Egerváry Research Group on Combinatorial Optimization

TECHNICAL REPORTS

TR-2020-17. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations

James Cruickshank and Bill Jackson

Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations

James Cruickshank ${ }^{\star}$ and Bill Jackson* ${ }^{\star \star}$

Abstract

We give a short proof of a result of Jordán and Tanigawa that a 4-connected graph which has a spanning plane triangulation as a proper subgraph is generically globally rigid in \mathbb{R}^{3}. Our proof is based on a new sufficient condition for the so called vertex splitting operation to preserve generic global rigidity in \mathbb{R}^{d}.

Keywords Bar-joint framework, global rigidity, vertex splitting, plane triangulation.
Mathematics Subject Classification 52C25, 05C10, 05C75

1 Introduction

We consider the problem of determining when a configuration consisting of a finite set of points in d-dimensional Euclidean space \mathbb{R}^{d} is uniqely defined up to congruence by a given set of constraints which fix the distance between certain pairs of points. This problem was shown to be NP-hard for all $d \geq 1$ by Saxe [18], but becomes more tractable if we restrict our attention to generic configurations. Gortler, Healy and Thurston [9] showed that, for generic frameworks, uniqueness depends only on the underlying constraint graph. Graphs which give rise to uniquely realisable generic configurations in \mathbb{R}^{d} are said to be globally rigid in \mathbb{R}^{d}. These graphs have been characterised for $d=1,2,[13]$, but it is a major open problem in distance geometry to characterise globally rigid graphs when $d \geq 3$.

A recent result of Jordán and Tanigawa [17] characterises when graphs constructed from plane triangulations by adding some additional edges are globally rigid in \mathbb{R}^{3}.

Theorem 1. Suppose that G is a graph which has a plane triangulation T as a spanning subgraph. Then G is globally rigid in \mathbb{R}^{3} if and only if G is 4 -connected and $G \neq T$.

[^0]We will give a short proof of this result. The main tool in our inductive proof is the (3-dimensional version of) the following result which gives a sufficient condition for the so called vertex splitting operation to preserve global rigidity in \mathbb{R}^{d}.

Theorem 2. Let $G=(V, E)$ be a graph which is globally rigid in \mathbb{R}^{d} and $v \in V$. Suppose that G^{\prime} is obtained from G by a vertex splitting operation which splits v into two vertices v^{\prime} and $v^{\prime \prime}$, and that G^{\prime} has an infinitesimally rigid realisation in \mathbb{R}^{d} in which v^{\prime} and $v^{\prime \prime}$ are coincident. Then G^{\prime} is generically globally rigid in \mathbb{R}^{d}.

Theorem 22 may be of independent interest. It has aleady been used by Jordán, Kiraly and Tanigawa in [16] to repair a gap in the proof of their characterision of generic global rigidity for 'body-hinge frameworks' given in 15). An analogous result to Theorem 2 was used in [12, 14] to obtain a characteriseation of generic global rigidity for 'cylindrical frameworks'. Theorem 22 is a special case of a conjecture of Whiteley, see [3, 4], that the vertex splitting operation preserves global rigidity in \mathbb{R}^{d} if and only if both v^{\prime} and $v^{\prime \prime}$ have degree at least $d+1$ in G^{\prime}.

2 Vertex splitting and coincident realisations

We will prove Theorem 2, We first define the terms appearing in the statement of this theorem. A (d-dimensional) framework is a pair (G, p) where $G=(V, E)$ is a graph and $p: V \rightarrow \mathbb{R}^{d}$ is a point configuration. The rigidity map for G is the map $f_{G}: \mathbb{R}^{d|V|} \rightarrow \mathbb{R}^{|E|}$ which maps a configuration $p \in \mathbb{R}^{d|V|}$ to the sequence of squared edge lengths $\left(\|p(u)-p(v)\|^{2}\right)_{u v \in E}$. The framework (G, p) is gloablly rigid if, for every framework (G, q) with $f_{G}(p)=f_{G}(q)$, we have p is congruent to q. It is rigid if it is globally rigid within some open neighbourhood of p and is infinitesimally rigid if the Jacobean matrix of the rigidity map of G has rank $\min \left\{d|V|-\binom{d+1}{2},\binom{d}{2}\right\}$ at p. Gluck [6] showed that every infinitesimally rigid framework is rigid and that the two properties are equivalent when p is generic i.e. the coordinates of p are algebraically independent over \mathbb{Q}. We say that the graph G is rigid, respectively globally rigid, in \mathbb{R}^{d} if some, or equivalently every, generic framework (G, p) in \mathbb{R}^{d} is rigid, respectively globally rigid. We refer the reader to the survey article [20] for more information on rigid frameworks.

We need the following result of Connelly and Whiteley [5] which shows that global rigidity is a stable property for infinitesimally rigid frameworks.

Lemma 3. Suppose that (G, p) is an infinitesimally rigid, globally rigid framework on n vertices in \mathbb{R}^{d}. Then there exists an open neighbourhood N_{p} of p in $\mathbb{R}^{d n}$ such that (G, q) is infinitesimally rigid and globally rigid for all $q \in N_{p}$.

Given a graph $G=(V, E)$ and $v \in V$ with neighbour set $N(v)$ the (d-dimensional) vertex splitting operation constructs a new graph G^{\prime} by deleting v, adding two new vertices v^{\prime} and $v^{\prime \prime}$ with $N\left(v^{\prime}\right) \cup N\left(v^{\prime \prime}\right)=N(v) \cup\left\{v^{\prime}, v^{\prime \prime}\right\}$ and $\left|N\left(v^{\prime}\right) \cap N\left(v^{\prime \prime}\right)\right|=d-1$. Whiteley [19] showed that vertex splitting preserves generic rigidity in \mathbb{R}^{d}. More precisely he proved

Lemma 4. Suppose that (G, p) is an infinitesimally rigid framework in \mathbb{R}^{d} and that G^{\prime} is obtained from G by a vertex split operation which splits a vertex $v \in V(G)$ into two vertices $v^{\prime}, v^{\prime \prime}$. Suppose further that the points in $\left\{p(u): u \in\{v\} \cup\left(N\left(v^{\prime}\right) \cap N\left(v^{\prime \prime}\right)\right)\right\}$ are in general position in \mathbb{R}^{d}. Then $\left(G^{\prime}, p^{\prime}\right)$ is infinitesimally rigid for some p^{\prime} with $p^{\prime}\left(v^{\prime}\right)=p(v)$ and $p^{\prime}(x)=p(x)$ for all $x \in V(G)-v$.

Whiteley conjectured in [3, 4] that the vertex splitting operation will preserve generic global rigidity in \mathbb{R}^{d} if and only if both v^{\prime} and $v^{\prime \prime}$ have degree at least $d+1$ in G^{\prime}. Theorem 2 verifies a special case of this conjecture.

Proof of Theorem 2; Let (G, p) be a generic realisation of G in \mathbb{R}^{d} and let (G^{\prime}, p^{\prime}) be the $v^{\prime} v^{\prime \prime}$-coincident realisation of G^{\prime} obtained by putting $p^{\prime}(u)=p(u)$ for all $u \in V-v$ and $p^{\prime}\left(v^{\prime}\right)=p^{\prime}\left(v^{\prime \prime}\right)=p(v)$. The genericity of p implies that the rank of the rigidity matrix of any $v^{\prime} v^{\prime \prime}$-coincident realisation of G^{\prime} will be maximised at $\left(G^{\prime}, p^{\prime}\right)$ and hence $\left(G^{\prime}, p^{\prime}\right)$ is infinitesimally rigid. The genericity of p also implies that (G, p) is globally rigid, and this in turn implies that $\left(G^{\prime}, p^{\prime}\right)$ is globally rigid. We can now use Lemma 3 to deduce that $\left(G^{\prime}, q\right)$ is globally rigid for any generic q sufficiently close to p^{\prime}. Hence G^{\prime} is globally rigid.

3 Contractible edges in plane triangulations

A graph T is a plane (near) triangulation if it has a 2-cell embeding in the plane in which every (bounded) face has three edges on its boundary. We will need the following notation and elementary results for (a particular embedding of) a plane triangulation T. Every cycle C of T divides the plane into two open regions exactly one of which is bounded. We refer to the bounded region as the inside of C and the unbounded region as the outside of C. We say that C is a separating cycle of T if both regions contain vertices of T. If S is a minimal vertex cut-set of T then S induces a separating cycle C. It follows that every plane triangulation is 3 -connected and that a plane triangulation is 4 -connected if and only if it contains no separating 3 -cycles. Given an edge e of T which belongs to no separating 3-cycle of T, we can obtain a new plane triangulation T / e by contacting the edge e and its end-vertices to a single vertex (which is located at the same point as one of the two end-vertices of e), and replacing the multiple edges created by this contraction by single edges.

Hama and Nakamoto [10], see also Brinkman et al [1], showed that every 4-connected plane triangulation T other than the octahedron has an edge e such that T / e is a 4 -connected plane triangulation. We will obtain more detailed information on the distribution of such contractible edges in this section. We will frequently use the facts that T / e is 4 -connected if and only if e belongs to no separating 4 -cycle of T, that no separating 4 -cycle in a 4 -connected triangulation can have a chord, and that no proper subgraph of a 4 -connected triangulation can be a plane triangulation. Our first lemma is statement (b) in the proof of [1, Theorem 0.1]. We include a proof for the sake of completeness.

Lemma 5. Let T be a 4-connected plane triangulation with at least 7 vertices, u be a vertex of T of degree 4 and $e_{1}=u v_{1}, e_{2}=u v_{2}$ be two cofacial edges of T. Then T / e_{i} is 4 -connected for some $i=1,2$.

Proof. Suppose, for a contradiction, that T / e_{i} is not 4 -connected for both $i=1,2$. Let $C_{1}=v_{1} v_{2} v_{3} v_{4} v_{1}$ be the separating 4 -cycle of T which contains the neighbours of u. Since T / e_{1} is not 4 -connected, T has a separating 4 -cycle C_{2} containing e_{1}. Since no separating 4 -cycle of T can have a chord, $C_{2}=w v_{1} u v_{3} w$ for some vertex $w \in V(T) \backslash\left(V\left(C_{1}\right) \cup\{u\}\right)$. Similary, since T / e_{2} is not 4-connected, T has a separating 4-cycle $C_{3}=w^{\prime} v_{2} u v_{2} w^{\prime}$ for some $w^{\prime} \in V(T) \backslash\left(V\left(C_{1}\right) \cup\{u\}\right)$. If $w^{\prime} \neq w$ then $T\left[V\left(C_{1}\right) \cup\right.$ $\left.\left\{u, w, w^{\prime}\right\}\right]$ contains a subgraph homeomorphic to K_{5} contradicting the planarity of T. On the other hand, if $w=w^{\prime}$, then $T\left[V\left(C_{1}\right) \cup\{u, w\}\right]$ is a proper subtriangulation of T and this contradicits the hypothesis that T is a 4 -connected triangulation.

Lemma 6. Suppose that T is a 4-connected plane triangulation with at least 7 vertices and F is a face of T. Then T / e is 4 -connected for some edge e of $T-V(F)$.

Proof. Suppose that the lemma is false and that (T, F) is a counterexample. Fix a plane embedding of T with F as the unbounded face. Let $C=v_{1} v_{2} v_{3} v_{4} v_{1} v$ be a separating 4 -cycle such that the set of vertices inside C is minimal with respect to inclusion. Since T is 4 -connected, C has no chords and hence, relabelling $V(C)$ if necessary, we may assume that $v_{1}, v_{2} \notin V(F)$. Let $u v_{1}$ be an edge from a vertex u in the interior of C to v_{1}. Since $T / v_{1} u$ is not 4 -connected, $v_{1} u$ belongs to a separating 4 -cycle C_{2} of T. The minimality of C_{1} implies that $C_{2}=w v_{1} u v_{3} w$ for some vertex w outside C_{1}, and hence that u is the only vertex inside C_{1} (otherwise $C_{3}=v_{1} u v_{3} v_{2} v_{1}$ would contradict the minimality of C_{1}). This in turn implies that u has degree 4 in T, and we can now use Lemma 5 to deduce that $T / u v_{2}$ is 4 -connected.

Lemma 7. Let T be a 4-connected plane triangulation on at least seven vertices, $u v \in E$ and F, F^{\prime} be the faces of T which contain uv. Let x, y be two non-adjacent vertices of T and let S be the set of all edges of T which lie on an $x y$-path in T of length two. Then T / e is a 4-connected plane triangulation for at least one edge $e \in E(T) \backslash\left(E(F) \cup E\left(F^{\prime}\right) \cup S\right)$.

Proof: It suffices to show that we can find an edge $e \in E(T) \backslash\left(E(F) \cup E\left(F^{\prime}\right) \cup S\right)$ with the property that e is in no separating 4-cycle of T.

We may assume without loss of generality that F is the unbounded face of T. Choose a 4 -cycle C_{1} in T as follows. If T has a separating 4 -cycle then choose C_{1} to be a separating 4 -cycle of T such that the set of vertices inside C_{1} is minimal with respect to inclusion. If T has no separating 4 -cycles then put $E\left(C_{1}\right)=\left(E(F) \cup E\left(F^{\prime}\right)\right)-u v$. Let $C_{1}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and let T_{1} be the plane near triangulation induced in T by $V\left(C_{1}\right)$ and the vertices inside C_{1}. The choice of C_{1} implies that T_{1} is a wheel on five vertices or T_{1} is 4-connected.

We first consider the case when T_{1} is 4 -connected. If T / e is 4 -connected for all $e \in E\left(T_{1}\right) \backslash E\left(C_{1}\right)$ then the lemma will hold for any edge $e \in E\left(T_{1}\right) \backslash\left(E\left(C_{1}\right) \cup S\right)$. Hence we may assume that T / e is not 4-connected for some edge e of $E\left(T_{1}\right) \backslash E\left(C_{1}\right)$. Then e is contained in a separating 4-cycle C_{2} of T. The minimality of C_{1} implies
that $C_{2} \nsubseteq T_{1}$ and the fact that $\left|V\left(T_{1}\right) \backslash V\left(C_{1}\right)\right| \geq 2$ imply that either C_{2} or C_{1} has a chord, contradicting the 4 -connectivity of T.

It remains to consider the case when T_{1} is a wheel on five vertices. Then the unique vertex u of $T_{1}-C_{1}$ has degree four in T and we can apply Lemma 5 to deduce that, after a possible relabelling of $V(C)$, both $T / u v_{1}$ and $T / u v_{3}$ are 4 -connected. If $u v_{1}, u v_{3} \notin S$ then we are done. Hence we may assume that $\{x, y\}=\left\{v_{1}, v_{3}\right\}$, and that neither $T / u v_{2}$ nor $T / u v_{4}$ is 4 -connected. Then $u v_{2}, u v_{4}$ belong to a separating 4 -cycle of T so some vertex $w \in V(T) \backslash V\left(T_{1}\right)$ is adjacent to both v_{2}, v_{4}.

Relabelling v_{1}, v_{3} if necessary. we may assume that v_{1} lies in the interior of the 4 -cycle $C_{2}=v_{2} u v_{4} w v_{2}$. If v_{1} is the only vertex in the interior of C_{2} then w has degree 4 in T and we can apply Lemma 5 to deduce that $T / w v_{1}$ is 4 -connected. Hence we may assume that there are at least two vertices in the interior of C_{2}. This in turn implies that $C_{3}=v_{2} v_{1} v_{4} w v_{2}$ is a separating 4 -cycle of T.

Let T_{3} be the near triangulation induced in T by $V\left(C_{3}\right)$ and the vertices inside of C_{3}. Let C_{3}^{\prime} be a separating 4-cycle of T with $V\left(C_{3}^{\prime}\right) \subseteq V\left(T_{3}\right)$ and such that the set of vertices inside C_{3}^{\prime} is minimal with respect to inclusion and T_{3}^{\prime} be the near triangulation induced in T by $V\left(C_{3}^{\prime}\right)$ and the vertices inside of C_{3}^{\prime}. We can repeat the above argument with C_{1} replaced by C_{3}^{\prime} to deduce that there exists an edge $e \in E\left(T_{3}^{\prime}\right) \backslash E\left(C_{3}^{\prime}\right)$ such that T / e is 4 -connected. Then e is the required edge of T.

4 Braced triangulations

A braced plane triangulation is a graph $G=(V, E \cup B)$ which is the union of a plane triangulation $T=(V, E)$ and a (possibly empty) set of additional edges B, which we refer to as the bracing edges of G. We say that G is a braced plane triangulation when G is given with a particular 2-cell embedding of T in the plane. Given a braced plane triangulation $G=(T, B)$ and an edge e of T which belongs to no separating 3-cycle of T, we denote the braced plane triangulation obtained by contacting the edge e by $G / e=\left(T / e, B_{e}\right)$ where the set of bracing edges B_{e} is obtained from B by replacing any multiple edges in G / e by single edges (in particular any edge of B which becomes parallel to an edge of T / e is deleted).

We can use Lemma 7 to obtain a result on infinitesimally rigid realisations of braced 4-connected triangultions in \mathbb{R}^{3} in which two adjacent vertices are coincident.

Theorem 8. Let G be a braced plane triangulation which is obtained from a 4connected plane triangulation T by adding a brace $b=x y$ and let $u v \in E(T)$. Then G has an infinitesimally rigid uv-coincident realisation in \mathbb{R}^{3}.

Proof. We use induction on $|V(T)|$. Let C and C^{\prime} be the faces of T which contain uv and let S be the set of edges of T which lie on an $x y$-path of length two. Since T is 4-connected, we have $|V(T)| \geq 6$ with equality only if T is the octahedron.

Suppose T is the octahedron. Then $T-\left(C \cup C^{\prime}\right) \cong K_{2}$. Let e be the unique edge in $T-\left(C \cup C^{\prime}\right)$. If $e \in S$ then b is incident with an end vertex of both $u v$ and e and, up to symmetry, there is a unique choice for $u v$ and b. We can now use a direct
computation to find a $u v$-coincident realisation of G in \mathbb{R}^{3}. Hence we may assume that $e \notin S$. Then $G / e \cong K_{5}$ and it is easy to see that every generic $u v$-coincident framework $(G / e, p)$ is infinitesimally rigid. We can now use Lemma 4 to construct an infinitesimally rigid $u v$-coincident framework (G, p^{\prime}).

Hence we may assume that $|V(T)| \geq 7$. Lemma 7 implies that there exists an edge $e \in E(T) \backslash\left(E(C) \cup E\left(C^{\prime}\right) \cup S\right)$ such that T / e is 4 -connected. We can now apply induction to deduce that any generic $u v$-coincident framework ($G / e, p$) is infinitesimally rigid and then use Lemma 4 to construct an infinitesimally rigid $u v$-coincident framework (G, p^{\prime}).

We can combine Theorems 2 and 8 with the following 'gluing lemma' to prove Theorem 1

Lemma 9. Let G_{1}, G_{2} be rigid graphs, $x \in V\left(G_{1}\right) \backslash V\left(G_{2}\right), y \in V\left(G_{2}\right) \backslash V\left(G_{1}\right), z \in$ $V\left(G_{1}\right) \cap V\left(G_{2}\right), x z \in E\left(G_{1}\right)$ and $\left|\left(V\left(G_{1}\right) \cap V\left(G_{2}\right)\right)\right| \geq 3$. Put $G=\left(G_{1} \cup G_{2}\right)-x z+x y$. Suppose that $\left(G_{1}, p_{1}\right)$ is an infinitesimally rigid realisation of G_{1} and that p_{1} is generic on $\left(V\left(G_{1}\right) \cap V\left(G_{2}\right)\right) \cup\{x\}$. Then (G, p) is infinitesimally rigid for some p with $\left.p\right|_{G_{1}}=$ p_{1}.

Proof. Let $\left(G_{1}^{\prime}, p_{1}^{\prime}\right)$ be obtained from $\left(G_{1}-x z, p_{1}\right)$ by adding the vertex y at a point $p_{1}^{\prime}(y)$ which is algebraically independent from $p_{1}\left(V\left(G_{1}\right)\right)$, and then adding an edge from y to x and all vertices in $\left(V\left(G_{1}\right) \cap V\left(G_{2}\right)\right)$. Then $\left(G_{1}^{\prime}, p_{1}^{\prime}\right)$ is infinitesimally rigid since it can be obtained from $\left(G_{1}, p_{1}\right)$ by a 1 -extension ${ }^{1}$ and a possibly empty sequence of edge additions. Since G can be obtained from G_{1}^{\prime} by replacing the subgraph induced by the edges from y to $V\left(G_{1}\right) \cap V\left(G_{2}\right)$ with the rigid graph $G_{2},(G, p)$ will be infinitesimally rigid for any generic extension p of p_{1}^{\prime}.

Proof of Theorem 1

Let $G=(T, B)$ where B is the set of braces of G. Necessity follows from the fact that every globally rigid graph on at least five vertices is 4 -connected and redundantly rigid by [11] (and the fact that if $B=\emptyset$ then G would not have enough edges to be redundantly rigid). We prove sufficiency by induction on $|V(T)|$. If $|V(T)|=5$ then $G \cong K_{5}$ and we are done since K_{5} is globally rigid. Hence we may assume that $|V(T)| \geq 6$.

Suppose T is 4 -connected. Choose $b=x y \in B$ and let S be the set of edges of T which lie on an $x y$-path of length two. If $|V(T)|=6$ then T is the octahedron and $G / e \cong K_{5}$ for all $e \in E(T) \backslash S$, so G / e is globally rigid. We can now apply Theorems 2 and 8 to deduce that G is globally rigid. Hence we may assume that $|V(T)| \geq 7$. Lemma 7 now implies that there exists an edge $e \in E(T) \backslash S$ such that T / e is 4 -connected. Then $T / e+b$ is globally rigid by induction, and we can again use Theorems 2 and 8 to deduce that G is globally rigid.

[^1]Hence we may assume that T is not 4 -connected. Choose a fixed embedding of T in the plane and let C_{1} be a separating 3 -cycle in T such that the set W of vertices inside C_{1} is minimal with respect to inclusion. Let T_{1} be the subgraph of T induced by $V\left(C_{1}\right) \cup W$. Since G is 4 -connected there is a brace $x y \in B$ with $x \in W$ and $y \in V(T) \backslash V\left(T_{1}\right)$. The minimality of C_{1} implies that T_{1} is 4-connected or is isomorphic to K_{4}.

Suppose $T_{1} \cong K_{4}$. We first consider the case when there exists a vertex $z \in V\left(C_{1}\right)$ which is not adjacent to y in T. Then $G / x z$ is a 4 -connected braced triangulation with at least one brace so is globally rigid by induction. In addition, $T-x$ is a plane triangulation so is rigid. This allows us to construct an $x z$-coincident infinitesimally rigid realisation (G, p) from a generic infinitesimally rigid realisation $\left(G-x, p^{\prime}\right)$ by putting $p(x)=p^{\prime}(z)$ and using the fact that x has at least three neighbours other than z in G. Theorem 2 now implies that G is globally rigid. It remains to consider the case when, for every brace $b=x y$ incident to x in G, y is adjacent to every vertex of C_{1} in T. Planarity now implies that $x y$ is the unique brace incident to x and $V\left(C_{1}\right) \cup\{y\}$ induces a copy of K_{4} in T. The fact that $|V(T)| \geq 6$ now implies that $T-x$ is not 4-connected. In addition, $G-x=(T-x, B-x y)$ is a 4 -connected braced plane triangulation, and has at least at least one brace since $T-x$ is not 4 -connected. Then $G-x$ is globally rigid, by induction, and the fact that x has degree four in G now implies that G is globally rigid.

Hence we may assume that T_{1} is 4 -connected. Planarity now implies that some vertex $z \in V\left(C_{1}\right)$ is not adjacent to x. Then $G_{1}=T_{1}+x z$ is a braced 4-connected plane triangulation with exactly one brace. By Theorem 8, G_{1} has an infinitesimally rigid $u v$-coincident realisation for all $e=u v \in E\left(T_{1}\right)$. We can now use Lemma 9 to deduce:
(*) G has an infinitesimally rigid $u v$-coincident realisation for all edges $e=u v$ of T_{1} which are not induced by $V\left(C_{1}\right) \cup\{x\}$.

Suppose T_{1} is isomorphic to the octahedron. Let $e=u v$ be the unique edge of T_{1} which is not incident to a vertex in $V\left(C_{1}\right) \cup\{x\}$. Then $G / e=T / e+x y$ is a 4-connected braced triangulation with at least one brace so is globally rigid by induction. We can now use Theorem 2 and $(*)$ to deduce that G is globally rigid.

It remains to consider the case when $\left|V\left(T_{1}\right)\right| \geq 7$. By Lemma 6, there is an edge $e=u v \in E\left(T_{1}\right)$ such that $T_{1} / u v$ is 4 -connected and $u, v \notin V\left(C_{1}\right)$. Then G / e is a 4 -connected braced triangulation with at least one brace which, by induction, is globally rigid. Theorem 2 and $(*)$ now imply that G is globally rigid.

5 Closing Remarks

1. It follows from a result of Cauchy [2], that every graph which triangulates the plane is generically rigid in \mathbb{R}^{3}. Fogelsanger [8] extended this result to triangulations of an arbitrary surface. It is natural to conjecture that Theorem 1 can be extended in the same way.

Conjecture 10. Let G be a graph which has a triangulation T of some surface S as a spanning subgraph. Then G is globally rigid if and only if G is 4-connected and, when S has genus zero, $G \neq T$.

This conjecture appeared as a question in [17] and was verified when S is the sphere, projective plane or torus.
2. Let $G=(V, E)$ be a graph and $v v^{\prime} \in E$. Fekete, Jordán and Kaszanitzky [7] showed that G can be realised as an infinitesimally rigid bar-joint framework (G, p) in \mathbb{R}^{2} with $p(v)=p\left(v^{\prime}\right)$ if and only if $G-v v^{\prime}$ and $G / v v^{\prime}$ are both generically rigid in \mathbb{R}^{2} (where $G-v v^{\prime}$ and $G / v v^{\prime}$ are obtained from G by, respectively, deleting and contracting the edge $v v^{\prime}$). We conjecture that the same result holds in \mathbb{R}^{d}.

Conjecture 11. Let $G=(V, E)$ be a graph and $v v^{\prime} \in E$. Then G can be realised as an infinitesimally rigid bar-joint framework (G, p) in \mathbb{R}^{d} with $p(v)=p\left(v^{\prime}\right)$ if and only if $G-v v^{\prime}$ and $G / v v^{\prime}$ are both generically rigid in \mathbb{R}^{d}.

The proof in [7] is based on a characterisation of independence in the ' 2 -dimensional generic $v v^{\prime}$-coincident rigidity matroid'. It is unlikely that a similar approach will work in \mathbb{R}^{d} since it is notoriously difficult to characterise independence in the d dimensional generic rigidity matroid for $d \geq 3$. But it is conceivable that there may be a geometric argument which uses the generic rigidity of $G-v v^{\prime}$ and $G / v v^{\prime}$ to construct an infinitesimally rigid $v v^{\prime}$-coincident realisation of G.
3. We can use the proof technique of Theorem 2 to show that Conjecture 11 would imply the following weak version of Whiteley's conjecture on vertex splitting.

Conjecture 12. Let $H=(V, E)$ be a graph which is generically globally rigid in \mathbb{R}^{d} and $v \in V$. Suppose that G is obtained from H by a d-dimensional vertex splitting operation which splits v into two new vertices v^{\prime} and $v^{\prime \prime}$. If $G-v^{\prime} v^{\prime \prime}$ is generically rigid in \mathbb{R}^{d}, then G is generically globally rigid in \mathbb{R}^{d}.

Jordán, Király and Tanigawa [15, Theorem 4.3] state Conjecture 12 as a result of Connelly [4, Theorem 29] but this is not true - they are misquoting Connelly's theorem.

References

[1] G. Brinkmann, C. Larson, J. Souffriau, N. Van Cleemput, Construction of planar 4-connected triangulations, Ars Math. Contemporanea 9 (2015), 145-149
[2] A. L. Cauchy, Sur les polygones et polyedres, second memoire, J. Ecole Polytech. (1813).
[3] M. Cheung, W. Whiteley, Transfer of global rigidity results among dimensions: graph powers and coning, preprint, York University, 2005.
[4] R. Connelly, Questions, conjectures and remarks on globally rigid tensegrities, preprint 2009, available at
http://www.math.cornell.edu/~connelly/09-Thoughts.pdf
[5] R. Connelly and W. Whiteley, Global rigidity: the effect of coning, Disc. Comp. Geom. 43 (2010), 717-735.
[6] H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric topology, L. C. Glasing and T. B. Rushing eds., Lecture Notes in Math. 438, Springer, Berlin, 1975, 225-239.
[7] Zs. Fekete, T. Jordán and V. E. Kaszanitzky, Rigid two-dimensional frameworks with two coincident points, Graphs and Combinatorics 31 (2014), 585-599.
[8] A. L. Fogelsanger, The generic rigidity of miniml cycles, Ph.D thesis, Cornell University, 1988, available at
http://www.armadillodanceproject.com/AF/Cornell/rigidity.htm
[9] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity, American J. Math. 132 (2010), 897-939.
[10] M. Hama, A. Nakamoto, Generating 4-connected triangulations on closed surfaces, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 50 (2002), 145-153.
[11] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput. 21 (1992), 65-84
[12] B. Jackson, V. Kaszanitzky and A. Nixon, Rigid cylindrical frameworks with two coincident points, Graphs and Combinatorics 35 (2019), 141-168.
[13] B. Jackson and T. Jordán, Connected rigidity matroids and unique realisations of graphs, J. Combin. Theory Ser. $B 94$ (2005), 1-29.
[14] B. Jackson and A. Nixon, Global rigidity of generic frameworks on the cylinder, J. Combin. Theory Ser. B 139 (2019), 193-229.
[15] T. Jordán, C. Király and S.-I. Tanigawa, Generic global rigidity of bodyhinge frameworks, J. Combin. Theory Ser. B 117 (2016), 59-76.
[16] T. Jordán, C. Király and S.-I. Tanigawa, On the vertex splitting operation in globally rigid body-hinge graphs, Egerváry Research Group Tech. Report, TR-2019-16, 2019, available at http://bolyai.cs.elte.hu/egres/.
[17] T. Jordán and S.-I. Tanigawa, Global rigidity of triangulations with braces, J. Combin. Theory Ser. B 136 (2019), 249-288.
[18] J.B. Saxe, Embeddability of weighted graphs in k-space is strongly NP-hard, Tech. Report, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, 1979.
[19] W. Whiteley Vertex splitting in isostatic frameworks, Structural Topology 16 (1990), 23-30.
[20] W. Whiteley, Some matroids from discrete applied geometry, in Matroid Theory, J. E. Bonin, J. G. Oxley, and B. Servatius eds., Contemporary Mathematics 197, American Mathematical Society, 1996, 171-313.

[^0]: *School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland. E-mail: james.cruickshank@nuigalway.ie
 ${ }^{\star \star}$ School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. E-mail: b.jackson@qmul.ac.uk

[^1]: ${ }^{1}$ The 1-extension operation constructs a graph G from a graph H by deleting an edge $v_{1} v_{2}$ and then adding a new vertex v and four new edges $v v_{1}, v v_{2}, v v_{3}, v v_{4}$ to H. It can be seen that if (H, p) is an infinitesimally rigid framework and the points $p\left(v_{i}\right), 1 \leq i \leq 4$, are in general position then $\left(G, p^{\prime}\right)$ will be inifinitesimally rigid for any generic extension p^{\prime} of p, see [20].

