
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2020-15. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Simple algorithm and min-max formula
for the inverse arborescence problem

András Frank and Gergely Hajdu

September 2020

EGRES Technical Report No. 2020-15 1

Simple algorithm and min-max formula
for the inverse arborescence problem

András Frank and Gergely Hajdu ?

Abstract

In 1998, Hu and Liu developed a strongly polynomial algorithm for solving
the inverse arborescence problem that aims at modifying minimally a given cost-
function on the edge-set of a digraph so that an input arborescence becomes a
cheapest one. In this note, we develop a conceptually simpler algorithm along
with a min-max theorem for the minimum modification of the cost-function.
The approach is based on a link to a min-max theorem and a two-phase greedy
algorithm by the first author from 1979 concerning the primal optimization
problem of finding a cheapest subgraph of a digraph that covers an intersecting
family along with the corresponding dual optimization problem, as well.

1 Introduction

Let D = (V,A) be a loopless digraph with n nodes and m edges. Let r0 be a root-node
of D. An arborescence is a directed tree in which the in-degree of all but one node
is 1. The exceptional node is called the root, its in-degree is 0. In 1965, Chu and
Liu [4] developed a simple strongly polynomial algorithm for computing a spanning
arborescence of D of minimum cost with respect to a given cost-function on A.

In the inverse arborescence problem, we are given a spanning arborescence F0

of D with root r0 and a cost-function w0 : A→ R+. The goal is to modify w0 so that
F0 becomes a cheapest arborescence with respect to the revised cost-function w, and
the deviation of w from w0 is as small as possible. The deviation |w−w0| of w (from
w0) is defined by

∑
(|w(a) − w0(a)| : a ∈ A), and we use throughout the paper this

L1-norm to measure the optimality of w.
In 1998, Hu and Liu [11] described a strongly polynomial algorithm for this inverse

problem. Both their algorithm and the proof of its correctness were rather complex.
The goal of the present work is to develop a conceptually simpler algorithm and a
min-max formula for the minimum deviation µ∗ of the revised cost-function w for

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös Uni-
versity, Pázmány P. s. 1/c, Budapest, Hungary, H-1117. e-mail: frank@cs.elte.hu and

hgergely91@gmail.com . Project no. NKFI-128673 has been implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary, financed under
the FK18 funding scheme.

September 2020

1.1 Terminology and notation 2

which the input arborescence is a cheapest one of D. The approach is based on a
link to a paper by the first author [7] from 1979 that includes a two-phase greedy
algorithm for solving a natural extension of the cheapest arborescence problem. Not
only the algorthm is simple but so is the proof of its correctness.

Cai and Li [2, 3] showed how the inverse matroid intersection problem can be
reduced to a minimum cost circulation problem and therefore a purely combinatorial
strongly polynomial algorithm for circulation (e.g. the first one due to Tardos [13])
can be applied. Since arborescences form the common bases of two special matroids,
the solution of Cai and Li may be specialized to arborescences. Our main goal is to
present an approach giving rise to a simpler and more efficient algorithm, and to a
min-max formula, as well. The situation is analogous to the one where the general
weighted matroid intersection algorithm of Edmonds’ [6] did not make superfluous the
simpler and more efficient direct algorithm of Chu and Liu [4] concerning cheapest
arborescences. It should, however, be noted that the min-cost flow approach of Cai
and Li provides a solution to the significantly more general problem when there is an
upper-bound constraint g(a) on |w(a)− w0(a)| for every edge a, and the objective is
to minimize

∑
[c(a)|w(a)−w0(a)| : a ∈ A] where c : A→ R+ is a given cost-function.

1.1 Terminology and notation

For a directed edge (or arc) a = uv, v is called the head of a while u is its tail.
We say that uv enters (leaves) subset Z of nodes if v ∈ Z and u 6∈ Z (v 6∈ Z and
u ∈ Z). In a digraph D = (V,A), the number of edges entering Z is denoted by
%D(Z) = %A(Z) while the number of edges leaving Z is denoted by δD(Z) = δA(Z).
A subset L of edges is said to enter (or cover) Z if L contains an edge entering Z,
that is, if %L(Z) ≥ 1. For a family F of subsets, we say that L enters (or covers) F
if L enters each member of F . For two elements s and t, a set Z is called a ts-set if
t ∈ Z and s 6∈ Z.

A digraph D is called root-connected with respect to a root-node r0 if %D(Z) ≥ 1
holds for every non-empty subset Z ⊆ V − r0. Clearly, root-connectivity is equivalent
to requiring that every node of D is reachable from r0 (along a dipath). An easy and
well-known property is that an inclusionwise minimal root-connected subgraph of D
is an arborescence. In what follows, an r0-arborescence or a spanning arborescence
always means a spanning arborescence of root r0. More generally, D is rooted k-
edge-connected if %(Z) ≥ k holds for every non-empty subset Z ⊆ V − r0.

A function x : S → R on S can be extended to a set-function x̃ by x̃(Z) :=
∑

[x(s) :
s ∈ Z] (Z ⊆ S). Analogously, for a set-function y on S and for a family F of subsets
of S, we use the notation ỹ(F) :=

∑
[y(Z) : Z ∈ F].

Two sets X and Y are called intersecting if X ∩ Y 6= ∅. If, in addition, X − Y
and Y −X are non-empty, then X and Y are properly intersecting. A family F
of sets is laminar if it has no two properly intersecting members. F is intersecting
if both X ∩ Y and X ∪ Y belong to F whenever X and Y are intersecting members
of F . Given a digraph D = (V,A), we say that an intersecting family F of distinct
subsets of V is a kernel system [7] if %D(Z) > 0 for each Z ∈ F . All other notions
and notation can be found in [9].

EGRES Technical Report No. 2020-15

Section 2. Arborescences and kernel systems 3

2 Arborescences and kernel systems

2.1 Cheapest arborescences

Let D = (V,A) be a root-connected digraph with a root-node r0 and let c : A→ R+

be a non-negative cost-function on the edge-set. The primal problem consists of
determining a cheapest r0-arborescence. We say that a function y : F → R defined
on a set-system F ⊆ 2V is c-feasible if y ≥ 0 and if∑

[y(Z) : Z ∈ F , Z is entered by a] ≤ c(a) for every edge a ∈ A. (1)

When F := {X : ∅ 6= X ⊆ V − r0}, a c-feasible function y will be referred to as a
dual solution to the cheapest arborescence problem. We call an edge a of D c-tight
(or just tight) (with respect to y) if

∑
[y(Z) : Z ∈ F , Z is entered by a] = c(a).

Bock [1] and Fulkerson [10] proved the following min-max formula.

THEOREM 2.1 (Bock, Fulkerson). Let c be a non-negative cost-function on the
edge-set of root-connected digraph D = (V,A). The minimum cost of a spanning
arborescence of root r0 is equal to

max{
∑

[y(Z) : Z ⊆ V − r0] : y c-feasible}. (2)

There is an optimal dual solution y for which {Z : y(Z) > 0} is laminar. If c is
integer-valued, the optimal y can also be chosen integer-valued.

Note that Fulkerson [10] developed a simple greedy algorithm for computing the
optimal dual vector y occurring in the theorem. The theorem immediately implies
the following optimality criteria.

Corollary 2.2. Let y∗ be a c-feasible function on the family of non-empty subsets of
V − r0 and let F0 be a spanning r0-arborescence for which the following opitmality
criteria hold.

(A) F0 consists of tight edges, and
(B) y∗(Z) > 0 implies %F0(Z) = 1.

Then F0 is a spanning arborescence of minimum c-cost for which c̃(F0) =
∑

[y∗(Z) :
Z ⊆ V − r0].

The book of Schrijver [12] provides a rich background and bibliography of algorithms
and min-max results concerning arborescences and related objects like branchings.

2.2 Known min-max theorem for kernel systems

In 1979, Frank [7] extended the problem of cheapest arborescences to kernel systems
when one is interested in finding a cheapest subset L of edges that enters every member
of an intersecting family F of subsets (for short, L enters or covers F). A special case
is when F consist of all the non-empty subsets of V −r0. In this case, the inclusionwise
minimal subsets of edges covering F are exactly the spanning r0-arborescences.

EGRES Technical Report No. 2020-15

2.2 Known min-max theorem for kernel systems 4

Another special case is when F consists of all the ts-sets: here the inclusionwise
minimal edge-sets covering F are precisely the st-dipaths. We shall need a third
special case where F consists of those subsets Z of V − r0 which are entered exactly
once by a specified arborescence F0 (that is, %F0(Z) = 1).

The primal problem consists of finding a cheapest subset of edges covering F . The
dual problem consists of finding a c-feasible function y : F → R for which

ỹ(F) =
∑

[y(Z) : Z ∈ F]

is as large as possible. In [7], the algorithm of Fulkerson [10] was extended in a
natural way to general kernel systems. In addition, [7] described a second phase of
the algorithm which computes in a greedy way the cheapest subset L of edges covering
F .

This two-phase greedy algorithm proved the following extension of Theorem 2.1.

THEOREM 2.3 ([7]). Let F be an intersecting set-system on the node-set of digraph
D = (V,A) for which A enters F , and let c : A→ R+ be a cost-function. Then

min{c̃(L) : L ⊆ A, L covers F} = max{ỹ(F) : y c-feasible}. (3)

If c is integer-valued, the optimal dual solution y can also be chosen integer-valued.
Moreover, there is an optimal y for which the set-system {Z : y(Z) > 0} is laminar.

The trivial direction max ≤ min of the theorem implies for a dual solution y and for
a subset L of edges covering F that if they meet the following optimality criteria:

(A) every edge in L is tight (with respect to y),

(B) y(Z) > 0 implies %L(Z) = 1,

then y is an optimal dual solution and L is a c-cheapest covering of F . The non-trivial
direction max ≥ min of the theorem is equivalent to stating that there exist a dual
solution y∗ and a covering L∗ ⊆ A of F meeting the optimality criteria.

In the special case when F := {Z : ∅ 6= Z ⊆ V −r0}, the subsets of edges covering F
are exactly the edge-sets of root-connected subgraphs of D. Since minimal members
of root-connected subgraphs are the spanning r0-arborescences of D, it follows in this
case that the cheapest coverings of F are the cheapest arborescences, and hence the
general Theorem 2.3 reduces to Theorem 2.1.

We note that [7] actually includes a min-max theorem (concerning a cheapest cover-
ing of an intersecting supermodular function) which is significantly more general than
Theorem 2.3. Here we do not need this general result, and only remark that its proof
in [7] is not constructive anyway, unlike the simple algorithmic proof of Theorem 2.3.

We also remark that the min-max theorem and that two-phase greedy algorithm
in [7] was generalized in [8] for the problem of finding a cheapest covering of an
intersecting bi-set system. See also the book of Frank [9], Page 395.

EGRES Technical Report No. 2020-15

Section 3. Algorithm for kernel systems 5

3 Algorithm for kernel systems

In [7], Theorem 2.3 was proved with the help of a two-phase greedy algorithm. The
first phase for computing an optimal c-feasible dual solution y∗ is a straight extension
of Fulkerson’s algorithm [10] for the dual of the cheapest arborescence problem. Since
we need this first phase for our suggested solution to the inverse arborescence problem,
we describe it with full detail. We shall outline the second phase, as well, which
computes, also in a greedy way, a cheapest covering L of F . This algorithm will
be needed to compute the optimal dual object occurring in the min-max formula in
Theorem 5.2 concerning the minimum deviation of the wanted cost-function in the
inverse arborescence problem.

3.1 Known algorithm for general kernel systems

We start by outlining the two-phase greedy algorithm described in [7]. Given cost-
function c′ : A→ R+, we call a subset Z ⊂ V c′-positive if the c′-cost of every edge
entering Z is positive.

First Phase If F has no c-positive member, then y∗ ≡ 0 is an optimal dual solution
(and the set of edges with zero c-cost is a cheapest covering of F), in which case the
algorithm terminates. Therefore, we assume that F admits a c-positive member.

The algorithm determines one by one the members c1 := c, c2, c3, . . . of a series of
non-negative cost-functions and a series Z1, Z2, Z3, . . . of members of F along with
positive dual variables y∗(Zi) assigned to these sets Zi, which are integer-valued when
c is integer-valued.

In Step i = 1, Z1 is an inclusionwise minimal c1-positive member of F . Let

y∗(Z1) := min{c1(f) : f ∈ A, f enters Z1}

and define c2, as follows.

c2(f) :=

{
c1(f) if f does not enter Z1

c1(f)− y∗(Z1) if f enters Z1.
(4)

For the general case i ≥ 2, suppose that ci has already been computed. If every
member of F is entered by a 0 ci-cost edge, then the first phase terminates. If this is
not the case, then let Zi be a inclusionwise minimal ci-positive member of F . Let

y∗(Zi) := min{ci(f) : f ∈ A, f enters Zi}

and define ci+1, as follows.

ci+1(f) :=

{
ci(f) if f does not enter Zi

ci(f)− y∗(Zi) if f enters Zi.
(5)

The algorithm is greedy in the sense that once a positive dual variable y∗(Zi)
is determined, it is not changed anymore in later steps. The algorithm needs the
following subroutine.

EGRES Technical Report No. 2020-15

Section 4. Specific algorithm for kernel system F0 6

Subroutine (A): determines for a given non-negative cost-function c′ whether F
has a c′-positive member or not, and if it does, then the subroutine computes an
inclusionwise minimal c′-positive member of F .

It was pointed out in [7] that the following property of the dual solution y∗ is an
easily provable consequence of the greedy algorithm above.

Claim 3.1. The optimal dual solution y∗ provided by the algorithm has the property
that the set-system F∗ := {Z : y∗(Z) > 0} is laminar.

The second phase of the algorithm in [7] for computing a cheapest covering of F is
as follows.

Second Phase Let c′ denote the cost-function obtained by the end of Phase 1, and
let A0 := {a ∈ A : c′(a) = 0}. By the termination rule of Phase 1, A0 covers F . Note
that the edges in A0 are c-tight with respect to the dual solution y∗ obtained by the
first phase.

In order to construct a cheapest covering L of F , we pick up edges from A0 one by
one, as follows. At the beginning, L is empty. In the general step, we check if the
current L covers F or not. If it does, Phase 2 (and the whole algorithm) terminates. If
L does not yet cover F , we select a maximal member Z of F not covered (= entered)
by L, and select an edge a from A0 entering Z whose cost became zero at earliest
during Phase 1 (or, in other words, a became tight at earliest). Let L∗ denote the
covering of F obtained by the termination of Phase 2. The following lemma from [7]
immediately implies Theorem 2.3. We do not include its proof here only remark that
it is an easy consequence of Claim 3.1 and the earliest-choice rule (used for selecting
the subsequent element of L).

Lemma 3.2 ([7]). The dual solution y∗ provided by Phase 1 and the covering L∗ of
F obtained in Phase 2 meet the optimality criteria.

4 Specific algorithm for kernel system F0

Let F0 be a spanning arborescence of D = (V,A) with root-node r0. The key idea
of our approach to the inverse aborescence problem is that we apply the min-max
formula in Theorem 2.3 and the algorithm in Section 3.1 concerning general kernel
systems to a specific kernel system F0 assigned to F0. Namely, let F0 denote the
system of subsets Z ⊆ V − r0 for which %F0(Z) = 1, that is,

F0 := {Z ⊆ V − r0 : %F0(Z) = 1}. (6)

The following is a standard observation.

Claim 4.1. The set-system F0 is intersecting.

Proof. Let X and Y be two intersecting members of F0. Then %F0(X ∩ Y) ≥ 1 and
%F0(X ∪ Y) ≥ 1 imply

1 + 1 = %F0(X) + %F0(Y) ≥ %F0(X ∩ Y) + %F0(X ∪ Y) ≥ 1 + 1

EGRES Technical Report No. 2020-15

4.1 Simple approach 7

and hence %F0(X ∩Y) = 1 and %F0(X ∪Y) = 1 follow, that is, both X ∩Y and X ∪Y
are in F0.

By Claim 4.1, Theorem 2.3 can indeed be applied to F0. Our goal is to show how
the requested Subroutine (A) for the general algorithm can be implemented for this
concrete kernel system F0.

4.1 Simple approach

We compute the optimal y∗ by applying the first phase of the algorithm described in
Section 2 for general kernel systems to the specific kernel system F0 defined by (6).
To this end, we show how Subroutine (A) required for the general algorithm can be
implemented in the special case of F := F0. Recall that Subroutine (A) in Section
3.1 decides for an input cost-function c′ whether there exists a c′-positive member of
F (that is one for which every entering edge has positive c′-cost), and if there is one,
the subroutine must compute such a member which is inclusionwise minimal.

To construct such a subroutine, we describe Subroutine (A)f that decides for any
given element f = uv of the input arborescence F0 whether there is a c′-positive
member of F0 for which f is the only edge in F0 entering it, and if there is one, the
subroutine computes the (unique) smallest member of F0 with this property.

Let c′f denote the cost-function arising from c′ in such a way that the c′-cost of each
element of F0 − f is reduced to 0, that is,

c′f (e) :=

c′(e) if e = f,

0 if e ∈ F0 − f,
c′(e) if e ∈ A− F0.

(7)

Let Af := {a ∈ A : c′f (a) = 0} and let Df = (V,Af). Subroutine (A)f computes
the set Sf of those nodes from which v is reachable in Df . (This can be done, for
example, by a BFS in linear time). If r0 is in Sf , then the subroutine terminates with
the conclusion that F0 has no c′-positive member for which f is the unique element
of F0 entering it. If r0 is not in Sf , then the subroutine outputs Sf as the requested
minimal member of F0. The correctness of the subroutine follows from the following
claim.

Claim 4.2. If the head v of edge f ∈ F0 is reachable from r0 (in Df), then F0 admits
no c′-positive member entered by f . If v is not reachable from r0, then Sf is the
(unique) minimal c′-positive member of F0 entered by f .

Proof. If v is reachable from r0, then all the nodes of Df is reachable from r0 since
the c′f -cost of each edges in F0 − f is 0. But in this case, for each subset Z ⊆ V − r0,
there is an entering edge with 0 c′f -cost. If v is not reachable from r0, then it is
not reachable from u either and hence f enters Sf . Since the c′f -cost of every other
element of F0 is 0 and Sf is c′f -positive, f is the unique edge in F0 that enters Sf and
hence Sf ∈ F0. Moreover, there is a dipath of 0 c′f -cost from every node in Sf to v,
and hence Sf cannot have a proper c′f -positive subset containing v.

EGRES Technical Report No. 2020-15

4.2 More efficient algorithm 8

By applying separately Subroutine (A)f to each element f of F0, the requested
subroutine (A) for the special kernel system F0 is indeed available.

The algorithm above is strongly polynomial and conceptually simple. One may,
however, feel that it is not particularly efficient since the computation of the sub-
sequent positive dual variables y∗(Z) needs the application of Subroutine (A)f to
every member f of F0. This disadvantage is overcome by the following more compact
approach.

4.2 More efficient algorithm

Consider the elements of the input arborescence F0 in a special order f1, . . . , fn−1
having Property (O): edge f ∈ F0 precedes edge e ∈ F0 in this ordering if F0 admits
a dipath from the head of e ∈ F0 to the tail of f . Note that such an ordering can easily
be computed in linear time: consider a building up of F0 that starts from r0 and adds
new edges one by one in such a way that each newly added edge leaves the already
constructed sub-arborescence. (This building up procedure of F0 is also realizable in
linear time.) It follows immediately that by reversing the building up ordering, we
obtain f1, . . . , fn−1 with the Property (O). We remark that Property (O) will be used
only in the proof of Lemma 4.3 concerning the correctness of the algorithm.

The algorithm considers the elements of F0 one-by-one in the given ordering. It
consists of n − 1 subsequent segments where Segment j is concerned with edge fj.
During one segment, we compute a (possibly empty) sequence of subsets (forming an
increasing chain) for which fj is the single edge in F0 entering these sets and for which
their dual variable will be positive. According to the rule of Phase 1 of the general
algorithm, when such a dual variable is defined, we reduce the current cost-function,
denoted by c′. It should be emphasized that it may be the case that in Segment j no
new set gets a positive dual variable and it is also possible that more than one such
set gets positive dual variable.

Consider now Segment j concerning edge fj and let c′ denote the current cost-
function. At the beginning of Segment 1, c′ := c. With the help of Subroutine (A)fj
described above, decide if there is a c′-positive set for which fj is the single member
of F0 entering this set. If no such a set exists, Segment j terminates. In this case, if
j = n − 1, then the whole algorithm terminates, while if j < n − 1, then we turn to
Segment j + 1 concerning edge fj+1.

Suppose now that the c′-positive set in question does exist and consider the smallest
such set Z ′ cumputed by Subroutine (A)fj . By copying the (first phase of the) general
algorithm for kernel systems, let

y∗(Z ′) := min{c′(f) : f ∈ A, f enters Z ′}

and revise c′ as follows.

c′(f) :=

{
c′(f) if f does not enter Z ′

c′(f)− y∗(Z ′) if f enters Z ′.
(8)

EGRES Technical Report No. 2020-15

4.2 More efficient algorithm 9

(Note that the present notation harmonizes with the one used in the description of
the general algorithm, with the only difference that here we use Z ′ in place of Zi used
in the description of the general algorithm, and, also, we use here c′ in place of c′i or
c′i+1.)

If c′(fj) = 0 holds for c′ defined in (8), then Segment j terminates. In this case, if
j = n − 1, then the whole algorithm terminates while if j < n − 1, then we turn to
Segment j+ 1 concerning edge fj+1. If c′(fj) > 0, continue the run of Segment j with
the same fj and with cost-function c′ revised in (8).

Our final goal is to verify the correctness of the algorithm, that is, to prove that
the procedure outputs an optimal dual solution. The algorithm in Section 3.1 for
computing an optimal dual solution to a general kernel system was generic in the
sense that the currently chosen set Zi was required to be an inclusionwise minimal
ci-positive member of F but, within these requirements, it did not matter which of
these sets was actually selected to be Zi.

In order to prove the correctness of the present algorithm concerning F0, we show
that the choice of Z ′ may be interpreted as a specific choice of Zi occurring in the
general algorithm. This is exactly the content of the next lemma and hence the
lemma, along with the correctness of the general algorithm for kernel systems, imply
the correctness of the present algorithm.

Lemma 4.3. At the moment when the algorithm finds a minimal c′-positive set Z ′

for which fj is the unique element of F0 entering Z ′, the set Z ′ is an inclusionwise
minimal c′-positive member F0.

Proof. Suppose, indirectly, that at the moment of finding Z ′, F0 has a c′-positive
member Z ′′ for which Z ′′ ⊂ Z ′. Let fh denote the unique edge in F0 entering Z ′′.
The minimal choice of Z ′ shows that h 6= j, implying that fh must lie completely in
Z ′. Therefore, the unique dipath in F0 from the root r0 to fh must go through fj and
hence Property (O) implies that h < j, that is, Segment h preceded Segment j. At
the termination of Segment h, there was an edge a ∈ A entering Z ′′ whose current
cost at that moment was 0. But then c′(a) = 0, in a contradiction with the indirect
assumption that Z ′′ was w-positive at the moment of defining Z ′.

THEOREM 4.4. The complexity of the algorithm above is O(mn) where m and n
denote the number of edges and nodes of D, respectively.

Proof. The algorithm consists of |F0| = n − 1 segments. At the beginning of each
segment, we compute the set Sfj of nodes from which the head of fj is reachable in
Dfj . By a BFS, this can be done in O(m) time and hence these sets can be computed
in O(mn) time.

The other steps of the segments seek for computing the positive dual-variables.
Instead of estimating the number of these steps separately segment-wise, we provide
an upper bound O(n) for the total number of sets getting positive dual variables.
Indeed, the second half of Theorem 2.3 implies that the family of sets with positive
dual variables is laminar and hence its cardinality is at most 2n. Summing up, the
total number of steps is indeed O(nm).

EGRES Technical Report No. 2020-15

Section 5. Solution to the inverse arborescence problem 10

5 Solution to the inverse arborescence problem

Let us turn to the inverse arborescence problem in which we want to make a given (so-
called input) arborescence F0 to be a cheapest one by revising a given cost-function w0

in a minimal way. That is, tha goal is to find a new cost-function w : A→ R for which
F0 is a cheapest arborescence and the deviation |w−w0| :=

∑
(|w(a)−w0(a)| : a ∈ A)

of w from w0 is as small as possible. This minimum will be denoted by µ∗.
An essential and natural observation is that the set of cost-functions w for which

F0 is a cheapest arborescence forms a polyhedron. This implies that the minimum
of deviation does indeed exist and the the set of deviation-minimizer cost-functions
(that is, the ones with deviation µ∗) is also a polyhedron.

5.1 Min-max theorem and algorithm

As a preparation, we need the following easy observation.

Proposition 5.1. Let D′ = (V, F0 ∪ L′) be a digraph in which F0 is a spanning
arborescence of root r0 which is disjoint from L′. Let F0 := {Z ⊆ V−r0 : %F0(Z) = 1}.
Then D′ is rooted 2-edge-connected if and only if L′ covers F0. Moreover, if L′ is
an inclusionwise minimal set of edges covering F0, then %L′(v) = 1 (or equivalently
%D′(v) = 2) for each node v ∈ V − r0.

Proof. The first statement is an immediate consequence of the definition of rooted 2-
edge-connectivity. To see the second one, observe that if Z1 and Z2 are two intersecting
subsets of V − r0 for which %D′(Zi) = 2, then 2 + 2 = %D′(Z1) + %D′(Z2) ≥ %D′(Z1 ∩
Z2)+%D′(Z1∪Z2) ≥ 2+2 from which %D′(Z1∩Z2) = 2 follows. This implies that every
node v ∈ V − r0 is contained in a unique smallest subset Zv for which %D′(Zv) = 2.
This and the minimality of L′ imply that each edge f ∈ L′ entering v enters Zv. But
then 2 = %D′(Zv) = %F0(Zv) + %L′(v) ≥ 1 + %L′(v), from which %L′(v) ≤ 1. On the
other hand, {v} ∈ F0 implies that %L′(v) ≥ 1, and hence %L′(v) = 1 follows.

We call a cost-function w : A → R w0-adequate or just adequate if F0 is a
cheapest arborescence with respect to w and

w(f) ≤ w0(f) for each f ∈ F0 and w(e) ≥ w0(e) for each e ∈ A− F0. (9)

If, in addition, w ≥ 0 and w(e) = w0(e) for each e ∈ A − F0, then we say that w is
strongly adequate.

THEOREM 5.2. Let w0 ≥ 0 be a cost-function on the edge-set of digraph D = (V,A)
and let F0 be a spanning r0-arborescence of D. Let F0 := {Z ⊆ V − r0 : %F0(Z) = 1}.
Then

µ∗ := min{|w − w0| : w a cost-function for which F0 is a cheapest arborescence} =
(10)

max{w̃0(F0)− w̃0(L) : L ⊆ A, L covers F0}. (11)

EGRES Technical Report No. 2020-15

5.1 Min-max theorem and algorithm 11

Moreover, there exists a strongly adequate optimal solution w = w∗ to (10) which, in
addition, is integer-valued when w0 is integer-valued.

Proof. If w is a cost-function for which F0 is a cheapest arborescence and its deviation
|w − w0| is minimum, then w is obviously adequate. Therefore, in order to prove
max ≤ min, it suffices to show that

|w − w0| ≥ w̃0(F0)− w̃0(L) (12)

holds for every covering L ⊆ A of F0 and for every adequate cost-function w. As
w0 is non-negative, it suffices to prove (12) only when L is an inclusionwise minimal
covering of F0.

Let w be an adequate cost-function and L an inclusionwise minimal covering of F0.
For each e ∈ L ∩ F0, let e′ be a new edge parallel to e, and let w(e′) := w(e). Let
N ′ be the set of new edges, L′ := (L − F0) ∪ N ′, and A+ := A ∪ N ′. Obviously,
|L′| = |L| and w̃(L′) = w̃(L). It also follows from these definitions that F0 is a
cheapest arborescence (with respect to the extended cost-function w on A+) in the
digraph (V,A+), and hence F0 is a cheapest arborescence in D′ := (V, F0 ∪ L′), as
well.

By Proposition 5.1, we have %F0(v) + %L′(v) = 2 for each v ∈ V − r0. This and
Edmonds’ theorem [5] on disjoint arborescences imply that D′ is the union of two
disjoint spanning r0-arborescences F1 and F2. Since F0 is a cheapest arborescence in
D′ with respect to w, we have

w̃(L) + w̃(F0) = w̃(L′) + w̃(F0) = w̃(L′ ∪ F0) = w̃(F1) + w̃(F2) ≥ w̃(F0) + w̃(F0),

from which w̃(L) ≥ w̃(F0) follows. This and (9) imply

|w − w0| ≥ [w̃0(F0)− w̃(F0)] + [w̃(L)− w̃0(L)]
= [w̃0(F0)− w̃0(L)] + [w̃(L)− w̃(F0)] ≥ w̃0(F0)− w̃0(L), (13)

as required for (12), and hence max ≤ min follows. (One may feel inadequate to use a
non-trivial theorem in a proof of the ‘trivial’ inequality max ≤ min. The application of
Edmonds’ theorem, however, can be avoided with the help of a slightly more technical
argument, see Remark 5.3.)

To see the reverse direction max ≥ min, it suffices to prove that there is an adequate
cost-function w∗ (integer-valued when w0 is so) and a covering L∗ of F0 for which (13)
holds with equality. Actually, we shall show that w∗ can be chosen strongly adequate,
in which case the first inequality in (13) is met automatically by equality, while we
have equality in the second inequality of (13) precisely if

w̃∗(L∗) = w̃∗(F0). (14)

Apply Theorem 2.3 to the special kernel system F0 in place of F and to the cost-
function c := w0. Let L∗ denote the optimal primal solution, that is, L∗ is a cheapest

EGRES Technical Report No. 2020-15

5.1 Min-max theorem and algorithm 12

covering of F0, and let y∗ be the optimal dual solution in (3). By the theorem,
ỹ∗(F0) = w0(L

∗). Define w∗ as follows.

w∗(a) :=

{
w0(a) if a ∈ A− F0∑

[y∗(Z) : a enters Z] if a ∈ F0.
(15)

This w∗ is non-negative and w∗(a) = w0(a) for each a ∈ A − F0. Furthermore,
y∗ is clearly w∗-feasible (for the definition of feasibility, see (1)) and F0 consists of
tight edges with respect to w∗. By applying Corollary 2.2 to w∗ in place of c, we
obtain that F0 is a cheapest arborescence with respect to w∗. Therefore w∗ is strongly
w0-adequate for which (by Theorem 2.3) w̃∗(F0) = ỹ∗(F0) = w̃∗(L∗) holds. When w0

is integer-valued, the optimal dual solution y∗ can also be chosen integer-valued by
Theorem 2.3, and hence w∗ defined in (15) is also integer-valued.

Remark 5.3. In the proof of inequality max ≤ min in Theorem 5.2, we relied on Ed-
monds’ deep theorem. This, however, can be avoided by applying the easier polyhedral
description of the convex hull of spanning r0-arborescences: {x : x ≥ 0, %x(Z) ≥ 1
for every non-empty subset Z ⊆ V − r0, and %x(v) = 1 for every node v ∈ V − r0}.
To see this alternative, recall that the digraph D′ := (V,A′) (where A′ = F0 ∪ L′)
was shown to be rooted 2-edge-connected for which %D′(v) = 2 for each v ∈ V − r0.
Let z := χ(A′)/2 be the identically 1/2 vector on A′. By using the polyhedral de-
scription of the spanning r0-arborescences, we obtain that z can be expressed as the
convex combination of spanning arborescences: z =

∑
[λiχ(Fi) : i = 1, . . . , q] where

λi > 0 for each i and
∑
λi = 1. Then we have w̃(F0) + w̃(L′) = w̃(A′) = 2wz =

2
∑

[λiw̃(Fi) : i = 1, . . . , q] ≥ 2
∑

[λiw̃(F0) : i = 1, . . . , q] = 2w̃(F0), from which
w̃(F0) ≤ w̃(L′) = w̃0(L), as required for max ≤ min.

This proof is technically a bit more complicated than the one using Edmonds’ the-
orem. However, it may be used in other inverse optimization problems where the
analogue of Edmonds’ theorem (that is, the discrete Carathéodory property of ar-
borescences) does not hold while the polyhedral description of the objects in question
is available. •

An immediate consequence of the proof above is the following.

Corollary 5.4. Let y∗ be an optimal dual solution to the primal problem of finding a
minimal w0-cost covering of kernel system F0 := {Z ⊆ V − r0 : %F0 = 1}. Then the
cost-function w∗ defined by (15) is an optimal solution to the inverse arborescence
problem.

Algorithm Corollary 5.4 implies that the algorithm developed in Section 4 for the
special kernel system F0 := {Z ⊆ V − r0 : %F0(Z) = 1}, when applied to c := w0,
computes in O(mn) time both the optimal primal solution L∗ and the optimal dual
solution y∗ in (3). We proved that w∗, as defined in (15) by y∗, is an optimal (strongly
adequate) primal solution in (10) to the inverse arborescence problem while L∗ is an
optimal dual solution in (11).

EGRES Technical Report No. 2020-15

5.1 Min-max theorem and algorithm 13

Remark 5.5. The statement in Theorem 5.2 that the wanted optimal cost-function
w∗ may be chosen in such a way w∗(e) = w0(e) holds for each edge e ∈ A − F0 was
proved already by Hu and Liu [11]. It is interesting to note that the corresponding
property does not hold in the undirected counterpart of the inverse arborescence
problem where the goal is to make an input spanning tree F0 of an undirected graph
G to be a cheapest tree. To see this, let G be a triangle with edges f, g, h whose costs
are 1, 1, 0, and let F0 = {f, g} be a spanning tree. If we are not allowed to change the
costs outside F0, then the cost of both f and g must be reduced to 0 to make F0 a
cheapest tree, and hence the total change (deviation) is 2. On the other hand, if we
increase the cost of h by 1, then F0 becomes a cheapest tree, that is, the deviation
in this case is only 1. The same example shows that the property does not hold for
matroids either where an input basis B0 is to be made a cheapest basis.

EGRES Technical Report No. 2020-15

References 14

References

[1] F. Bock, An algorithm to construct a minimum directed spanning tree in a
directed network, in: Developments of Operations Research, Vol. 1 (Proceedings
of the Third Annual Israel Conference on Operations Research, Tel Aviv, 1969,
B. Avi-Itzhak, ed.) Gordon and Breach, New York, 1971, 29–24.

[2] M.-C. Cai and Y.-J. Li, Inverse matroid intersection problem, Mathematical
Methods of Operations Research, Vol 45. No. 2, (1997), pp. 235–243.

[3] M.-C. Cai, Inverse problems of matroid intersections, J. Combinatorial Opti-
mization, Vol 3. No. 4, (1999) pp. 465–474.

[4] Y.-J. Chu and T.-H. Liu, On the shortest arborescence of a directed graph, Sci-
entia Sinica (Peking) Vol. 14 (1965) pp. 1397–1400.

[5] J. Edmonds, Edge-disjoint branchings, in: Combinatorial Algorithms (B.
Rustin, ed.), Acad. Press, New York, (1973), 91–96.

[6] J. Edmonds, Matroid intersection, Annals of Discrete Math. 4, (1979) 39-49.

[7] A. Frank, Kernel systems of directed graphs, Acta Scientiarum Mathemati-
carum, (Szeged), 41, 1-2 (1979) 63–76.

[8] A. Frank, Increasing the rooted connectivity of a digraph by one, in: Connec-
tivity Augmentation of Networks: Structures and Algorithms, Mathematical
Programming, (ed. A. Frank) Ser. B, Vol. 84, No. 3 (1999), pp. 565-576.

[9] A. Frank, Connections in Combinatorial Optimization, Oxford University Press,
2011 (ISBN 978-0-19-920527-1). Oxford Lecture Series in Mathematics and its
Applications, 38.

[10] D.R. Fulkerson, Packing rooted directed cuts in a weighted directed graph, Math.
Programming 6 (1974) 1–13.

[11] Z. Hu and Z. Liu, A strongly polynomial algorithm for the inverse shortest ar-
borescence problem, Discrete Applied Mathematics, 82 (1998) 135–154.

[12] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,
2003. Vol 24. of the series Algorithms and Combinatorics.

[13] É. Tardos, A strongly polynomial minimum cost circulation algorithm, Combi-
natorica, 5, (1985) pp. 247-255.

[14] Z. Zhang, S. Li, H.-J. Lai, and D.-Z. Du, Algorithms for the partial inverse
matroid problem in which weights can only be increased. J. Global Optimization,
65 (2016) 801–811.

EGRES Technical Report No. 2020-15

	Introduction
	Terminology and notation

	Arborescences and kernel systems
	Cheapest arborescences
	Known min-max theorem for kernel systems

	Algorithm for kernel systems
	Known algorithm for general kernel systems

	Specific algorithm for kernel system F0
	Simple approach
	More efficient algorithm

	Solution to the inverse arborescence problem
	Min-max theorem and algorithm

