem 7.2 in [16] states that µmin = µ`, that is, µ`
is the requested smallest good µ-value and ` ≤M .

5.2 Computing βF in strongly polynomial time

In the previous subroutine to compute the smallest good integer, S denoted the
ground-set of the occurring set-functions h and b. Now we turn to the problem of
computing βF and apply the subroutine to set-functions defined on ground-set V in
place of S.

As before, we suppose that there is an (f, g)-bounded base-flow (that is, Q =
Q(f, g;B) is non-empty), and also that F contains no (f, g)-tight edges. Based on
the algorithm in Section 5.1, we describe first a strongly polynomial algorithm to

compute βF defined in (4.3), which is the smallest integer for which
....

Q has an element
z satisfying z(e) ≤ βF for every edge e ∈ F . Note that βF can be interpreted as
the smallest integer such that, by decreasing g(e) to βF for each edge e ∈ F with
g(e) > βF , the resulting g− and the unchanged f continue to meet the inequality
f ≤ g− and the inequality %g− − δf ≥ p in (1.7), which ensure that Q(f, g−;B) is
non-empty.

The first requirement for βF is that it should be at least the largest f -value on
the edges in F , which is denoted by f1. Let g1 > g2 > · · · > gq denote the distinct
g-values of the edges in F , and let L := {e ∈ F : g(e) = g1}. Let β1 := max{f1, g2}.

It is known that there is a (purely combinatorial) strongly polynomial algorithm
(see, for example [7]) to check whether a base-flow polyhedron is empty or not. We
refer to such an algorithm as a base-flow feasibility subroutine. Such an algorithm
either outputs an integral element of the base-flow polyhedron in question or else it
outputs a set X violating (1.7).

With the help of this subroutine, we can check whether the g-value g1 on the
elements of L can uniformly be decreased to β1 without destroying (1.7). If this is the
case, then either β1 = f1, in which case a tight edge arises in F and we can remove
this tight edge from F , or β1 = g2, in which case the number of distinct g-values
becomes one smaller. Clearly, as the total number of distinct g-values in F is at most
|F |, this kind of reduction may occur at most |F | times.

EGRES Technical Report No. 2020-24

5.2 Computing βF in strongly polynomial time 24

Therefore, we are at a case when g1 cannot be decreased to β1 without violating
(1.7), that is, βF > β1. We look for βF in the form βF = β1 + µ, that is, our goal

is to compute the smallest positive integer µ such that
....

Q has an element which is
(β1 + µ)-covered on F . To this end, we show that computing such a µ is nothing but
finding a smallest good µ with respect to set-functions h := p′ and b to be defined as
follows.

Recall that L = {e ∈ F : g(e) = g1} and let A0 := A − L (that is, A0 is the
complement of L with respect to the whole edge-set A). Let g′ denote the function
arising from g by reducing g(e) on the elements of L (where g(e) = g1) to β1. Since
g′ ≥ f holds and hence %g′ − δf is submodular, the set-function p′ on V defined by

p′(Z) := p(Z)− %g′(Z) + δf (Z) (5.4)

is supermodular. Define a submodular function b on V by

b(Z) := %L(Z). (5.5)

Recall that a non-negative integer µ is called good with respect to b and p′ if

µb(Z) ≥ p′(Z) (5.6)

holds for every Z ⊆ V .

Claim 5.1. For a non-negative integer µ, Condition (1.7) holds after increasing
g(e) = β1 uniformly by µ on the edges e ∈ L, or equivalently,

µ%L(Z) + %g′(Z)− δf (Z) ≥ p(Z) (5.7)

holds for every Z ⊆ V if and only if µ is good with respect to b and p′.

Proof. The claim follows immediately from the equivalence of (5.6) and (5.7).

Therefore our problem of computing βF is reduced to computing the smallest good
non-negative integer µ. As Q has no element which is g1-covered on F , Claim 5.1
shows that µ = 0 is not good. Similarly, as Q has an element which g1-covered on F ,
Claim 5.1 shows that µ := g1 − β1 is good.

Since b is submodular, p′ is supermodular, and we have max{b(Z) : Z ⊆ V } ≤
|L| ≤ |A|, we can apply the algorithm described in Section 5.1 to h := p′ and b.
That algorithm needs the Subroutine (5.3) to compute a subset of V maximizing
p′(Z) − µb(Z) (Z ⊆ V) for any fixed integer µ ≥ 0. This subroutine is applied at
most M times, where M denotes the largest value of b. Since the largest value of b is
at most |A|, the subroutine (5.3) is applied at most |A| times. Furthermore, by the
definition of p′ and b, the equivalent subroutine to minimize

µb(Z)− p′(Z) = µ%L(Z) + %g′(Z)− δf (Z)− p(Z)

can be realized with the help of a submodular function minimizing algorithm.
Therefore, the smallest good µ can be computed in strongly polynomial time, and

hence the requested βF = β1 + µ may be assumed to be available.

EGRES Technical Report No. 2020-24

Section 6. Existence of an F -dec-min base-flow 25

6 Existence of an F -dec-min base-flow

In the previous sections, we assumed that the bounding functions f and g are finite-
valued on F because this certainly ensured the existence of an F -dec-min element of
....

Q where Q = (f, g;B) is a non-empty 0-base-flow polyhedron. The goal of the present
section is to describe a characterization of the existence of F -dec-min elements when
there are no a priori assumptions on the finiteness of f and g. Since every member of
....

Q is trivially F -dec-min when F = ∅, we assume that the specified subset F of A is
non-empty.

First, we exhibit an easy reduction by which g can be made finite-valued on F

without changing the set of F -dec-min elements of
....

Q.

Lemma 6.1. There is a function g− (≤ g) on A which is finite-valued on F such that

the (possibly empty) set of F -dec-min elements of
....

Q :=
....

Q(f, g;B) is equal to the set

of F -dec-min elements of
....

Q′ :=
....

Q(f, g−;B).

Proof. Let z1 be an element of
....

Q and let β denote the maximum value of its
components. Define g− as follows:

g−(e) :=

{
min{g(e), β} if e ∈ F,
g(e) if e ∈ A− F.

(6.1)

As g− ≤ g, we have
....

Q′ ⊆
....

Q. In particular, an F -dec-min element z′ of
....

Q′ is in
....

Q, and we claim that z′ is actually F -dec-min in
....

Q, as well. Indeed, if we had an

element z′′ ∈
....

Q which is decreasingly smaller on F than z′, then z′′ is not in
....

Q′, that
is, z′′ is not (f, g−)-bounded. Therefore there is an edge a ∈ F for which z′′(a) > β,
implying that max{z′′(e) : e ∈ F} > β ≥ max{z′(e) : e ∈ F}. But this contradicts
the assumption that z′′ is decreasingly smaller on F than z′.

Conversely, suppose that z is an F -dec-min element of
....

Q. Since the largest compo-

nent of z1 is β, the largest component of z is at most β, and hence z ∈
....

Q′. This and
....

Q′ ⊆
....

Q imply that z is an F -dec-min element of
....

Q′.

Let
P := {Z ⊆ V : min{x̃(Z) : x ∈ B} > −∞}. (6.2)

Note that if p denotes the unique fully supermodular function defining B, then

P = {Z ⊆ V : p(Z) > −∞}.

This implies that P is closed under taking intersection and union. We also have
V ∈ P since B is a 0-base-polyhedron. Therefore, each element u ∈ V is contained in
a unique smallest member P (u) of P (which is the intersection of all members of P
containing u).

To formulate the main result of this section, we introduce a set J of edges that
encodes P . Let

J := {uv : v ∈ P (u)− u}. (6.3)

EGRES Technical Report No. 2020-24

Section 6. Existence of an F -dec-min base-flow 26

We refer to the elements of J as jumping edges. Clearly, e = uv is a jumping edge
precisely if e does not leave any member of P , and a subset X ⊆ V is a member of P
precisely if δJ(X) = 0.

Let

A1 := {e : e ∈ A, f(e) = −∞} and A2 := {vu : uv ∈ A− F, g(uv) = +∞},

and let
A∗ := J ∪ A1 ∪ A2. (6.4)

THEOREM 6.2. Let D = (V,A) be a digraph and F ⊆ A a non-empty subset of
edges, and let B be an integral 0-base-polyhedron. Let f : A → Z and g : A → Z be

bounding functions on A with f ≤ g such that the base-flow polyhedron
....

Q :=
....

Q(f, g;B)

is non-empty. Then there exists an F -dec-min element of
....

Q if and only if there is no
di-circuit C with C ∩ F 6= ∅ in the digraph D∗ = (V,A∗) defined by (6.4).

Proof. Let p : 2V → Z be the unique fully supermodular function on V determining
B, that is, B = B′(p). Since B is a 0-base-polyhedron, p(V) = 0. Suppose first that
D∗ includes a di-circuit C intersecting F , and assume, indirectly, that there exists an

F -dec-min member z of
....

Q. For uv ∈ A, define z′(uv) as follows:

z′(uv) :=


z(uv)− 1 if uv ∈ C ∩ A1

z(uv) + 1 if vu ∈ C ∩ A2

z(uv) otherwise.

(6.5)

Let Z be any subset of V . Clearly,

%C(Z) = δC(Z). (6.6)

Let C1 := C ∩ A1, C2 := C ∩ A2, and CJ := C ∩ J . Then

%C1(Z) + %C2(Z) + %CJ (Z) = δC1(Z) + δC2(Z) + δCJ (Z) (6.7)

and hence

%CJ (Z)− δCJ (Z) = δC1(Z) + δC2(Z)− %C1(Z)− %C2(Z). (6.8)

Furthermore,
%z′(Z) = %z(Z)− %C1(Z) + δC2(Z), (6.9)

δz′(Z) = δz(Z)− δC1(Z) + %C2(Z), (6.10)

from which, by recalling the notation Ψz := %z − δz, we get

Ψz′(Z) = Ψz(Z)− %C1(Z) + δC2(Z) + δC1(Z)− %C2(Z) = Ψz(Z) + %CJ (Z)− δCJ (Z).
(6.11)

Claim 6.3. The vector z′ defined in (6.5) is also in
....

Q.

EGRES Technical Report No. 2020-24

Section 6. Existence of an F -dec-min base-flow 27

Proof. It follows immediately from the definitions of D∗ and z′ that f ≤ z′ ≤ g. To
prove that Ψz′ := %z′ − δz′ ≥ p, let Z be a member of P . By the definition of J , no
jumping edges leave Z, and hence δCJ (Z) = 0. From (6.11) we get

Ψz′(Z) = Ψz(Z) + %CJ (Z) ≥ p(Z) + 0 = p(Z),

as required.

By Claim 6.3, z′ ∈
....

Q. Since F ∩ C 6= ∅, z′ is decreasingly smaller on F than z, a

contradiction, showing that in the present case no dec-min element of
....

Q can exist.

To see the converse, suppose that there is no di-circuit of D∗ intersecting F . We

want to prove that there is an F -dec-min element of
....

Q.
We claim that it suffices to prove this statement in the special case when g is finite-

valued on F. Indeed, consider the function g− introduced in (6.1). As g− ≤ g, there is
no di-circuit described in the theorem with respect to (f, g−). Now g− is finite-valued
on F , and if there exists an F -dec-min (f, g−)-bounded base-flow z, then it follows
from Lemma 6.1 that z is an F -dec-min (f, g)-bounded base-flow.

Therefore, we can assume that g is finite-valued on F . In this case,

A2 = {vu : uv ∈ A, g(uv) = +∞}.

Claim 6.4. Let S ⊂ V be a set for which δA∗(S) = 0, and let e0 ∈ F be an edge

entering S. Then, for any z ∈
....

Q, we have

z(e0) ≥ p(S)− [%g(S)− g(e0)] + δf (S), (6.12)

and the right-hand side is finite.

Proof. Since z ≤ g and e0 enters S, we have

%z(S)− z(e0) ≤ %g(S)− g(e0),

from which

p(S) ≤ %z(S)−δz(S) = z(e0)+[%z(S)−z(e0)]−δz(S) ≤ z(e0)+[%g(S)−g(e0)]−δf (S),

implying (6.12). Furthermore, δA∗(S) = 0 implies that f(e) > −∞ for every edge e
of D leaving S and that g(e) < +∞ for every edge e of D entering S. δA∗(S) = 0 also
implies that no jumping edge leaves S, which is equivalent to saying that P (u) ⊆ S
for each u ∈ S. But this latter property implies that S ∈ P , that is, p(S) is finite,
from which the finiteness of the right-hand side of (6.12) follows.

Assume indirectly that
....

Q has no F -dec-min element, that is, for every element of
....

Q
there exists another one which is decreasingly smaller on F . This implies that there

is an edge e0 = ts in F for which
....

Q has an element z for an arbitrary small integer
K such that z(e0) ≤ K.

Claim 6.5. There exists an st-dipath P in D∗.

EGRES Technical Report No. 2020-24

Section 7. Fractional dec-min elements 28

Proof. Suppose, indirectly, that the set S of nodes reachable from s in D∗ does not
contain t. Since no edge of D∗ leaves S and e0 enters S, it follows from Claim 6.4
that there is a finite lower bound for z(e0), a contradiction.

The di-circuit formed by e0 = ts and the st-dipath P ensured by Claim 6.5 meets
the requirement of the theorem.

Extension of Theorem 1.1 With the help of Theorem 6.2 and Lemma 6.1, Theorem
1.1 can be extended to the case when (f, g) is not assumed to be finite-valued on F , but
only the existence of a di-circuit in D∗ intersecting F is excluded (which is equivalent,

by Theorem 6.2, to the existence of an F -dec-min member of
....

Q).

THEOREM 6.6. Let D = (V,A) be a digraph endowed with integer-valued lower
and upper bound functions f : A → Z and g : A → Z for which f ≤ g. Let B be an
integral 0-base-polyhedron for which the base-flow polyhedron Q = Q(f, g;B) is non-
empty. Let F ⊆ A be a specified subset of edges for which there exists an F -dec-min

element of
....

Q. Then there exists a face B∇ of B and there exists a pair (f ∗, g∗) of
integer-valued bounding functions on A with f ≤ f ∗ ≤ g∗ ≤ g such that an element

z ∈
....

Q is F -dec-min if and only if z ∈
....

Q(f ∗, g∗;B∇). Moreover, 0 ≤ g∗(e)− f ∗(e) ≤ 1
for every e ∈ F .

Proof. By Lemma 6.1, we can assume that g is finite-valued on F . By Theorem
6.2, there is no di-circuit C in D∗ with C ∩ F 6= ∅, implying that, for every edge
e = ts ∈ F , the set Se reachable in D∗ from s meets the inequality (6.12) for any

member z of
....

Q. As the right-hand side of (6.12) is finite by Claim 6.4, there is a finite
lower bound

f ′(e) := p(Se)− [%g(Se)− g(e)] + δf (Se) (6.13)

for z(e). In this way, each (−∞)-valued lower bound on the edges in F can be made
finite, and the original Theorem 1.1 applies.

We emphasize that for each e ∈ F the set Se occurring in the proof is easily
computable and hence so is the finite lower bound f ′(e) given in (6.13). Therefore
this reduction to the case when (f, g) is finite-valued on F is algorithmic.

7 Fractional dec-min elements

Throughout the paper we concentrated exclusively on integral dec-min elements but
analogous questions concerning fractional dec-min elements of a base-flow polyhedron
also make sense. In [16], we proved the following proposition.

Proposition 7.1. If a convex subset P of Rn admits a dec-min element x, then x is
the unique dec-min element.

This theorem can be applied to base-flow polyhedra, and since base-flow polyhedra
are closed under projection, we even have the following.

EGRES Technical Report No. 2020-24

References 29

Claim 7.2. Let Q = Q(f, g;B) be a non-empty base-flow polyhedron defined on the
edge-set of digraph D = (V,A), and let F ⊆ A be a subset of edges. If Q admits a
(fractional) element x which is F -dec-min, then the restriction x′|F of every F -dec-
min element x′ of Q to F is the same as the restriction x|F of x to F .

Concerning the existence of an F -dec-min element of Q, we have the following
theorem, which is the continuous counterpart of Theorem 6.2.

THEOREM 7.3. There exists an F -dec-min element of Q if and only if there is no
di-circuit C with C ∩ F 6= ∅ in the digraph D∗ = (V,A∗) defined by (6.4).

Proof. The proof is essentially the same as that of Theorem 6.2, except that the
definition of z′(uv) = z(uv) ± 1 in (6.5) should be changed to z′(uv) := z(uv) ± δ
using a sufficiently small δ > 0 to meet the condition z′ ∈ Q.

It remains a task for future research to construct an algorithm for computing an
F -dec-min element of Q, when it exists.

References

[1] K. Bérczi and A. Frank, Supermodularity in unweighted graph optimization, Part
I: Branchings and matchings, Mathematics of Operations Research, Vol. 43, Iss.
3 (2018) 726–753.

[2] K. Bérczi and A. Frank, Supermodularity in unweighted graph optimization, Part
II: Matroidal term rank augmentation, Mathematics of Operations Research,
Vol. 43, Iss. 3 (2018) 754–762.

[3] G. Borradaile, J. Iglesias, T. Migler, A. Ochoa, G. Wilfong, and L. Zhang,
Egalitarian graph orientation, J. of Graph Algorithms and Applications, Vol.
21, No. 4 (2017) 687–708.

[4] W.H. Cunningham and A. Frank, A primal-dual algorithm for submodular flows,
Mathematics of Operations Research, Vol. 10, No. 2 (1985) 251-261.

[5] J. Edmonds, Submodular functions, matroids, and certain polyhedra, in: Com-
binatorial Structures and their Applications (R. Guy, H. Hanani, N. Sauer, and
J. Schönheim, eds.), Gordon and Breach, New York (1970) pp. 69-87.

[6] J. Edmonds and R. Giles, A min-max relation for submodular functions on
graphs, Annals of Discrete Mathematics, 1, (1977), 185-204.

[7] A. Frank, An algorithm for submodular functions on graphs, Annals of Discrete
Mathematics, 16 (1982) 97-120.

[8] A. Frank, Generalized polymatroids, in: Finite and infinite sets (Eger 1981),
Colloquia Mathematica Soc. J. Bolyai, 37 (1984) 285–294, North-Holland.

EGRES Technical Report No. 2020-24

References 30

[9] A. Frank, Submodular flows, in: Progress in Combinatorial Optimization (ed.
W. Pulleyblank), Academic Press (1984) 147-165.

[10] A. Frank, Connections in Combinatorial Optimization, Oxford University Press,
2011 (ISBN 978-0-19-920527-1). Oxford Lecture Series in Mathematics and its
Applications, 38.

[11] A. Frank and Z. Miklós, Push-relabel algorithms for matroids and submodular
flows, Japan Journal of Industrial and Applied Mathematics, Vol. 29, No. 3,
(2012) 419-439.

[12] A. Frank and K. Murota, Discrete decreasing minimization, in: Proceedings
of the 11th Japanese-Hungarian Symposium on Discrete Mathematics and Its
Applications, Tokyo, May 27-30, 2019 (eds. H. Hirai, S. Iwata, and S. Tanigawa),
pp. 11-20. ISBN 978-4-60000159-9

[13] A. Frank and K. Murota, Discrete convex analysis view on discrete decreasing
minimization, in: Proceedings of the 11th Japanese-Hungarian Symposium on
Discrete Mathematics and Its Applications, Tokyo, May 27-30, 2019 (eds. H.
Hirai, S. Iwata, and S. Tanigawa), pp. 296-305. ISBN 978-4-60000159-9

[14] A. Frank and K. Murota, Decreasing minimization on M-convex sets, submitted
for publication (2020). https://arxiv.org/abs/2007.09616

[15] A. Frank and K. Murota, Decreasing minimization on M-convex
sets: algorithms and applications, submitted for publication (2020).
https://arxiv.org/abs/2007.09618

[16] A. Frank and K. Murota, Fair integral flows, submitted for publication (2020).
https://arxiv.org/abs/1907.02673

[17] S. Fujishige, Lexicographically optimal base of a polymatroid with respect to a
weight vector, Mathematics of Operations Research, 5 (1980) 186–196.

[18] S. Fujishige, Structures of polyhedra determined by submodular functions on
crossing families, Math. Programming 29 (1984) 125-141.

[19] S. Fujishige, Submodular functions and optimization, Annals of Discrete Math-
ematics, 58, North-Holland (2005), second edition.

[20] S. Fujishige, H. Röck, and U. Zimmermann, A strongly polynomial algorithm for
minimum cost submodular flow problems, Mathematics of Operations Research,
14 (1989) 60-69.

[21] K. Murota, Discrete convex analysis, Mathematical Programming, 83 (1998)
313-371.

[22] K. Murota, Discrete Convex Analysis, SIAM, Philadelphia, 2003.

EGRES Technical Report No. 2020-24

References 31

[23] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester,
1986.

[24] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,
Heidelberg, 2003.

[25] U. Zimmermann, Minimization on submodular flows, Discrete Appl. Mathemat-
ics, 4 (1982) 303-323.

EGRES Technical Report No. 2020-24

	Introduction
	Main results
	Basic notions and notation

	L-upper-minimal base-flows
	Upper bound for the number of g-saturated edges

	Min-max formula for L-upper-minimizers
	Description of F-dec-min base-flows
	Pre-decreasing minimality on F
	Proof of the main result
	Graph orientations

	Algorithm for minimizing the largest base-flow value on F
	Computing the smallest good
	Computing F in strongly polynomial time

	Existence of an F-dec-min base-flow
	Fractional dec-min elements

