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H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Vertex Splitting, Coincident Realisations
and Global Rigidity of Braced

Triangulations

James Cruickshank and Bill Jackson

September, 2020



EGRES Technical Report No. 2020-17 1
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and Global Rigidity of Braced Triangulations
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Abstract

We give a short proof of a result of Jordán and Tanigawa that a 4-connected
graph which has a spanning plane triangulation as a proper subgraph is gener-
ically globally rigid in R3. Our proof is based on a new sufficient condition for
the so called vertex splitting operation to preserve generic global rigidity in Rd.
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1 Introduction

We consider the problem of determining when a configuration consisting of a finite
set of points in d-dimensional Euclidean space Rd is uniqely defined up to congruence
by a given set of constraints which fix the distance between certain pairs of points.
This problem was shown to be NP-hard for all d ≥ 1 by Saxe [18], but becomes more
tractable if we restrict our attention to generic configurations. Gortler, Healy and
Thurston [9] showed that, for generic frameworks, uniqueness depends only on the
underlying constraint graph. Graphs which give rise to uniquely realisable generic
configurations in Rd are said to be globally rigid in Rd. These graphs have been
characterised for d = 1, 2, [13], but it is a major open problem in distance geometry
to characterise globally rigid graphs when d ≥ 3.

A recent result of Jordán and Tanigawa [17] characterises when graphs constructed
from plane triangulations by adding some additional edges are globally rigid in R3.

Theorem 1. Suppose that G is a graph which has a plane triangulation T as a
spanning subgraph. Then G is globally rigid in R3 if and only if G is 4-connected and
G 6= T .
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Section 2. Vertex splitting and coincident realisations 2

We will give a short proof of this result. The main tool in our inductive proof is
the (3-dimensional version of) the following result which gives a sufficient condition
for the so called vertex splitting operation to preserve global rigidity in Rd.

Theorem 2. Let G = (V,E) be a graph which is globally rigid in Rd and v ∈ V .
Suppose that G′ is obtained from G by a vertex splitting operation which splits v into
two vertices v′ and v′′, and that G′ has an infinitesimally rigid realisation in Rd in
which v′ and v′′ are coincident. Then G′ is generically globally rigid in Rd.

Theorem 2 may be of independent interest. It has aleady been used by Jordán,
Kiraly and Tanigawa in [16] to repair a gap in the proof of their characterision of
generic global rigidity for ‘body-hinge frameworks’ given in [15]. An analogous result
to Theorem 2 was used in [12, 14] to obtain a characteriseation of generic global
rigidity for ‘cylindrical frameworks’. Theorem 2 is a special case of a conjecture of
Whiteley, see [3, 4], that the vertex splitting operation preserves global rigidity in Rd

if and only if both v′ and v′′ have degree at least d + 1 in G′.

2 Vertex splitting and coincident realisations

We will prove Theorem 2. We first define the terms appearing in the statement of
this theorem. A (d-dimensional) framework is a pair (G, p) where G = (V,E) is a
graph and p : V → Rd is a point configuration. The rigidity map for G is the map
fG : Rd|V | → R|E| which maps a configuration p ∈ Rd|V | to the sequence of squared
edge lengths (‖p(u)− p(v)‖2)uv∈E. The framework (G, p) is gloablly rigid if, for every
framework (G, q) with fG(p) = fG(q), we have p is congruent to q. It is rigid if it
is globally rigid within some open neighbourhood of p and is infinitesimally rigid if
the Jacobean matrix of the rigidity map of G has rank min{d|V | −

(
d+1
2

)
,
(
d
2

)
} at p.

Gluck [6] showed that every infinitesimally rigid framework is rigid and that the two
properties are equivalent when p is generic i.e. the coordinates of p are algebraically
independent over Q. We say that the graph G is rigid, respectively globally rigid, in
Rd if some, or equivalently every, generic framework (G, p) in Rd is rigid, respectively
globally rigid. We refer the reader to the survey article [20] for more information on
rigid frameworks.

We need the following result of Connelly and Whiteley [5] which shows that global
rigidity is a stable property for infinitesimally rigid frameworks.

Lemma 3. Suppose that (G, p) is an infinitesimally rigid, globally rigid framework
on n vertices in Rd. Then there exists an open neighbourhood Np of p in Rdn such
that (G, q) is infinitesimally rigid and globally rigid for all q ∈ Np.

Given a graph G = (V,E) and v ∈ V with neighbour set N(v) the (d-dimensional)
vertex splitting operation constructs a new graph G′ by deleting v, adding two new
vertices v′ and v′′ with N(v′) ∪N(v′′) = N(v) ∪ {v′, v′′} and |N(v′) ∩N(v′′)| = d− 1.
Whiteley [19] showed that vertex splitting preserves generic rigidity in Rd. More
precisely he proved
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Lemma 4. Suppose that (G, p) is an infinitesimally rigid framework in Rd and that G′

is obtained from G by a vertex split operation which splits a vertex v ∈ V (G) into two
vertices v′, v′′. Suppose further that the points in {p(u) : u ∈ {v} ∪ (N(v′) ∩N(v′′))}
are in general position in Rd. Then (G′, p′) is infinitesimally rigid for some p′ with
p′(v′) = p(v) and p′(x) = p(x) for all x ∈ V (G)− v.

Whiteley conjectured in [3, 4] that the vertex splitting operation will preserve
generic global rigidity in Rd if and only if both v′ and v′′ have degree at least d+ 1 in
G′. Theorem 2 verifies a special case of this conjecture.

Proof of Theorem 2: Let (G, p) be a generic realisation of G in Rd and let (G′, p′)
be the v′v′′-coincident realisation of G′ obtained by putting p′(u) = p(u) for all
u ∈ V − v and p′(v′) = p′(v′′) = p(v). The genericity of p implies that the rank
of the rigidity matrix of any v′v′′-coincident realisation of G′ will be maximised at
(G′, p′) and hence (G′, p′) is infinitesimally rigid. The genericity of p also implies that
(G, p) is globally rigid, and this in turn implies that (G′, p′) is globally rigid. We can
now use Lemma 3 to deduce that (G′, q) is globally rigid for any generic q sufficiently
close to p′. Hence G′ is globally rigid. •

3 Contractible edges in plane triangulations

A graph T is a plane (near) triangulation if it has a 2-cell embeding in the plane
in which every (bounded) face has three edges on its boundary. We will need the
following notation and elementary results for (a particular embedding of) a plane
triangulation T . Every cycle C of T divides the plane into two open regions exactly
one of which is bounded. We refer to the bounded region as the inside of C and the
unbounded region as the outside of C. We say that C is a separating cycle of T if both
regions contain vertices of T . If S is a minimal vertex cut-set of T then S induces a
separating cycle C. It follows that every plane triangulation is 3-connected and that
a plane triangulation is 4-connected if and only if it contains no separating 3-cycles.
Given an edge e of T which belongs to no separating 3-cycle of T , we can obtain a
new plane triangulation T/e by contacting the edge e and its end-vertices to a single
vertex (which is located at the same point as one of the two end-vertices of e), and
replacing the multiple edges created by this contraction by single edges.

Hama and Nakamoto [10], see also Brinkman et al [1], showed that every 4-connected
plane triangulation T other than the octahedron has an edge e such that T/e is a
4-connected plane triangulation. We will obtain more detailed information on the
distribution of such contractible edges in this section. We will frequently use the facts
that T/e is 4-connected if and only if e belongs to no separating 4-cycle of T , that
no separating 4-cycle in a 4-connected triangulation can have a chord, and that no
proper subgraph of a 4-connected triangulation can be a plane triangulation. Our
first lemma is statement (b) in the proof of [1, Theorem 0.1]. We include a proof for
the sake of completeness.
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Section 3. Contractible edges in plane triangulations 4

Lemma 5. Let T be a 4-connected plane triangulation with at least 7 vertices, u be a
vertex of T of degree 4 and e1 = uv1, e2 = uv2 be two cofacial edges of T . Then T/ei
is 4-connected for some i = 1, 2.

Proof. Suppose, for a contradiction, that T/ei is not 4-connected for both i = 1, 2.
Let C1 = v1v2v3v4v1 be the separating 4-cycle of T which contains the neighbours
of u. Since T/e1 is not 4-connected, T has a separating 4-cycle C2 containing e1.
Since no separating 4-cycle of T can have a chord, C2 = wv1uv3w for some vertex
w ∈ V (T )\(V (C1)∪{u}). Similary, since T/e2 is not 4-connected, T has a separating
4-cycle C3 = w′v2uv2w

′ for some w′ ∈ V (T )\(V (C1)∪{u}). If w′ 6= w then T [V (C1)∪
{u,w,w′}] contains a subgraph homeomorphic to K5 contradicting the planarity of
T . On the other hand, if w = w′, then T [V (C1)∪{u,w}] is a proper subtriangulation
of T and this contradicits the hypothesis that T is a 4-connected triangulation.

Lemma 6. Suppose that T is a 4-connected plane triangulation with at least 7 vertices
and F is a face of T . Then T/e is 4-connected for some edge e of T − V (F ).

Proof. Suppose that the lemma is false and that (T, F ) is a counterexample. Fix a
plane embedding of T with F as the unbounded face. Let C = v1v2v3v4v1v be a
separating 4-cycle such that the set of vertices inside C is minimal with respect to
inclusion. Since T is 4-connected, C has no chords and hence, relabelling V (C) if
necessary, we may assume that v1, v2 6∈ V (F ). Let uv1 be an edge from a vertex u in
the interior of C to v1. Since T/v1u is not 4-connected, v1u belongs to a separating
4-cycle C2 of T . The minimality of C1 implies that C2 = wv1uv3w for some vertex w
outside C1, and hence that u is the only vertex inside C1 (otherwise C3 = v1uv3v2v1
would contradict the minimality of C1). This in turn implies that u has degree 4 in
T , and we can now use Lemma 5 to deduce that T/uv2 is 4-connected.

Lemma 7. Let T be a 4-connected plane triangulation on at least seven vertices,
uv ∈ E and F, F ′ be the faces of T which contain uv. Let x, y be two non-adjacent
vertices of T and let S be the set of all edges of T which lie on an xy-path in T
of length two. Then T/e is a 4-connected plane triangulation for at least one edge
e ∈ E(T ) \ (E(F ) ∪ E(F ′) ∪ S).

Proof: It suffices to show that we can find an edge e ∈ E(T )\(E(F ) ∪ E(F ′) ∪ S)
with the property that e is in no separating 4-cycle of T .

We may assume without loss of generality that F is the unbounded face of T .
Choose a 4-cycle C1 in T as follows. If T has a separating 4-cycle then choose C1 to be
a separating 4-cycle of T such that the set of vertices inside C1 is minimal with respect
to inclusion. If T has no separating 4-cycles then put E(C1) = (E(F ) ∪E(F ′))− uv.
Let C1 = v1v2v3v4v1 and let T1 be the plane near triangulation induced in T by V (C1)
and the vertices inside C1. The choice of C1 implies that T1 is a wheel on five vertices
or T1 is 4-connected.

We first consider the case when T1 is 4-connected. If T/e is 4-connected for all
e ∈ E(T1)\E(C1) then the lemma will hold for any edge e ∈ E(T1)\(E(C1) ∪ S).
Hence we may assume that T/e is not 4-connected for some edge e of E(T1)\E(C1).
Then e is contained in a separating 4-cycle C2 of T . The minimality of C1 implies
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Section 4. Braced triangulations 5

that C2 6⊆ T1 and the fact that |V (T1)\V (C1)| ≥ 2 imply that either C2 or C1 has a
chord, contradicting the 4-connectivity of T .

It remains to consider the case when T1 is a wheel on five vertices. Then the unique
vertex u of T1 − C1 has degree four in T and we can apply Lemma 5 to deduce
that, after a possible relabelling of V (C), both T/uv1 and T/uv3 are 4-connected. If
uv1, uv3 6∈ S then we are done. Hence we may assume that {x, y} = {v1, v3}, and that
neither T/uv2 nor T/uv4 is 4-connected. Then uv2, uv4 belong to a separating 4-cycle
of T so some vertex w ∈ V (T )\V (T1) is adjacent to both v2, v4.

Relabelling v1, v3 if necessary. we may assume that v1 lies in the interior of the
4-cycle C2 = v2uv4wv2. If v1 is the only vertex in the interior of C2 then w has degree
4 in T and we can apply Lemma 5 to deduce that T/wv1 is 4-connected. Hence we
may assume that there are at least two vertices in the interior of C2. This in turn
implies that C3 = v2v1v4wv2 is a separating 4-cycle of T .

Let T3 be the near triangulation induced in T by V (C3) and the vertices inside of
C3. Let C ′3 be a separating 4-cycle of T with V (C ′3) ⊆ V (T3) and such that the set of
vertices inside C ′3 is minimal with respect to inclusion and T ′3 be the near triangulation
induced in T by V (C ′3) and the vertices inside of C ′3. We can repeat the above argu-
ment with C1 replaced by C ′3 to deduce that there exists an edge e ∈ E(T ′3)\E(C ′3)
such that T/e is 4-connected. Then e is the required edge of T . •

4 Braced triangulations

A braced plane triangulation is a graph G = (V,E ∪B) which is the union of a plane
triangulation T = (V,E) and a (possibly empty) set of additional edges B, which we
refer to as the bracing edges of G. We say that G is a braced plane triangulation when
G is given with a particular 2-cell embedding of T in the plane. Given a braced plane
triangulation G = (T,B) and an edge e of T which belongs to no separating 3-cycle
of T , we denote the braced plane triangulation obtained by contacting the edge e by
G/e = (T/e,Be) where the set of bracing edges Be is obtained from B by replacing
any multiple edges in G/e by single edges (in particular any edge of B which becomes
parallel to an edge of T/e is deleted).

We can use Lemma 7 to obtain a result on infinitesimally rigid realisations of braced
4-connected triangultions in R3 in which two adjacent vertices are coincident.

Theorem 8. Let G be a braced plane triangulation which is obtained from a 4-
connected plane triangulation T by adding a brace b = xy and let uv ∈ E(T ). Then
G has an infinitesimally rigid uv-coincident realisation in R3.

Proof. We use induction on |V (T )|. Let C and C ′ be the faces of T which contain uv
and let S be the set of edges of T which lie on an xy-path of length two. Since T is
4-connected, we have |V (T )| ≥ 6 with equality only if T is the octahedron.

Suppose T is the octahedron. Then T − (C ∪ C ′) ∼= K2. Let e be the unique edge
in T − (C ∪ C ′). If e ∈ S then b is incident with an end vertex of both uv and e
and, up to symmetry, there is a unique choice for uv and b. We can now use a direct
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computation to find a uv-coincident realisation of G in R3. Hence we may assume
that e 6∈ S. Then G/e ∼= K5 and it is easy to see that every generic uv-coincident
framework (G/e, p) is infinitesimally rigid. We can now use Lemma 4 to construct an
infinitesimally rigid uv-coincident framework (G, p′).

Hence we may assume that |V (T )| ≥ 7. Lemma 7 implies that there exists an edge
e ∈ E(T ) \ (E(C) ∪ E(C ′) ∪ S) such that T/e is 4-connected. We can now apply
induction to deduce that any generic uv-coincident framework (G/e, p) is infinitesi-
mally rigid and then use Lemma 4 to construct an infinitesimally rigid uv-coincident
framework (G, p′).

We can combine Theorems 2 and 8 with the following ‘gluing lemma’ to prove
Theorem 1.

Lemma 9. Let G1, G2 be rigid graphs, x ∈ V (G1)\V (G2), y ∈ V (G2)\V (G1), z ∈
V (G1)∩V (G2), xz ∈ E(G1) and |(V (G1)∩V (G2))| ≥ 3. Put G = (G1∪G2)−xz+xy.
Suppose that (G1, p1) is an infinitesimally rigid realisation of G1 and that p1 is generic
on (V (G1)∩V (G2))∪{x}. Then (G, p) is infinitesimally rigid for some p with p|G1 =
p1.

Proof. Let (G′1, p
′
1) be obtained from (G1 − xz, p1) by adding the vertex y at a point

p′1(y) which is algebraically independent from p1(V (G1)), and then adding an edge
from y to x and all vertices in (V (G1)∩ V (G2)). Then (G′1, p

′
1) is infinitesimally rigid

since it can be obtained from (G1, p1) by a 1-extension1 and a possibly empty se-
quence of edge additions. Since G can be obtained from G′1 by replacing the subgraph
induced by the edges from y to V (G1) ∩ V (G2) with the rigid graph G2, (G, p) will
be infinitesimally rigid for any generic extension p of p′1.

Proof of Theorem 1

Let G = (T,B) where B is the set of braces of G. Necessity follows from the fact that
every globally rigid graph on at least five vertices is 4-connected and redundantly
rigid by [11] (and the fact that if B = ∅ then G would not have enough edges to
be redundantly rigid). We prove sufficiency by induction on |V (T )|. If |V (T )| = 5
then G ∼= K5 and we are done since K5 is globally rigid. Hence we may assume that
|V (T )| ≥ 6.

Suppose T is 4-connected. Choose b = xy ∈ B and let S be the set of edges of
T which lie on an xy-path of length two. If |V (T )| = 6 then T is the octahedron
and G/e ∼= K5 for all e ∈ E(T )\S, so G/e is globally rigid. We can now apply
Theorems 2 and 8 to deduce that G is globally rigid. Hence we may assume that
|V (T )| ≥ 7. Lemma 7 now implies that there exists an edge e ∈ E(T ) \ S such that
T/e is 4-connected. Then T/e+ b is globally rigid by induction, and we can again use
Theorems 2 and 8 to deduce that G is globally rigid.

1The 1-extension operation constructs a graph G from a graph H by deleting an edge v1v2 and
then adding a new vertex v and four new edges vv1, vv2, vv3, vv4 to H. It can be seen that if (H, p)
is an infinitesimally rigid framework and the points p(vi), 1 ≤ i ≤ 4, are in general position then
(G, p′) will be inifinitesimally rigid for any generic extension p′ of p, see [20].
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Hence we may assume that T is not 4-connected. Choose a fixed embedding of T
in the plane and let C1 be a separating 3-cycle in T such that the set W of vertices
inside C1 is minimal with respect to inclusion. Let T1 be the subgraph of T induced
by V (C1) ∪ W . Since G is 4-connected there is a brace xy ∈ B with x ∈ W and
y ∈ V (T )\V (T1). The minimality of C1 implies that T1 is 4-connected or is isomorphic
to K4.

Suppose T1
∼= K4. We first consider the case when there exists a vertex z ∈ V (C1)

which is not adjacent to y in T . Then G/xz is a 4-connected braced triangulation
with at least one brace so is globally rigid by induction. In addition, T − x is a plane
triangulation so is rigid. This allows us to construct an xz-coincident infinitesimally
rigid realisation (G, p) from a generic infinitesimally rigid realisation (G − x, p′) by
putting p(x) = p′(z) and using the fact that x has at least three neighbours other
than z in G. Theorem 2 now implies that G is globally rigid. It remains to consider
the case when, for every brace b = xy incident to x in G, y is adjacent to every vertex
of C1 in T . Planarity now implies that xy is the unique brace incident to x and
V (C1) ∪ {y} induces a copy of K4 in T . The fact that |V (T )| ≥ 6 now implies that
T −x is not 4-connected. In addition, G−x = (T −x,B−xy) is a 4-connected braced
plane triangulation, and has at least at least one brace since T −x is not 4-connected.
Then G − x is globally rigid, by induction, and the fact that x has degree four in G
now implies that G is globally rigid.

Hence we may assume that T1 is 4-connected. Planarity now implies that some
vertex z ∈ V (C1) is not adjacent to x. Then G1 = T1 + xz is a braced 4-connected
plane triangulation with exactly one brace. By Theorem 8, G1 has an infinitesimally
rigid uv-coincident realisation for all e = uv ∈ E(T1). We can now use Lemma 9 to
deduce:

(∗) G has an infinitesimally rigid uv-coincident realisation for all edges e = uv of
T1 which are not induced by V (C1) ∪ {x}.

Suppose T1 is isomorphic to the octahedron. Let e = uv be the unique edge of T1

which is not incident to a vertex in V (C1)∪{x}. Then G/e = T/e+xy is a 4-connected
braced triangulation with at least one brace so is globally rigid by induction. We can
now use Theorem 2 and (∗) to deduce that G is globally rigid.

It remains to consider the case when |V (T1)| ≥ 7. By Lemma 6, there is an edge
e = uv ∈ E(T1) such that T1/uv is 4-connected and u, v 6∈ V (C1). Then G/e is
a 4-connected braced triangulation with at least one brace which, by induction, is
globally rigid. Theorem 2 and (∗) now imply that G is globally rigid.

5 Closing Remarks

1. It follows from a result of Cauchy [2], that every graph which triangulates the
plane is generically rigid in R3. Fogelsanger [8] extended this result to triangulations
of an arbitrary surface. It is natural to conjecture that Theorem 1 can be extended
in the same way.
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Conjecture 10. Let G be a graph which has a triangulation T of some surface S as
a spanning subgraph. Then G is globally rigid if and only if G is 4-connected and,
when S has genus zero, G 6= T .

This conjecture appeared as a question in [17] and was verified when S is the sphere,
projective plane or torus.

2. Let G = (V,E) be a graph and vv′ ∈ E. Fekete, Jordán and Kaszanitzky [7]
showed that G can be realised as an infinitesimally rigid bar-joint framework (G, p)
in R2 with p(v) = p(v′) if and only if G − vv′ and G/vv′ are both generically rigid
in R2 (where G − vv′ and G/vv′ are obtained from G by, respectively, deleting and
contracting the edge vv′). We conjecture that the same result holds in Rd.

Conjecture 11. Let G = (V,E) be a graph and vv′ ∈ E. Then G can be realised as
an infinitesimally rigid bar-joint framework (G, p) in Rd with p(v) = p(v′) if and only
if G− vv′ and G/vv′ are both generically rigid in Rd.

The proof in [7] is based on a characterisation of independence in the ‘2-dimensional
generic vv′-coincident rigidity matroid’. It is unlikely that a similar approach will
work in Rd since it is notoriously difficult to characterise independence in the d-
dimensional generic rigidity matroid for d ≥ 3. But it is conceivable that there may
be a geometric argument which uses the generic rigidity of G − vv′ and G/vv′ to
construct an infinitesimally rigid vv′-coincident realisation of G.

3. We can use the proof technique of Theorem 2 to show that Conjecture 11 would
imply the following weak version of Whiteley’s conjecture on vertex splitting.

Conjecture 12. Let H = (V,E) be a graph which is generically globally rigid in Rd

and v ∈ V . Suppose that G is obtained from H by a d-dimensional vertex splitting
operation which splits v into two new vertices v′ and v′′. If G − v′v′′ is generically
rigid in Rd, then G is generically globally rigid in Rd.

Jordán, Király and Tanigawa [15, Theorem 4.3] state Conjecture 12 as a result
of Connelly [4, Theorem 29] but this is not true - they are misquoting Connelly’s
theorem.
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