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Fair Integral Network Flows⋆

András Frank⋆⋆ and Kazuo Murota⋆ ⋆ ⋆

Abstract

A strongly polynomial algorithm is developed for finding an integer-valued feasible
st-flow of given flow-amount which is decreasingly minimal on a specified subset F
of edges in the sense that the largest flow-value on F is as small as possible, within
this, the second largest flow-value on F is as small as possible, within this, the third
largest flow-value on F is as small as possible, and so on. A characterization of the
set of these st-flows gives rise to an algorithm to compute a cheapest F-decreasingly
minimal integer-valued feasible st-flow of given flow-amount. Decreasing minimality
is a possible formal way to capture the intuitive notion of fairness.

Keywords: Lexicographic minimization, Network flow, Polynomial algorithm.
Mathematics Subject Classification (2010): 90C27, 05C, 68R10

1 Introduction
In optimization problems, a typical task is to find an extreme element of a set Q of ‘fea-
sible’ vectors, where extreme means that we maximize (or minimize) a certain (linear or
more general) objective function. A different (though related) concept in optimization is
when one is interested in finding an element of Q whose components are distributed in a
way which is felt the most uniform (fair, equitable, egalitarian). The term ‘fair’ in the title of
this paper refers to the intuitive meaning of the word. There may be various formal defini-
tions for capturing this intuitive feeling. For example, if the square-sum of the components
is minimal, then the distribution of the components is felt rather fair. Another possible way
to formally capture fairness is to minimize the sum of the absolute values of the pairwise
differences of the components. A third possibility is lexicographic minimization. These
definitions are equivalent in some cases while they are different in other situations. We
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Section 1. Introduction 2

should emphasize that the ‘fairness’ concept shows up in the literature in the most diverse
contexts (such as fair resource allocation in operations research [21, 23], fair division of
goods in economics [26, 29], load balancing in computer networks [15, 18], etc.). In the
present work, however, fairness will be formulated into the concept of ‘decreasing mini-
mality’ (see, below).

An early example of a possible fairness concept is due to N. Megiddo [24, 25], who
introduced and solved the problem of finding a (possibly fractional) maximum flow which
is ‘lexicographically optimal’ on the set of edges leaving the source node. The problem,
in equivalent terms, is as follows. Let D = (V, A) be a digraph with a source-node s and a
sink-node t, and let S A denote the set of edges leaving s. We assume that no edge enters s
and no edge leaves t. Let g : A → R+ be a non-negative capacity function on the edge-set.
By the standard definition, an st-flow, or just a flow, is a function x : A → R+ for which
ϱx(v) = δx(v) holds for every node v ∈ V − {s, t}. (Here ϱx(v) :=

∑
[x(uv) : uv ∈ A] and

δx(v) :=
∑

[x(vu) : vu ∈ A].) The flow is called feasible if x ≤ g. The flow-amount of x is
δx(s) which is equal to ϱx(t). We refer to a feasible flow with maximum flow-amount as a
max-flow.

Megiddo solved the problem of finding a feasible flow x which is lexicographically op-
timal on S A in the sense that the smallest x-value on S A is as large as possible, within this,
the second smallest (though not necessarily distinct) x-value on S A is as large as possi-
ble, and so on. It is a known fact (implied, for example, by the max-flow algorithm of
Ford and Fulkerson [6]) that a lexicographically optimal flow is a max-flow. It is a basic
property of flows that for an integral capacity function g there always exists a max-flow
which is integer-valued. On the other hand, an easy example [10] shows that even when g
is integer-valued, the unique max-flow that is lexicographically optimal on S A may not be
integer-valued.

A member x of a set Q of vectors is called a decreasingly minimal (dec-min, for short)
element of Q if the largest component of x is as small as possible, within this, the next
largest (but not necessarily distinct) component of x is as small as possible, and so on. The
term ‘decreasing minimality’ was introduced in [10, 11] as one of the possible formulations
of the intuitive notion of fairness. Analogously, x is an increasingly maximal (inc-max)
element of Q if its smallest component is as large as possible, within this, the next smallest
component of x is as large as possible, and so on. Therefore increasing maximality is the
same as Megiddo’s lexicographic optimality and ‘lexmin optimality’ of Plaut and Rough-
garden [29], whereas the notion of co-lexicographic optimality, introduced in Fujishige [14,
page 264], is the same as decreasing minimality. In general, a dec-min element is not neces-
sarily inc-max, and an inc-max element is not necessarily dec-min. However, in Megiddo’s
problem where Q is the restriction of a feasible maximum flow to S A, it is known that an
element of Q is dec-min if and only if it is inc-max. Fujishige [13, 14] proved that this
equivalence is still true in a more general setting where Q is a base-polyhedron [14, 27]. He
also proved that the (unique) dec-min element of Q is the (unique) square-sum minimizer
of Q.

In [10] and [11], the present authors solved the discrete counterpart of Megiddo’s prob-
lem when the capacity function g is integral and one is interested in finding an integral
max-flow whose restriction to the set S A of edges leaving s is increasingly maximal. This
was actually a consequence of the more general result concerning dec-min elements of an
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Section 1. Introduction 3

M-convex set (where an M-convex set [27], by definition, is the set of integral elements of
an integral base-polyhedron). Among others, it was proved that an element z is decreasingly
minimal if and only if z is increasingly maximal. It was also proved in [10] that an element
z of an M-convex set is dec-min if and only if z is square-sum minimizer. A strongly poly-
nomial algorithm was also developed for finding a dec-min element. Since the restrictions
of max-flows to S A form a base-polyhedron, this gives an algorithm to find an integral
max-flow which is decreasingly minimal (and increasingly maximal) when restricted to S A.

A closely related previous work is due to Kaibel, Onn, and Sarrabezolles [22]. They
considered (in an equivalent formulation) the problem of finding an integer-valued un-
capacitated st-flow with specified flow-amount K which is decreasingly minimal on the
whole edge-set A. They developed an algorithm which is polynomial in the size of digraph
D = (V, A) plus the value of K but is not polynomial in the size of number K (which is
roughly ⌈log K⌉). This is analogous to the well-known characteristic of the classic Ford–
Fulkerson max-flow algorithm [6], where the running time is proportional to the largest
value gmax of the capacity function g, and therefore this algorithm is not polynomial (un-
less gmax is small in the sense that it is bounded by a polynomial of |A|). It should also
be mentioned that Kaibel et al. considered exclusively the uncapacitated st-flow problem,
where no capacity (upper-bound) restrictions are imposed on the edges. (For example, the
flow-value on any edge is allowed to be K.)

In the present work, we consider the more general question when F ⊆ A is an arbitrarily
specified subset of edges, and we are interested in finding a feasible integral max-flow
whose restriction to F is decreasingly minimal. This problem substantially differs from its
special case with F = S A mentioned above in that the set of restrictions of max-flows to
F is not necessarily a base-polyhedron. Therefore, a dec-min max-flow is not necessarily
inc-max.

As the theory of network flows has a multitude of applications, the algorithm presented
in this paper may also be useful in these special cases. For example, the paper by Harvey,
Ladner, Lovász, and Tamir [18] considered the problem of finding a subgraph of a bipartite
graph G = (S ,T ; E) for which the degree-sequence in S is identically 1 and the degree-
sequence in T is decreasingly minimal. This problem was extended to a more general
setting (see [11]) but the following version needs the present general flow approach: Find a
subgraph of G = (S ,T ; E) of γ edges for which the degree-sequence on the whole node-set
S ∪ T (or on an arbitrarily specified subset of S ∪ T ) is decreasingly minimal.

We emphasize the fundamental difference between fractional and integral dec-min flows.
Figure 1 demonstrates this difference for a simple example, where all edges have a unit
capacity (g ≡ 1) and dec-min unit flows from s to t are considered for F = A (all edges).
Whereas the dec-min fractional flow is uniquely determined, there are two dec-min integral
flows.

Our main goal is to provide a description of the set of integral max-flows which are dec-
min on F as well as a strongly polynomial algorithm to find such a max-flow. The descrip-
tion makes it possible to solve algorithmically even the minimum cost dec-min max-flow
problem. Instead of maximum st-flows, we consider the formally more general (though
equivalent) setting of modular flows which, however, allows a technically simpler discus-
sion.

It is quite natural to consider the dec-min problem over the intersection of two M-convex
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Figure 1: Difference between fractional and integral dec-min flows

sets, which is called an M2-convex set in the literature [27]. This problem is much harder
than the dec-min problem over an M-convex set. The relationship of the difficulties is sim-
ilar to that between the classic problems of finding a maximum weight basis of a matroid
and finding a maximum weight common basis of two matroids (or more generally, between
a maximum weight element of an M-convex set and of an M2-convex set). The signifi-
cant difference is nicely demonstrated by the fact that an element z of an M-convex set, as
mentioned earlier, is dec-min if and only if it is inc-max if and only if it is a square-sum min-
imizer. For an M2-convex set, however, these three criteria are (pairwise) different [10], and
they are also different for integral feasible network flows (see Section 11.2). In this light, it
is not surprising that the dec-min problem for M2-convex sets as well as for integral network
flows is much harder than for M-convex sets, and this is why the algorithm in the present
work is significantly more complex than the one for M-convex sets in [11]. A special case
of our dec-min network flow problem is where the input subset F of edges happens to be
the set S A of source-edges. This is a fortunate simple case since the restriction of feasible
integral flows of maximum flow amount to S A is an M-convex set. An even more general
framework is the set of integral submodular flows, introduced by Edmonds and Giles [4],
which includes both standard integral network flows (m-flows) and M2-convex sets. In [12],
we worked out a strongly polynomial algorithm for finding an integral dec-min submodular
flow.

The paper is organized as follows. In Section 2, after introducing the basic definitions, we
formulate Theorem 2.1 which is the main theoretical result of the paper. This is proved in
Section 5 after the necessary structural results are developed in Sections 3 and 4. An impor-
tant consequence of the characterization in Theorem 2.1 is that it makes possible to manage
algorithmically even the minimum edge-cost version of the integral dec-min flow problem.
Section 6 provides an alternative characterization of F-dec-min integral feasible flows by
developing extensions of such standard concepts from network optimization as improving
di-circuits and feasible potentials. Section 7 provides a necessary and sufficient condition
for the existence of an integral F-dec-min flow. Sections 8–10 are devoted to algorithmic
aspects. Sections 8 and 9 describe strongly polynomial algorithms for each component, and
Section 10 shows how these components are synthesized. Finally, in the supplementary
Section 11 of the paper, we briefly outline two closely related topics: fractional dec-min
flows and the relation to convex minimization over flows.
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Section 2. Decreasingly-minimal integer-valued feasible modular flows 5

2 Decreasingly-minimal integer-valued feasible modular
flows

2.1 Modular flows
Let D = (V, A) be a digraph endowed with integer-valued functions f : A→ Z ∪ {−∞} and
g : A → Z ∪ {+∞} for which f ≤ g. Here f and g are serving as lower and upper bound
functions, respectively. An edge e is called ( f , g)-tight or just tight if f (e) = g(e). The
polyhedron T ( f , g) := {x : f ≤ x ≤ g} is called a box.

We are given a finite integer-valued function m on V for which m̃(V) = 0. (Here and
throughout, m̃(X) :=

∑
[m(v) : v ∈ X].) A modular flow (with respect to m) or, for short, a

mod-flow x is a finite-valued function on A (or a vector in RA) for which ϱx(v)−δx(v) = m(v)
for each node v ∈ V . When we want to emphasize the defining vector m, we speak of an
m-flow.

A mod-flow x is called ( f , g)-bounded or feasible if f ≤ x ≤ g. A circulation is an
m-flow with respect to m ≡ 0, and an st-flow of given flow-amount K is also an m-flow with
respect to m defined by

m(v) :=


0 if v ∈ V − {s, t},
K if v = t,
−K if v = s.

(2.1)

Circulations form a subspace of RA while the set of mod-flows is an affine space. The set
of feasible mod-flows, which is called a feasible mod-flow polyhedron, may be viewed as
the intersection of this affine subspace with the box T ( f , g). It follows from this definition
that the face of such a polyhedron is also a feasible m-flow polyhedron. We note, how-
ever, that the projection along axes is not necessarily a feasible mod-flow polyhedron since
its description may need an exponential number of inequalities while a feasible mod-flow
polyhedron is described by at most 2|A| + |V | inequalities.

Let Q = Q( f , g; m) denote the set of ( f , g)-bounded m-flows. Hoffman’s theorem [20]
states that Q is non-empty if and only if the Hoffman-condition ϱg − δ f ≥ m̃ holds, that is,

ϱg(Z) − δ f (Z) ≥ m̃(Z) for every Z ⊆ V. (2.2)

It is well-known that Q is an integral polyhedron whenever f , g, and m are integral vectors.
In the integral case let

....

Q =
....

Q( f , g; m) denote the set of integral elements of Q, that is,
....

Q := Q ∩ ZA. (2.3)

In Section 1 we introduced (the basic form of) the notion of decreasing minimality, but
we actually work with the following slightly extended definition. Let F be a specified subset
of A. We say that z ∈

....

Q( f , g; m) is decreasingly minimal on F (or F-dec-min for short)
if the restriction of z to F is decreasingly minimal among the restrictions of the vectors in
....

Q( f , g; m) to F.
Our first main goal is to prove the following characterization of the subset of elements of

....

Q which are decreasingly minimal on F.
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2.1 Modular flows 6

Theorem 2.1. Let D = (V, A) be a digraph endowed with integer-valued lower and upper
bound functions f : A→ Z∪ {−∞} and g : A→ Z∪ {+∞} for which f ≤ g. Let m : V → Z
be a function on V with m̃(V) = 0 such that there exists an ( f , g)-bounded m-flow. Let F ⊆ A
be a specified subset of edges such that both f and g are finite-valued on F. There exists a
pair ( f ∗, g∗) of integer-valued functions on A with f ≤ f ∗ ≤ g∗ ≤ g (allowing f ∗(e) = −∞
and g∗(e) = +∞ for e ∈ A−F) such that an integral ( f , g)-bounded m-flow z is decreasingly
minimal on F if and only if z is an integral ( f ∗, g∗)-bounded m-flow. Moreover, the box
T ( f ∗, g∗) is narrow on F in the sense that 0 ≤ g∗(e) − f ∗(e) ≤ 1 for every e ∈ F.

Our second main goal is to describe a strongly polynomial algorithm to compute f ∗ and
g∗. Once these bounds are available, one is able to compute not only a single ( f , g)-bounded
integer-valued m-flow which is dec-min on F but a minimum cost F-dec-min m-flow as
well (with the help of a standard min-cost circulation algorithm). Section 10 summarizes
what the various components of the whole algorithm aim at and how these components are
related to each other.

Remark 2.1. In Section 7, we shall consider the general case when f and g are not required
to be finite-valued on F. In this case, an F-dec-min ( f , g)-feasible m-flow may not exist,
and we shall provide a characterization for the existence. In Theorem 7.6, we shall show
how Theorem 2.1 can be extended to the case when only the existence of an F-dec-min
( f , g)-feasible m-flow is assumed.

Remark 2.2. One may also be interested in finding an (integral) ( f , g)-bounded m-flow z
which is increasingly maximal (inc-max) on F in the sense that the smallest z-value on F
is as large as possible, within this, the second smallest (but not necessarily distinct) z-value
on F is as large as possible, and so on. (Megiddo [24], [25], for example, considered the
fractional inc-max problem for st-flows when F was the set of edges leaving s.) But an
( f , g)-bounded m-flow z is increasingly maximal on F precisely if −z is a (−g,− f )-bounded
(−m)-flow which is dec-min on F, implying that the inc-max and the dec-min problems
are equivalent for modular flows. Hence we concentrate throughout only on decreasing
minimality. Note that in [10] we investigated these problems for M-convex sets and proved
that the two problems are not only equivalent but they are one and the same in the sense
that an element z of an M-convex set is dec-min if and only if z is inc-max. (As mentioned
earlier, an M-convex set, by definition, is nothing but the set of integral elements of an
integral base-polyhedron).

Remark 2.3. It is well-known that there are strongly polynomial algorithms that find a fea-
sible m-flow when it exists or find a subset Z violating (2.2) (see, for example, appropriate
variations of the algorithms by Edmonds and Karp [5], Dinits [3], or Goldberg and Tarjan
[17]). Actually, when no feasible m-flow exists, not only a violating subset can be com-
puted but the most violating set as well, that is, a set Z∗ maximizing m̃(Z) − ϱg(Z) + δ f (Z).
Note that this latter function is fully supermodular (see (3.1) for definition), and there is a
general algorithm to maximize an arbitrary supermodular function. The point here is that
for finding Z∗ we do not have to rely on this general algorithm since much simpler (and
more efficient) flow-techniques do the job.
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2.2 Approach of the proof of Theorem 2.1 7

2.2 Approach of the proof of Theorem 2.1
By tightening an edge e we mean the operation that replaces the bounding pair ( f (e), g(e))
by ( f ′(e), g′(e)) where f (e) ≤ f ′(e) ≤ g′(e) ≤ g(e) and g′(e)− f ′(e) < g(e)− f (e). Note that
tightening an edge does not necessarily make the edge tight. The approach of the proof is
that we tighten edges as long as possible without loosing any integral m-flow which is dec-
min on F, and prove that when no more tightening step is available for the current ( f ∗, g∗)
then every ( f ∗, g∗)-bounded integral m-flow is an F-dec-min element of

....

Q( f , g; m).
A natural reduction step consists of removing a tight edge e from F (where e could be

tight originally or may have become tight during a tightening step). This simply means that
we replace F by F′ := F − e (but keep e in the digraph itself). Obviously, an m-flow z is
F-dec-min if and only if z is F′-dec-min. Therefore, we may always assume that F contains
no tight edges.

We say that an integral ( f , g)-bounded m-flow z is an F-max minimizer if the largest
component of z in F is as small as possible. Clearly, every F-dec-min m-flow z ∈

....

Q( f , g; m)
is F-max minimizer. Let βF denote this smallest maximum value, that is,

βF := min{max{z(a) : a ∈ F} : z ∈
....

Q( f , g; m)}. (2.4)

Note that βF may be interpreted as the smallest integer for which there is an integer-valued
feasible m-flow after decreasing g(e) to βF for each e ∈ F with g(e) > βF . In Section 9,
we shall describe how βF can be computed in strongly polynomial time with the help of a
discrete variant of the Newton–Dinkelbach algorithm and a standard max-flow algorithm,
but for the proof of Theorem 2.1 we assume that βF is available. Therefore, we can assume
that max{g(e) : e ∈ F} = βF which is equivalent to requiring that Q( f , g; m) is non-empty
but Q( f , g−; m) = ∅ where g− arises from g by subtracting 1 from g(e) for each e ∈ F with
g(e) = βF .

3 Covering a supermodular function by a smallest sub-
graph

A family of subsets is called laminar if one of X ⊆ Y , Y ⊆ X, X ∩ Y = ∅ holds for every
pair of its members. We say that a digraph D = (V, A) (or its edge-set A) covers a set-
function p if ϱD(Z) ≥ p(Z) for every subset Z ⊆ V , where ϱD is the in-degree function of D.
A set-function p is called fully supermodular or just supermodular if the supermodular
inequality

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y) (3.1)

holds for every pair of subsets X and Y . When this inequality required only for intersecting
pairs (that is, when X ∩ Y , ∅), then we speak of an intersecting supermodular function
[8].

Let p : 2V → Z ∪ {−∞} be an intersecting supermodular set-function on V and let
DL = (V, L) be a digraph covering p. We are interested in the minimum cardinality subset
of edges of DL that covers p. Let AL denote the (0, 1)-matrix whose rows correspond to
subsets X of V for which p(X) > −∞ and the columns correspond to the edges in L. An
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Section 3. Covering a supermodular function by a smallest subgraph 8

entry of AL corresponding to Z and e is 1 if e enters Z and 0 otherwise. The following result
was proved in [7] (see, also, Theorem 17.1.1 in the book [8]).

Theorem 3.1. Let p be an intersecting supermodular set-function on V. The linear inequal-
ity system [ALxL ≥ p, xL ≤ 1, xL ≥ 0] is totally dual integral (TDI). (Hence) the primal
linear program

min{1xL : ALxL ≥ p, xL ≤ 1, xL ≥ 0} (3.2)

and the dual linear program

max{yp − 1z : yAL − z ≤ 1, (y, z) ≥ 0} (3.3)

have integer-valued optimal solutions, where 1 denotes the everywhere 1 vector of dimen-
sion |L|. Moreover, there is an integer-valued dual optimum (y∗, z∗) for which its support
family L := {Z : y∗(Z) > 0} is laminar.

For a family L of subsets of V , let ϱL(L) denote the number of edges entering at least
one member of L. The min-max theorem arising from Theorem 3.1 is as follows.

Theorem 3.2. Given a digraph DL = (V, L) covering an intersecting supermodular function
p, the minimum number of edges of DL covering p is equal to

max{ϱL(L) −
∑

[ϱL(Z) − p(Z) : Z ∈ L] }, (3.4)

where the maximum is taken over all laminar families L of subsets Z of V with p(Z) > −∞.
When p is fully supermodular, the optimal laminar family L∗ may be chosen as a chain of
subsets V1 ⊃ V2 ⊃ · · · ⊃ Vq of V.

Proof. Suppose that we remove some edges from L so that the set X of the remaining edges
continues to cover p. For each Z ∈ L, the number of removed edges entering Z is bounded
by ϱL(Z) − p(Z), and hence the number of removed edges entering at least one member of
L is bounded from above by

∑
[ϱL(Z) − p(Z) : Z ∈ L]. On the other hand, the number of

removed edges entering at least one member of L is bounded from below by ϱL(L) − |X|.
Therefore we have

ϱL(L) − |X| ≤
∑

[ϱL(Z) − p(Z) : Z ∈ L],

from which the trivial direction max ≤ min follows.
To see the reverse inequality, we have to find a covering X∗ ⊆ L of p and a laminar

family L∗ for which equality holds. To this end, let x∗ be a (0, 1)-valued optimal solution
of the primal problem (3.2) in Theorem 3.1 and let (y∗, z∗) be an integer-valued optimal
solution of the dual problem for which its support family L∗ is laminar. Then the subset
X∗ := {e ∈ L : x∗(e) = 1} is a smallest subset of L covering p.

Observe that y∗ uniquely determines z∗, namely, z∗(e) = 0 when e enters no member of
L∗ and

z∗(e) =
∑

[y∗(Z) : Z ∈ L∗, e enters Z] − 1 (3.5)

when e enters at least one member of L∗.

Claim 3.3. The optimal y∗ may be chosen (0, 1)-valued.
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Section 3. Covering a supermodular function by a smallest subgraph 9

Proof. Suppose that (y∗, z∗) is an integer-valued dual optimum in which the sum of y∗-
components is as small as possible. We show that y∗ is (0, 1)-valued. Suppose indirectly
that y∗(Z) ≥ 2 for some set Z. In this case z∗(e) ≥ 1 for every edge e entering Z. If we
decrease y∗(Z) by 1 and decrease z∗(e) by 1 on every edge e entering Z, then the resulting
(y′, z′) is also a dual feasible solution for which

y∗p − 1z∗ ≥ y′p − 1z′ = y∗p − 1z∗ − p(Z) + ϱL(Z) ≥ y∗p − 1z∗,

where the last inequality follows from the assumption that DL covers p and hence ϱL(Z) ≥
p(Z). Therefore we have equality throughout and hence (y′, z′) is also an optimal dual
solution, contradicting the minimal choice of y∗. Thus Claim 3.3 is proved.

By the claim, (3.5) simplifies as follows:

z∗(e) = [the number of members of L entered by e] − 1. (3.6)

Now the dual optimum value is:

y∗p − 1z∗

=
∑

[p(Z) : Z ∈ L∗] −
∑

[z∗(e) : e ∈ L enters a member of L∗]

=
∑

[p(Z) : Z ∈ L∗]

−
∑

[(the number of members of L∗entered by e) − 1 : e enters a member of L∗]

=
∑

[p(Z) : Z ∈ L∗] −
∑

[ϱL(Z) : Z ∈ L∗] + ϱL(L∗)

= ϱL(L∗) −
∑

[ϱL(Z) − p(Z) : Z ∈ L∗]. (3.7)

Therefore |X∗| is equal to the value in (3.7), from which the non-trivial direction max ≥ min
follows, implying the requested min = max.

To see the last statement of the theorem, consider an optimal laminar family L with
a minimum number of members. We claim that L is a chain of subsets when p is fully
supermodular. Suppose, indirectly, that L has two disjoint members and let X and Y be
disjoint members of L whose union is maximal. Then the family L′ obtained from L by
replacing X and Y with their union X ∪ Y is also laminar. By the full supermodularity of p,
we have

∑
[p(Z) : Z ∈ L] ≤

∑
[p(Z) : Z ∈ L′]. Furthermore,

ϱL(L) −
∑

[ϱL(Z) : Z ∈ L] = ϱL(L′) −
∑

[ϱL(Z) : Z ∈ L′].

Therefore L′ is also a dual optimal laminar family, contradicting the minimal choice of L.
This completes the proof of Theorem 3.2.

Theorem 3.4. Let DL = (V, L) be a digraph covering a fully supermodular function p.
There is a chain C∗ of subsets V1 ⊃ V2 ⊃ · · · ⊃ Vq of V with p(Vi) > −∞ such that a subset
X ⊆ L is a minimum cardinality subset of edges covering p if and only if the following three
optimality criteria hold.
(A) For every Vi, ϱX(Vi) = p(Vi).
(B) Every edge in X enters at least one Vi. (Equivalently, if e ∈ L enters no Vi, then e < X.)
(C) Every edge in L − X enters at most one Vi. (Equivalently, if e ∈ L enters at least two
Vi’s, then e ∈ X.)
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Section 4. L-upper-minimal m-flows 10

Proof. Let C∗ denote the optimal chain of subsets V1 ⊃ V2 ⊃ · · · ⊃ Vq given in Theo-
rem 3.2. This corresponded to a special integer-valued solution (y∗, z∗) to the dual linear
program (3.3) where y∗ was actually (0, 1)-valued and y∗ (or its support family C∗) deter-
mined uniquely z∗. Namely, z∗(e) was 0 when e did not enter any Vi, and z∗(e) was the
number of Vi’s entered by e minus 1 when e entered at least one Vi.

Since both the primal and the dual variables in the linear programs in Theorem 3.1 are
non-negative, the optimality criteria (= complementary slackness conditions) of linear pro-
gramming require that if a primal variable is positive, then the corresponding dual inequality
holds with equality, and symmetrically, if a dual variable is positive, then the corresponding
primal inequality holds with equality.

Let x∗ be a (0, 1)-valued primal solution and let X∗ := {e ∈ L : x∗(e) = 1} be the corre-
sponding set of edges that covers p. The optimality criterion concerning the dual variable
y∗, requires that if y∗(Z) = 1 (that is, if Z is one of the sets Vi), then the corresponding primal
inequality holds with equality. That is, ϱX∗(Vi) = ϱx∗(Vi) = p(Vi), which is just Criterion
(A).

The optimality criterion concerning the primal variable x∗ requires that if x∗(e) = 1 for
an edge e (that is, if e ∈ X∗), then the corresponding dual inequality holds with equality.
Hence e must enter at least one Vi (as z∗(e) ≥ 0), which is just Criterion (B).

Finally, the optimality criterion concerning the dual variable z∗(e) requires that if z∗(e) >
0 (that is, if e enters at least two Vi’s), then the corresponding primal inequality is met by
equality, that is, x∗(e) = 1 or equivalently e ∈ X∗, which is just Criterion (C).

4 L-upper-minimal m-flows
Let D = (V, A) be a digraph and m : V → Z a function with m̃(V) = 0. Let f : A→ Z∪{−∞}
and g : A→ Z ∪ {+∞} be bounding functions with f ≤ g. Let L be a subset of A for which
−∞ < f (e) < g(e) < +∞ for every e ∈ L. (That is, f (e) may be −∞ and g(e) may be
+∞ only if e ∈ A − L.) We say that an ( f , g)-bounded integer-valued m-flow x is L-upper-
minimal or that x is an L-upper-minimizer if the number of g-saturated edges in L is as
small as possible, where an edge e ∈ L is called g-saturated if x(e) = g(e). In this section,
we are interested in characterizing the L-upper-minimizer integral ( f , g)-bounded m-flows.
For the proof of Theorem 2.1, however, we will use this characterization only in the special
case when L := {e : e ∈ F, g(e) = βF}, that is, g(e) is the same value for each element e of L.
The only reason for this more general setting is to get a clearer picture of the background.

Let g− := g − χL, that is,

g−(e) :=

g(e) − 1 if e ∈ L,
g(e) if e ∈ A − L.

(4.1)

Since g(e) < +∞ for e ∈ L, g− , g. By the hypothesis, L contains no tight edges and hence
f ≤ g−. Define a set-function p as follows:

p := m̃ − ϱg− + δ f . (4.2)

Since g− ≥ f , the function ϱg− − δ f is fully submodular and hence p is fully supermodular.
Furthermore, p(Z) > −∞ precisely if ϱg(Z) − δ f (Z) < +∞.
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Section 4. L-upper-minimal m-flows 11

The following lemma states a basic fact, which will be used several times in the proofs
of Theorems 4.5 and 4.6.

Lemma 4.1. (A) If x is an integer-valued ( f , g)-bounded m-flow, and X ⊆ L is the set of
g-saturated L-edges, (that is, X := {e ∈ L : x(e) = g(e)}), then X covers p. (B) If a subset
X ⊆ L covers p, then there is an integer-valued m-flow which is ( f , g− + χX)-bounded.

Proof. (A) For every subset Z ⊆ V , we have

m̃(Z) = ϱx(Z) − δx(Z) ≤ [ϱg−(Z) + ϱX(Z)] − δ f (Z),

from which
ϱX(Z) ≥ m̃(Z) − ϱg−(Z) + δ f (Z) = p(Z),

as required.
(B) It follows from the hypothesis ϱX ≥ p = m̃ − ϱg− + δ f that ϱg− + ϱX − δ f ≥ m̃. Then

Hoffman’s theorem implies that there is an integer-valued ( f , g− + χX)-bounded m-flow.

The next lemma shows a key fact which connects an L-upper-minimizer flow to the gen-
eral framework of supermodular covering presented in Section 3.

Lemma 4.2. An integer-valued ( f , g)-bounded m-flow x is an L-upper-minimizer if and
only if X := {e ∈ L : x(e) = g(e)} is a smallest subset of L covering p.

Proof. The proof consists of the following two claims.

Claim 4.3. If x is an L-upper-minimizer ( f , g)-bounded m-flow, then X := {e ∈ L : x(e) =
g(e)} is a smallest subset of L covering p.

Proof. By Part (A) of Lemma 4.1, we know that X covers p. Let X′ ⊆ L be an arbitrary
cover of p, that is,

ϱX′ ≥ m̃ − ϱg− + δ f ,

or equivalently,
ϱX′ + ϱg− − δ f ≥ m̃.

By Part (B) of Lemma 4.1, there exists an integer-valued m-flow x′ which is ( f , g−+χX′)-
bounded. Hence every g-saturated L-edge (with respect to x′) belongs to X′. Since x is
an L-upper-minimizer, it follows that |X| ≤ |X′|, that is, X is indeed a smallest subset of L
covering p.

Claim 4.4. If X∗ ⊆ L is a smallest subset of L covering p, then every integer-valued ( f , g−+
χX∗)-bounded m-flow x∗ is an L-upper-minimizer ( f , g)-bounded m-flow.

Proof. Let X′ := {e ∈ L : x∗(e) = g(e)}. By Lemma 4.1, X′ covers p and hence |X∗| ≤ |X′|.
Since x∗ is ( f , g− + χX∗)-bounded, it follows that x∗ admits at most |X∗| g-saturated L-edges
from which |X∗| ≥ |X′|. Therefore |X∗| = |X′| and thus x∗ saturates a minimum number of
elements of L, that is, x∗ is an L-upper-minimizer.

This completes the proof of Lemma 4.2.
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The following min-max theorem shall be the basis of an optimality criterion for the de-
creasing minimality of a feasible m-flow, and hence it serves as a stopping rule of the algo-
rithm. In the following two theorems, we use notations D = (V, A), L, f , g,m introduced in
the first paragraph of this section. In particular, we assume that −∞ < f (e) < g(e) < +∞
holds for every edge e ∈ L.

Theorem 4.5. The minimum number of g-saturated L-edges in an ( f , g)-bounded integer-
valued m-flow is equal to

max{ϱL(C) −
∑

[ϱg(Z) − δ f (Z) − m̃(Z) : Z ∈ C]}, (4.3)

where the maximum is taken over all chains C of subsets Z of V with ϱg(Z) − δ f (Z) < +∞,
and ϱL(C) denotes the number of L-edges entering at least one member of C. In particular,
if the minimum is zero, the maximum is attained at the empty chain.

Proof. Let x be an ( f , g)-bounded integer-valued m-flow with a minimum number of g-
saturated L-edges. Let X = {e ∈ L : x(e) = g(e)}, that is, X is the set of g-saturated L-edges.
By Lemma 4.2, X is a smallest subset of L covering p.

Apply Theorem 3.2 to the digraph DL = (V, L) and to the set-function p defined in (4.2).
In this case, p is fully supermodular from which we obtain that

|X| = max{ϱL(C) −
∑

[ϱL(Z) − p(Z) : Z ∈ C] : C a chain of subsets of V}

= max{ϱL(C) −
∑

[ϱg(Z) − δ f (Z) − m̃(Z) : Z ∈ C] : C a chain of subsets of V},

as required. This completes the proof of Theorem 4.5.

Our next goal is to obtain optimality criteria for L-upper-minimizer m-flows.

Theorem 4.6. There is a chain C∗ of subsets V1 ⊃ V2 ⊃ · · · ⊃ Vq of V with ϱg(Vi)− δ f (Vi) <
+∞ such that an integer-valued ( f , g)-bounded m-flow z is an L-upper-minimizer if and only
if the following optimality criteria hold.
(O1) z(e) = f (e) for every edge e ∈ A leaving a set Vi,
(O2) z(e) = g(e) for every edge e ∈ A − L entering a set Vi,
(O3) g(e) − 1 ≤ z(e) ≤ g(e) for every edge e ∈ L entering exactly one Vi,
(O4) z(e) = g(e) for every edge e ∈ L entering at least two Vi’s,
(O5) f (e) ≤ z(e) ≤ g(e) − 1 for every edge e ∈ L neither entering nor leaving any Vi.

Proof. We shall apply Theorem 3.4 to the digraph DL = (V, L) and to the set-function p
defined in (4.2), and consider the chain C∗ = {V1, . . . ,Vq} ensured by the theorem, where
V1 ⊃ · · · ⊃ Vq. Since p(Vi) is finite for each i = 1, . . . , q, so is ϱg(Vi)−δ f (Vi). Note that both
f (e) and g(e) are finite for each edge e ∈ L and for each edge leaving or entering a member
of C∗.

To see the necessity of the conditions (O1)–(O5), suppose that x∗ is an integer-valued
( f , g)-bounded m-flow which is an L-upper-minimizer. By Lemma 4.2, the set X∗ := {e ∈
L : x∗(e) = g(e)} is a smallest subset of L covering p. Hence the optimality criteria (A), (B),
and (C) in Theorem 3.4 hold.
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By Property (A), ϱX∗(Vi) = p(Vi) for every Vi, which is equivalent to

ϱg−(Vi) + ϱX∗(Vi) − δ f (Vi) = m̃(Vi), (4.4)

from which

m̃(Vi) = ϱx∗(Vi) − δx∗(Vi) ≤ ϱg−(Vi) + ϱX∗(Vi) − δ f (Vi) = m̃(Vi).

Hence we have equality throughout, in particular,

ϱx∗(Vi) = ϱg−(Vi) + ϱX∗(Vi) [= m̃(Vi) + δ f (Vi)] (4.5)

and
δx∗(Vi) = δ f (Vi). (4.6)

The equality in (4.6) shows that (O1) holds. Condition (4.5) implies for an edge e ∈ A−L
entering a Vi that x∗(e) = g−(e) = g(e) and hence (O2) holds. Condition (4.5) implies for an
edge e ∈ L entering a Vi that g(e)−1 ≤ x∗(e) ≤ g(e) and hence (O3) holds. By Property (C),
if an edge e ∈ L enters at least two Vi’s, then e ∈ X∗ and hence x∗(e) = g(e), that is, (O4)
holds. To see (O5), let e ∈ L be an edge neither entering nor leaving any Vi. By Property
(B), e < X∗ and hence x∗(e) ≤ g(e) − 1, from which (O5) follows.

To see the sufficiency of the conditions (O1)–(O5), let z be an integer-valued ( f , g)-
bounded m-flow satisfying the five conditions in the theorem. Let X := {e ∈ L : z(e) = g(e)}.
By Part (A) of Lemma 4.1, X covers p. We claim that X meets the three optimality criteria
in Theorem 3.4. Let Vi be a member of chain C∗.

(O2) implies that∑
[z(e) : e ∈ A − L, e enters Vi] =

∑
[g(e) : e ∈ A − L, e enters Vi].

From the definition of X, we have∑
[z(e) : e ∈ X, e enters Vi] =

∑
[g(e) : e ∈ X, e enters Vi].

(O3) implies that∑
[z(e) : e ∈ L − X, e enters Vi] =

∑
[g(e) − 1 : e ∈ L − X, e enters Vi].

By merging these three equalities, we obtain

ϱz(Vi) = ϱg−(Vi) + ϱX(Vi).

Furthermore, (O1) implies that
δz(Vi) = δ f (Vi),

from which
m̃(Vi) = ϱz(Vi) − δz(Vi) = ϱg−(Vi) + ϱX(Vi) − δ f (Vi),

that is,
ϱX(Vi) = m̃(Vi) − ϱg−(Vi) + δ f (Vi) = p(Vi),
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showing that Property (A) in Theorem 3.4 holds indeed.
To see Property (B), let e ∈ X (⊆ L) be an edge. Then z(e) = g(e) and, by (O5), e enters

or leaves a Vi. But e cannot leave any Vi since if it did, then (O1) would imply z(e) = f (e)
and this would contradict the assumption that L contains no tight edge. Therefore e must
enter a Vi, that is, (B) holds indeed.

To see Property (C), let e be an edge in L which enters at least two Vi’s. By (O4),
z(e) = g(e) and hence e ∈ X, that is, (C) holds.

By Theorem 3.4, X is a smallest subset of L covering p. By Lemma 4.2, x is an L-upper-
minimizer ( f , g)-bounded m-flow, as stated in the theorem. This completes the proof of
Theorem 4.6.

In Section 8, we describe an algorithmic proof of Theorem 4.6. The algorithm will
compute in strongly polynomial time an ( f , g)-bounded L-upper-minimizer integral m-flow
along with the optimal chain described in the theorem.

5 Description of F-dec-min m-flows: Proof of Theorem 2.1
After preparations in Sections 3 and 4, we turn to our main goal of proving Theorem 2.1.
As before, let D = (V, A) be a digraph and F ⊆ A a specified subset of edges. We assume
that the underlying undirected graph of D is connected. Let f : A → Z ∪ {−∞} and
g : A→ Z ∪ {+∞} be bounding functions with f ≤ g. We require −∞ < f (e) ≤ g(e) < +∞
for every e ∈ F. Let m : V → Z be a function on the node-set for which there is an integer-
valued ( f , g)-bounded m-flow (that is, m̃(V) = 0 and Hoffman’s condition (2.2) holds).
Recall from (2.3) that

....

Q =
....

Q( f , g; m) denotes the set of integer-valued ( f , g)-bounded m-
flows.

In the proof we shall use induction on |F|. Since f ∗ := f and g∗ := g clearly meet
the requirements of the theorem when F = ∅, we can assume that F is non-empty. We
observed already in Section 2.2 that it suffices to prove Theorem 2.1 in the special case
when F contains no tight edge, therefore we assume throughout that f (e) < g(e) for each
edge e ∈ F.

Let β = βF denote the smallest integer for which
....

Q has an element z satisfying z(e) ≤ β
for every edge e ∈ F (cf., (2.4)). In Section 9, we shall work out an algorithm to compute
βF in strongly polynomial time. Since we are interested in F-dec-min members of

....

Q, we
may assume that the largest g-value of the edges in F is this β. Let L := {e ∈ F : g(e) = β}.
Now Hoffman’s condition (2.2) holds but, since F contains no tight edges and since β is
minimal, after decreasing the g-value of the elements of L from β to β − 1, the resulting
function g− := g − χL violates (2.2), that is, Q( f , g−; m) = ∅. Summing up, we shall rely on
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the following notation and assumptions:

F is non-empty and contains no ( f , g)-tight edges,
β := max{g(e) : e ∈ F},
L := {e ∈ F : g(e) = β},
g− := g − χL,
....

Q =
....

Q( f , g; m) is non-empty,
....

Q( f , g−; m) is empty.

(5.1)

As a preparation for deriving the main result Theorem 2.1, we need the following re-
laxation of decreasing minimality. We call a member z of

....

Q pre-decreasingly minimal
(pre-dec-min, for short) on F if the number µ of edges e in L with z(e) = β is as small
as possible. Obviously, if z is F-dec-min, then z is pre-dec-min on F. By applying Theo-
rem 4.6 to the present special case, we obtain the following characterization of pre-dec-min
elements.

Theorem 5.1. Given (5.1), there is a chain C′ of non-empty proper subsets V1 ⊃ V2 ⊃ · · · ⊃

Vq of V with ϱg(Vi) − δ f (Vi) < +∞ such that a member z of
....

Q is pre-dec-min on F if and
only if the following optimality criteria hold:

(O1) z(e) = f (e) for every edge e ∈ A leaving a member of C′,
(O2) z(e) = g(e) for every edge e ∈ A − L entering a member of C′,
(O3) β − 1 ≤ z(e) ≤ β for every edge e ∈ L entering exactly one member of C′,
(O4) z(e) = β for every edge e ∈ L entering at least two members of C′,
(O5) f (e) ≤ z(e) ≤ β − 1 for every edge e ∈ L neither entering nor leaving any member of
C′.

We call a chain with the properties in the theorem a dual optimal chain. Section 8
describes a strongly polynomial algorithm for computing a dual optimal chain.

Define the bounding pair ( f ′(e), g′(e)) for each edge e, as follows. For e ∈ L, let

( f ′(e), g′(e)) :=


(β, β) if e enters at least two members of C′,
(β − 1, β) if e enters exactly one member of C′,
( f (e), f (e)) if e leaves a member of C′,
( f (e), β − 1) if e neither leaves nor enters any member of C′.

(5.2)

For e ∈ A − L, let

( f ′(e), g′(e)) :=


(g(e), g(e)) if e enters a member of C′,
( f (e), f (e)) if e leaves a member of C′,
( f (e), g(e)) if e neither leaves nor enters any member of C′.

(5.3)

It follows from this definition that f ≤ f ′ ≤ g′ ≤ g. Let
....

Q′ :=
....

Q( f ′, g′; m). (5.4)
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Lemma 5.2. (A) An m-flow z ∈
....

Q is pre-dec-min on F if and only if z ∈
....

Q′. (B) An m-flow
z ∈

....

Q is F-dec-min if and only if z is an F-dec-min element of
....

Q′.

Proof. Theorem 5.1 immediately implies the equivalence in Part (A). To see Part (B),
suppose first that z is an F-dec-min element of

....

Q. Then z is surely F-pre-dec-min in
....

Q and
hence, by Part (A), z is in

....

Q′. If, indirectly,
....

Q′ had an element z′ which is decreasingly
smaller on F than z, then z could not have been an F-dec-min element of

....

Q. Conversely,
let z′ be an F-dec-min element of

....

Q′ and suppose indirectly that z′ is not an F-dec-min
element of

....

Q. Then any F-dec-min element z of
....

Q is decreasingly smaller on F than z′.
But any F-dec-min element of

....

Q is pre-dec-min on F and hence, by Part (A), z is in
....

Q′,
contradicting the assumption that z′ was an F-dec-min element of

....

Q′.

Theorem 2.1 will be an immediate consequence of the following result.

Theorem 5.3. Given (5.1), there is a pair ( f ′, g′) of integer-valued functions on A with
f ≤ f ′ ≤ g′ ≤ g and a set F′ ⊂ F such that an element z of

....

Q is an F-dec-min member of
....

Q
if and only if z is an F′-dec-min member of

....

Q′ =
....

Q( f ′, g′; m). In addition, the box T ( f ′, g′)
is narrow on F − F′ in the sense that 0 ≤ g′(e) − f ′(e) ≤ 1 holds for every e ∈ F − F′.

Proof. Let C′ be the chain ensured by Theorem 5.1, let ( f ′, g′) be the pair of bounding
functions defined in (5.2) and (5.3), and let

....

Q′ :=
....

Q( f ′, g′; m). Let L′ denote the subset of
L consisting of those elements of L that enter at least one member of C′.

Claim 5.4. The set L′ ⊆ L is non-empty.

Proof. Let z be an element of
....

Q which is pre-dec-min on F. By Part (A) of Lemma 5.2,
z ∈

....

Q′. By (5.1), there is an edge e in F for which z(e) = β = g(e), and hence e ∈ L. Since
g(e) = z(e) ≤ g′(e) ≤ g(e) and F contains no ( f , g)-tight edges, we have f (e) < g(e) =
g′(e) = β. This and definition (5.2) imply that e enters at least one member of C′.

Since L′ , ∅ by the claim, we have

F′ := F − L′ is a proper subset of F.

We are going to show that ( f ′, g′) and F′ meet the requirements of the theorem. Call two
vectors in ZA value-equivalent on L′ if their restrictions to L′ (that is, their projection to
ZL′), when both arranged in a decreasing order, are equal.

Lemma 5.5. The members of
....

Q′ are value-equivalent on L′.

Proof. By Part (A) of Lemma 5.2, the members of
....

Q′ are exactly those elements of
....

Q which
are pre-dec-min on F. Hence each member z of

....

Q′ has the same number µ of edges e in L
with z(e) = β.

As F contains no ( f , g)-tight edges, we have z(e) ≤ g′(e) ≤ β−1 for every edge e ∈ L−L′

and hence each element e of L with z(e) = β belongs to L′, from which

|{e ∈ L′ : z(e) = β}| = µ.
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Furthermore, we have f ′(e) ≥ β − 1 for every element e of L′, from which L′ has exactly
|L′|−µ edges with z(e) = β−1, implying that the members of

....

Q′ are indeed value-equivalent
on L′.

Part (B) of Lemma 5.2 implies that the F-dec-min elements of
....

Q are exactly the F-dec-
min elements of

....

Q′, and hence it suffices to prove that an element z of
....

Q′ is an F-dec-min
member of

....

Q′ if and only if z is an F′-dec-min member of
....

Q′. But this latter equivalence
is an immediate consequence of Lemma 5.5.

To prove the last part of Theorem 5.3, recall that F − F′ = L′ and L′ consisted of those
elements of L that enter at least one member of C′. But the definition of ( f ′, g′) in (5.2)
implies that β − 1 ≤ f ′(e) ≤ g′(e) = β for every element e of L′, that is, the box T ( f ′, g′) is
indeed narrow on F − F′. This completes the proof of Theorem 5.3.

Proof of Theorem 2.1 We use induction on |F|. Since f ∗ := f and g∗ := g clearly meet
the requirements of the theorem when F = ∅, we can assume that F is non-empty. As
before, we may assume that F contains no ( f , g)-tight edges. By Theorem 5.3, it suffices
to prove Theorem 2.1 for

....

Q( f ′, g′; m) and F′. But this follows by induction since F′ is a
proper subset of F.

Cheapest integral F-dec-min m-flows In Sections 9 and 8, we shall describe a strongly
polynomial algorithm to compute ( f ∗, g∗) in Theorem 2.1. Once these bounding functions
are available, we can immediately solve the problem of computing a cheapest integral F-
dec-min ( f , g)-bounded m-flow with respect to a cost-function c : A→ R. By Theorem 2.1,
this latter problem is nothing but a minimum cost ( f ∗, g∗)-bounded m-flow problem, which
can indeed be solved by a minimum cost feasible circulation algorithm. In the literature
there are several strongly polynomial algorithms for the cheapest circulation problem, the
first one was due to Tardos [32].

6 Characterization by improving di-circuits and by feasi-
ble potential-vectors

Let D = (V, A), F, f , g, m be the same as in Theorem 2.1. Let
....

Q =
....

Q( f , g; m) denote the
set of integral ( f , g)-bounded m-flows. We assume that

....

Q is non-empty but the properties
in (5.1) are not a priori expected. For an element z ∈

....

Q, let Dz = (V, Az) denote the standard
auxiliary digraph associated with z, that is,

Az := {uv : uv ∈ A, z(uv) < g(uv)} ∪ {vu : uv ∈ A, z(uv) > f (uv)}.

An edge uv ∈ Az is called a forward edge when z(uv) < g(uv) and a backward edge when
z(vu) > f (vu).

Theorem 2.1 provided a characterization for the set of F-dec-min elements of
....

Q, namely,
an element z ∈

....

Q is F-dec-min precisely if f ∗ ≤ z ≤ g∗. The goal of this section is to de-
scribe a different characterization for z ∈

....

Q to be decreasingly minimal on F, consisting of
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6.1 Feasible potential-vectors 18

two equivalent properties. (For a comparison of the previous and this new characterizations,
see Remark 6.3.) For the first one, we introduce a simple and natural way to obtain from
z a decreasingly smaller feasible m-flow by improving z along an appropriate di-circuit of
Dz. For the second property, by extending the standard notion of feasible potentials, we
introduce feasible potential-vectors. The main result of the section (Theorem 6.9 in Sec-
tion 6.4) states (roughly) that the following three properties for z are pairwise equivalent:
(A) z is dec-min on F, (B) no di-circuit improving z exists, and (C) there exists a feasible
potential-vector.

6.1 Feasible potential-vectors
Let c : A0 → R be a cost-function defined on the edge-set of a digraph D0 = (V, A0). A di-
circuit C of D0 is called negative (with respect to c) if the total c-cost c̃(C) =

∑
[c(e) : e ∈ C]

of C is negative. In the literature, c is called conservative if D0 admits no negative di-circuit.
A function π : V → R is called a c-feasible potential if π(v) − π(u) ≤ c(uv) holds for every
edge uv of D0. A classic result of Gallai is as follows.

Theorem 6.1 (Gallai). Given a digraph D0 = (V, A0) and a cost-function c : A0 → R, there
exists a c-feasible potential π : V → R if and only if c is conservative. If c is conservative
and integer-valued, then π can be chosen integer-valued, as well.

Given two k-dimensional vectors x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk), we say that
x is lexicographically smaller than y, in notation x ≺ y, if x , y and xi < yi where i denotes
the first component in which they differ. We write x ⪯ y if x = y or x ≺ y. Note that the
relation ⪯ is a total ordering of the elements of Rk.

Let c : A0 → Rk be a vector-valued function on the edge-set of D0 = (V, A0) that assigns a
vector c(e) = (c1(e), c2(e), . . . , ck(e)) to each edge e of D0. We call a vector-valued function
π : V → Rk on the node-set V c-feasible or just feasible if

π(v) − π(u) ⪯ c(uv) (6.1)

holds for every edge uv of D0.
A di-circuit C is said to be c-negative if the sum c̃(C) = (̃c1(C), c̃2(C), . . . , c̃k(C)) of

the c-vectors assigned to its edges is lexicographically smaller than the k-dimensional zero
vector 0k. The vector-valued function c is conservative if D0 has no c-negative di-circuit.

The following Gallai-type theorem specializes to Theorem 6.1 in case k = 1, but in its
proof we rely on Theorem 6.1.

Theorem 6.2. Given a digraph D0 = (V, A0) and a vector-valued function c : A0 → Rk

on its edge-set, there exists a c-feasible potential-vector π : V → Rk if and only if c is
conservative, that is, D0 admits no c-negative di-circuit. If c is integer vector-valued and
conservative, then a c-feasible π can be chosen to be integer vector-valued.

Proof. Let C be a di-circuit of D0 whose nodes, in cyclic order, are v1, v2, . . . , vq. Ac-
cordingly, the edges of C are e1 = v1v2, e2 = v2v3, . . . , eq = vqv1. Let π be a c-feasible
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6.2 Improving di-circuits 19

potential-vector. Then

0k = [π(v2) − π(v1)] + [π(v3) − π(v2)] + · · · + [π(v1) − π(vq)]

⪯
∑

[c(ei) : i = 1, . . . , q] = c̃(C).

To see the reverse direction, we apply induction on k. When k = 1, we are back at
Theorem 6.1. Suppose now that k ≥ 2, and assume that D0 admits no c-negative di-circuit.

Consider the functions ci : A0 → R formed by the i-th components of c (i = 1, . . . , k).
As c is conservative, so is c1, that is c̃1(C) ≥ 0 for every di-circuit C. By Theorem 6.1,
there exists a c1-feasible potential π1 : V → R (which is integer-valued when c1 is integer-
valued). Let A1 denote the following set of edges:

A1 := {uv ∈ A0 : π1(v) − π1(u) = c1(uv)}.

Let k′ := k − 1 and c′ := (c2, c3, . . . , ck). Then c′ is conservative in D1 = (V, A1) since c
is conservative and π1(v) − π1(u) = c1(uv) holds for every edge uv in A1. By induction,
there is a (k − 1)-dimensional potential-vector, π′ = (π2, . . . , πk) which is c′-feasible on the
edges in A1. Let π := (π1, π2, . . . , πk). Then π is c-feasible on the edges in A1. Moreover,
π1(v)−π1(u) < c1(uv) for every edge uv ∈ A0−A1, and hence π is c-feasible on these edges,
as well.

Remark 6.1. A standard result of network flow theory is that if the cost-function c in
Theorem 6.1 is conservative, then a c-feasible potential π can be computed in polynomial
time with the help of the Bellman–Ford algorithm (see, e.g., [31, page 108]). Because the
proof of Theorem 6.2 applies Theorem 6.1 iteratively k times, we can conclude that if the
cost-vector c in the theorem is conservative and k is polynomially bounded by |A0|, then a
c-feasible potential-vector π can be computed in polynomial time, and this π is an integral
vector when c is an integral vector. We note that Theorem 6.2 and this algorithmic approach
will be applied in the proof of Theorem 6.9 where k ≤ 2|F|.

6.2 Improving di-circuits
Let A+ and A− be two disjoint sets and let A∗ := A+∪A−. Let x be an integer-valued function
on A∗. As a preparatory lemma, we develop an equivalent condition for the function

x′ := x + χA+ − χA− (6.2)

to be decreasingly smaller than x. To this end, define x∗ : A∗ → Z, as follows:

x∗ := x − χA− . (6.3)

Let λ1 > λ2 > · · · > λh denote the distinct values of the components of x∗. We assign a
h-dimensional vector c′(e) to every element e ∈ A∗, as follows:

c′(e) :=

 ε′i if e ∈ A+ and x∗(e) = λi,
−ε′i if e ∈ A− and x∗(e) = λi,

(6.4)

where ε′i is the h-dimensional unit vector (0, . . . , 0, 1, 0, . . . , 0) whose i-th component is 1.
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6.2 Improving di-circuits 20

Lemma 6.3. x′ <dec x if and only if c̃′(A∗) ≺ 0h.

Proof. Induction on |A∗|. If |A∗| = 0, then the statement of the lemma is void, so suppose
that A∗ , ∅. If A− = ∅ and A+ , ∅, then x′ >dec x and c̃′(A∗) ≻ 0h, and hence neither of the
two inequalities in the lemma holds. If A− , ∅ and A+ = ∅, then x′ <dec x and c̃′(A∗) ≺ 0h,
and hence both of the two inequalities in the lemma hold. So we can suppose that A− , ∅
and A+ , ∅.

Let e+ be an element of A+ for which λi = x∗(e+) is maximum, and let e− be an element
of A− for which λ j = x∗(e−) is maximum. If λi > λ j, then x′ >dec x and c̃′(A∗) ≻ 0h, and
hence neither of the two inequalities in the lemma holds. If λi < λ j, then x′ <dec x and
c̃′(A∗) ≺ 0h, that is, both of the inequalities in the lemma hold.

In the remaining case, when λi = λ j, we have x(e+) + 1 = x(e−). Define A′+ := A+ − e+,
A′− := A− − e−, and let A′∗ := A∗ − {e−, e+}. Observe that the restriction of x′ to A′∗ is
decreasingly smaller than the restriction of x to A′∗ precisely if x′ <dec x. On the other hand,
c̃′(A′∗) = c̃′(A∗) and hence c̃′(A′∗) ≺ 0h precisely if c̃′(A∗) ≺ 0h. Since |A′∗| < |A∗|, we are
done by induction.

After this preparation, we return to D = (V, A) with F ⊆ A and z ∈
....

Q =
....

Q( f , g; m).
Let Dz = (V, Az) be the auxiliary digraph associated with z. We call a di-circuit C of Dz z-
improving on F (or just z-improving) if z′ ∈

....

Q is decreasingly smaller than z on F, where
z′(uv) is defined for uv ∈ A, as follows:

z′(uv) :=


z(uv) + 1 if uv is a forward edge of C,
z(uv) − 1 if vu is a backward edge of C,
z(uv) otherwise.

(6.5)

Note that the definition of Dz implies that z′ is indeed in
....

Q.
Let Fz denote the subset of Az corresponding to F (that is, for uv ∈ F, if z(uv) < g(uv),

then the forward edge uv belongs to Fz, while if z(uv) > f (uv), then the backward edge vu
belongs to Fz). The sets of forward and backward edges in Fz are denoted by Ff and Fb,
respectively. (The subscripts f and b refer to forward and backward.)

Define a function z∗ on Fz, as follows:

z∗(uv) :=

z(uv) if uv ∈ Ff ,

z(vu) − 1 if uv ∈ Fb.
(6.6)

Let γ1 > γ2 > · · · > γk denote the distinct values of z∗, where k ≤ 2|F|. Let εi denote
the k-dimensional unit-vector (0, . . . , 0, 1, 0, . . . , 0) whose i-th component is 1. We assign a
k-dimensional vector c(e) to every edge e of Dz, as follows:

c(e) :=


0k if e ∈ Az − Fz,

εi if e ∈ Ff and z∗(e) = γi,
−εi if e ∈ Fb and z∗(e) = γi.

(6.7)

Lemma 6.4. A di-circuit C of Dz is z-improving on F if and only if c̃(C) ≺ 0k.
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Proof. Let A+ := {uv : uv ∈ Ff ∩C}, A− := {uv : vu ∈ Fb∩C}, and A∗ := A+∪A−. Note that
A∗ ⊆ A. Let x denote the restriction of z to A∗. Then x′ defined in (6.2) is the restriction of z′

to A∗, and x∗ defined in (6.3) is the restriction of z∗ to A∗. Let λ1 > λ2 > · · · > λh denote the
distinct values of x∗, and consider the vector c′ defined in (6.4). Note that {λ1, λ2, . . . , λh}

is a subsequence of {γ1, γ2, . . . , γk}, in particular, h ≤ k. Observe that C is z-improving if
and only if x′ is decreasingly smaller than x. Also observe that c̃(C) ≺ 0k if and only if
c̃′(A∗) ≺ 0h. Then we are done by Lemma 6.3.

6.3 Minimizing the number of saturated edges
Let β := max{g(e) : e ∈ F} and let L := {e ∈ F : g(e) = β}. We assume that −∞ < f (e) < β
for every edge e ∈ L, while f (e) = −∞ and g(e) = +∞ are allowed for edges e in A − L.
The goal of this section is to characterize ( f , g)-bounded integral m-flows which saturate a
minimum number of L-edges.

We need the following standard characterization of cheapest feasible m-flows.

Lemma 6.5. Let D1 = (V, A1) be a digraph endowed with a cost function c1 : A1 → R and
a pair ( f1, g1) of bounding-functions on A1. For an ( f1, g1)-bounded integral m-flow x, let
Dx = (V, Ax) denote the auxiliary digraph, endowed with a cost-function cx : Ax → R, in
which uv ∈ Ax is a forward edge if x(uv) < g1(uv), for which cx(uv) := c1(uv), and vu ∈ Ax

is a backward edge if x(uv) > f1(uv), for which cx(vu) := −c1(uv). Then x is a cheapest
( f1, g1)-bounded integral m-flow if and only if there is no negative di-circuit in Dx (or in
other words, cx is conservative).

In order to characterize integral ( f , g)-bounded m-flows for which the number of g-
saturated (that is, β-valued) edges in L is minimum, we introduce a parallel copy e′ of
each e ∈ L. Let L′ denote the set of new edges. Let A1 := A ∪ L′ and D1 := (V, A1). Define
g− on A by g− := g − χL, that is, we reduce g(e) from β to β − 1 for each e ∈ L.

Let f1 and g1 be bounding functions on A1 defined by

f1(e) :=

 f (e) if e ∈ A,
0 if e ∈ L′,

g1(e) :=

g−(e) if e ∈ A,
1 if e ∈ L′.

(6.8)

Let c1 be a (0, 1)-valued cost-function on A1 defined by

c1(e) :=

0 if e ∈ A,
1 if e ∈ L′.

(6.9)

Lemma 6.6.
(A) If z is an integral ( f , g)-bounded m-flow in D having µ edges in L with z(e) = β, then
there exists an integral ( f1, g1)-bounded m-flow z1 in D1 for which c1z1 = µ.
(B) If z1 is a minimum c1-cost integer-valued ( f1, g1)-bounded m-flow in D1, then there is
an ( f , g)-bounded m-flow z in D for which the number of edges in L with z(e) = β is c1z1.
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Proof. (A) Let z be an m-flow given in Part (A), and let X := {e ∈ L : z(e) = β}. Let X′

denote the subset of L′ corresponding to X. Define an m-flow z1 in D1 as follows:

z1(e) :=


z(e) if e ∈ A − X,
β − 1 if e ∈ X,
1 if e ∈ X′,
0 if e ∈ L′ − X′.

(6.10)

Then z1 is an ( f1, g1)-bounded m-flow in D1 whose c1-cost is |X| = µ.
(B) Let z1 be an m-flow given in Part (B) of the lemma. Observe that if z1(e′) = 1 for

some e′ ∈ L′, then z1(e) = g1(e) = β − 1 where e is the edge in L corresponding to e′.
Indeed, if we had z1(e) ≤ β − 2, then the m-flow obtained from z1 by adding 1 to z1(e) and
subtracting 1 from z1(e′) would be of smaller cost. It follows that the m-flow z in D defined
by

z(e) :=

z1(e) + z1(e′) if e ∈ L,
z1(e) if e ∈ A − L

(6.11)

is an ( f , g)-bounded m-flow in D, for which the number of β-valued L-edges is exactly the
c1-cost of z1.

Corollary 6.7. An integral ( f , g)-bounded m-flow z in D with max{z(e) : e ∈ L} ≤ β
minimizes the number of the β-valued edges in L if and only if the ( f1, g1)-bounded m-flow
z1 in D1 assigned to z in (6.10) is a minimum c1-cost ( f1, g1)-bounded m-flow of D1.

Let z be an ( f , g)-bounded m-flow and let Dz be the usual auxiliary digraph belonging to
z. The sets of forward and backward edges in Fz are denoted by Ff and Fb, respectively.
Let

Lf := {uv ∈ Ff : uv ∈ L, z(uv) = β − 1}, Lb := {uv ∈ Fb : vu ∈ L, z(vu) = β}.

Lemma 6.8. An integral ( f , g)-bounded m-flow z with max{z(e) : e ∈ L} ≤ β minimizes the
number of β-valued (that is, g-saturated) elements of L if and only if, in every di-circuit of
Dz, the number of Lb-edges is at most the number of Lf-edges.

Proof. Suppose first that z is an integral ( f , g)-bounded m-flow for which the auxiliary
digraph Dz belonging to z includes a di-circuit Cz which has more Lb-edges than Lf-edges.
Let C denote the circuit of D corresponding to Cz (that is, C is obtained from Cz by reversing
the backward edges of Cz). Define z′ as follows:

z′(uv) :=


z(uv) + 1 if uv ∈ Cz is a forward edge,
z(uv) − 1 if vu ∈ Cz is a backward edge,
z(uv) if uv ∈ A −C.

(6.12)

Then z′ is an integral ( f , g)-bounded m-flow that saturates less L-edges than z does.
To see the converse, suppose that z is an integral ( f , g)-bounded m-flow for which the

number of β-valued (that is, saturated) L-edges is not minimum.
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Consider the digraph D1 defined above along with the bounding functions ( f1, g1) on
its edge-set in (6.8). Let z1 be the ( f1, g1)-bounded m-flow assigned to z in (6.10). By
Lemma 6.6, z1 is not a minimum c1-cost ( f1, g1)-bounded m-flow in D1. By applying
Lemma 6.5 to x := z1, we obtain that the auxiliary digraph Dx belonging to x includes
a di-circuit Cx whose cx-cost is negative.

Let e = uv be an edge of L. Recall that, to define D1, we added a new edge e′ parallel
to e. Let e′′ = vu be the edge arising from e′ by reversing it. Then we have the following
equivalences:

z(e) = β − 1⇔ uv ∈ Lf ⊆ Az

⇔ e′ is a forward edge in Dx with cx(e′) = 1,
z(e) = β ⇔ vu ∈ Lb ⊆ Az ⇔ z1(e′) = 1

⇔ e′′ = vu is a backward edge in Dx (and hence cx(e′′) = −1).

In addition, the cx-cost of the edges (forward or backward) associated with e with z(e) <
β− 1 is equal to zero. These observations imply that the negative di-circuit Cx (with respect
to cx) in Dx defines a di-circuit of Dz which contains more Lb-edges than Lf-edges.

6.4 The characterization
Recall the cost-vector c defined in (6.7), which is a k-dimensional vector with k ≤ 2|F|. The
main result of Section 6 is as follows.

Theorem 6.9. For an element z ∈
....

Q =
....

Q( f , g; m), the following properties are equivalent.
(A) z is decreasingly minimal on F.
(B) There is no z-improving di-circuit in the auxiliary digraph Dz.
(C) There is an integer-valued potential-vector function π on V which is c-feasible, that is,
π(v) − π(u) ⪯ c(uv) for every edge uv ∈ Az, where the dimension of π is bounded by 2|F|.

Proof. For the proof it is convenient to highlight the condition:

(B′) There is no di-circuit C with c̃(C) ≺ 0k in the auxiliary digraph Dz.

Lemma 6.4 shows the equivalence of (B) and (B′), whereas the equivalence of (B′) and (C)
is shown in Theorem 6.2. The implication “(A)⇒ (B)” is obvious from the definition, and
now we turn to the proof of “(B)⇒ (A).”

Let z be an ( f , g)-bounded integral m-flow for which there is no z-improving di-circuit
in the auxiliary digraph Dz. To derive that z is F-dec-min, we use induction on |F|. As z
is F-dec-min when F is empty, we assume that |F| ≥ 1. We can assume that F contains
no ( f , g)-tight edges, since taking out an ( f , g)-tight edge from F affects neither the set of
z-improving di-circuits, nor the F-dec-minimality of z.

Let β := max{z(e) : e ∈ F}. Then max{z′(e) : e ∈ F} ≤ β holds for any F-dec-min
member z′ of

....

Q, therefore we can assume that β = max{g(e) : e ∈ F}. Let L := {e ∈
F, g(e) = β}.

Since Dz admits no z-improving di-circuit, it follows, in particular, that there is no di-
circuit containing more Lb-edges than Lf-edges. By Lemma 6.8, z minimizes the number
of F-edges with z(e) = β, and this means that z is pre-dec-min on F.
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Consider the chain C′ used in Theorem 5.1 along with the definition of ( f ′, g′) given in
(5.2) and (5.3). By (the proof of) Theorem 5.3, z is ( f ′, g′)-bounded. Recall that L′ was
defined before Claim 5.4 to be the subset of L consisting of those elements of L that enter at
least one member of C′, while we defined F′ := F−L′. We pointed out that L′ is non-empty,
that is, F′ is a proper subset of F. Furthermore the definitions of ( f ′, g′) and L′ imply that
every edge in A − L leaving or entering a member of C′ is ( f ′, g′)-tight, every edge in L
leaving a member of C′ is ( f ′, g′)-tight, and every edge in L entering at least two members
of C′ is ( f ′, g′)-tight.

Let D′z denote the auxiliary digraph belonging to z with respect to ( f ′, g′). Because
( f ′, g′)-tight edges of D do not define any edge of D′z, we conclude that, for any member Ci

of C′, if e = uv is a forward edge of D′z entering Ci, then f ′(e) = β− 1, g′(e) = β, and e does
not enter any other member of C′. Analogously, if e = uv is a backward edge of D′z leaving
Ci, then f ′(vu) = β − 1, g′(vu) = β, and e = uv does not leave any other member of C′. It
follows for any di-circuit K′ of D′z that, if K denotes the circuit of D corresponding to K′,
then the number of F-edges e of K with z(e) = β − 1 entering Ci is equal to the number of
F-edges of K with z(e) = β leaving Ci. This implies that if K′ is a z-improving di-circuit of
D′z with respect to F′, then K′ is z-improving di-circuit in Dz with respect to F.

By our hypothesis, Dz includes no z-improving di-circuit, and therefore D′z includes no
z-improving di-circuit with respect to F′, either. Since |F′| < |F|, we conclude by induction
that z is F′-dec-min with respect to ( f ′, g′), implying, via Theorem 5.3, that z is F-dec-min.

Remark 6.2. As we applied Theorem 6.2 for proving implication “(B) ⇒ (C)” in The-
orem 6.9 and, in the present case, we have k ≤ 2|F| for the k-dimensional cost-vector c
defined in (6.7), we can conclude, by Remark 6.1, that the potential-vector π occurring in
(C) can be computed in strongly polynomial time.

Remark 6.3. ¿From a theoretical computer science point of view, a slight drawback of the
characterization in Theorem 2.1 is that, in order to be convinced that z is indeed F-dec-min,
one must believe the correctness of ( f ∗, g∗). In this respect, Property (C) in Theorem 6.9 is
more convincing since it provides a certificate for z to be F-dec-min whose validity can be
checked immediately.

Just for an analogy to understand better this aspect of certificates, consider the well-
known maximum weight perfect matching problem in a bipartite graph G = (S ,T ; E) en-
dowed with a weight-function w on E. On one hand, one can prove the characterization that
there is a subgraph G∗ = (S ,T ; E∗) of G such that a perfect matching M of G is of maxi-
mum w-weight if and only if M ⊆ E∗. (This result intuitively corresponds to Theorem 2.1).
This certificate E∗, however, is convincing (for the optimality of M) only if we can check
that it has been correctly computed. On the other hand, Egerváry’s classic theorem pro-
vides an immediately checkable certificate for M to be of maximum w-weight: a function
π : S ∪ T → R for which π(s) + π(t) ≥ w(st) for every edge st ∈ E and π(s) + π(t) = w(st)
for every edge st ∈ M. (This result intuitively corresponds to the equivalence of (A) and
(C) in Theorem 6.9).
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7 Existence of an F-dec-min m-flow
In the previous sections, we assumed that the bounding functions f and g were finite-valued
on F. In the more general case, where we allow edges in F as well to have f (e) = −∞ or
g(e) = +∞, it may occur that no F-dec-min feasible m-flow exists at all. For example, if
D is a di-circuit, F = A, m ≡ 0, f ≡ −∞, and g ≡ 0, then z ≡ k is a feasible m-flow for
each integer k ≤ 0, implying that in this case there is no F-dec-min feasible m-flow. The
main goal of this section is to describe a characterization for the existence of an F-dec-min
feasible m-flow. As a consequence of this characterization, we show how Theorem 2.1 and
its algorithmic approach can be extended to this more general case.

As before, let D = (V, A) be a digraph and F ⊆ A a non-empty subset of edges. Let
m : V → Z be a function on V and let f : A → Z ∪ {−∞} and g : A → Z ∪ {+∞} be
bounding functions on A such that there is a feasible (that is, ( f , g)-bounded) m-flow in D.
Recall that

....

Q( f , g; m) denoted the set of integral ( f , g)-bounded m-flows. In what follows,
all the occurring functions (bounds, flows) are assumed to be integer-valued even if this is
not mentioned explicitly.

We start by exhibiting an easy reduction by which we can assume that g is finite-valued
on F.

Lemma 7.1. There is a function g′ on A which is finite-valued on F such that the (possi-
bly empty) set of F-dec-min elements of

....

Q :=
....

Q( f , g; m) is equal to the set of F-dec-min
elements of

....

Q′ :=
....

Q( f , g′; m).

Proof. Let z1 be an element of
....

Q and let β denote the maximum value of its components in
F. Define g′ as follows:

g′(e) :=

min{g(e), β} if e ∈ F,
g(e) if e ∈ A − F.

(7.1)

As g′ ≤ g, we have
....

Q′ ⊆
....

Q. In particular, an F-dec-min element z′ of
....

Q′ is in
....

Q, and we
claim that z′ is actually F-dec-min in

....

Q. Indeed, if we had an element z′′ ∈
....

Q which is
decreasingly smaller on F than z′, then z′′ is not in

....

Q′, that is, z′′ is not ( f , g′)-bounded.
Therefore there is an edge a ∈ F for which z′′(a) > β, implying that max{z′′(e) : e ∈ F} >
β = max{z′(e) : e ∈ F}. But this contradicts the assumption that z′′ is decreasingly smaller
on F than z′.

Conversely, suppose that z is an F-dec-min element of
....

Q. Since the largest component
of z1 in F is β, the largest component of z in F is at most β, and hence z ∈

....

Q′. This and
....

Q′ ⊆
....

Q imply that z is an F-dec-min element of
....

Q′.

Theorem 7.2. Let D = (V, A) be a digraph and F ⊆ A a subset of edges. Let m : V → Z be
a function on V and let f : A → Z ∪ {−∞} and g : A → Z ∪ {+∞} be bounding functions
on A such that there is a feasible (that is, ( f , g)-bounded) m-flow in D. Define digraph
D∞ = (V, A∞) by

A∞ := {e : e ∈ A, f (e) = −∞} ∪ {vu : uv ∈ A − F, g(uv) = +∞}. (7.2)
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The following properties are equivalent.
(A) There exists an F-dec-min ( f , g)-bounded integral m-flow.
(B) There is no di-circuit C in D∞ with C ∩ F , ∅.
(C) Each edge e ∈ F with f (e) = −∞ enters a subset S e for which δA∞(S e) = 0.

Proof. Since each of the three properties holds when F = ∅, we can assume that F is
non-empty. As a first step, we make the upper bound function g finite-valued on F.

Claim 7.3. The theorem follows from its special case when g(e) is finite for each e ∈ F.

Proof. Consider the function g′ introduced in (7.1), and suppose that the theorem holds
when g is replaced by g′. To derive the theorem for the original g, observe first that chang-
ing g to g′ does not affect the digraph D∞ because g′ may differ from g only on the elements
of F. Since both Property (B) and Property (C) depend only on D∞, these properties are
not affected by replacing g with g′, and hence they are equivalent (with respect to g). Fur-
thermore, Lemma 7.1 implies that Property (A) holds with respect to g precisely if it holds
with respect to g′.

By the claim, we can assume that g is finite-valued on F. Note that in this case

A∞ = {e : e ∈ A, f (e) = −∞} ∪ {vu : uv ∈ A, g(uv) = +∞}. (7.3)

(A)⇒ (B) Let z be an F-dec-min element of
....

Q. Suppose indirectly that D∞ includes a
di-circuit C intersecting F. For uv ∈ A, define z′(uv) as follows:

z′(uv) :=


z(uv) − 1 if uv ∈ C, uv ∈ A,
z(uv) + 1 if vu ∈ C, vu ∈ A − F,
z(uv) otherwise.

(7.4)

Then z′ is also a feasible m-flow in D, which is decreasingly smaller on F than z, a contra-
diction.

(B) ⇒ (C) For any edge e = ts ∈ F with f (e) = −∞, let S e denote the set of nodes
which are reachable from s in D∞. Then e enters S e since if we had t ∈ S e, then there is an
st-dipath P in D∞, and the di-circuit C = P + e would violate Property (B).

(C)⇒ (A) First we provide a condition for an edge e ∈ F which ensures that z(e) cannot
be arbitrarily small for z ∈

....

Q.

Claim 7.4. Let S ⊂ V be a set for which δA∞(S ) = 0, and let e0 ∈ F entering S . Then, for
any ( f , g)-feasible m-flow z,

z(e0) ≥ m̃(S ) − [ϱg(S ) − g(e0)] + δ f (S ), (7.5)

and the right-hand side is finite.

Proof. Since z ≤ g and e0 enters S , we have

ϱz(S ) − z(e0) ≤ ϱg(S ) − g(e0),
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from which

m̃(S ) = ϱz(S ) − δz(S ) = z(e0) + [ϱz(S ) − z(e0)] − δz(S ) ≤ z(e0) + [ϱg(S ) − g(e0)] − δ f (S ),

implying (7.5).
Furthermore, δA∞(S ) = 0 implies that f (e) > −∞ for every edge e of D leaving S and that

g(e) < +∞ for every edge e of D entering S , from which the finiteness of the right-hand
side of (7.5) follows.

Assume indirectly that no F-dec-min ( f , g)-bounded m-flow exists, that is, for every
( f , g)-bounded m-flow, there exists another one which is decreasingly smaller on F. This
implies that there is an edge e0 in F for which there is an ( f , g)-bounded m-flow with
z(e0) ≤ K for an arbitrarily small integer K. By Claim 7.4, e0 cannot enter any subset S ⊂ V
with δA∞(S ) = 0, contradicting Property (C). This completes the proof of Theorem 7.2.

Corollary 7.5. Let Q = Q( f , g; m) be the set of ( f , g)-bounded m-flows. If
....

Q has an F-
dec-min element, then there are bounding functions ( f ′, g′) for which the sets of F-dec-min
elements of

....

Q( f ′, g′; m) and of
....

Q are the same, and both f ′ and g′ are finite-valued on F.

Proof. Lemma 7.1 implies that the upper-bound function g′ defined in (7.1) is finite-valued
on F, and replacing g by g′ does not affect the set of F-dec-min elements. Since

....

Q has
an F-dec-min element, Theorem 7.2 implies that every edge e ∈ F with f (e) = −∞ enters
a subset S e for which δA∞(S e) = 0. This and Claim 7.4 imply, that there is a finite lower
bound

f ′(e) := m̃(S e) − [ϱg(S e) − g(e)] + δ f (S e). (7.6)

For these f ′ and g′, the set of F-dec-min elements of
....

Q is the same as the set of F-dec-min
elements of

....

Q( f ′, g′; m).

Corollary 7.5 implies that our main theorem (Theorem 2.1) holds almost word for word
in the general case when ( f , g) is not assumed to be finite-valued on F: the only difference
is that the existence of an F-dec-min element of

....

Q must be assumed.

Theorem 7.6. Let D, F, f , g,m be the same as in Theorem 7.2, and let Q = Q( f , g; m) be
the set of ( f , g)-bounded feasible m-flows. Assume that there exists an F-dec-min element
of
....

Q. Then there exists a pair ( f ∗, g∗) of integer-valued functions on A with f ≤ f ∗ ≤ g∗ ≤ g
(allowing f ∗(e) = −∞ and g∗(e) = +∞ for e ∈ A − F) such that an integral ( f , g)-bounded
m-flow z is decreasingly minimal on F if and only if z is an integral ( f ∗, g∗)-bounded m-flow.
Moreover, the box T ( f ∗, g∗) is narrow on F in the sense that 0 ≤ g∗(e)− f ∗(e) ≤ 1 for every
e ∈ F.

We mention that the description above immediately gives rise to a strongly polynomial
algorithm that terminates by providing either a di-circuit C in D∞ intersecting F (which is
a certificate for the non-existence of an F-dec-min element) or else the bounding functions
( f ′, g′) occurring in Corollary 7.5 which are finite-valued on F. The only subroutine needed
here is the one to compute the set S e of nodes reachable in D∞ from a specified node. This
can easily be realized, for example, by a breadth-first search.

EGRES Technical Report No. 2020-16



Section 8. Computing an L-upper-minimizer m-flow and the dual optimal chain 28

8 Computing an L-upper-minimizer m-flow and the dual
optimal chain

In the previous sections we provided a necessary and sufficient condition for the existence
of an F-dec-min integral ( f , g)-bounded m-flow, characterized these m-flows, and described
their set as the set of integral ( f ∗, g∗)-feasible m-flows. Our next goal is to consider algo-
rithmic questions and construct strongly polynomial algorithms for the results developed
earlier.

In the present section, we describe an alternative, algorithmic proof of Theorems 4.5
and 4.6. This algorithm will actually be used in the special case, described in Theorem
5.1, for computing the dual optimal chain C′ characterizing the F-pre-dec-min elements
of
....

Q =
....

Q( f , g; m). This chain, as described in Theorem 5.3, immediately gives rise to
a tightening ( f ′, g′) of ( f , g) and a proper subset F′ of F with the property that the set of
F-dec-min elements of

....

Q is the same as the set of F′-dec-min elements of
....

Q′ =
....

Q( f ′, g′; m).
In the light of this algorithmic proof, the original proof of Theorems 4.5 and 4.6 may

seem superfluous, but we keep both proofs because the one in Section 4 is more transparent
and technically simpler than the algorithmic approach to be presented below.

The algorithm computes an integer-valued L-upper-minimizer ( f , g)-bounded m-flow as
well as a maximizer chain C in (4.3) meeting the optimality criteria in Theorem 4.6. As
before, D = (V, A) is a digraph and we assume that L is a subset of A for which −∞ < f (e) <
g(e) < +∞ for each edge e ∈ L. (For edges in A−L, f (e) = −∞ and g(e) = +∞ are allowed.)
Our primal goal is to find an integral ( f , g)-bounded m-flow g-saturating a minimum number
of elements of L. To this end, we apply the technique used already in Section 6.3 which
relies on cheapest feasible flows. However, these two frameworks differ in the following
respects. In Section 6.3, β and F played a role, while these parameters do not occur here.
Another difference is that in Section 6.3 we relied only on the primal optimum of the min-
cost flow problem, while here it is central to compute the dual optimum, as well.

Similarly to the approach of Section 6.3, we introduce a parallel copy e′ for each element
e ∈ L. Let L′ denote the set of new edges. We shall refer to the edges in A as old or original
edges. Let A1 := A∪ L′, D′ = (V, L′), and D1 = (V, A∪ L′). Define g− on A by g− := g− χL,
that is, we reduce g(e) by 1 for each e ∈ L. Let f1 and g1 be bounding functions on A1

defined by (6.8), and c1 be a (0, 1)-valued cost-function on A1 defined by (6.9).
Our goal is to find an ( f , g)-bounded integer-valued m-flow in D admitting a minimum

number of g-saturated L-edges. We claim that this problem is equivalent to finding a
minimum c1-cost ( f1, g1)-bounded integer-valued m-flow in D1. Indeed, let z be an ( f , g)-
bounded m-flow in D and let X := {e ∈ L : z(e) = g(e)} be the set of g-saturated members of
L. Let X′ denote the subset of L′ corresponding to X. Define an m-flow z1 in D1 as follows:

z1(e) :=


z(e) if e ∈ A − X,
g(e) − 1 if e ∈ X,
1 if e ∈ X′,
0 if e ∈ L′ − X′.

Then z1 is an ( f1, g1)-bounded m-flow in D1 whose c1-cost is |X|. Conversely, let z1 be a
minimum cost integer-valued ( f1, g1)-bounded m-flow in D1. Observe that if z1(e′) = 1 for

EGRES Technical Report No. 2020-16



Section 8. Computing an L-upper-minimizer m-flow and the dual optimal chain 29

some e′ ∈ L′, then z1(e) = g1(e) = g(e) − 1 where e is the edge in L corresponding to e′.
Indeed, if we had z1(e) ≤ g(e)−2, then the m-flow obtained from z1 by adding 1 to z1(e) and
subtracting 1 from z1(e′) would be of smaller cost. It follows that the m-flow z in D defined
by

z(e) :=

z1(e) + z1(e′) if e ∈ L,
z1(e) if e ∈ A − L

(8.1)

is an ( f , g)-bounded m-flow in D, for which the number of g-saturated L-edges is exactly
the c1-cost of z1.

Therefore, we concentrate on finding an integer-valued min-cost ( f1, g1)-bounded m-flow
in D1. In order to describe the dual optimization problem, let N denote the node-edge
signed incidence matrix of D, that is, the entry of N corresponding to a node u and to an
edge e ∈ A is 1 if e enters u, −1 if e leaves u, and 0 otherwise. Let N′ denote the analogous
signed incidence matrix of D′, and let N1 = [N,N′]. Note that N1 is the signed incidence
matrix of D1 and hence it is totally unimodular. The primal linear program is as follows:

min{c1z1 : N1z1 = m, z1 ≥ f1, −z1 ≥ −g1}. (8.2)

The dual linear program is as follows:

max{ym + v1 f1 − w1g1 : yN1 + v1 − w1 = c1, v1 ≥ 0, w1 ≥ 0}. (8.3)

Note that the components of v1 = (v, v′) correspond to the edges in A and in L′, respectively,
and the analogous statement holds for w1 = (w,w′). Since N1 is totally unimodular, both
the primal and the dual optimal solution can be chosen integer-valued.

If (y, v1,w1) is a dual solution and both v1(e) and w1(e) are positive on an edge e ∈ A1,
then reducing both v1(e) and w1(e) by their minimum δ := min{v1(e),w1(e)}, we obtain
another dual solution whose dual cost is larger by δ(g1(e) − f1(e)) ≥ 0 than the dual cost
ym + v1 f1 − w1g1 of (y, v1,w1). Therefore it suffices to consider only those optimal dual
solutions (y, v1,w1) for which min{v1(e),w1(e)} = 0 for every edge e ∈ A1. Observe that
for such an optimal dual solution (y, v1,w1), since v1 and w1 are non-negative, y uniquely
determines v1 and w1. Namely, for an edge e = st ∈ A, we have c1(e) = 0 and hence

v1(e) :=

0 if y(t) − y(s) ≥ 0,
y(s) − y(t) if y(t) − y(s) < 0,

(8.4)

w1(e) :=

0 if y(t) − y(s) ≤ 0,
y(t) − y(s) if y(t) − y(s) > 0.

(8.5)

For an edge e′ = st ∈ L′, we have c1(e′) = 1 and hence

v1(e′) :=

0 if y(t) − y(s) ≥ 1,
y(s) − y(t) + 1 if y(t) − y(s) < 1,

(8.6)

w1(e′) :=

0 if y(t) − y(s) ≤ 1,
y(t) − y(s) − 1 if y(t) − y(s) > 1.

(8.7)
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Let z1 be an integer-valued primal optimum, that is, z1 is a minimum c1-cost ( f1, g1)-
bounded m-flow in D1. Let z be the ( f , g)-bounded m-flow in D defined in (8.1). As noted
above, z is L-upper-minimizer. Let (y, v1,w1) be an integer-valued dual optimum.

Note that the minimum cost flow algorithm of Ford and Fulkerson [6] computes a mini-
mum-cost feasible flow of given amount along with the optimal dual solution. This algo-
rithm relies on a max-flow algorithm as a subroutine. If one uses the strongly polynomial
max-flow algorithm of Edmonds and Karp [5], that is, if the augmentation is made always
along a shortest path in the corresponding auxiliary digraph, and, furthermore, if the cost-
function is (0, 1)-valued, then the min-cost flow algorithm of Ford and Fulkerson is strongly
polynomial. (In other words, we do not need to use a more sophisticated strongly polyno-
mial algorithm—the first one found by Tardos [32]—for the general min-cost flow problem
when the cost-function is arbitrary.) With a standard reduction technique, the min-cost flow
algorithm of Ford and Fulkerson can easily be transformed to one for computing a feasible
min-cost m-flow. Therefore, we conclude that the integer-valued optimal solutions to the
primal and dual linear programs above can be computed in strongly polynomial time via
the Ford-Fulkerson min-cost flow algorithm.

Since m̃(V) = 0, by adding a constant to the components of y, we obtain another optimal
dual solution. Therefore we may assume that the smallest component of y is 0. Let 0 = y0 <
y1 < y2 < · · · < yq be the distinct values of the components of y, and consider the chain of
subsets V1 ⊃ V2 ⊃ · · · ⊃ Vq of V where Vi := {u ∈ V : y(u) ≥ yi}. (In the special case when
y ≡ 0, the chain in question is empty, that is, q = 0).

Note that

ym =
q∑

i=1

(yi − yi−1)m̃(Vi). (8.8)

We may assume that the difference of subsequent yi values is 1. Indeed, if yi+1 − yi ≥ 2 for
some i, then by subtracting 1 from y(u) for each u ∈ Vi+1, by subtracting 1 from v1(e) for
each e ∈ A1 leaving Vi+1, and by subtracting 1 from w1(e) for each e ∈ A1 entering Vi+1,
we obtain another dual feasible solution (y′, v′1,w

′
1). By (8.8), y′m = ym − m̃(Vi+1). For the

revised v′1 and w′1, we have

v′1 f1 = v1 f1 − δ f1(Vi+1) = v1 f1 − δ f (Vi+1),
w′1g1 = w1g1 − ϱg1(Vi+1) = w1g1 − ϱg(Vi+1).

Therefore

y′m + v′1 f1 − w′1g1 = ym + v1 f1 − w1g1 − [m̃(Vi+1) + δ f (Vi+1) − ϱg(Vi+1)].

Since ϱg(Vi+1)− δ f (Vi+1) ≥ m̃(Vi+1) by (2.2) and since (y, v1,w1) is an optimal dual solution,
we obtain

ym + v1 f1 − w1g1 ≥ y′m + v′1 f1 − w′1g1

= ym + v1 f1 − w1g1 − [m̃(Vi+1) + δ f (Vi+1) − ϱg(Vi+1)] ≥ ym + v1 f1 − w1g1.

Therefore, equality must hold everywhere and hence (y′, v′1,w
′
1) is another optimal dual

solution. This reduction technique shows that we can assume that

yi = i for i = 1, . . . , q. (8.9)

EGRES Technical Report No. 2020-16



Section 8. Computing an L-upper-minimizer m-flow and the dual optimal chain 31

Note that from an algorithmic point of view, we get immediately the optimal dual y given
in (8.9) once the chain V1 ⊃ V2 ⊃ · · · ⊃ Vq belonging to an arbitrary optimal dual solution
is available.

By (8.9), (8.4), and (8.5), we have for an edge e ∈ A,

v1(e) = the number of Vi’s left by e, (8.10)
w1(e) = the number of Vi’s entered by e. (8.11)

For an edge e′ ∈ L′, by (8.6) and (8.7), we have

v1(e′) =

0 if e′ enters a Vi,

[the number of Vi’s left by e′] + 1 if e′ enters no Vi,
(8.12)

w1(e′) =

0 if e′ enters no Vi,

[the number of Vi’s entered by e′] − 1 if e′ enters a Vi.
(8.13)

The optimality criteria (complementary slackness conditions) for the primal and dual
linear programs (8.2) and (8.3) are as follows:

if v1(e) > 0 for some e ∈ A1, then z1(e) = f1(e), (8.14)
if w1(e) > 0 for some e ∈ A1, then z1(e) = g1(e). (8.15)

Lemma 8.1. The chain V1 ⊃ V2 ⊃ · · · ⊃ Vq and the m-flow z defined in (8.1) meet the
five optimality criteria in Theorem 4.6. Furthermore, ϱg(Vi) − δ f (Vi) < +∞ holds for each
i = 1, . . . , q.

Proof. (O1) Let e ∈ A be an edge leaving a Vi. Then v1(e) > 0 by (8.10). By (8.14),
z1(e) = f1(e) = f (e), from which z(e) = z1(e) = f (e) follows whenever e ∈ A − L. If
e ∈ L, then (8.12) implies v1(e′) > 0 for the corresponding parallel edge e′ in L′. By (8.14),
z1(e′) = f1(e′) = 0, and hence z(e) = z1(e) + z1(e′) = f (e), as required for Criterion (O1).

(O2) Let e = A − L be an edge entering a Vi. Then w1(e) > 0 by (8.11). By (8.15), we
have z(e) = z1(e) = g1(e) = g(e), as required for Criterion (O2).

(O3) Let e ∈ L be an edge entering Vi and let e′ be the corresponding parallel edge
in L′. Then w1(e) > 0 by (8.11). By (8.15), we have z1(e) = g1(e) = g(e) − 1. Since
0 = f1(e′) ≤ z1(e′) ≤ g1(e′) = 1 and z(e) = z1(e)+z1(e′), we obtain that g(e)−1 ≤ z(e) ≤ g(e),
as required for Criterion (O3).

(O4) Let e ∈ L be an edge entering at least two Vi’s, and let e′ be the corresponding
parallel edge in L′. By (8.11), we have w1(e) > 0, from which (8.15) implies that z1(e) =
g1(e) = g(e)−1. By (8.13), we have w1(e′) > 0, from which (8.15) implies z1(e′) = g1(e′) =
1. Therefore z(e) = z1(e) + z1(e′) = g(e), as required for Criterion (O4).

(O5) Let e ∈ L be an edge neither entering nor leaving any Vi, and let e′ be the corre-
sponding parallel edge in L′. Since z is ( f , g)-bounded, we have f (e) ≤ z(e). By (8.12),
v1(e′) = 1, from which (8.14) implies that z1(e′) = f1(e′) = 0. Hence z(e) = z1(e) + z1(e′) ≤
g1(e) = g(e) − 1, as required for Criterion (O5).

To see the second part of the lemma, observe that Criterion (O1) implies that δ f (Vi) =
δz(Vi) > −∞. As g(e) < +∞ for every edge e ∈ L, and, by Criterion (O2) g(e) = v(e) <
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+∞ for every edge e ∈ A − L entering Vi, we conclude that ϱg(Vi) < +∞, from which
ϱg(Vi) − δ f (Vi) < +∞, as required.

Lemma 8.1 and Theorem 4.6 imply that the chain V1 ⊃ V2 ⊃ · · · ⊃ Vq computed by
the algorithm above in the special case described in Theorem 5.3 is a dual optimum chain.
Also, the algorithm computes a minimum c1-cost integral ( f1, g1)-bounded m-flow in D1 in
(8.1) and an integral L-upper-minimizer m-flow z in the original digraph D.

Finally, we remark that the algorithm described above can be applied to the special case
treated by Theorems 5.1 and 5.3 only if the value β = βF defined in (2.4) is already available.
In the next section, we show how β can be computed efficiently.

9 Algorithm for minimizing the largest m-flow value on F

Our remaining algorithmic task is to describe a strongly polynomial algorithm for comput-
ing the smallest integer β = βF for which

....

Q has an element z satisfying z(e) ≤ β for every
edge e ∈ F. The main tool for this computation is the following variant of the Newton–
Dinkelbach algorithm.

9.1 Maximizing ⌈p(X)/b(X)⌉ with a variant of the Newton–Dinkelbach
algorithm

Let S be a finite ground-set. In this section we describe a variant of the Newton–Dinkelbach
(ND) algorithm to compute the maximum ⌈p(X)/b(X)⌉ over the subsets X of S with b(X) >
0, provided this maximum is non-negative. We assume that p and b are integer-valued set-
functions on S with n ≥ 1 elements, p(∅) = 0, p(S ) is finite (p(X) may be −∞ for some
X but it is never +∞), and b is finite-valued and non-negative. We emphasize that there is
no sign constraint on p whereas b is assumed to be non-negative. The present algorithm
generalizes the one described in [11] for the special case of b(X) = |X|, where S is used to
denote the ground-set. In this paper, however, the algorithm will be applied to S := V .

An excellent overview by Radzik [30] analyses several versions and applications of the
ND-algorithm, while a work by Goemans et al. [16] describes the most recent develop-
ments. We present a variant of the ND-algorithm whose specific feature is that it works
throughout with integers ⌈p(X)/b(X)⌉. This has the advantage that the proof is simpler than
the original one working with the fractions p(X)/b(X).

The algorithm works if a subroutine is available to

find a subset of S maximizing p(X) − µb(X) (X ⊆ S ) for any fixed integer µ ≥ 0.
(9.1)

This routine will actually be needed only for special values of µ when µ = ⌈p(X)/ℓ⌉ ≥ 0
with X ⊆ S and 1 ≤ ℓ ≤ M, where M denotes the largest value of b. Note that we do not
have to assume that p is supermodular and b is submodular, the only requirement for the
ND-algorithm is that Subroutine (9.1) should be available. This is certainly the case when p
happens to be supermodular and b submodular, since then µb− p is submodular when µ ≥ 0
and we can use any submodular function minimization subroutine (which we abbreviate as
submod-minimizer).
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In several applications, the requested general purpose submod-minimizer can be super-
seded by a direct and more efficient algorithm such as the one for network flows or for
matroid partition. Subroutine (9.1) is also available in the more general case (needed in
applications) when the function p′ defined by p′(X) := p(X) − µb(X) is only crossing su-
permodular (meaning that the supermodular inequality is expected only for pairs X,Y of
subsets with X ∩ Y , ∅ and X ∪ Y , S ). Indeed, for a given ordered pair of elements
s, t ∈ S , the restriction of p′ to subsets containing s and avoiding t is fully supermodular,
and therefore we can apply a submod-minimizer to each of the n(n − 1) ordered pairs (s, t)
to get the requested maximum of p′.

We call a value µ good if µb(X) ≥ p(X) [i.e., p(X) − µb(X) ≤ 0] for every X ⊆ S .
A value that is not good is called bad. Clearly, if µ is good, then so is every integer larger
than µ. We assume that

p(X) ≤ 0 whenever b(X) = 0, (9.2)

which is equivalent to requiring that there is a good µ. We also assume that

there exists a subset Y ⊆ S with p(Y) > 0, (9.3)

which is equivalent to requiring that the value µ = 0 is bad. Our goal is to compute the min-
imum µmin of the good integers. This number is nothing but the maximum of ⌈p(X)/b(X)⌉
over the subsets of S with b(X) > 0.

The algorithm starts with the bad µ0 := 0. Let

X0 ∈ arg max{p(X) − µ0b(X) : X ⊆ S },

that is, X0 is a set maximizing the function p(X) − µ0b(X) = p(X). Note that the badness
of µ0 implies that p(X0) > 0. Since, by the assumption, there is a good µ, it follows that
µb(X0) ≥ p(X0), and hence b(X0) > 0.

The procedure determines one by one a series of pairs (µ j, X j) for subscripts j = 1, 2, . . .
where each integer µ j is a tentative candidate for µ while X j is a non-empty subset of S with
b(X j) > 0. Suppose that the pair (µ j−1, X j−1) has already been determined for a subscript
j ≥ 1. Let µ j be the smallest integer for which µ jb(X j−1) ≥ p(X j−1), that is,

µ j :=
⌈ p(X j−1)

b(X j−1)

⌉
.

If µ j is bad, that is, if there is a set X ⊆ S with p(X) − µ jb(X) > 0, then let

X j ∈ arg max{p(X) − µ jb(X) : X ⊆ S },

that is, X j is a set maximizing the function p(X) − µ jb(X). (If there are more than one
maximizing set, we can take any). Since µ j is bad, X j , ∅ and p(X j) − µ jb(X j) > 0, which
implies b(X j) > 0 by the assumption (9.2).

Claim 9.1. If µ j is bad for some subscript j ≥ 0, then µ j < µ j+1.

Proof. The badness of µ j means that p(X j) − µ jb(X j) > 0 from which

µ j+1 =

⌈ p(X j)
b(X j)

⌉
=

⌈ p(X j) − µ jb(X j)
b(X j)

⌉
+ µ j > µ j.
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Since there is a good µ and the sequence µ j is strictly monotone increasing by Claim
9.1, there will be a first subscript h ≥ 1 for which µh is good. The algorithm terminates by
outputting this µh (and in this case Xh is not computed).

Theorem 9.2. If h is the first subscript during the run of the algorithm for which µh is good,
then µmin = µh (that is, µh is the requested smallest good µ-value) and h ≤ M, where M
denotes the largest value of b.

Proof. Since µh is good and µh is the smallest integer for which µhb(Xh−1) ≥ p(Xh−1), the
set Xh−1 certifies that no good integer µ can exist which is smaller than µh, that is, µmin = µh.

Claim 9.3. If µ j is bad for some subscript j ≥ 1, then b(X j−1) > b(X j).

Proof. As µ j (= ⌈p(X j−1)/b(X j−1)⌉) is bad, we obtain that

p(X j) − µ jb(X j) > 0 = p(X j−1) −
p(X j−1)
b(X j−1)

b(X j−1)

≥ p(X j−1) −
⌈ p(X j−1)

b(X j−1)

⌉
b(X j−1) = p(X j−1) − µ jb(X j−1),

from which we get
p(X j) − µ jb(X j) > p(X j−1) − µ jb(X j−1). (9.4)

Since X j−1 maximizes p(X) − µ j−1b(X), we have

p(X j−1) − µ j−1b(X j−1) ≥ p(X j) − µ j−1b(X j). (9.5)

By adding up (9.4) and (9.5), we obtain

(µ j − µ j−1)b(X j−1) > (µ j − µ j−1)b(X j).

As µ j is bad, so is µ j−1, and hence, by applying Claim 9.1 to j − 1 in place of j, we obtain
that µ j > µ j−1, from which we arrive at b(X j−1) > b(X j), as required.

Claim 9.3 implies that M ≥ b(X0) > b(X1) > · · · > b(Xh−1), from which 1 ≤ b(Xh−1) ≤
M − (h − 1), and hence h ≤ M follows. This completes the proof of Theorem 9.2.

Remark 9.1. The presented variant of the Newton–Dinkelbach algorithm to maximize
⌈p(X)/b(X)⌉ over subsets X with b(X) > 0 has been shown to be a polynomial algorithm for
a supermodular function p and a non-negative and submodular function b when the largest
value M of b is bounded by a polynomial of |S |, provided that the seemingly artificial addi-
tional assumptions in (9.2) and (9.3) hold true. However, there is a tiny but sensitive issue
here, indicating that, without these additional assumptions, the Newton–Dinkelbach (or any
other) algorithm cannot solve this maximization problem. To see this, consider the special
case when b is a (finite-valued) submodular function which is strictly positive on every
non-empty subset, and let N be an integer upper bound for the squared maximum value of
b. Let p be the function that is identically equal to −N except for p(∅) = 0. Then p is
supermodular. Now maximizing ⌈p(X)/b(X)⌉ is the same as minimizing ⌊N/b(X)⌋, which
is equivalent to maximizing b(X), a well-known NP-hard problem, even in the case when
the maximum value M of b is bounded by a polynomial of |S |. Note that for this special
choice of p and b, the hypothesis (9.3) fails to hold.
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9.2 Computing βF in strongly polynomial time
We describe a strongly polynomial algorithm to compute β := βF in (2.4), which is the
smallest integer for which

....

Q has an element z satisfying z(e) ≤ β for every edge e ∈ F. We
shall apply the Newton–Dinkelbach algorithm described in Section 9.1 to a supermodular
function p′ and a submodular function b to be defined in (9.6) and (9.7).

As before, we suppose that there is an ( f , g)-bounded m-flow, and also that F contains no
( f , g)-tight edges. Our first goal is to find the smallest integer β such that by decreasing g(e)
to β for each edge e ∈ F for which g(e) > β, the resulting g′ and the unchanged f continue to
meet the inequality f ≤ g′ and the Hoffman-condition (2.2). The first requirement implies
that β is at least the largest f -value on the edges in F, which is denoted by f1.

Let g1 > g2 > · · · > gq denote the distinct g-values of the edges in F, and let L := {e ∈
F : g(e) = g1}. Let β1 := max{ f1, g2}.

By an m-flow feasibility computation, we can check whether the g-value g1 on the ele-
ments of L can be uniformly decreased to β1 without destroying (2.2). If this is the case,
then either β1 = f1 in which case a tight edge arises in F and we can remove this tight edge
from F, or β1 = g2 in which case the number of distinct g-values becomes one smaller.
Clearly, as the total number of distinct g-values in F is at most |F|, this kind of reduction
may occur at most |F| times.

Therefore, we are at a case when g1 cannot be decreased to β1 without violating (2.2).
Let us try to figure out the lowest integer value β to which g1 can be decreased without
violating (2.2).

Recall that L = {e ∈ F : g(e) = g1} and let A0 := A − L (that is, A0 is the complement
of L with respect to the whole edge-set A). Let g′ denote the function arising from g by
reducing g(e) on the elements of L (where g(e) = g1) to β1. Since g′ ≥ f holds and ϱg′ − δ f

is submodular, the set-function p′ on V defined by

p′(Z) := m̃(Z) − ϱg′(Z) + δ f (Z) (9.6)

is supermodular. Define a submodular function b on V by

b(Z) := ϱL(Z). (9.7)

Note that the maximum of b is bounded by a polynomial of the size of the digraph, and
hence the variant of the Newton–Dinkelbach algorithm described above is strongly polyno-
mial in this case.

Since g1 in the present case cannot be decreased to β1 without violating (2.2), there is a
subset Z∗ violating ϱg′(Z) − δ f (Z) ≥ m̃(Z), or for short, p′(Z∗) > 0.

We say that a non-negative integer µ is good if it meets the requirement that after in-
creasing uniformly g(e) = β1 by µ on the edges e ∈ L, Hoffman’s condition should hold.
Our problem to find the smallest β is equivalent to computing the smallest good µ. This is
definitely positive since the existence of Z∗ implies that µ = 0 is not good.

Claim 9.4. A positive integer µ is good if and only if

µb(Z) ≥ p′(Z) for every Z ⊆ V . (9.8)
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Proof. By definition, µ is good precisely if

µϱL(Z) + ϱg′(Z) − δ f (Z) ≥ m̃(Z)

for every Z ⊆ V , which is just equivalent to (9.8).

The original g meets (2.2), meaning that ϱg − δ f ≥ m̃, which is equivalent to

(g1 − β1)ϱL(Z) + ϱg′(Z) − δ f (Z) = ϱg(Z) − δ f (Z) ≥ m̃(Z)

holds for every Z ⊆ V . This shows that µ = g1−β1 is good, and our problem requires finding
the smallest good µ. Since b is submodular, p′ is supermodular, and we have max{b(Z) : Z ⊆
V} ≤ |L| ≤ |A|, we can apply the Newton–Dinkelbach algorithm described in Section 9.1 to
this case.

That algorithm needs the subroutine (9.1) to compute a subset of V maximizing p′(Z) −
µb(Z) (Z ⊆ V) for any fixed integer µ ≥ 0. This subroutine is applied at most M times,
where M denotes the largest value of b. Since the largest value of b is at most |A|, the
subroutine (9.1) is applied at most |A| times. Furthermore, by the definition of p′ and b, the
equivalent subroutine to minimize

µb(Z) − p′(Z) = µϱL(Z) + ϱg′(Z) − δ f (Z) − m̃(Z)

can be realized with the help of a straightforward reduction to a max-flow min-cut compu-
tation in a related edge-capacitated digraph on node-set V ∪ {s, t} with extra source-node s
and sink-node t.

Therefore, by relying on an efficient max-flow computation, the smallest µ can be com-
puted in strongly polynomial time, and hence the smallest β (= β1 + µ) is available for
which β > β1 = max{ f1, g2} and the value g1 can be reduced to β on the edges in L without
violating (2.2).

10 Summary of the algorithm
In this section, we summarize the algorithmic framework discussed in previous sections.
We emphasize that each part of the algorithm below is strongly polynomial. The input of
the algorithm is a digraph D = (V, A), integral bounding functions f ≤ g on A, a (finite-
valued) integral function m with m̃(V) = 0, and a subset F ⊆ A of edges, as described in
Theorem 7.2. Let Q = Q( f , g; m) denote the set of ( f , g)-bounded m-flows, while

....

Q is the
set of integral elements of Q.

Part 1 of the algorithm decides whether
....

Q is empty or not. This can be done with an
adaptation of a max-flow min-cut algorithm. So we assume henceforth that

....

Q is non-empty.

If F = ∅ when Part 1 is finished, then the algorithm terminates with the conclusion that
every member of

....

Q is F-dec-min. So we assume henceforth that F is non-empty.

Part 2 of the algorithm decides whether
....

Q has an F-dec-min element. The answer is
obviously yes when f and g are finite-valued on F. In the general case, Part 2 can be
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realized by the algorithm described in Section 7, which was based on Theorem 7.2 and
Corollary 7.5. Part 2 may terminate in two ways. In the first one, it outputs a di-circuit C in
D∞ (defined in (7.2)) intersecting F. Such a di-circuit certifies that no F-dec-min element
exists. In this case, the algorithm terminates with the conclusion that

....

Q has no F-dec-min
element. The other possible output of Part 2 is a new bounding pair ( f ′, g′) (described in
Corollary 7.5) for which the set of F-dec-min elements of

....

Q( f , g; m) is equal to the set of
F-dec-min elements of

....

Q( f ′, g′; m), where f ′ and g′ are finite-valued on F. In this case
there is an F-dec-min element of

....

Q. Henceforth, we can assume for the remaining parts of
the algorithm that f and g themselves are finite-valued on F.

Suppose that Part 2 is finished. In the next parts of the algorithm we need the operation
of F-reductions.

F-reductions and termination During its run, the algorithm carries out edge-tightening
steps. Such a step (by its definition) does not make necessarily an edge e ∈ F tight, but
when it does, we carry out an F-reduction (or an F-reducing step) which is simply the
replacement of F by F − e. An F-reduction does not change the set of F-dec-min elements.
If F becomes empty here, the whole algorithm terminates with the current bounding pair
( f ∗, g∗). The number of F-reductions is at most |F| ≤ |A|. Henceforth we assume that the
current F contains no tight edges and F is non-empty.

Part 3 of the algorithm computes β := βF defined in (2.4), which is the smallest integer
for which

....

Q has an element z satisfying z(e) ≤ β for every edge e ∈ F. This is done with
the help of the discrete variant of the Newton–Dinkelbach algorithm in Section 9.1. If we
reduce g(e) to β for each edge e ∈ F with g(e) > β, then the set of F-dec-min elements does
not change. Therefore we assume henceforth that β = max{g(e) : e ∈ F}. For each edge
e ∈ F with f (e) = g(e), we carry out an F-reducing step. Let L := {e ∈ F : g(e) = β}. Note
that L , ∅ and f (e) < g(e) = β for each e ∈ L, and hence the conditions in (5.1) hold.

Part 3 finishes by outputting β. Recall that an element z ∈
....

Q is said to be pre-dec-min on
F if the number µ of edges e ∈ L with z(e) = g(e) (= β) is minimum. Theorem 5.1 states the
existence of a certain chain C′ of subsets of V , called a dual optimum chain, which provides
a certificate for an element z ∈

....

Q to be pre-dec-min on F. In what follows, the algorithm
shall apply iteratively Part 4.

Part 4 first computes a dual optimum chain C′ by the algorithm described in Section 8.
Next, we consider the updated bounds ( f ′, g′) defined in (5.2) and (5.3) with reference to
C′. Let L′ ⊆ L consist of those elements of L that enter at least one member of C′, and
let F′ := F − L′. If F′ = ∅, then the whole algorithm terminates with the conclusion that
the pair ( f ∗, g∗) defined by f ∗ := f ′ and g∗ := g′ meets the requirement of Theorem 2.1.
If F′ , ∅, then we iterate Part 4 for ( f , g) := ( f ′, g′) and F := F′. Clearly, the algorithm
terminates after at most |A| iterations.

If necessary, we can compute a vector-potential certificate, described by Property (C) in
Theorem 6.9, from the pair ( f ∗, g∗) computed above, as follows.

Part 5 of the algorithm computes a vector-potential π for a given F-dec-min element z of
....

Q. To this end, consider the k-dimensional cost-vector c defined in (6.7). By Theorem 6.9
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and Lemma 6.4, c is conservative, implying that there exists a c-feasible potential-vector π,
and this can actually be computed by Remark 6.1.

11 Remarks on two related problems

11.1 Fractional dec-min flows
While we have so far been concerned exclusively with integral flows, it is also natural to
consider decreasing minimality among real-valued (or fractional) flows with respect to a
specified subset F of edges. Indeed, the seminal work of Megiddo [24], [25] dealt with
this continuous (fractional) case when F is the set of edges leaving a source node. In the
following we briefly describe how our structural results (Theorems 2.1, 6.9, and 7.2) for the
discrete case can be adapted to real-valued (fractional) flows.

Let D = (V, A) be a digraph and F ⊆ A a non-empty subset of edges. Let m : V → R be a
function on V with m̃(V) = 0, and let f : A→ R∪{−∞} and g : A→ R∪{+∞} be bounding
functions on A such that there is an ( f , g)-bounded m-flow in D. Let Q = Q( f , g; m) denote
the set of ( f , g)-bounded m-flows, where Q is a non-empty subset of RA consisting of real
vectors. We are interested in F-decreasing minimality among members of Q.

Concerning the existence of an F-dec-min element of Q, we have the following theorem,
which is the continuous counterpart of Theorem 7.2.

Theorem 11.1. There exists a (possibly fractional) F-dec-min ( f , g)-bounded m-flow if and
only if there is no di-circuit C with C ∩ F , ∅ in the digraph D∞ = (V, A∞) defined by (7.2).

Proof. The proof is essentially the same as that of Theorem 7.2. The only difference is that
the definition of z′(uv) := z(uv) ± 1 in (7.4) should be changed to z′(uv) := z(uv) ± δ using
an arbitrary positive number δ > 0.

The characterizations of an F-dec-min flow for the discrete case in terms of an improving
di-circuit and a potential-vector (Theorem 6.9) can be adapted to the continuous case as
follows. For a real-valued flow x : A → R we consider the standard auxiliary graph Dx,
introduced at the beginning of Section 6. The expressions (11.1), (11.2), and (11.3) below
are the continuous counterparts of (6.5), (6.6), and (6.7), respectively.

A di-circuit C of Dx is called x-improving on F (or just x-improving) if there exists a
δ > 0 such that x′ defined by

x′(uv) :=


x(uv) + δ if uv is a forward edge of C,
x(uv) − δ if vu is a backward edge of C,
x(uv) otherwise

(11.1)

for uv ∈ A is a member of Q and is decreasingly smaller than x on F. Note that the definition
of Dx implies that x′ is indeed in Q for a sufficiently small δ > 0.

The potential-vector c is defined as follows. Let Fx denote the subset of Ax corresponding
to F, and let Ff and Fb be the sets of forward and backward edges in Fx. Using the δ > 0
above, define a function x∗ on Fx by

x∗(uv) :=

x(uv) if uv ∈ Ff ,
x(vu) − δ if uv ∈ Fb.

(11.2)

EGRES Technical Report No. 2020-16



11.1 Fractional dec-min flows 39

Denoting by γ1 > γ2 > · · · > γk the distinct values of x∗, we define a k-dimensional vector
c(e) for every edge e of Dx as follows:

c(e) :=


0k if e ∈ Ax − Fx,
εi if e ∈ Ff and x∗(e) = γi,
−εi if e ∈ Fb and x∗(e) = γi,

(11.3)

where εi is the k-dimensional unit-vector (0, . . . , 0, 1, 0, . . . , 0) whose i-th component is 1.
Note that the dimension k is bounded by 2|F|.

With the modified definitions of an improving di-circuit and a potential-vector, the fol-
lowing result can be proved by modifying the proof of Theorem 6.9 in Section 6.

Theorem 11.2. For a (possibly fractional) element x ∈ Q = Q( f , g; m), the following
properties are equivalent.
(A) x is decreasingly minimal on F.
(B) There is no x-improving di-circuit in the auxiliary digraph Dx.
(B′) There is no di-circuit C with c̃(C) ≺ 0k in the auxiliary digraph Dx.
(C) There is a potential-vector function π on V which is c-feasible, that is, π(v) − π(u) ⪯
c(uv) for every edge uv ∈ Ax.

In the discrete case we have given a description of the set of F-dec-min integral m-flows
in Theorem 2.1 in terms of a pair of bounding functions ( f ∗, g∗). In the continuous case, the
flow-values of an F-dec-min element of Q are uniquely determined on F (see Proposition
11.3 below), and therefore, the corresponding statement reads as follows:

There exists a pair ( f ∗, g∗) of bounding functions on A satisfying f (e) ≤ f ∗(e) =
g∗(e) ≤ g(e) for e ∈ F and f ∗(e) = f (e), g∗(e) = g(e) for e ∈ A − F, such that
an ( f , g)-bounded (real-valued) m-flow x is F-dec-min if and only if x is an
( f ∗, g∗)-bounded m-flow.

Although the above statement is rather easy to see, it will be useful when we want to find a
cheapest fractional feasible m-flow that is dec-min on F. It is of course nontrivial to design
an algorithm for finding such ( f ∗, g∗), which is left for future investigations.

The statement above shows that an F-dec-min element of Q, when restricted to F, is
unique, which is equivalent to saying that the dec-min element of the projection of Q to RF

is unique. This is, actually, a special case of the following observation concerning general
convex sets.

Proposition 11.3. Let P be a convex subset of Rn. If a dec-min element of P exists, it is
uniquely determined.

Proof. Suppose, indirectly, that x and y are distinct dec-min elements of P. Let γ1 > γ2 >
· · · > γk denote the distinct values of the components of x and y, and define Li(x) := { j :
x( j) = γi, 1 ≤ j ≤ n} and Li(y) := { j : y( j) = γi, 1 ≤ j ≤ n} for i = 1, 2, . . . , k. Let r be the
smallest index i such that Li(x) , Li(y). Since |Lr(x)| = |Lr(y)| there exist j′ ∈ Lr(x) − Lr(y)
and j′′ ∈ Lr(y) − Lr(x), for which x( j′) = γr > y( j′) and y( j′′) = γr > x( j′′). This implies
that (x + y)/2 is decreasingly smaller than x, whereas (x + y)/2 is in P by the convexity of
P. This is a contradiction.
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11.2 Relation to convex minimization
The dec-min problem is often related to minimization of a convex cost function. For ex-
ample, if Q is a base-polyhedron, an element of Q is dec-min in Q if and only if it is a
square-sum minimizer of Q [13, 14]. The corresponding statement is also true in its dis-
crete version where Q is an M-convex set [10].

However, the equivalence between dec-minimality and square-sum minimality fails for
network flows. The following example demonstrates that, both in integral and fractional
cases, an F-dec-min flow is not characterized as a feasible flow with minimum square-sum
of flow-values on F.

Example 11.1. Consider D = (V, A) with F ⊆ A defined by

V := {s1, s2; u1, u2, u3, u4; v1, v2, v3, v4; t1, t2},

F := {u1v1, u2v2, u3v3, u4v4},

A := {s1u1, s1u4, s2u2, s2u3} ∪ F ∪ {v1t1, v3t1, v2t2, v4t2}.

Let f (e) = 0 and g(e) = 4 for all e ∈ A, and define m : V → Z as follows:

m(s1) = m(s2) = −1; m(t1) = m(t2) = +1,
m(u1) = −2, m(u2) = −2, m(u3) = −3, m(u4) = 0,
m(v1) = +2, m(v2) = +2, m(v3) = +3, m(v4) = 0.

There are (precisely) two integral feasible flows, say, x1 and x2, each corresponding to
a pair of disjoint paths from {s1, s2} to {t1, t2}, with additional flows on F required by the
condition m(ui) = −m(vi) for i = 1, 2, 3, 4. Their flow-values on F are given by

x1|F = (2, 2, 3, 0) + (1, 1, 0, 0) = (3, 3, 3, 0), x2|F = (2, 2, 3, 0) + (0, 0, 1, 1) = (2, 2, 4, 1),

where x1 is the unique F-dec-min integral flow. Nevertheless, x1 has a larger square-sum
on F than that of x2; the square-sum of x1|F is 27 and that of x2|F is 25.

In the fractional (or continuous) case, the feasible flows are precisely the convex combi-
nations of x1 and x2. That is, x(λ) = λx1 + (1 − λ)x2 with 0 ≤ λ ≤ 1, and

x(λ)|F = λ(3, 3, 3, 0) + (1 − λ)(2, 2, 4, 1) = (2 + λ, 2 + λ, 4 − λ, 1 − λ). (11.4)

This shows that x1 = x(1) is the unique F-dec-min fractional flow. The square-sum of
components of x(λ)|F is equal to 4λ2 − 2λ + 25, which is minimized at λ = 1/4. We have
x(1/4)|F = (9/4, 9/4, 15/4, 3/4), which is decreasingly larger than x(1)|F = (3, 3, 3, 0). Thus,
the minimality of square-sum on F does not characterize F-dec-minimality even in the
fractional case.

The above example implies, in particular, that an F-dec-min fractional flow cannot be
obtained by applying the (strongly polynomial) algorithm of Végh [33] for quadratic-cost
fractional flows.

Although the above example denies the use of a quadratic cost function for the dec-min
flow problem, there remains the possibility of using a more general convex function to
formulate the dec-min flow problem. However, the following example indicates that, in the
fractional case, the dec-min flow problem cannot be formulated as a minimum-cost flow
problem for any choice of a separable convex objective.
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Example 11.2. Let φ be an arbitrary strictly convex (smooth) function on R. Referring to
the expression (11.4) of x(λ)|F , we consider

Φ(λ) := φ(2 + λ) + φ(2 + λ) + φ(4 − λ) + φ(1 − λ),

which is a separable convex function in the components of x(λ)|F . Recall that λ = 1 cor-
responds to (3, 3, 3, 0), which is dec-min among the vectors x(λ)|F with 0 ≤ λ ≤ 1. The
derivative of Φ at λ = 1 is positive. Indeed, we have

Φ′(λ) = 2φ′(2 + λ) − φ′(4 − λ) − φ′(1 − λ), Φ′(1) = φ′(3) − φ′(0) > 0.

This implies that the F-dec-min flow x(1) is not a minimizer of the separable convex function∑
e∈F φ(x(e)) over all feasible (fractional) flows x. It is emphasized that such discrepancy

exists for any choice of φ.

The discrepancy of dec-min from convex minimizer demonstrated above implies, in par-
ticular, that algorithms for convex cost flows, such as those described in the book of Ahuja,
Magnanti, and Orlin [1], cannot be used directly for fractional dec-min flow problem. In this
connection, we mention that the fractional dec-min flow problem can be solved in (weakly)
polynomial time by solving a sequence of linear programs; see Nace and Orlin [28].

In contrast to the fractional case, the dec-min problem for Q ⊆ Zn (in general) can be
formulated as a separable convex function minimization, as discussed in [9, Section 3]. In
our integral F-dec-min flow problem, we can take, for example, a real-valued cost function∑

e∈F |F|x(e) for an integral flow x. Here the function φ(k) = |F|k, defined for all integers k,
is increasing and strictly convex in the sense that φ(k − 1) + φ(k + 1) > 2φ(k) (k ∈ Z). Such
convex formulation enables us to solve the dec-min flow problem in (weakly) polynomial
time using the approach of Hochbaum and Shanthikumar [19].
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