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Abstract

This paper is concerned with algorithms and applications of decreasing minimiza-
tion on an M-convex set, which is the set of integral elements of an integral base-
polyhedron. Based on a recent characterization of decreasingly minimal (dec-min)
elements, we develop a strongly polynomial algorithm for computing a dec-min ele-
ment of an M-convex set. The matroidal feature of the set of dec-min elements makes
it possible to compute a minimum cost dec-min element, as well. Our second goal is to
exhibit various applications in matroid and network optimization, resource allocation,
and (hyper)graph orientation. We extend earlier results on semi-matchings to a large
degree by developing a structural description of dec-min in-degree bounded orienta-
tions of a graph. This characterization gives rise to a strongly polynomial algorithm
for finding a minimum cost dec-min orientation.

Keywords: Network flows, Resource allocation, Graph orientation, Decreasing mini-
mization,
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1 Introduction
This paper is concerned with algorithms and applications of decreasing minimization on
an M-convex set, which is the set of integral elements of an integral base-polyhedron. An
element of a set of vectors, in general, is called decreasingly minimal (dec-min) if its largest
component is as small as possible, within this, its second largest component is as small as
possible, and so on. Decreasing minimization means the problem of finding a dec-min
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1.1 Notation and terminology 2

element of a given set of vectors (or even a cheapest dec-min element with respect to a
given linear cost-function). When the given set of vectors consists of integral vectors, this
problem is also referred to as discrete decreasing minimization.

In the companion paper [16], the present authors have investigated the structural aspects
of the discrete decreasing minimization on an M-convex set. Among others, the dec-min
elements are characterized as those admitting no local improvement. As dual objects to
dec-min elements, the notions of canonical chain, canonical partition of the ground-set, and
essential value sequence are defined, and the structure of the set of all dec-min elements is
described in terms of these dual objects. We emphasize that the role of these dual objects
is not merely to help us fully understand the problem from its dual side. Beyond this, the
dual characterization reveals the fundamental feature of the primal problem that the set of
dec-min elements itself forms an M-convex set, and, in fact, a rather special one arising
from a matroid by translation. In addition, these dual objects are inherent in computing a
dec-min element in strongly polynomial time and indispensable for efficient computation
of a minimum weight dec-min element, as well.

The first goal of this paper is to develop, on the basis of the above-mentioned structural
characterizations, a strongly polynomial algorithm for computing a dec-min element as well
as the canonical chain of a given M-convex set. The second goal is to exhibit several ap-
plications. For example, we prove a conjecture of Borradaile et al. [4] on dec-min strongly
connected orientations of undirected graphs. Our general approach makes it possible to
solve algorithmically even the minimum edge-cost dec-min orientation problem when up-
per and lower bounds are imposed on the in-degrees and the orientation is expected to be
k-edge-connected (or even (k, `)-edge-connected). These orientation results form the basis
of a major generalization of the so-called semi-matching problem initiated by Ladner et
al. [21], which had been motivated by a resource allocation problem. Our approach is the
first one that provides a strongly polynomial algorithm for the capacitated case, as well.

An algorithmic solution to a discrete counterpart of Megiddo’s lexicographic flow prob-
lem [31, 32] is also developed. Yet another application of the structural results of [16] gives
rise to an extension of a result of Levin and Onn [30] on finding k bases of a matroid on
a ground-set S with n elements such that the degree-vector of the hypergraph formed by
these k bases is decreasingly minimal. Our approach generalizes this problem to the case
when one has k distinct matroids on S .

The paper is organized as follows. Algorithms for computing a dec-min element and
the canonical chain are given in Section 2. In Section 3, various kinds of applications
are shown, including those to matroids, network flows, arborescences, and connectivity
augmentations. Sections 4, 5, and 6 are devoted to detailed account of applications to graph
orientation problems.

1.1 Notation and terminology
We continue to use notation and terminology introduced in [16], while some additional ones
are given here. Two subsets X and Y of a finite S are intersecting if X∩Y , ∅ and crossing
if none of X − Y , Y − X, X ∩ Y , and S − (X ∪ Y) is empty. Let b be a set-function for
which b(X) = +∞ is allowed but b(X) = −∞ is not. The submodular inequality for subsets
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1.1 Notation and terminology 3

X,Y ⊆ S is defined by

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y). (1.1)

We say that b is (fully) submodular if this inequality holds for every pair of subsets X,Y ⊆
S with finite b-values. When the submodular inequality is required only for intersecting
(crossing) pairs of subsets, we say that b is intersecting (crossing) submodular. A set-
function p is called (fully, intersecting, crossing) supermodular if −p is (fully, intersecting,
crossing) submodular.

For a (fully) submodular integer-valued set-function b on S for which b(∅) = 0 and b(S )
is finite, the base-polyhedron B is defined by

B = B(b) = {x ∈ RS : x̃(S ) = b(S ), x̃(Z) ≤ b(Z) for every Z ⊂ S }, (1.2)

which is a (possibly unbounded) integral polyhedron in RS . A (fully) supermodular integer-
valued set-function p with p(∅) = 0 and p(S ) finite also defines an integral base-polyhedron
by

B = B′(p) = {x ∈ RS : x̃(S ) = p(S ), x̃(Z) ≥ p(Z) for every Z ⊂ S }. (1.3)

In discrete convex analysis [34, 35], the set of integral elements of an integral base-poly-
hedron is called an M-convex set. For any integral polyhedron B we use the notation

....

B for
the set of integral element of B, that is,

....

B := B ∩ ZS , (1.4)

where
....

B may be pronounced ‘dotted B.’
When an (intersecting) submodular function b and an (intersecting) supermodular func-

tion p meet the cross-inequality

b(X) − p(Y) ≥ b(X − Y) − p(Y − X) (1.5)

for every (intersecting) pair X,Y ⊆ S , the polyhedron Q defined by

Q = Q(p, b) := {x : p(Z) ≤ x̃(Z) ≤ b(Z) for every Z ⊆ S } (1.6)

is called a generalized polymatroid (g-polymatroid, for short). A base-polyhedron is a
special g-polymatroid (where p(S ) = b(S )) and every g-polymatroid arises from a base-
polyhedron by projecting it along a single axis.

In applications it is important that weaker set-functions may also define base-polyhedra
and g-polymatroids. For example, if p is an integer-valued crossing supermodular function,
then B′(p) is still an integral base-polyhedron, which may, however, be empty. To prove
theorems on base-polyhedra, it is much easier to work with base-polyhedra defined by fully
sub- or supermodular functions. On the other hand, in applications, base-polyhedra are
often defined with a crossing sub- or supermodular (or even weaker) function. (We shall
use this fact frequently in Sections 5 and 6.)

We assume that graphs or digraphs have no loops but parallel edges are allowed. For a
digraph D = (V, A), the in-degree of a node v is the number of arcs of D with head v. The
in-degree %D(Z) = %(Z) of a subset Z ⊆ V denotes the number of edges (= arcs) entering Z,
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Section 2. Algorithms 4

where an arc uv is said to enter Z if its head v is in Z while its tail u is in V − Z. The out-
degree δD(Z) = δ(Z) is the number of arcs leaving Z, that is δ(Z) = %(V − Z). The number
of edges of a directed or undirected graph H induced by Z ⊆ V is denoted by i(Z) = iH(Z).
In an undirected graph G = (V, E), the degree d(Z) = dG(Z) of a subset Z ⊆ V denotes the
number of edges connecting Z and V − Z while e(Z) = eG(Z) denotes the number of edges
with one or two end-nodes in Z. Clearly, e(Z) = d(Z) + i(Z).

2 Algorithms
In this section, we consider algorithmic aspects of decreasing minimization over an M-
convex set. In particular, we show how to compute efficiently a decreasingly minimal ele-
ment along with its canonical chain and partition.

First we recall fundamental characterizations of a dec-min element of an M-convex set.

Theorem 2.1 ([16, Theorem 3.3]). For an element m of an M-convex set
....

B =
....

B′(p), the
following four conditions are pairwise equivalent.
(A) There is no 1-tightening step for m.
(B) There is a chain (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ C` (= S ) such that each Ci is an m-top and m-
tight set (with respect to p) and m is near-uniform on each S i := Ci − Ci−1 (i = 1, 2, . . . , `),
where C0 := ∅.
(C1) m is decreasingly minimal in

....

B.
(C2) m is increasingly maximal in

....

B.

An integral base-polyhedron B can be given in the form B(b) in (1.2) with a (fully)
submodular function b or in the form B′(p) in (1.3) with a (fully) supermodular function p.
Here b and p are complementary functions (that is, p(X) = b(S ) − b(S − X)) and hence an
algorithm described for one of them can easily be transformed to work on the other. In the
present description, we use supermodular functions.

There is a one-to-one correspondence between B and p but, for an intersecting or cross-
ing supermodular function p, B′(p) is also a (possibly empty) base-polyhedron which is
integral if p is integer-valued. For obtaining and proving results for B (or for

....

B), it is much
easier to work with a fully supermodular p while in applications base-polyhedra often arise
from intersecting or crossing (or even weaker) supermodular functions. Therefore in de-
scribing and analysing algorithms, we must consider these weaker functions as well.

Remark 2.1. One of the most fundamental algorithms of discrete optimization is for min-
imizing a submodular function, that is, for finding a subset Z of S for which b(Z) =

min{b(X) : X ⊆ S }. There are strongly polynomial algorithms for this problem (for exam-
ple, Schrijver [40] and Iwata et al. [26] are the first, while Orlin [37] is one of the fastest),
and we shall refer to such an algorithm as a submod-minimizer subroutine. The complex-
ity of Orlin’s algorithm [37], for example, is O(n6) (where n = |S |) and the algorithm calls
O(n5) times a routine which evaluates the submodular function in question. (An evaluation
routine outputs the value b(X) for any input subset X ⊆ S ). This complexity bound is def-
initely attractive from a theoretical point of view but in concrete applications it is always a
challenge to develop faster algorithms for the special case. Naturally, submodular function
minimization and supermodular function maximization are equivalent.
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2.1 The basic algorithm for computing a dec-min element 5

2.1 The basic algorithm for computing a dec-min element
Our first goal is to describe a natural approach—the basic algorithm—for finding a de-
creasingly minimal element of an M-convex set

....

B. The basic algorithm is polynomial in
n + |p(S )|, and hence it is polynomial in n when |p(S )| is small in the sense that it can be
bounded by a polynomial of n. This is the case, for example, in an application when we
are interested in strongly connected decreasingly minimal (=egalitarian) orientations. In the
general case, where typical applications arise by defining p with a ‘large’ capacity function,
a (more complex) strongly polynomial-time algorithm will be described in Section 2.4.

In order to find a dec-min element of an M-convex set
....

B, we assume that a subroutine is
available to

compute an integral element of B. (2.1)

When B = B′(p) and p is fully supermodular, a variant of Edmonds’ polymatroid greedy
algorithm finds an integral member of B. (Namely, take any ordering s1, . . . , sn of S , and de-
fine m(s1) := p(s1) and, for i = 2, . . . , n, m(si) = p(Zi) − p(Zi−1) where Zi = {s1, s2, . . . , si}.
Edmonds [6] proved that vector m is indeed in B). This algorithm needs only a subrou-
tine to evaluate p(Zi) for i = 1, . . . , n. For an intersecting supermodular function p, Frank
and Tardos [18] described an algorithm which needs n applications of a submod-minimizer
routine. For crossing supermodular p, a more complex algorithm is given in [18] which ter-
minates after at most n2 applications of a submod-minimizer. Note that the latter problem
of finding an integral element of a base-polyhedron B′(p) defined by a crossing supermod-
ular function p covers such non-trivial problems as the one of finding a degree-constrained
k-edge-connected orientation of an undirected graph, a problem solved first in [10].

Suppose now that an initial integral member m of B is available. The algorithm needs a
subroutine to

decide for m ∈
....

B and for s, t ∈ S if m′ := m + χs − χt belongs to B. (2.2)

Observe that Subroutine (2.2) is certainly available if we can

decide for any m′ ∈ ZS whether or not m′ belongs to B, (2.3)

though applying this more general subroutine is clearly slower than a direct algorithm to
realize (2.2).

Note that m′ = m + χs − χt is in B precisely if there is no m-tight ts-set (with respect to
p), and this is true even if B is defined by a crossing supermodular function p. Subroutine
(2.2) can be carried out by a single application of a submod-minimizer.

As long as possible, apply the 1-tightening step. Recall that a 1-tightening step replaces
m by m′ := m + χs − χt where s and t are elements of S for which m(t) ≥ m(s) + 2 and m′

belongs to
....

B. By Theorem 2.1, when no more 1-tightening step is available, the current m is
a decreasingly minimal member of

....

B and the algorithm terminates. In order to estimate the
number of 1-tightening steps, observe that a single 1-tightening step decreases the square-
sum of the components. Since the largest square-sum of an arbitrary integral vector z with
z̃(S ) = p(S ) is p(S )2 and z̃(S ) = p(S ) holds for all members z of

....

B, we conclude that
the number of 1-tightening steps is at most p(S )2. Therefore if |p(S )| is bounded by a
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2.2 Computing the essential value-sequence and the canonical chain 6

Given a dec-min element m of
....

B, the following procedure computes the canonical chain
C∗ = {C1,C2, . . . ,Cq} and the canonical partition P∗ = {S 1, S 2, . . . , S q} of S along with the
essential value-sequence β1 > β2 > · · · > βq belonging to

....

B.

1. Let β1 denote the largest value of m. Let C1 :=
⋃
{Tm(u) : m(u) = β1}, S 1 := C1, and

i := 2.

2. In the general step i ≥ 2, the pairwise disjoint non-empty sets S 1, S 2, . . . , S i−1 and
a chain C1 ⊂ C2 ⊂ · · · ⊂ Ci−1 have already been computed along with the essential
values β1 > β2 > · · · > βi−1. If Ci−1 = S , set q := i − 1 and stop. Otherwise, let

βi := max{m(s) : s ∈ S −Ci−1},

Ci :=
⋃
{Tm(u) : m(u) ≥ βi},

S i := Ci −Ci−1,

and go to the next step for i := i + 1.

polynomial of n, then the basic algorithm to compute a dec-min element of
....

B is strongly
polynomial.

The basic algorithm above is efficient when |p(S )| is ‘small’ (that is, |p(S )| is bounded
by a power of n), but it is not strongly polynomial when |p(S )| is ‘large’. We postpone, till
Section 2.4, the description of a strongly polynomial algorithm for computing a dec-min
element of an M-convex set

....

B defined by a general p. In the next section we show how the
canonical chain as well as the essential value-sequence can be computed, once a dec-min
element m is available. It is emphasized that these dual objects are indispensable and must
be computed when we are interested in identifying the set of all dec-min elements of

....

B or
in finding a minimum weight dec-min element (cf., [16, Section 5.3]).

2.2 Computing the essential value-sequence and the canonical chain
In this section we show an algorithm to compute the essential value-sequence and the canon-
ical chain, when we are given a dec-min element m of an M-convex set.

Let B = B′(p) be again an integral base-polyhedron whose unique (fully) supermodular
bounding function is p. In the algorithm, we assume that we can compute the smallest
m-tight set Tm(u) = Tm(u; p) containing a given element u ∈ S . Here m-tightness is with
respect to p, that is, a set X is m-tight if m̃(X) = p(X). It is fundamental, however, to
emphasize that Tm(u) can be computed even in the case when p is not explicitly available
and B is defined by a weaker function, for example, by a crossing supermodular function.
Namely, we have Tm(u) = {s : m + χs − χu ∈ B} and hence Tm(u) is indeed computable by
at most n applications of routine (2.2).

Corollary 5.4 from [16] states that the sequence β1, β2, . . . , βq provided by this algorithm
is indeed the essential value-sequence belonging to

....

B, and similarly the chain C1 ⊂ C2 ⊂

· · · ⊂ Cq is the canonical chain while the partition {S 1, S 2, . . . , S q} is the canonical partition.

EGRES Technical Report No. 2020-11



2.2 Computing the essential value-sequence and the canonical chain 7

We emphasize that Algorithm 2.2 to compute the essential value-sequence and the canonical
chain is strongly polynomial for arbitrary p (independently of the magnitude of |p(S )|),
provided that a dec-min element m of

....

B is already available as well as Oracle (2.2).
It is in order here to emphasize the significance of this algorithm for computing these

dual objects. By Theorem 2.2 below, Algorithm 2.2 enables us to computationally capture
the set of all dec-min elements. Concisely, the matroid associated with dec-min elements,
as in Theorem 2.3 below, can be identified by this algorithm. Recall that a matroidal M-
convex set is the translation of the incidence vectors of bases of a matroid by an integral
vector.

Theorem 2.2 ([16, Corollary 5.2]). An element m of an M-convex set
....

B is decreasingly
minimal if and only if each Ci is m-tight (with respect to p) and βi − 1 ≤ m(s) ≤ βi holds for
each s ∈ S i (i = 1, . . . , q).

Theorem 2.3 ([16, Theorem 5.7]). The set of dec-min elements of an M-convex set
....

B is a
matroidal M-convex set.

We shall we use Theorem 2.2 in Sections 4.3 and 5.1, and Theorem 2.3 in Sections 4.5
and 5.2.

Adaptation to the intersection with a box Algorithm 2.2 can be adapted to the case
when we have specific upper and lower bounds on the members of

....

B =
....

B′(p). Let f : S →
Z ∪ {−∞} and g : S → Z ∪ {+∞} be bounding functions with f ≤ g and let T ( f , g) denote
the box defined by f and g. It is a basic fact on integral base-polyhedra that the intersection
B� := B ∩ T ( f , g) is also a (possibly empty) integral base-polyhedron. Assume that B� is
non-empty.

Let m be an element of
....

B� (= B� ∩ ZS ). Let Tm(u) denote the smallest m-tight set
containing u with respect to p, and let T �m(u) be the smallest m-tight set containing u with
respect to p�.

Claim 2.4.

T �m(u) =

{u} if m(u) = f (u),
Tm(u) − {v : m(v) = g(v)} if m(u) > f (u).

Proof. We have T �m(u) = {s : m − χu + χs ∈ B�}. Since B� = B ∩ T ( f , g), we have
m − χu + χs ∈ B� if and only if (i) m − χu + χs ∈ B and (ii) m − χu + χs ∈ T ( f , g) hold.
For s , u, (i) holds if and only if s ∈ Tm(u), and (ii) holds if and only if m(u) > f (u) and
m(s) < g(s). Hence follows the claim.

The claim implies that Algorithm 2.2 can be adapted easily to compute the canonical
chain and partition belonging to

....

B� along with its essential value-sequence.
Our next goal is to describe a strongly polynomial algorithm to compute a dec-min ele-

ment of
....

B in the general case when no restriction is imposed on the magnitude of |p(S )|. To
this end, we need an algorithm to maximize dp(X)/|X|e, which is given in Section 2.3. The
strongly polynomial algorithm for computing a dec-min element is described in Section
2.4.
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2.3 Maximizing dp(X)/|X|e with the Newton–Dinkelbach algorithm
In this section we describe a variant of the Newton–Dinkelbach (ND) algorithm to com-
pute the maximum of dp(X)/|X|e. We assume that p is an integer-valued set-function on a
ground-set S with n ≥ 1 elements, p(∅) = 0, p(S ) is finite (p(X) may be −∞ for some X
but never +∞).

An excellent overview by Radzik [38] analyses the ND-algorithm concerning (among
others) this problem and describes a strongly polynomial algorithm. We present a vari-
ant of the ND-algorithm whose specific feature is that it works throughout with integers
dp(X)/|X|e. This has the advantage that the proof is simpler than the original one working
with the fractions p(X)/|X|.

The algorithm works if a subroutine is available to

find a subset X ⊆ S maximizing p(X) − µ|X| for any fixed integer µ. (2.4)

This routine will actually be needed only for special values of µ when µ = dp(X)/`e (where
X ⊆ S and 1 ≤ ` ≤ n). We do not have to assume that p is supermodular and the only
requirement for the ND-algorithm is that Subroutine (2.4) be available. Via a submod-
minimizer this is certainly the case when p happens to be supermodular (cf., Remark 2.1).

In several applications, the requested general purpose submod-minimizer can be super-
seded by a direct and more efficient algorithm such as the one for network flows or for
matroid partition. Subroutine (2.4) is also available in the more general case (needed in
applications) when p is only crossing supermodular. Indeed, for a given ordered pair of
elements s, t ∈ S , the restriction of p on the family of st-sets is fully supermodular, and
therefore we can apply a submod-minimizer to each of the n(n − 1) ordered pairs (s, t) to
get the requested maximum of p(X) − µ|X|.

We call a value µ good if µ|X| ≥ p(X) for every X ⊆ S . A value that is not good is called
bad. Clearly, a sufficiently large µ is good. Our goal is to compute the minimum µmin of
the good integers. This number is nothing but the maximum of dp(X)/|X|e over non-empty
subsets of S .

Let µ0 := dp(S )/|S |e − 1. This (possibly negative) number is bad and the algorithm starts
with µ0. Let

X0 ∈ arg max{p(X) − µ0|X| : X ⊆ S },

that is, X0 is a set maximizing the function p(X)−µ0|X|. Note that the badness of µ0 implies
that p(X0) > 0.

The procedure determines one by one a series of pairs (µ j, X j) for subscripts j = 1, 2, . . .
where each integer µ j is a tentative candidate for µ while X j is a non-empty subset of S .
Suppose that the pair (µ j−1, X j−1) has already been determined for a subscript j ≥ 1. Let µ j

be the smallest integer for which µ j|X j−1| ≥ p(X j−1), that is,

µ j :=
⌈ p(X j−1)
|X j−1|

⌉
.

If µ j is bad, that is, if there is a set X ⊆ S with p(X) − µ j|X| > 0, then let

X j ∈ arg max{p(X) − µ j|X| : X ⊆ S },
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2.3 Maximizing dp(X)/|X|e with the Newton–Dinkelbach algorithm 9

that is, X j is a set maximizing the function p(X) − µ j|X|. (If there are more than one
maximizing set, we can take any). Since µ j is bad, we have X j , ∅ and p(X j) − µ j|X j| > 0.

Claim 2.5. If µ j is bad for some subscript j ≥ 0, then µ j < µ j+1.

Proof. The badness of µ j means that p(X j) − µ j|X j| > 0, from which

µ j+1 =

⌈ p(X j)
|X j|

⌉
=

⌈ p(X j) − µ j|X j|

|X j|

⌉
+ µ j > µ j.

Since there is a good µ and the sequence µ j is strictly monotone increasing by Claim
2.5, there will be a first subscript h ≥ 1 for which µh is good. The algorithm terminates by
outputting this µh (and in this case Xh is not computed).

Theorem 2.6. If h is the first subscript during the run of the algorithm for which µh is good,
then µmin = µh (that is, µh is the requested smallest good µ-value) and h ≤ n.

Proof. Since µh is good and µh is the smallest integer for which µh|Xh−1| ≥ p(Xh−1), the set
Xh−1 certifies that no good integer µ can exist which is smaller than µh, that is, µmin = µh.

Claim 2.7. If µ j is bad for some subscript j ≥ 1, then |X j−1| > |X j|.

Proof. As µ j (= dp(X j−1)/|X j−1|e) is bad, we obtain that

p(X j) − µ j|X j| > 0 = p(X j−1) −
p(X j−1)
|X j−1|

|X j−1|

≥ p(X j−1) −
⌈ p(X j−1)
|X j−1|

⌉
|X j−1| = p(X j−1) − µ j|X j−1|,

from which we get
p(X j) − µ j|X j| > p(X j−1) − µ j|X j−1|. (2.5)

Since X j−1 maximizes p(X) − µ j−1|X|, we have

p(X j−1) − µ j−1|X j−1| ≥ p(X j) − µ j−1|X j|. (2.6)

By adding up (2.5) and (2.6), we obtain

(µ j − µ j−1)|X j−1| > (µ j − µ j−1)|X j|.

As µ j is bad, so is µ j−1, and hence, by applying Claim 2.5 to j − 1 in place of j, we obtain
that µ j > µ j−1, from which we arrive at |X j−1| > |X j|, as required.

Claim 2.7 implies that n ≥ |X0| > |X1| > · · · > |Xh−1| ≥ 1, from which h ≤ n follows.
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2.4 Computing a dec-min element in strongly polynomial time

In order to compute a dec-min element of an M-convex set
....

B =
....

B′(p), our first task is to
compute the smallest integer β1 for which

....

B has an element with largest component β1.
Theorem 4.1 of [16] asserts that β1 = max{dp(X)/|X|e : ∅ , X ⊆ S }. By applying the ND-
algorithm described in Section 2.3, we can compute β1 in strongly polynomial time. Note
that, by Theorem 2.6, the algorithm terminates after at most n applications of Subroutine
(2.4).

Given the value of β1, a β1-covered element m of
....

B can easily be computed with a
greedy-type algorithm as follows. Since there is a β1-covered member of B, the vector
(β1, β1, . . . , β1) belongs to the so-called supermodular polyhedron S ′(p) := {x : x̃(X) ≥ p(X)
for every X ⊆ S }. Consider the elements of S in an arbitrary order {s1, . . . , sn}. Let
m(s1) := min{z : (z, β1, β1, . . . , β1) ∈ S ′(p)}. In the general step, if the components
m(s1), . . . ,m(si−1) have already been determined, let

m(si) := min{z : (m(s1),m(s2), . . . ,m(si−1), z, β1, β1, . . . , β1) ∈ S ′(p)}. (2.7)

This computation can be carried out by n applications of a subroutine for a submodular
function minimization.

Given a β1-covered integral element of B, our next goal is to obtain a pre-dec-min element
of

....

B. To this end, we apply 1-tightening steps. That is, as long as possible, we pick two
elements s and t of S for which m(t) = β1 and m(s) ≤ β1 − 2 such that there is no m-tight ts-
set, reduce m(t) by 1 and increase m(s) by 1. In this way, we obtain another integral element
of B for which the largest component continues to be β1 (as β1 was chosen to be the smallest
upper bound) but the number of β1-valued components is strictly smaller. Therefore, after
at most |S | − 1 such 1-tightening steps, we arrive at a vector for which no 1-tightening step
(with m(t) = β1 and m(s) ≤ β1 − 2) is possible anymore. Theorem 4.2 of [16] states that a
β1-covered element m of

....

B is pre-dec-min precisely if m(s) ≥ β1 − 1 for each s ∈ S 1(m),
where S 1(m) = ∪{Tm(t) : m(t) = β1}. Hence the final vector the previous procedure is a pre-
decreasingly minimal element of

....

B. We use the same letter m to denote this pre-dec-min
element.

Recall that Tm(t) denoted the unique smallest tight set containing t when p is (fully)
supermodular. But Tm(t) can be described without explicitly referring to p since an element
s ∈ S belongs to Tm(t) precisely if m′ := m − χt + χs is in B, and this is computable by
subroutine (2.2). Therefore we can compute S 1(m).

Theorem 4.4 of [16] states that S 1(m) is the first member S 1 of the canonical partition
associated with

....

B. Let B1 denote the restriction of the base-polyhedron B to S 1 and B′1 the
contraction of B by S 1. Theorem 4.6 of [16] states that, for m1 ∈ ZS 1 and m′1 ∈ ZS−S 1 ,
(m1,m′1) is a dec-min element of

....

B precisely if m1 is a dec-min element of
....

B1 and m′1 is a
dec-min element of

....

B′1. Let m1 := m|S 1 for the pre-dec-min element m constructed above.
Since m1 is near-uniform on S 1, it is a dec-min element of

....

B1. Hence, if m′1 is a dec-min
element of

....

B′1, then (m1,m′1) is a dec-min element of
....

B. Such a dec-min element m′1 can
be computed by applying iteratively the computation described above for computing m1. In
this way we can compute a dec-min element of

....

B in strongly polynomial time.

EGRES Technical Report No. 2020-11



Section 3. Applications 11

3 Applications

3.1 Background
There are two major sources of applicability of the structural results on decreasing mini-
mization on an M-convex set. One of them relies on the fact that the class of integral base-
polyhedra is closed under several operations. For example, a face of a base-polyhedron is
also a base-polyhedron, and so is the intersection of an integral box with a base-polyhedron
B. Also, the sum of integral base-polyhedra B1, . . . , Bk is a base-polyhedron B which has,
in addition, the integer decomposition property meaning that any integral element of B can
be obtained as the sum of k integral elements by taking one from each Bi. This latter prop-
erty implies that the sum of M-convex sets is M-convex. We also mention the important
operation of taking an aggregate of a base-polyhedron, to be introduced below in Section
3.2.

The other source of applicability is based on the fact that not only fully super- or submod-
ular functions can define base-polyhedra but some weaker functions as well. For example,
if p is an integer-valued crossing (in particular, intersecting) supermodular function with
finite p(S ), then B = B′(p) is a (possibly empty) integral base-polyhedron (and

....

B is an M-
convex set). This fact will be exploited in solving dec-min orientation problems when both
degree-constraints and edge-connectivity requirements must be fulfilled. In some cases
even weaker set-functions can define base-polyhedra. This is why we can solve dec-min
problems concerning edge- and node-connectivity augmentations of digraphs.

3.2 Matroids
Levin and Onn [30] solved algorithmically the following problem. Find k bases of a ma-
troid M on a ground-set S such that the sum of their characteristic vectors be decreasingly
minimal. Their approach, however, does not seem to work in the following natural exten-
sion. Suppose we are given k matroids M1, . . . ,Mk on a common ground-set S , and our goal
is to find a basis Bi of each matroid Mi in such a way that the vector

∑
[χBi : i = 1, . . . , k]

is decreasingly minimal. Let BΣ denote the sum of the base-polyhedra of the k matroids.
By a theorem of Edmonds, the integral elements of BΣ are exactly the vectors of form∑

[χBi : i = 1, . . . , k] where Bi is a basis of Mi. Therefore the problem is to find a dec-min
element of

....

BΣ. This can be found by the basic algorithm described in Section 2.1. Let us
see how the requested subroutines are available in this special case. The algorithm starts
with an arbitrary member m of

....

BΣ which is obtained by taking a basis Bi from each matroid
Mi, and these bases define m :=

∑
i χBi .

To realize Subroutine (2.2), we mentioned that it suffices to realize Subroutine (2.3),
which requires for a given integral vector m′ with m̃′(S ) =

∑
i ri(S ) to decide whether m′

is in
....

BΣ or not. But this can simply be done by Edmonds’ matroid intersection algorithm.
Namely, let S 1, . . . , S k be disjoint copies of S and M′

i an isomorphic copy of Mi on S i. Let
N1 be the direct sum of matroids M′

i on ground-set S ′ := S 1∪ · · ·∪S k. Let N2 be a partition
matroid on S ′ in which a subset Z is a basis if it contains exactly m′(s) members of the k
copies of s for each s ∈ S . Then m′ is in

....

BΣ precisely if N1 and N2 have a common basis.
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In conclusion, with the help of Edmonds’ matroid intersection algorithm, Subroutine
(2.2) is available, and hence the basic algorithm can be applied. (Actually, the algorithm
can be sped up by looking into the details of the matroid intersection algorithm for N1 and
N2.)

Another natural problem concerns a single matroid M on a ground-set T . Suppose we
are given a partition P = {T1, . . . ,Tn} of T and we consider the intersection vector (|Z ∩
T1|, . . . , |Z ∩ Tn|) assigned to a basis Z of M. The problem is to find a basis for which the
intersection vector is decreasingly minimal.

To solve this problem, we recall an important construction of base-polyhedra, called the
aggregate. Let T be a ground-set and BT an integral base-polyhedron in RT . Let P =

{T1, . . . ,Tn} be a partition of T into non-empty subsets and let S = {s1, . . . , sn} be a set
whose elements correspond to the members of P. The aggregate BS of BT is defined as
follows.

BS := {(y1, . . . , yn) : there is an x ∈ BT with yi = x̃(Ti) (i = 1, . . . , n)}. (3.1)

A basic theorem concerning base-polyhedra states that BS is a base-polyhedron, moreover,
for each integral member (y1, . . . , yn) of BS , the vector x in (3.1) can be chosen integer-
valued. In other words,

....

BS := {(y1, . . . , yn) : there is an x ∈
....

BT with yi = x̃(Ti) (i = 1, . . . , n)}. (3.2)

We call
....

BS the aggregate of
....

BT .
Returning to our matroid problem, let BT denote the base-polyhedron of matroid M.

Then the problem is nothing but finding a dec-min element of
....

BS .
We can apply the basic algorithm (concerning M-convex sets) for this special case since

the requested subroutines are available through standard matroid algorithms. Namely, Sub-
routine (2.1) is available since for any basis Z of M, the intersection vector assigned to Z is
nothing but an element of

....

BS .
To realize Subroutine (2.2), we mentioned that it suffices to realize Subroutine (2.3).

Suppose we are given a vector y ∈ ZS
+ (Here y stands for m′ in (2.3)). Suppose that ỹ(S ) =

r(T ) (where r is the rank-function of matroid M) and that y(si) ≤ |Ti| for i = 1, . . . , n.
Let G = (S ,T ; E) denote a bipartite graph where E = {tsi : t ∈ Ti, i = 1, . . . , n}. By this

definition, the degree of every node in T is 1 and hence the elements of E correspond to
the elements of M. Let M1 be the matroid on E corresponding to M (on T ). Let M2 be a
partition matroid on E in which a set F ⊆ E is a basis if dF(si) = y(si). By this construction,
the vector y is in

....

BS precisely if the two matroids M1 and M2 have a common basis. This
problem is again tractable by Edmonds’ matroid intersection algorithm.

As a special case, we can find a spanning tree of a (connected) directed graph for which
its in-degree-vector is decreasingly minimal. Since the family of unions of k disjoint bases
of a matroid forms also a matroid, we can also compute k edge-disjoint spanning trees in a
digraph whose union has a decreasingly minimal in-degree vector.

Another special case is when we want to find a spanning tree of a connected bipartite
graph G = (S ,T ; E) whose in-degree vector restricted to S is decreasingly minimal.

EGRES Technical Report No. 2020-11



3.3 Flows 13

3.3 Flows
3.3.1 A base polyhedron associated with net-in-flows

Let D = (V, A) be a digraph endowed with integer-valued bounding functions f : A →
Z ∪ {−∞} and g : A → Z ∪ {+∞} for which f ≤ g. We call a vector (or function) z
on A feasible if f ≤ z ≤ g. The net-in-flow Ψz of z is a vector on V and defined by
Ψz(v) = %z(v) − δz(v), where %z(v) :=

∑
[z(uv) : uv ∈ A] and δz(v) :=

∑
[z(vu) : uv ∈ A]. If m

is the net-in-flow of a vector z, then we also say that z is an m-flow.
A variation of Hoffman’s classic theorem on feasible circulations [24] is as follows.

Lemma 3.1. An integral vector m : V → Z is the net-in-flow of an integral feasible vector
(or in other words, there is an integer-valued feasible m-flow) if and only if m̃(V) = 0 and

% f (Z) − δg(Z) ≤ m̃(Z) holds whenever Z ⊆ V, (3.3)

where % f (Z) :=
∑

[ f (a) : a ∈ A and a enters Z] and δg(Z) :=
∑

[g(a) : a ∈ A and a leaves Z].

Define a set-function p f g on V by

p f g(Z) := % f (Z) − δg(Z).

Then p f g is (fully) supermodular (see, e.g. Proposition 1.2.3 in [12]). Consider the base-
polyhedron B f g := B′(p f g) and the M-convex set

....

B f g. By Lemma 3.1 the M-convex set
....

B f g

consists exactly of the net-in-flow integral vectors m.
By the algorithm described in Section 2, we can compute a decreasingly minimal ele-

ment of
....

B f g in strongly polynomial time. By relying on a strongly polynomial push-relabel
algorithm, we can check whether or not (3.3) holds. If it does not, then the push-relabel al-
gorithm can compute a set most violating (3.3) (that is, a maximizer of % f (Z)−δg(Z)−m̃(Z))
while if (3.3) does hold, then the push-relabel algorithm computes an integral valued fea-
sible m-flow. Therefore the requested oracles in the general algorithm for computing a
dec-min element are available through a network flow algorithm, and we do not have to
rely on a general-purpose submodular function minimizing oracle.

For the sake of an application of this algorithm to capacitated dec-min orientations in
Section 4.2, we remark that the algorithm can also be used to compute a dec-min element
of the M-convex set obtained from

....

B f g by translating it with a given integral vector.

3.3.2 Discrete version of Megiddo’s flow problem

Megiddo [31], [32] considered the following problem. Let D = (V, A) be a digraph endowed
with a non-negative capacity function g : A→ R+. Let S and T be two disjoint non-empty
subsets of V . Megiddo described an algorithm to compute a feasible flow from S to T with
maximum flow amount M for which the net-in-flow vector restricted on S is (in our terms)
increasingly maximal. Here a feasible flow is a vector x on A for which Ψx(v) ≤ 0 for
v ∈ S , Ψx(v) ≥ 0 for v ∈ T , and Ψx(v) = 0 for v ∈ V − (S ∪ T ). The flow amount x is∑

[Ψx(t) : t ∈ T ].
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We emphasize that Megiddo solved the continuous (fractional) case and did not consider
the corresponding discrete (or integer-valued) flow problem. To our knowledge, this natural
optimization problem has not been investigated so far.

To provide a solution, suppose that g is integer-valued. Let f ≡ 0 and consider the net-
in-flow vectors belonging to feasible vectors. These form a base-polyhedron B1 in RV . Let
B2 denote the base polyhedron obtained from B1 by intersecting it with the box defined by
z(v) ≤ 0 for v ∈ S , z(v) ≥ 0 for v ∈ T and z(v) = 0 for v ∈ V − (S ∪ T ).

The restriction of B2 to S is a g-polymatroid Q in RS . And finally, we can consider the
face of Q defined by z̃(S ) = −M. This is a base-polyhedron B3 in RS , and the discrete ver-
sion of Megiddo’s flow problem is equivalent to finding an inc-max element of

....

B3. (Recall
that an element of an M-convex set is dec-min precisely if it is inc-max.)

It can be shown that in this case again the general submodular function minimizing sub-
routine used in the algorithm to find a dec-min element of an M-convex set can be replaced
by a max-flow min-cut algorithm.

A recent paper [17] addresses a more general problem to find an integral feasible flow
that is dec-min on an arbitrarily specified edge set.

3.4 Further applications
3.4.1 Root-vectors of arborescences

A graph-example comes from packing arborescences. Let D = (V, A) be a digraph and
k > 0 an integer. We say that a non-negative integral vector m : V → Z+ is a root-vector
if there are k edge-disjoint spanning arborescences such that each node v ∈ V is the root of
m(v) arborescences. Edmonds [7] classic result on disjoint arborescences implies that m is
a root-vector if and only if m̃(V) = k and m̃(X) ≥ k − %(X) holds for every subset X with
∅ ⊂ X ⊂ V . Define set-function p by p(X) := k − %(X) if ∅ ⊂ X ⊆ V and p(∅) := 0. Then p
is intersecting supermodular, so B′(p) is an integral base-polyhedron. The intersection B of
B′(p) with the non-negative orthant is also a base-polyhedron, and the theorem of Edmonds
is equivalent to stating that a vector m is a root-vector if and only if m is in

....

B.
Therefore the general results on base-polyhedra can be specialized to obtain k disjoint

spanning arborescences whose root-vector is decreasingly minimal.

3.4.2 Connectivity augmentations

Let D = (V, A) be a directed graph and k > 0 an integer. We are interested in finding a
so-called augmenting digraph H = (V, F) of γ arcs for which D + H is k-edge-connected
or k-node-connected. In both cases, the in-degree vectors of the augmenting digraphs are
the integral elements of an integral base-polyhedron [11], [13]. Obviously, the in-degree
vectors of the augmented digraphs are the integral elements of an integral base-polyhedron.

Again, our results on general base-polyhedra can be specialized to find an augmenting
digraph whose in-degree vector is decreasingly minimal.
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4 Orientations of graphs
Let G = (V, E) be an undirected graph. For X ⊆ V , let iG(X) denote the number of edges
induced by X while eG(X) is the number of edges with at least one end-node in X. Then iG
is supermodular, eG is submodular, and they are complementary functions, that is, iG(X) =

eG(V) − eG(V − X). Let BG := B(eG) = B′(iG) denote the base-polyhedron defined by eG or
iG.

We say that a function m : V → Z is the in-degree vector of an orientation D of G if
%D(v) = m(v) for each node v ∈ V . An in-degree vector m obviously meets the equality
m̃(V) = |E|. The following basic result, sometimes called the Orientation lemma, is due to
Hakimi [19].

Lemma 4.1 (Orientation lemma). Let G = (V, E) be an undirected graph and m : V → Z
an integral vector for which m̃(V) = |E|. Then G has an orientation with in-degree vector
m if and only if

m̃(X) ≤ eG(X) for every subset X ⊆ V , (4.1)

which is equivalent to

m̃(X) ≥ iG(X) for every subset X ⊆ V . (4.2)

This immediately implies the following claim.

Claim 4.2. The in-degree vectors of orientations of G are precisely the integral elements of
base-polyhedron BG (= B(eG) = B′(iG)), that is, the set of in-degree vectors of orientations
of G is the M-convex set

....

BG.

The proof of Lemma 4.1 is algorithmic (see, e.g., Theorem 2.3.2 of [12]) and the orien-
tation corresponding to a given m can be constructed easily.

4.1 Decreasingly minimal orientations
Due to Claim 4.2, we can apply the results on dec-min elements to the special base-
polyhedron BG. Borradaile et al. [4] called an orientation of G egalitarian if its in-degree
vector is decreasingly minimal but we prefer the term dec-min orientation since an orienta-
tion with an increasingly maximal in-degree vector also has an intuitive egalitarian feeling.
Such an orientation is called inc-max. Theorem 2.1 immediately implies the following.

Corollary 4.3. An orientation of G is dec-min if and only if it is inc-max.

Note that the term dec-min orientation is asymmetric in the sense that it refers to in-
degree vectors. One could also aspire for finding an orientation whose out-degree vector
is decreasingly minimal. But this problem is clearly equivalent to the in-degree version
and hence in the present work we do not consider out-degree vectors, apart from a single
exception in Section 4.5.

By Theorem 2.1, an element m of
....

BG is decreasingly minimal if and only if there is no
1-tightening step for m. What is the meaning of a 1-tightening step in terms of orientations?
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Claim 4.4. Let D be an orientation of G with in-degree vector m. Let t and s be nodes of
G. The vector m′ := m + χs − χt is in BG if and only if D admits a dipath from s to t.

Proof. m′ ∈ BG holds precisely if there is no ts-set X which is tight with respect to iG, that
is, m̃(X) = iG(X). Since %(Y) + iG(Y) =

∑
[%(v) : v ∈ Y] = m̃(Y) holds for any set Y ⊆ V ,

the tightness of X is equivalent to requiring that %(X) = 0. Therefore m′ ∈ BG if and only if
%(Y) > 0 holds for every ts-set Y , which is equivalent to the existence of a dipath of D from
s to t.

Recall that a 1-tightening step at a member m of BG consists of replacing m by m′ pro-
vided that m(s) ≥ m(t) + 2 and m′ ∈ BG. By Claim 4.4, a 1-tightening step at a given
orientation of G corresponds to reorienting an arbitrary dipath from a node s to node t for
which %(s) ≥ %(t) + 2. Therefore, Theorem 2.1 immediately implies the following basic
theorem of Borradaile et al. [4].

Theorem 4.5 (Borradaile et al. [4]). An orientation D of a graph G = (V, E) is decreasingly
minimal if and only if no dipath exists from a node s to a node t for which %(t) ≥ %(s) + 2.

Note that this theorem also implies Corollary 4.3. It immediately gives rise to an algo-
rithm for finding a dec-min orientation. Namely, we start with an arbitrary orientation of G.
We call a dipath feasible if %(t) ≥ %(s) + 2 holds for its starting node s and end-node t. The
algorithm consists of reversing feasible dipaths as long as possible. Since the sum of the
squares of in-degrees always drops when a feasible dipath is reversed, and originally this
sum is at most |E|2, the dipath-reversing procedure terminates after at most |E|2 reversals.
By Theorem 4.5, when no more feasible dipath exists, the current orientation is dec-min.
The basic algorithm concerning general base-polyhedra in Section 2.1 is nothing but an
extension of the algorithm of Borradaile et al.

It should be noted that they suggested to choose at every step the current feasible dipath
in such a way that the in-degree of its end-node t is as high as possible, and they proved that
the algorithm in this case terminates after at most |E||V | dipath reversals.

Note that we obtained Corollary 4.3 as a special case of a result on M-convex sets but it
is also a direct consequence of Theorem 4.5.

4.2 Capacitated orientation
Consider the following capacitated version of the basic dec-min orientation problem of
Borradaile et al. [4]. Suppose that a positive integer `(e) is assigned to each edge e of G.
Denote by G+ the graph arising from G by replacing each edge e of G with `(e) parallel
edges. Our goal is to find a dec-min orientation of G+. In this case, an orientation of G+ is
described by telling that, among the `(e) parallel edges connecting the end-nodes u and v
of e how many are oriented toward v (implying that the rest of the `(e) edges are oriented
toward u). In principle, this problem can be solved by applying the algorithm described
above to G+, and this algorithm is satisfactory when ` is small in the sense that its largest
value can be bounded by a power of |E|. The difficulty in the general case is that the
algorithm will be polynomial only in the number of edges of G+, that is, in ˜̀(E), and hence
this algorithm is not polynomial in |E|.
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We show how the algorithm in Section 3.3.1 can be used to solve the decreasingly min-
imal orientation problem in the capacitated case in strongly polynomial time. To this end,
let D = (V, A) be an arbitrary orientation of G serving as a reference orientation. Define a
capacity function g on A by g(~e) := `(e), where ~e denotes the arc of D obtained by orienting
e.

We associate an orientation of G+ with an integral vector z : A → Z+ with z ≤ g as
follows. For an arc uv of D, orient z(uv) parallel copies of e = uv ∈ E toward v and
g(uv) − z(uv) parallel copies toward u. Then the in-degree of a node v is mz(v) := %z(v) +

δg−z(v) = %z(v) − δz(v) + δg(v). Therefore our goal is to find an integral vector z on A for
which 0 ≤ z ≤ g and the vector mz on V is dec-min. Consider the set of net-in-flow vectors
{(Ψz(v) : v ∈ V) : 0 ≤ z ≤ g}. In Section 3.3.1, we proved that this is a base-polyhedron B1.
Therefore the set of vectors (mz(v) : v ∈ V) is also a base-polyhedron B arising from B1 by
translating B1 with the vector (δg(v) : v ∈ V).

As remarked at the end of Section 3.3.1, a dec-min element of
....

B can be computed in
strongly polynomial time by relying on a push-relabel subroutine for network flows (and
not using a general-purpose submodular function minimizer).

4.3 Canonical chain and essential value-sequence for orientations

In Section 2.2, we described Algorithm 2.2 for an arbitrary M-convex set
....

B that computes,
from a given dec-min element m of

....

B, the canonical chain and essential value-sequence
belonging to

....

B. That algorithm needed an oracle for computing the smallest m-tight set
Tm(u) containing u. Here we show how this general algorithm can be turned into a pure
graph-algorithm in the special case of dec-min orientations.

To this end, consider the special M-convex set, denoted by
....

BG, consisting of the in-
degree vectors of the orientations of an undirected graph G = (V, E). By the Orientation
lemma, BG = B′(iG) where iG(X) denotes the number of edges induced by X. Recall that
iG is a fully supermodular function. For an orientation D of G with in-degree vector m, the
smallest m-tight set Tm(t) (with respect to iG) containing a node t will be denoted by TD(t).

Claim 4.6. Let D be an arbitrary orientation of G with in-degree vector m. (A) A set X ⊆ V
is m-tight (with respect to iG) if and only if %D(X) = 0. (B) The smallest m-tight set TD(t)
containing a node t is the set of nodes from which t is reachable in D.

Proof. We have

%D(X) + iG(X) =
∑

[%D(v) : v ∈ X] = m̃(X) ≥ iG(X),

from which X is m-tight (that is, m̃(X) = iG(X)) precisely if %D(X) = 0, and Part (A) follows.
Therefore the smallest m-tight set TD(t) containing t is the smallest set containing t with in-
degree 0, and hence TD(t) is indeed the set of nodes from which t is reachable in D, as stated
in Part (B).

By Claim 4.6, TD(t) is easily computable, and hence Algorithm 2.2 for general M-convex
sets can easily be specialized to graph orientations. By applying Theorem 2.2 to p := iG
and recalling from Claim 4.6 that Ci is m-tight, in the present case, precisely if %D(Ci) = 0,
we obtain the following.
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Theorem 4.7. An orientation of D of G is dec-min if and only of %D(Ci) = 0 for each
member Ci of the canonical chain and βi − 1 ≤ %D(v) ≤ βi holds for every node v ∈ S i

(i = 1, . . . , q).

We remark that the members of the canonical partition computed by our algorithm for
....

BG

is exactly the non-empty members of the so-called density decomposition of G introduced
by Borradaile et al. [5].

4.4 Cheapest dec-min orientations
It is indicated in [16] that, in decreasing minimization on an M-convex set in general, we
can construct an algorithm to compute a cheapest dec-min element with respect to a given
(linear) cost-function on the ground-set. In the special case of dec-min orientations, this
means that if c is a cost-function on the node-set of G = (V, E), then we have an algorithm
to compute a dec-min orientation of G for which

∑
[c(v)%(v) : v ∈ V] is minimum.

But the question remains: what happens if, instead of a cost-function on the node-set,
we have a cost-function c on ~E2, where ~E2 arises from E by replacing each element e = uv
(= vu) of E by two oppositely oriented arcs uv and vu, and we are interested in finding a
cheapest orientation with specified properties? (As an orientation of e consists of replacing
e by one of the two arcs uv and vu and the cost of its orientation is, accordingly, c(uv) or
c(vu). Therefore we can actually assume that min{c(uv), c(vu)} = 0.)

It is important to remark that the standard minimum cost in-degree constrained orienta-
tion problem itself can be reduced with a well-known technique to a minimum cost feasible
flow problem in a digraph with small integral capacities. This latter problem is tractable
in strongly polynomial time via the classic min-cost flow algorithm of Ford and Fulkerson
(that is, we do not need the more sophisticated min-cost flow algorithm of Tardos, which
is strongly polynomial for an arbitrary capacity). Actually, we shall need a version of this
minimum cost orientation problem when some of the edges are already oriented, and this
slight extension is also tractable by network flows.

Theorem 4.7 implies that the problem of finding a cheapest dec-min orientation is equiv-
alent to finding a cheapest in-degree constrained orientation by orienting edges connecting
Ci and V − Ci toward V − Ci (i = 1, . . . , q). Here the in-degree constraints are given by
βi − 1 ≤ %D(v) ≤ βi for v ∈ S i (i = 1, . . . , q).

Note that Harada et al. [20] provided a direct algorithm for the minimum cost version of
the so-called semi-matching problem, which problem includes the minimum cost dec-min
orientation problem. For this link, see Section 5.4.

4.5 Orientation with dec-min in-degree vector and dec-min out-degree
vector

We mentioned that dec-min and inc-max orientations always concern in-degree vectors. As
an example to demonstrate the advantage of the general base-polyhedral view, we outline
here one exception when in-degree vectors and out-degree vectors play a symmetric role.
The problem is to characterize undirected graphs admitting an orientation which is both
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Section 5. In-degree constrained orientations of graphs 19

dec-min with respect to its in-degree vector and dec-min with respect to its out-degree
vector.

For the present purposes, we let dG denote the degree vector of G, that is, dG(v) is the
number of edges incident to v ∈ V . (This notation differs from the standard set-function
meaning of dG.)

Let Bin denote the convex hull of the in-degree vectors of orientations of G, and Bout the
convex hull of out-degree vectors of orientations of G. (Earlier Bin was denoted by BG but
now we have to deal with both out-degrees and in-degrees.) As before,

....

Bin is the set of in-
degree vectors of orientations of G, and

....

Bout is the set of out-degree vectors of orientations
of G. Let

....

B•in denote the set of dec-min in-degree vectors of orientations of G, and
....

B•out the
set of dec-min out-degree vectors of orientations of G. By Theorem 2.3, both

....

B•in and
....

B•out
are matroidal M-convex sets.

Note that the negative of a (matroidal) M-convex set is also a (matroidal) M-convex set,
and the translation of a (matroidal) M-convex set by an integral vector is also a (matroidal)
M-convex set. Therefore dG −

....

B•out is a matroidal M-convex set. Clearly, a vector min is the
in-degree vector of an orientation D of G precisely if dG −min is the out-degree vector of D.

We are interested in finding an orientation whose in-degree vector is dec-min and whose
out-degree vector is dec-min. This is equivalent to finding a member min of

....

B•in for which
the vector mout := dG−min is in the matroidal M-convex set

....

B•out. But this latter is equivalent
to requiring that min is in the M-convex set dG −

....

B•out. That is, the problem is equivalent
to finding an element of the intersection of the matroidal M-convex sets

....

B•in and dG −
....

B•out.
This latter problem can be solved by Edmonds matroid intersection algorithm [8].

5 In-degree constrained orientations of graphs
In this section we first describe an algorithm to find a dec-min in-degree constrained orienta-
tion. Second, we develop a complete description of the set of dec-min in-degree constrained
orientations, which gives rise to an algorithm to compute a cheapest dec-min in-degree con-
strained orientation.

5.1 Computing a dec-min in-degree constrained orientation
Let f : V → Z ∪ {−∞} be a lower bound function and g : V → Z ∪ {+∞} an upper bound
function for which f ≤ g. We are interested in in-degree constrained orientations D of
G, by which we mean that f (v) ≤ %D(v) ≤ g(v) for every v ∈ V . Such an orientation is
called ( f , g)-bounded, and we assume that G has such an orientation. (By a well-known
orientation theorem, such an orientation exists if and only if iG ≤ g̃ and f̃ ≤ eG.

As before, let
....

BG denote the M-convex set of the in-degree vectors of orientations of G,
and let

....

B�G denote the intersection of
....

BG with the integral box T ( f , g). That is,
....

B�G is the
set of in-degree vectors of ( f , g)-bounded orientations of G. Let D be an ( f , g)-bounded
orientation of G with in-degree vector m. We denote the smallest tight set containing a
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5.1 Computing a dec-min in-degree constrained orientation 20

node t by T �D(t) (= T �m(t)). By applying Claim 2.4 to
....

B�G, we obtain that

T �D(t) =

{t} if %D(t) = f (t),
TD(t) − {s : %D(s) = g(s)} if %D(t) > f (t),

(5.1)

implying that, in case %D(t) > f (t), the set T �D(t) consists of those nodes s from which t is
reachable and for which %D(s) < g(s).

Formula (5.1) implies for distinct nodes s and t that the vector m′ := m + χs − χt belongs
to

....

B�G precisely if there is an st-dipath (i.e. a dipath from s to t) for which %D(s) < g(s)
and %D(t) > f (t). We call such a dipath P of D reversible. Note that the dipath P′ of D′

obtained by reorienting P is reversible in D′.
If P is a reversible st-dipath of D for which %D(t) ≥ %D(s) + 2, then the orientation D′

is decreasingly smaller than D. We call such a dipath improving. Therefore, reorienting
an improving st-dipath corresponds to a 1-tightening step. Hence Theorem 2.1 implies the
following extension of Theorem 4.5.

Theorem 5.1. An ( f , g)-bounded orientation D of G is dec-min if and only if there is no
improving dipath, that is, a dipath from a node s to a node t for which %D(t) ≥ %D(s) + 2,
%D(s) < g(s), and %D(t) > f (t).

In Section 2.1 we have presented an algorithm that computes a dec-min element of an
arbitrary M-convex set. By specializing it to

....

B�G, we conclude that in order to construct
a dec-min ( f , g)-bounded orientation of G, one can start with an arbitrary ( f , g)-bounded
orientation, and then reorient (currently) improving dipaths one by one, as long as such a
dipath exists. As we pointed out after Theorem 4.5, after at most |E|2 improving dipath
reorientations, the algorithm terminates with a dec-min ( f , g)-bounded orientation of G.

Canonical chain and essential value-sequence for ( f , g)-bounded orientations In Sec-
tion 2.2, we indicated that Algorithm 2.2 can immediately be applied to compute the canon-
ical chain, the canonical partition, and the essential value-sequence belonging to the inter-
section

....

B� of an arbitrary M-convex set
....

B with an integral box T ( f , g).
This algorithm needs only the original subroutine to compute Tm(u) since, by Claim

2.4, T �m(u) is easily computable from Tm(u). As we indicated above, in the special case of
orientations, the corresponding sets TD(t) and T �D(t) are immediately computable from D.
Therefore this extended algorithm can be used in the special case when we are interested
in dec-min ( f , g)-bounded orientations of G = (V, E). The algorithm starts with a dec-min
( f , g)-bounded orientation D of G and outputs the canonical chain C� = {C�1 , . . . ,C

�
q }, the

canonical partition P� = {S �1 , . . . , S
�
q}, and the essential value-sequence β�1 > · · · > β�q . In

view of Theorem 2.2, we also define bounding functions f ∗ and g∗ as

f ∗(v) := β�i − 1 if v ∈ S i (i = 1, . . . , q),
g∗(v) := β�i if v ∈ S i (i = 1, . . . , q).

We say that the small box
T ∗ := T ( f ∗, g∗) (5.2)
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5.2 Cheapest dec-min in-degree constrained orientations 21

belongs to
....

B�G. Clearly, f ≤ f ∗ and g∗ ≤ g, and hence T ( f ∗, g∗) ⊆ T ( f , g). In Section 5.2
below we assume that these data are available.

Remark 5.1. A special case of in-degree constrained orientations is when we have a pre-
scribed subset T of V and a non-negative function mT : T → Z+ serving as an in-degree
specification on T , and we are interested in orientations of G for which %(v) = mT (v) holds
for every t ∈ T . We call such an orientation T -specified. This notion will have applications
in Section 5.4.

5.2 Cheapest dec-min in-degree constrained orientations
We are given a cost-function c on the possible orientations of the edges of G and our goal
is to find a cheapest dec-min ( f , g)-bounded orientation of G. This will be done with the
help of a purely graphical description of the set of all dec-min ( f , g)-bounded orientations,
which is given in Theorem 5.3.

As a preparation, we derive the following claim as an immediate consequence of the
structural result stated in Theorem 2.3. Let m be a dec-min element of an M-convex set

....

B
on ground-set S . Suppose that m′ := m + χs − χt is in

....

B (that is, s ∈ Tm(t)). Since m is
dec-min, m(t) ≤ m(s) + 1. If m(t) = m(s) + 1, then m′ and m are value-equivalent and hence
m′ is also a dec-min element of

....

B. We say that m′ is obtained from m by an elementary
step.

Claim 5.2. Any dec-min element of
....

B can be obtained from a given dec-min element m by
a sequence of at most |S | elementary steps.

Proof. By Theorem 2.3, the set of dec-min elements of
....

B is a matroidal M-convex set in
the sense that it can be obtained from a matroid M∗ by translating the incidence vectors
of the bases of M∗ by the same integral vector ∆∗. A simple property of matroids is that
any basis can be obtained from a given basis through a sequence of at most |S | bases such
that each member of the series can be obtained from the preceding one by taking out one
element and adding a new one. The corresponding change in the translated vector is exactly
an elementary step.

For a subset E0 ⊆ E and for an orientation A0 of E0, we say that an orientation D of G is
A0-extending if every element e of E0 is oriented in D in the same direction as in A0.

Theorem 5.3. Let G = (V, E) be an undirected graph admitting an ( f , g)-bounded orienta-
tion. Let

....

B�G denote the M-convex set consisting of the in-degree vectors of ( f , g)-bounded
orientations of G, and let T ∗ be the small box, belonging to

....

B�G, as defined in (5.2). There
are a subset E0 of E and an orientation A0 of E0 such that an ( f , g)-bounded orientation D
of G is a dec-min ( f , g)-bounded orientation if and only if D is an orientation of G extending
A0 and the in-degree vector of D belongs to T ∗.

Proof. Let D be a dec-min ( f , g)-bounded orientation of G, and let m denote its in-degree
vector. Consider the canonical chain C� = {C�1 , . . . ,C

�
q }, the canonical partition P� =

{S �1 , . . . , S
�
q}, and the essential value-sequence β�1 > · · · > β

�
q belonging to

....

B�G.
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For i ∈ {1, . . . , q}, define

Fi := {v : v ∈ S �i , f (v) = β�i }.

Since f (v) ≤ m(v) ≤ β�i holds for every element v of S �i , we obtain that f (v) = m(v) = β�i
for v ∈ Fi. Note that Fi does not depend on D.

Claim 5.4. For every h = 1, . . . , i, there is no dipath P from a node s ∈ V − C�i with
m(s) < g(s) to a node t ∈ S �h with β�h > f (t).

Proof. Suppose indirectly that there is such a dipath P. If m(t) = β�h , then P would be
an improving dipath which is impossible since D is dec-min ( f , g)-bounded. Therefore
m(t) = β�h − 1. But a property of the canonical partition is that there is an element t′ of
S �h − Fh for which m(t′) = β�h and t ∈ T �D(t′). This means that t′ is reachable from t in D,
and therefore there is a dipath from s to t′ in D which is improving, a contradiction again.

We are going to define a chain Z of subsets Z1 ⊇ Z2 ⊇ · · · ⊇ Zq (= ∅) of V with the help
of D, and will show that this chain actually does not depend on D. Let

Zi := {t : t is reachable in D from a node s ∈ V −C�i with %D(s) < g(s)}. (5.3)

Note that Zi−1 ⊇ Zi follows from the definition, where equality holds precisely if %D(s) =

g(s) for each s ∈ S i.

Lemma 5.5. Every dec-min ( f , g)-bounded orientation defines the same familyZ.

Proof. By Claim 5.2, it suffices to prove that a single elementary step does not change Z.
An elementary step in

....

B�G corresponds to the reorientation of an st-dipath P in D where
s, t ∈ S �h − Fh, m(t) = β�h and m(s) = β�h − 1 hold for some h ∈ {1, . . . , q}. We will show for
i ∈ {1, . . . , q} that the reorientation of P does not change Zi.

If h ≤ i, then Claim 5.4 implies that Zi ∩ S �h ⊆ Fh. Since δD(Zi) = 0, the dipath P is
disjoint from Zi, implying that reorienting P does not affect Zi.

Suppose now that h ≥ i + 1. Since reorienting P results in a dec-min ( f , g)-bounded
orientation D′, we get that m(s) + 1 ≤ g(s) and hence s ∈ Zi − C�i . Since δD(Zi) = 0, we
obtain that t ∈ Zi − C�i . Since %D′(t) = %D(t) − 1 < g(t) and the set of nodes reachable from
s in D is equal to the set of nodes reachable from t in D′, it follows that the reorientation of
P does not change Zi.

Let E0 consist of those edges of G which connect Zi with V−Zi for some i = 1, . . . , q. Let
A0 denote the orientation of E0 obtained by orienting each edge connecting Zi and V − Zi

toward Zi.

Lemma 5.6. The subset E0 ⊆ E and its orientation A0 meet the requirements in the theorem.

Proof. Consider first an arbitrary dec-min ( f , g)-bounded orientation D of G. Then δD(Zi) =

0 and hence D extends A0. Moreover, by a basic property of the canonical chain, the in-
degree vector of D belongs to T ∗.

Conversely, let D be an orientation of G extending A0 whose in-degree vector belongs to
T ∗, that is,

f ∗(v) ≤ %D(v) ≤ g∗(v) for every v ∈ V .

Then D is clearly ( f , g)-bounded.
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Claim 5.7. There is no improving dipath in D.

Proof. Suppose, indirectly, that P is an improving st-dipath, that is, a dipath from s to t
such that %D(t) ≥ %D(s) + 2, %D(t) > f (t), and %D(s) < g(s). Suppose that t is in S �i for some
i ∈ {1, . . . , q}. If s is in S �k for some k ∈ {1, . . . , q}, then

β�k − 1 ≤ %D(s) ≤ %D(t) − 2 ≤ β�i − 2,

that is, β�k < β�i , and hence k > i, implying that s is in V − C�i . This and %D(s) < g(s)
imply that s is in Zi. Furthermore, β�i ≥ %D(t) > f (t) implies that t is not in Fi, and since
S �i ∩ Zi ⊆ Fi, we obtain that t is not in Zi. On the other hand, we must have t ∈ Zi, since
there is a dipath from s ∈ V −C�i to t and %D(s) < g(s). This is a contradiction.

By proving Claim 5.7, we have shown Lemma 5.6. Thus the proof of Theorem 5.3 is
completed.

Algorithm for computing a cheapest dec-min ( f , g)-bounded orientation First we
compute a dec-min ( f , g)-bounded orientation D of G with the help of the algorithm out-
lined in Section 5.1. Second, by applying the algorithm described in the same section, we
compute the canonical chain and partition belonging to

....

B�G along with the essential value-
sequence. Once these data are available, the sets Zi (i = 1, . . . , q) defined in (5.3) are easily
computable. Lemma 5.5 ensures that these sets Zi do not depend on the starting dec-min
( f , g)-bounded orientation D. Let E0 be the union of the set of edges connecting some Zi

with V−Zi, and define the orientation A0 of E0 by orienting each edge between Zi and V−Zi

toward Zi.
Theorem 5.3 implies that, once E0 and its orientation A0 are available, the problem of

computing a cheapest dec-min ( f , g)-bounded orientation of G reduces to finding cheapest
in-degree constrained (namely, ( f ∗, g∗)-bounded) orientation of a mixed graph. We indi-
cated already in Section 4.4 that such a problem is easily solvable by the strongly polyno-
mial min-cost flow algorithm of Ford and Fulkerson in a digraph with identically 1 capaci-
ties.

Remark 5.2. In Section 4.2 we have considered the capacitated dec-min orientation prob-
lem in the basic case where no in-degree constraints are imposed. With the technique pre-
sented there, we can cope with the capacitated, min-cost, in-degree constrained variants as
well. Furthermore, the algorithms above can easily be extended, with a slight modification,
to the case when one is interested in orientations of mixed graphs.

5.3 Dec-min ( f , g)-bounded orientations minimizing the in-degree of
T

One may consider ( f , g)-bounded orientations of G when the additional requirement is im-
posed that the in-degree of a specified subset T of nodes be as small as possible. We shall
show that these orientations of G can be described as ( f ′, g′)-bounded orientations of a
mixed graph arising from G by orienting the edges between a certain subset XT of nodes
and its complement V − XT toward V − XT .
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It is more comfortable, however, to show the analogous statement for a general M-convex
set

....

B′(p) ⊆ ZV defined by a (fully) supermodular function p for which
....

B� :=
....

B′(p)∩T ( f , g)
is non-empty. (Here, instead of the usual S , we use V to denote the ground-set of the general
M-convex set. We are back at the special case of graph orientations when p = iG.) We
assume that each of p, f , and g is finite-valued.

Let p� denote the unique (fully) supermodular function defining B�. This function can
be expressed with the help of p, f , and g, as follows (see, for example, Theorem 14.3.9 in
[12]):

p�(Y) = max{p(X) + f̃ (Y − X) − g̃(X − Y) : X ⊆ V} (Y ⊆ V). (5.4)

As B� is defined by the supermodular function p� (that is, B� = B′(p�)), we have

min{m̃(T ) : m ∈
....

B�} = p�(T ). (5.5)

This implies that the set of elements of
....

B� minimizing m̃(T ) is itself an M-convex set.
Namely, it is the set of integral elements of the base-polyhedron arising from B� by taking
its face defined by {m ∈ B� : m̃(T ) = p�(T )}. The next theorem shows how this M-convex
set can be described in terms of f , g, and p, without referring to p�.

Theorem 5.8. There is a box T ( f ′, g′) ⊆ T ( f , g) and a subset XT ⊆ V such that an element
m ∈

....

B� minimizes m̃(T ) if and only if m̃(XT ) = p(XT ) and m ∈
....

B ∩ T ( f ′, g′).

Proof. Let XT be a set maximizing the right-hand side of (5.4).

Claim 5.9. An element m ∈
....

B� is a minimizer of the left-hand side of (5.5) if and only if the
following three optimality criteria hold:

m̃(XT ) = p(XT ),
v ∈ T − XT implies m(v) = f (v),
v ∈ XT − T implies m(v) = g(v).

Proof. For any m ∈
....

B� and X ⊆ V , we have m̃(T ) = m̃(X) + m̃(T − X)− m̃(X − T ) ≥ p(X) +

f̃ (T−X)−g̃(X−T ). Here we have equality if and only if m̃(X) = p(X), m̃(T−X) = f̃ (T−X),
and m̃(X − T ) = g̃(X − T ), implying the claim.

Define f ′ and g′ as follows:

f ′(v) :=

g(v) if v ∈ XT − T,
f (v) if v ∈ V − (XT − T ),

(5.6)

g′(v) :=

 f (v) if v ∈ T − XT ,

g(v) if v ∈ V − (T − XT ).
(5.7)

The claim implies that T ( f ′, g′) and XT meet the requirement of the theorem.

As the set of elements of
....

B� minimizing m̃(T ) is itself an M-convex set, all the algo-
rithms developed earlier can be applied once we are able to compute set XT occurring in
Theorem 5.8. (By definitions (5.6) and (5.7), XT immediately determines f ′ and g′).
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The following straightforward algorithm computes an element m ∈
....

B� minimizing the
left-hand side of (5.5) and a subset XT maximizing the right-hand side of (5.4). Start with an
arbitrary element m ∈

....

B�. By an improving step we mean the change of m to m′ := m+χs−χt

for some elements s ∈ V −T, t ∈ T for which m(s) < g(s), m(t) > f (t), and s ∈ Tm(t), where
Tm(t) is the smallest m-tight set (with respect to p) containing t. Clearly, m′ ∈

....

B�, and
m̃′(T ) = m̃(T ) − 1. The algorithm applies improving steps as long as possible. When no
more improving step exists, the set XT := ∪(Tm(t) : t ∈ T,m(t) > f (t)) meets the three
optimality criteria. The algorithm is polynomial if |p(X)| is bounded by a polynomial of |V |.

By applying Theorem 5.8 to the special case of p = iG, we obtain the following.

Corollary 5.10. Let G = (V, E) be a graph admitting an ( f , g)-bounded orientation. There
is a box T ( f ′, g′) ⊆ T ( f , g) and a subset XT ⊆ V such that an ( f , g)-bounded orientation of
G minimizes the in-degree of T if and only if D is an ( f ′, g′)-bounded orientation for which
%D(XT ) = 0.

In this case, the algorithm above to compute XT starts with an ( f , g)-bounded orientation
D of G, whose in-degree vector is denoted by m. As long as there is an st-dipath P with
s ∈ V − T, t ∈ T,m(s) < g(s), and m(t) > f (t), reorient P. When no such a dipath exists
anymore, the set XT of nodes from which a node t ∈ T with m(t) > f (t) is reachable
in D, along with the bounding functions f ′ and g′ defined in (5.6) and in (5.7), meet the
requirement in the corollary.

Minimum cost version It follows that, in order to compute a minimum cost dec-min
( f , g)-bounded orientation for which the in-degree of T is minimum, we can apply the
algorithm described in Section 5.2 for the mixed graph obtained from G by orienting each
edge between XT and V − XT toward V − XT .

Remark 5.3. Instead of a single subset T of V , we may consider a chain T of subsets
T1 ⊂ T2 ⊂ · · · ⊂ Th of V . Then T defines a face B�face of the base-polyhedron B�. Namely,
an element m of B� belongs to B�face precisely if m̃(Ti) = p�(Ti) for each i ∈ {1, . . . , h}.
This implies that the integral elements of B�face simultaneously minimize m̃(Ti) for each
i ∈ {1, . . . , h} (over the elements of

....

B�). Therefore, we can consider ( f , g)-bounded orien-
tations of G with the additional requirement that each of the in-degrees of T1,T2, . . . ,Th is
(simultaneously) minimum. Corollary 5.10 can be extended to this case, implying that we
have an algorithm to compute a minimum cost dec-min ( f , g)-bounded orientation of G that
simultaneously minimizes the in-degree of each member of the chain {T1,T2, . . . ,Th}.

5.4 Application in resource allocation: semi-matchings

For a general M-convex set
....

B, it is shown in [16, Section 6] that for an element m of
....

B
the following properties are equivalent: (A) m is dec-min, (B) the square-sum of the
components is minimum, (C) the difference-sum of the components of m is minimum.
Therefore the corresponding equivalences hold in the special case of in-degree constrained
(in particular, T -specified) orientations of undirected graphs.
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As an application of this equivalence, we show first how a result of Harvey et al. [21]
concerning a resource allocation problem follows immediately. They introduced the notion
of a semi-matching of a simple bipartite graph G = (S ,T ; E) as a subset F of edges for
which dF(t) = 1 holds for every node t ∈ T , and solved the problem of finding a semi-
matching F for which

∑
[dF(s)(dF(s)+1) : s ∈ S ] is minimum. The problem was motivated

by practical applications in the area of resource allocation in computer science. Note that∑
[dF(s)(dF(s) + 1) : s ∈ S ] =

∑
[dF(s)2 : s ∈ S ] +

∑
[dF(s) : s ∈ S ]

=
∑

[dF(s)2 : s ∈ S ] + |F| =
∑

[dF(s)2 : s ∈ S ] + |T |,

and therefore the problem of Harvey et al. is equivalent to finding a semi-matching F of G
that minimizes the square-sum of degrees in S .

By orienting each edge in F toward S and each edge in E−F toward T , a semi-matching
can be identified with the set of arcs directed toward S in an orientation of G = (S ,T ; E) in
which the out-degree of every node t ∈ T is 1 (that is, %(t) = dG(t) − 1), and dF(s) = %(s)
for each s ∈ S . Since %(t) for t ∈ T is the same in these orientations, it follows that the total
sum of %(v)2 over S ∪ T is minimized precisely if

∑
[%(s)2 : s ∈ S ] =

∑
[dF(s)2 : s ∈ S ] is

minimized. Therefore the semi-matching problem of Harvey et al. is nothing but a special
dec-min T -specified orientation problem. Note that not only semi-matching problems can
be managed with graph orientations, but conversely, an orientation of a graph G = (V, E) can
also be interpreted as a semi-matching of the bipartite graph obtained from G by subdividing
each edge by a new node. This implies, for example, that the algorithm of Harvey et al. to
compute a semi-matching minimizing

∑
[dF(v)2 : v ∈ S ] is able to compute an orientation

of a graph G for which
∑

[%(v)2 : v ∈ S ] is minimum. Furthermore, an orientation of a
hypergraph means that we assign an element of each hyper-edge Z to Z as its head. In this
sense, semi-matchings of bipartite graphs and orientations of hypergraphs are exactly the
same. Several graph orientation results have been extended to hypergraph orientation, for
an overview, see, e.g. [12].

Bokal et al. [3] extended the results to subgraphs of G meeting a more general degree-
specification on T when, rather than the identically 1 function, one imposes an arbitrary
degree-specification mT on T satisfying 0 ≤ mT (t) ≤ dG(t) (t ∈ T ). The same orientation
approach applies in this more general setting. We may call a subset F of edges an mT -semi-
matching if dF(t) = mT (t) for each t ∈ T . The extended resource allocation problem is to
find an mT -semi-matching F that minimizes

∑
[dF(s)2 : s ∈ S ]. This is equivalent to finding

a T -specified orientation of G for which the square-sum of the in-degrees is minimum and
the in-degree specification in t ∈ T is m′T (t) := dG(t) − mT (t). Therefore this extended
resource allocation problem is equivalent to finding a dec-min T -specified orientation of G.

The same orientation approach, when applied to in-degree constrained orientations, al-
lows us to extend the mT -semi-matching problem when we have upper and lower bounds
imposed on the nodes in S . This may be a natural requirement in practical applications
where the elements of S correspond to available resources (e.g. computers), the elements
of T correspond to users, and we are interested in a fair (= dec-min = square-sum min-
imizer) distribution (=mT -semi-matchings) of the resources when the load (or burden) of
each resource is requested to meet a specified upper and/or lower bound. Note that in the
resource allocation framework, the degree dF(s) of node s ∈ S may be interpreted as the
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burden of s, and hence a difference-sum minimizer semi-matching minimizes the total sum
of burden-differences.

Katrenič and Semanišin [29] investigated the problem of finding a dec-min ‘maximum
( f , g)-semi-matching’ problem where there is a lower-bound function fT on T and an upper
bound function gS on S (in the present notation) and one is interested in maximum car-
dinality subgraphs of G meeting these bounds. They describe an algorithm to compute a
dec-min subgraph of this type. With the help of the orientation model discussed in Section
5.3 (where, besides the in-degree bounds on the nodes, the in-degree of a specified subset T
was requested to be minimum), we have a strongly polynomial algorithm for an extension
of the model of [29] when there may be upper and lower bounds on both S and T . Actually,
even the minimum cost version of this problem was solved in Section 5.3.

In another variation, we also have degree bounds ( fS , gS ) on S and ( fT , gT ) on T , but
we impose an arbitrary positive integer γ for the cardinality of F. We consider degree-
constrained subgraphs (S ,T ; F) of G for which |F| = γ, and want to find such a subgraph
for which

∑
[dF(s)2 : s ∈ S ] is minimum. (Notice the asymmetric role of S and T .) This is

equivalent to finding an in-degree constrained orientation D of G for which %D(S ) = γ and∑
[%D(s)2 : s ∈ S ] is minimum. Here the corresponding in-degree bound ( f , g) on S is the

given ( fS , gS ) while ( f , g) on T is defined for t ∈ T by

f (t) := dG(t) − gT (t) and g(t) := dG(t) − fT (t).

Let B denote the base-polyhedron spanned by the in-degree vectors of the degree-con-
strained orientations of G. Then the restriction of B to S is a g-polymatroid Q. By intersect-
ing Q with the hyperplane {x : x̃(S ) = γ}, we obtain an integral base-polyhedron BS in RS ,
and then the elements of

....

BS are exactly the in-degree vectors of the requested orientations
restricted to S . That is, the elements of

....

BS are the restriction of the degree-vectors of the
requested subgraphs of G to S . Since BS is a base-polyhedron, a dec-min element of

....

BS

will be a solution to our minimum degree-square sum problem.

We briefly indicate that a capacitated version of the semi-matching problem can also
be formulated as a dec-min in-degree constrained and capacitated orientation problem (cf.,
Section 4.2 and Remark 5.2). Let G = (S ,T ; E) be again a bipartite graph, γ a positive
integer, and fV and gV integer-valued bounding functions on V := S ∪T for which fV ≤ gV .
In addition, an integer-valued capacity function gE is also given on the edge-set E, and we
are interested in finding a non-negative integral vector z : E → Z+ for which z̃(E) = γ,
z ≤ gE and fV(v) ≤ dz(v) ≤ gV(v) for every v ∈ V . (Here dz(v) :=

∑
[z(uv) : uv ∈ E].) We

call such a vector feasible. The problem is to find a feasible vector z whose degree vector
restricted to S (that is, the vector (dz(s) : s ∈ S ) is decreasingly minimal.

By replacing each edge e with gE(e) parallel edges, it follows from the uncapacitated case
above that the vectors {(dz(s) : s ∈ S ) : z is a feasible integral vector} form an M-convex set.
In this case, however, the basic algorithm is not necessarily polynomial since the values of
gE may be large. Therefore we need the general strongly polynomial algorithm described in
Section 2.4. In this case the general Subroutine (2.4) can be realized via max-flow min-cut
computations.
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Minimum cost dec-min semi-matchings Harada et al. [20] developed an algorithm to
solve the minimum cost version of the original semi-matching problem of Harvey et al. [21].
As the dec-min in-degree bounded orientation problem covers all the extensions of semi-
matching problems mentioned above, the minimum cost version of these extensions can
also be solved with the strongly polynomial algorithms developed in Section 5.2 for mini-
mum cost dec-min in-degree bounded orientations.

We close this section with some historical remarks. The problem of Harvey et al. is
closely related to earlier investigations in the context of minimizing a separable convex
function over (integral elements of) a base-polyhedron. For example, Federgruen and
Groenevelt [9] provided a polynomial time algorithm in 1986. Hochbaum and Hong [23] in
1995 developed a strongly polynomial algorithm; their proof, however, included a technical
gap, which was fixed by Moriguchi, Shioura, and Tsuchimura [33] in 2011. For an early
book on resource allocation, see the one by Ibaraki and Katoh [25] while three more recent
surveys are due to Katoh and Ibaraki [27] from 1998, to Hochbaum [22] from 2007, and
to Katoh, Shioura, and Ibaraki [28] from 2013. Algorithmic aspects of minimum degree
square-sum problems for general graphs were discussed by Apollonio and Sebő [1].

6 Orientations of graphs with edge-connectivity require-
ments

In this section, we investigate various edge-connectivity requirements for the orientations
of G. The main motivation behind these investigations is a conjecture of Borradaile et
al. [4] on decreasingly minimal strongly connected orientations. Our goal is to prove their
conjecture in a more general form.

6.1 Strongly connected orientations
Suppose that G is 2-edge-connected, implying that it has a strong orientation by a theorem
of Robbins [39]. We are interested in dec-min strong orientations, meaning that the in-
degree vector is decreasingly minimal over the strong orientations of G. This problem
of Borradaile et al. was motivated by a practical application concerning optimal interval
routing schemes.

Analogously to Theorem 4.5, they described a natural way to improve a strong orientation
D to another one whose in-degree vector is decreasingly smaller. Suppose that there are two
nodes s and t for which %(t) ≥ %(s) + 2 and there are two edge-disjoint dipaths from s to
t in D. Then reorienting an arbitrary st-dipath of D results in another strongly connected
orientation of D which is clearly decreasingly smaller than D.

Borradaile et al. [4] conjectured the truth of the converse (and this conjecture was the
starting point of our investigations). The next theorem states that the conjecture is true.

Theorem 6.1. A strongly connected orientation D of G = (V, E) is decreasingly minimal if
and only if there are no two arc-disjoint st-dipaths in D for nodes s and t with %(t) ≥ %(s)+2.
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Proof. Suppose first that there are nodes s and t with %(t) ≥ %(s) + 2 such that there are
two arc-disjoint st-dipaths of D. Let P be any st-dipath in D and let D′ denote the digraph
arising from D by reorienting P. Then D′ is strongly connected, since if it had a node-set Z
(∅ ⊂ Z ⊂ V) with no entering arcs, then Z must be a ts-set and P enters Z exactly once. But
then 0 = %D′(Z) = %D(Z) − 1 ≥ 2 − 1 = 1, a contradiction. Therefore D′ is indeed strongly
connected and its in-degree vector is decreasingly smaller than that of D.

To see the non-trivial part, define a set-function p1 as follows:

p1(X) :=


0 if X = ∅,

|E| if X = V,
iG(X) + 1 if ∅ ⊂ X ⊂ V.

(6.1)

Then p1 is crossing supermodular and hence B1 := B′(p1) is a base-polyhedron.

Claim 6.2. An integral vector m is the in-degree vector of a strong orientation of G if and
only if m is in

....

B1.

Proof. If m is the in-degree vector of a strong orientation of G, then m̃(V) = |E| = p1(V),
m̃(∅) = 0 = p1(∅), and

m̃(Z) =
∑

[%(v) : v ∈ Z] = %(Z) + iG(Z) ≥ 1 + iG(Z) = p1(Z)

for ∅ ⊂ Z ⊂ V , that is, m ∈
....

B1.
Conversely, let m ∈

....

B1. Then m ∈ BG and hence by Claim 4.2, G has an orientation D
with in-degree vector m. We claim that D is strongly connected. Indeed,

%(Z) =
∑

[%(v) : v ∈ Z] − iG(Z) = m̃(Z) − iG(Z) ≥ p1(Z) − iG(Z) = 1

whenever ∅ ⊂ Z ⊂ V .

Claim 6.3. Let D be a strong orientation of G with in-degree vector m. Let t and s be nodes
of G. The vector m′ := m + χs − χt is in B1 if and only if D admits two arc-disjoint dipaths
from s to t.

Proof. m′ ∈ B1 holds precisely if there is no ts-set X which is m-tight with respect to p1,
that is, m̃(X) = iG(X) + 1. Since %(Y) + iG(Y) =

∑
[%(v) : v ∈ Y] = m̃(Y) holds for any set

Y ⊂ V , the tightness of X (that is, m̃(X) = iG(X)+1) is equivalent to requiring that %(X) = 1.
Therefore m′ ∈ B1 if and only if %(Y) > 1 holds for every ts-set Y , which is, by Menger’s
theorem, equivalent to the existence of two arc-disjoint st-dipaths of D.

By Theorem 2.1, m is a dec-min element of
....

B1 if and only if there is no 1-tightening step
for m. By Claim 6.3 this is just equivalent to the condition in the theorem that there are no
two arc-disjoint st-dipaths in D for nodes s and t for which %(t) ≥ %(s) + 2.

An immediate consequence of Claim 6.2 and Theorem 2.1 is the following.

Corollary 6.4. A strong orientation of G is dec-min if and only if it is inc-max.
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We indicated in Section 5.1 how in-degree constrained dec-min orientations can be man-
aged due to the fact that the intersection of an integral base-polyhedron B with an integral
box T is an integral base-polyhedron. The same approach works for degree-constrained
strong orientations. For example, in this case dec-min and inc-max again coincide and one
can formulate the in-degree constrained version of Theorem 6.1. In the next section, we
overview more general cases.

6.2 A counterexample for mixed graphs
Although Robbins’ theorem on strong orientability of undirected graphs easily extends to
mixed graphs, as was pointed out by Boesch and Tindell [2], it is not true anymore that a
decreasingly minimal strong orientation of a mixed graph is always increasingly maximal.
Actually, one may consider two natural variants.

In the first one, decreasing minimality and increasing maximality concern the total in-
degree of the directed graph obtained from the initial mixed graph after orienting its undi-
rected edges. Let V = {a, b, c, d}. Let E = {ab, cd} denote the set of undirected edges
and let A = {ad, ad, ad, da, da, bc, bc, cb} denote the set of directed edges of a mixed graph
M = (V, A + E). There are two strong orientations of M. In the first one, the orientations of
the elements of E are ba and dc, in which case the total in-degree vector is (3, 1, 3, 3). In
the second one, the orientations of the elements of E are ab and cd, in which case the total
in-degree vector is (2, 2, 2, 4). Now (3, 1, 3, 3) is dec-min while (2, 2, 2, 4) is inc-max.

In the second variant, we are interested in the in-degree vector of the digraph obtained by
orienting the originally undirected part E. For this version the counterexample is as follows.
Let V = {a, b, c, d, x, y, u, v}. Let E = {ab, cd, au, au, av, av, dy, dy, bx, bx} denote the set of
undirected edges and let A = {ad, da, bc, cb} denote the set of directed edges of a mixed
graph M = (V, A + E). The undirected part of M is denoted by G = (V, E).

In any strong orientation of M = (V, A + E), the orientations of the undirected paral-
lel edge-pairs {au, au}, {av, av}, {dy, dy}, {bx, bx} are oriented oppositely, and hence their
contribution to the in-degrees (in the order of a, b, c, d, u, v, x, y) is (2, 1, 0, 1, 1, 1, 1, 1).

Therefore there are essentially two distinct strong orientations of M. In the first one, the
undirected edges ab, cd are oriented as ba, dc, while in the second one the undirected edges
ab, cd are oriented as ab, cd. Hence the in-degree vector of the first strong orientation cor-
responding to the orientation of G (in the order of a, b, c, d, u, v, x, y) is (3, 1, 1, 1, 1, 1, 1, 1).
The in-degree vector of second strong orientation corresponding to the orientation of G is
(2, 2, 0, 2, 1, 1, 1, 1). The first vector is inc-max while the second vector is dec-min.

These examples give rise to the question: what is behind the phenomenon that while dec-
min and inc-max coincide for strong orientations of undirected graphs, they differ for strong
orientations of mixed graph? The explanation is, as we pointed out earlier, that for an M-
convex set the two notions coincide and the set of in-degree vectors of strong orientations
of an undirected graph is an M-convex set, while the corresponding set for a mixed graph
is, in general, not an M-convex set. It is actually the intersection of two M-convex sets. An
algorithm for computing a dec-min element of the intersection of two M-convex sets will
be described elsewhere.
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6.3 Higher edge-connectivity
An analogous approach works in a much more general setting. We say that a digraph covers
a set-function h if %(X) ≥ h(X) holds for every set X ⊆ V . The following result was proved
in [10].

Theorem 6.5 ([10]). Let h be a finite-valued, non-negative crossing supermodular function
with h(∅) = h(V) = 0. A graph G = (V, E) has an orientation covering h if and only if

eP ≥
q∑

i=1

h(Vi) and eP ≥
q∑

i=1

h(V − Vi)

hold for every partition P = {V1, . . . ,Vq} of V, where eP denotes the number of edges
connecting distinct parts of P.

This theorem easily implies the classic orientation result of Nash-Williams [36] stating
that a graph G has a k-edge-connected orientation precisely if G is 2k-edge-connected.
Even more, call a digraph (k, `)-edge-connected (` ≤ k) (with respect to a root-node r0) if
%(X) ≥ k whenever ∅ ⊂ X ⊆ V − r0 and %(X) ≥ ` whenever r0 ∈ X ⊂ V . (By Menger’s
theorem, (k, `)-edge-connectedness is equivalent to requiring that there are k arc-disjoint
dipaths from r0 to every node and there are ` arc-disjoint dipaths from every node to r0.)
Then Theorem 6.5 implies:

Theorem 6.6. A graph G = (V, E) has a (k, `)-edge-connected orientation if and only if

eP ≥ k(q − 1) + `

holds for every q-partite partition P of V.

Note that an even more general special case of Theorem 6.5 can be formulated to char-
acterize graphs admitting in-degree constrained and (k, `)-edge-connected orientations.

It is important to emphasize that however general Theorem 6.5 is, it does not say anything
about strong orientations of mixed graphs. In particular, it does not imply the pretty but
easily provable theorem of Boesch and Tindell [2]. The problem of finding decreasingly
minimal in-degree constrained k-edge-connected orientation of mixed graphs can be solved
as a special case of decreasing minimization over the intersection of two M-convex sets.

The next lemma shows why the set of in-degree vectors of orientations of G covering
the set-function h appearing in Theorem 6.5 is an M-convex set, ensuring in this way the
possibility of applying the results on decreasing minimization over M-convex sets to general
graph orientation problems.

Lemma 6.7. An orientation D of G covers h if and only if its in-degree vector m is in the
base-polyhedron B = B′(p), where p := h + iG is a crossing supermodular function.

Proof. Suppose first that m is the in-degree vector of a digraph covering h. Then h(X) ≤
%(X) = m̃(X) − iG(X) for X ⊂ V and h(V) = 0 = %(V) = m̃(V) − iG(V), that is, m is indeed
in B.

Conversely, suppose that m ∈ B. Since h is finite-valued and non-negative, we have
m̃(X) ≥ p(X) ≥ iG(X) for X ⊂ V and m̃(V) = iG(V) and hence, by the Orientation lemma,
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there is an orientation D of G with in-degree vector m. Moreover, this digraph D covers h
since %D(X) = m̃(X) − iG(X) ≥ p(X) − iG(X) = h(X) holds for X ⊂ V .

By Lemma 6.7, Theorem 2.1 can be applied again to the general orientation problem
covering a non-negative and crossing supermodular set-function h in the same way as it
was applied in the special case of strong orientation above, but we formulate the result only
for the special case of in-degree constrained and k-edge-connected orientations.

Theorem 6.8. Let G = (V, E) be an undirected graph endowed with a lower bound function
f : V → Z and an upper bound function g : V → Z with f ≤ g. A k-edge-connected and
in-degree constrained orientation D of G is decreasingly minimal if and only if there are no
two nodes s and t for which %(t) ≥ %(s) + 2, %(t) > f (t), %(s) < g(s), and there are k + 1
arc-disjoint st-dipaths.

The theorem can be extended even further to in-degree constrained and (k, `)-edge-
connected orientations (` ≤ k).

An extension We say that a digraph D = (V, A) is k-edge-connected in a specified subset
S of nodes if there are k-arc-disjoint dipaths in D from any node of S to any other node of
S .

By relying on Lemma 6.7, one can derive the following.

Theorem 6.9. Let G = (V, E) be an undirected graph with a specified subset S of V. Let m0

be an in-degree specification on V − S . The set of in-degree vectors of those orientations of
G which are k-edge-connected in S and in-degree specified in V − S is an M-convex set.

By this theorem, we can determine a decreasingly minimal orientation among those
which are k-edge-connected in S and in-degree specified in V − S . Even additional in-
degree constraints can be imposed on the elements of S .

Hypergraph orientation Let H = (V,E) be a hypergraph for which we assume that each
hyperedge has at least 2 nodes. Orienting a hyperedge Z means that we designate an element
z of Z as its head-node. A hyperedge Z with a designated head-node z ∈ Z is a directed
hyperedge denoted by (Z, z). Orienting a hypergraph means the operation of orienting each
of its hyperedges. We say that a directed hyperedge (Z, z) enters a subset X of nodes if z ∈ X
and Z − X , ∅. A directed hypergraph is called k-edge-connected if the in-degree of every
non-empty proper subset of nodes is at least k.

The following result was proved in [15] (see, also Theorem 2.22 in the survey paper
[14]).

Theorem 6.10. The set of in-degree vectors of k-edge-connected and in-degree constrained
orientations of a hypergraph forms an M-convex set.

Therefore we can apply the general results obtained for decreasing minimization over
M-convex sets.
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[1] Apollonio, N., Sebő, A.: Minconvex factors of prescribed size in graphs. SIAM

Journal on Discrete Mathematics 23, 1297–1310 (2009)

[2] Boesch, F., Tindell, R.: Robbins’s theorem for mixed multigraphs. American Math-
ematical Monthly 87, 716–719 (1980)
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