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Abstract

In the list coloring problem for two matroids, we are given matroids M1 =
(S, I1) and M2 = (S, I2) on the same ground set S, and the goal is to determine
the smallest number k such that given arbitrary lists Ls of k colors for s ∈ S,
it is possible to choose a color from each list so that every monochromatic set
is independent in both M1 and M2. When both M1 and M2 are partition
matroids, Galvin’s celebrated list coloring theorem for bipartite graphs gives
the answer. However, not much is known about the general case. One of the
main open questions is to decide if there exists a constant c such that if the
coloring number is k (i.e., the ground set can be partitioned into k common
independent sets), then the list coloring number is at most c · k. In the present
paper, we consider matroid classes that appear naturally in combinatorial and
graph optimization problems, namely graphic matroids, paving matroids and
gammoids. We show that if both matroids are from these fundamental classes,
then the list coloring number is at most twice the coloring number.

The proof is based on a new approach that reduces a matroid to a partition
matroid without increasing its coloring number too much, and might be of
independent combinatorial interest. In particular, we show that if M = (S, I)
is a matroid in which S can be partitioned into k independent sets, then there
exists a partition matroid N = (S,J ) with J ⊆ I in which S can be partitioned
into (A) k independent sets if M is a transversal matroid, (B) 2k−1 independent
sets if M is a graphic matroid, (C) dkr/(r−1)e independent sets if M is a paving
matroid of rank r, and (D) 2k−2 independent sets if M is a gammoid. It should
be emphasized that in cases (A), (B) and (D) the rank of N is the same as that
of M . We extend our results to a broader family of matroids by showing that the
existence of a matroid N with χ(N) ≤ 2χ(M) implies the existence of a matroid
N ′ with χ(N ′) ≤ 2χ(M ′) for every truncation M ′ of M . We also show how the
reduction technique can be extended to strongly base orderable matroids that
might serve as a useful tool in problems related to packing common bases of
two matroids.
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University, Budapest. Email: berkri@cs.elte.hu.
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1 Introduction

Given a graph G = (V,E), a proper edge coloring of G is an assignment of colors
to the edges so that no two adjacent edges have the same color. The edge coloring
number is the smallest integer k for which G has a proper edge coloring by k colors.
The classical result of Kőnig [23] states that the edge coloring number of bipartite
graphs is equal to its maximum degree.

Assume now that a list Le of colors is given for each edge e ∈ E. A proper list
edge coloring of G is a proper edge coloring such that every edge e receives a color
from its list Le. The list edge coloring number is the smallest integer k for which G
has a proper list edge coloring whenever |Le| ≥ k for every e ∈ E. The List Coloring
Conjecture [18,35] states that for any graph, the list edge coloring number equals the
edge coloring number. The conjecture is widely open, and only partial results are
known. The probably most famous one is the celebrated result of Galvin [13] who
showed that the conjecture holds for bipartite multigraphs.

Theorem 1.1 (Galvin). The list edge coloring number of a bipartite graph is equal to
its edge coloring number, that is, to its maximum degree.

Matchings in bipartite graphs are forming the common independent sets of two
matroids, hence one might consider matroidal generalizations of list coloring. For a
loopless matroid1 M = (S, r), let χ(M) denote the coloring number of M , that is,
the minimum number of independent sets into which the ground set can be decom-
posed in M . We call a matroid k-colorable if χ(M) ≤ k. If a list Ls of colors is given
for each element s ∈ S, then a proper list edge coloring of M is a coloring such
that every element s receives a color from its list Ls. The list coloring number is
the smallest integer k for which M has a proper list coloring whenever |Ls| ≥ k for
every s ∈ S.

Analogously, the coloring number χ(M1,M2) of the intersection of two matroids
M1 and M2 on the same ground set S is the minimum number of common independent
sets needed to cover S. If a list Ls of colors is given for each element s ∈ S, then
a proper list edge coloring of the intersection of M1 and M2 is a coloring such
that every element s receives a color from its list Ls. The list coloring number
χ
`(M1,M2) is the smallest integer k for which the intersection of M1 and M2 has a

proper list coloring whenever |Ls| ≥ k for every s ∈ S. Hence Theorem 1.1 states that
if both M1 and M2 are partition matroids then χ

`(M1,M2) = max{χ(M1), χ(M2)}.

Previous work Seymour observed [33] that the list coloring theorem holds for a
single matroid.

Theorem 1.2 (Seymour). The list coloring number of a matroid is equal to its coloring
number.

1The ground set of a matroid containing a loop cannot be decomposed into independent sets.
Therefore every matroid considered in the paper is assumed to be loopless without explicitly men-
tioning this. Nevertheless, parallel elements might exist.
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Lasoń [25] gave a generalization of the theorem when the sizes of the lists are not
necessarily equal. As a common generalization of Theorems 1.1 and 1.2, it is tempting
to conjecture that χ(M1,M2) = χ

`(M1,M2) holds for every pair of matroids [21]. No
pair M1,M2 is known for which the conjecture fails. Nevertheless, there are only a
few matroid classes for which the problem was settled. Király and Pap [22] verified
the conjecture for transversal matroids, for matroids of rank two, and if the common
bases are the arborescences of a digraph which is the disjoint union of two spanning
arborescences rooted at the same vertex. It is worth mentioning that a similar state-
ment does not hold for the case of three matroids as shown by the following example
due to Király [20]. Let S = {a, b, c, d, e, f} be a ground set of size six, and let M1,
M2 and M3 be partition matroids with circuit sets C1 = {{a, d}, {b, e}, {c, f}}, C2 =
{{a, e}, {b, f}, {c, d}} and C3 = {{a, f}, {b, d}, {c, e}}, respectively. Then {a, b, c}
and {d, e, f} is a partition into two common bases. However, if La = Ld = {1, 2},
Lb = Le = {1, 3} and Lc = Lf = {2, 3}, then there is no proper list coloring. In [20],
Király proposed a weakening of the problem where the aim is to find a constant c
such that if the coloring number is k, then the list coloring number is at most c · k.
For spanning arborescences, it was observed by Kobayashi [20] that the constructive
characterization of k-arborescences implies that lists of size 3

2
k + 1 are sufficient.

Another motivation comes from the problem of approximating the minimum num-
ber of common independent sets of two matroids needed to cover the ground set.
Aharoni and Berger [1] proved the following interesting result.

Theorem 1.3 (Aharoni and Berger). Let M1 = (S, I1) and M2 = (S, I2) be matroids.
If S can be decomposed into k1 independent sets in M1 and into k2 independent sets
in M2, then it can be decomposed into 2 max{k1, k2} common independent sets.

Note that in terms of approximating the coloring number, Theorem 1.3 states that
χ(M1,M2) ≤ 2 max{χ(M1), χ(M2)}. The proof of the theorem is highly non-trivial
and uses topological arguments which do not directly give an algorithm for finding
the decomposition in question. We propose a conjecture on reduction of matroids to
partition matroids from which the theorem would easily follow.

The idea of reducing a matroid to a simpler one goes back to the late 60’s. In [5],
Crapo and Rota introduced the notion of weak maps. Given two matroids M and N
on the same ground set, N is a weak map of M if every independent set of N is
also independent in M . Using our terminology, N is a weak map of M if and only if
N is a reduction of M . Weak maps were further investigated by Lucas [27, 28] who
characterized rank preserving weak maps for linear matroids. However, these results
did not consider the possible increase in the coloring number of the matroid that
plays a crucial role in our investigations. We find the name ‘map’ slightly misleading
as it suggests that there is a function in the background, although the ‘mapping’ in
question is simply the identity map between the ground sets of the matroids. Hence
we stick to the term ‘reduction’ throughout the paper.

It is worth mentioning that every matroid M = (S, I) has a reduction to a partition
matroid N = (S,J ) of the same rank. The sketch of the proof is as follows: Fix an
arbitrary basis B = {s1, . . . , sr} of M , and add si to the ith partition class. Then for
an arbitrary element s ∈ S − B, consider the fundamental circuit C(s, B) of s with
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respect to B, and add s to the partition class containing the element of C(s, B) ∩ B
with the smallest index. If we pick exactly one element from every class of the partition
thus obtained, we get a basis of the matroid. This can be verified using the circuit
axioms, not discussed in this paper. Nevertheless, this algorithm has no control over
the sizes of the partition classes. It can happen that some of the classes have a large
size compared to the coloring number of the original matroid, and such a reduction is
not suitable for our purposes.

Our results In the present paper, we consider matroid classes that appear naturally
in combinatorial and graph optimization problems, and show that if both matroids are
from these fundamental classes then c can be chosen to be roughly 2. Our proof builds
on the reduction of a matroid to a partition matroid. Given matroids M = (S, I) and
N = (S,J ), we say that N is a reduction of M if J ⊆ I, that is, every independent
set of N is independent in M as well. In notation, we will denote N being a reduction
of M by N �M . The reduction is rank preserving if rM(S) = rN(S) holds, and is
denoted by N �r M .

A partition matroid2 is a matroid N = (S,J ) such that J = {X ⊆ S : |X∩Si| ≤
1 for i = 1, . . . , q} for some partition S = S1 ∪ · · · ∪ Sq. Clearly, the coloring number
of N is χ(N) = max{|Si| : i = 1, . . . , q}. Note that the followings are equivalent for
a matroid M = (S, I): (i) N � M , (ii) every circuit of M intersects at least one of
the Si’s in more than one element, and (iii) {x1, . . . , xq} ∈ I whenever xi ∈ Si for
i = 1, . . . , q.

To illustrate the applicability of reduction, assume that M1 and M2 are matroids
on the same ground set that are reducible to k-colorable partition matroids N1 and
N2, respectively. Then, by Theorem 1.1, χ`(N1, N2) ≤ k. As N1 �M1 and N2 �M2,
this in turn implies that χ`(M1,M2) ≤ k.

As a first step towards understanding reducibility to partition matroids, we concen-
trate on matroid classes that appear naturally in combinatorial and graph optimiza-
tion problems, namely graphic matroids, paving matroids, and gammoids; see the
corresponding sections for the precise definitions. These classes also include uniform
matroids, laminar matroids and transversal matroids, hence the presented results also
apply to those. We show that matroids from these fundamental classes admit a reduc-
tion to a partition matroid with coloring number at most twice the coloring number
of the original matroid.

The first two result are for transversal and graphic matroids and are based on
easy observations. Although transversal matroids are special cases of gammoids, we
discuss them separately as transversal matroids admit an optimal reduction in terms
of coloring number.

Theorem 1.4. Let M = (S, I) be a k-colorable transversal matroid. Then there exists
a k-colorable partition matroid N with N �r M .

2In the literature, partition matroids are defined more generally in the sense that the upper
bounds on the intersection might be different for the different partition classes. As all the partition
matroids used in the paper have all-ones upper bounds, we make this restriction without explicitly
mentioning it.
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Theorem 1.5. Let M = (S, I) be a k-colorable graphic matroid. Then there exists a
(2k − 1)-colorable partition matroid N with N �r M , and the bound for the coloring
number of N is tight.

The next result is for paving matroids.

Theorem 1.6. Let M = (S, I) be a k-colorable paving matroid of rank r ≥ 2. Then
there exists a d rk

r−1e-colorable partition matroid N with N �M .

For r = 2, the bound on the coloring number of N can be improved and the
reduction can be chosen to be rank preserving.

Theorem 1.7. Let M = (S, I) be a k-colorable paving matroid of rank 2. Then
there exists a b4k

3
c-colorable partition matroid N with N �r M , and the bound for the

coloring number of N is tight.

It is not difficult to see that every loopless matroid of rank 2 is paving, hence
Theorem 1.7 gives a tight bound on the coloring number of the reduction N of such
matroids.

For r = 3, we can provide rank preserving reductions at the price of increasing the
coloring number of N .

Theorem 1.8. Let M = (S, I) be a k-colorable paving matroid of rank 3. Then there
exists a (2k − 1)-colorable partition matroid N with N �r M .

The main contribution of the paper is a proof that any k-colorable gammoid can
be reduced to a (2k−2)-colorable partition matroid for k ≥ 2. The assumption k ≥ 2
is not restrictive, as if k = 1 then M is the free matroid on S which is already a
partition matroid.

Theorem 1.9. Let M = (S, I) be a k-colorable gammoid (k ≥ 2). Then there exists
a (2k−2)-colorable partition matroid N with N �r M , and the bound for the coloring
number of N is tight.

The proof of Theorem 1.9 is based on building up an alternating structure on
degree-bounded trees in a bipartite graph and is interesting on its own. We believe
that this approach works in general, and a similar proof can be given to the following
conjecture.

Conjecture 1.10. Every k-colorable matroid can be reduced to a 2k-colorable partition
matroid.

Recall that the problem proposed by Király asks for the existence of a constant
c such that if the coloring number χ(M1,M2) is k, then the list coloring number
χ
`(M1,M2) is at most c·k. Conjecture 1.10 and Theorem 1.1 would imply χ`(M1,M2) ≤
χ
`(N1, N2) = max{χ(N1), χ(N2)} ≤ 2 max{χ(M1), χ(M2)}, where N1 and N2 are the

reductions of M1 and M2, respectively, provided by the conjecture. Therefore we
would get a value of 2 for the constant c. By the same idea, Conjecture 1.10 and
Kőnig’s classical theorem together would immediately provide a new, hopefully algo-
rithmic proof of Theorem 1.3.

We extend our results to broader classes of matroids by showing the following
connection between truncation and reducibility.
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Theorem 1.11. The family of matroids M that can be reduced to a 2χ(M)-colorable
partition matroid is closed for truncation.

Organization The rest of the paper is organized as follows. Basic definitions and
notation are introduced in Section 2. Results for the transversal, graphic and paving
cases are presented in Section 3. The main result of the paper, Theorem 1.9 is proved
in Section 4. The connection between truncation and reducibility is discussed in
Section 5. Finally, a more general framework together with some open problems are
proposed in Section 6.

2 Preliminaries

For a graph G = (V,E) and a subset X ⊆ V of vertices, the set of edges spanned
by X is denoted by E[X], while the graph spanned by X is denoted by G[X].
Given a connected component K of G, a cut of K is a subset of edges in E[K] whose
deletion disconnects K. The component is k-edge-connected if the minimum size of
a cut in K is at least k. The graphs obtained by deleting a subset X ⊆ V of vertices
or a subset F ⊆ E of edges are denoted by G − X and G − F , respectively. The
degree of a vertex v with respect to F ⊆ E is denoted by dF (v). The symmetric
difference of two sets P,Q is denoted by P4Q = (P −Q) ∪ (Q− P ).

Let G = (A,B;E) be a bipartite graph and F ⊆ E be a subset of edges. For a
set X ⊆ A, the set of neighbors of X with respect to F is denoted by NF (X),
that is, NF (X) = {b ∈ B : there exists an edge ab ∈ F with a ∈ X}. We will drop
the subscript F when F is the whole edge set. We denote the set of vertices in
X incident to edges in F by X(F ). A forest (or tree) F ⊆ E is a B2-forest (or
B2-tree, respectively) if dF (b) = 2 for every b ∈ B. The existence of a B2-forest was
characterized by Lovász [26].

Theorem 2.1 (Lovász). Let G = (A,B;E) be a bipartite graph. Then there exists
a B2-forest in G if and only if the strong Hall condition holds for every non-empty
subset of B, that is,

|N(X)| ≥ |X|+ 1 for all ∅ 6= X ⊆ B.

Matroids were introduced by Whitney [37] and independently by Nakasawa [31]
as abstract generalizations of linear independence in vector spaces. A matroid M is
a pair (S, I) where S is the ground set of the matroid and I ⊆ 2S is the family
of independent sets that satisfy the following, so-called independence axioms:
(I1) ∅ ∈ I, (I2) X ⊆ Y ∈ I ⇒ X ∈ I, and (I3) X, Y ∈ I, |X| < |Y | ⇒ ∃e ∈
Y − X s.t. X + e ∈ I. The rank of a set X ⊆ S is the maximum size of an
independent subset of X and is denoted by rM(X). The maximal independent sets
of M are called bases. A cut is an inclusionwise minimal set X ⊆ S that intersects
every basis. A loop is an element that is non-independent on its own. Two non-
loop elements e, f ∈ S are parallel if {e, f} is non-independent. Given a matroid
M = (S, I), its restriction to a subset S ′ ⊆ S is the matroid M |S′ = (S ′, I ′) where
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Section 3. Transversal, graphic and paving matroids 7

I ′ = {I ∈ I : I ⊆ S ′}. Adding a parallel copy of an element s ∈ S results in a
matroid M ′ = (S ′, I ′) on ground set S ′ = S + s′ where I ′ = {X ⊆ S ′ : either X ∈
I, or s /∈ X, s′ ∈ X and X−s′+s ∈ I}. The dual of M is the matroid M∗ = (S, I∗)
where I∗ = {X ⊆ S : S−X contains a basis of M}. The k-truncation of a matroid
M = (S, I) is a matroid (S, Ik) with Ik = {X ∈ I : |X| ≤ k}. We denote the k-
truncation of M by (M)k. The direct sum M1 ⊕M2 of matroids M1 = (S1, I1) and
M2 = (S2, I2) on disjoint ground sets is a matroid M = (S1∪S2, I) whose independent
sets are the disjoint unions of an independent set of M1 and an independent set of
M2. The sum M1 +M2 of M1 = (S, I1) and M2 = (S, I2) on the same ground set is a
matroid M = (S, I) whose independent sets are the disjoint unions of an independent
set of M1 and an independent set of M2.

The rank function of the sum of k matroids was characterized by Edmonds and
Fulkerson [10].

Theorem 2.2 (Edmonds and Fulkerson). Let M1 = (S, I1), . . . ,Mk = (S, Ik) be
matroids on the same ground set S with rank functions r1, . . . , rk, respectively. Then
the maximum size of an independent set of M1+· · ·+Mk is min{

∑k
i=1 ri(X)+|S−X| :

X ⊆ S}.

As a corollary, we get a characterization for the partitionability of the ground set
into k independent sets in a matroid.

Corollary 2.3. Let M = (S, I) be a matroid with rank function r. Then S can be
partitioned into k independent sets if and only if |X| ≤ k ·r(X) holds for every X ⊆ S.

Another corollary is a characterization for the existence of k disjoint bases of a
matroid.

Corollary 2.4. Let M = (S, I) be a matroid with rank function r. Then M has k
pairwise disjoint bases if and only if |S−X| ≥ k ·(r(S)−r(X)) holds for every X ⊆ S.

3 Transversal, graphic and paving matroids

As a warm-up, we first consider three basic cases: transversal, graphic, and paving
matroids. Although the proofs are simple, they might help the reader to get familiar
with the notion of reduction. Also, we show the connection to some earlier results
such as Gallai colorings of complete graphs.

3.1 Transversal matroids

Given a bipartite graph G = (S, T ;E), a set X ⊆ S is matchable if there is a
matching of G covering X. The matchable sets satisfy the independence axioms; the
matroid obtained this way is a called a transversal matroid. It is an easy exercise
to show that the size of T can be chosen to be r where r denotes the rank of the
matroid (see e.g. [11]). In Section 4, we will use that the rank of a subset X ⊆ S
in the transversal matroid is r(X) = min{|X| − |Y | + |N(Y )| : Y ⊆ X} by the
Frobenius-Kőnig-Hall theorem [12,14,23].
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t1 t2 t3 t1 t2 t3

S1 S2 S3

Figure 1: An illustration of the proof of Theorem 1.4. Thick, dashed and dotted edges
are corresponding to three matchings covering S.

Theorem 1.4. Let M = (S, I) be a k-colorable transversal matroid. Then there exists
a k-colorable partition matroid N with N �r M .

Proof. Let G = (S, T ;E) a bipartite graph where T = {t1, . . . , tr}, r being the rank of
the transversal matroid on S. By assumption, the transversal matroid is k-colorable,
so there exist k matchings F1, . . . , Fk covering every vertex in S exactly once. We may
assume that none of these matchings is empty. Let Si =

⋃k
j=1NFj

(ti) for i = 1, . . . , r
(see Figure 1). Then S1 ∪ · · · ∪ Sr is a partition of S with classes of size at most k.
Pick an arbitrary element sj ∈ Sj for j = 1, . . . , r. The edge set {tjsj : j = 1, . . . , r}
shows that the picked elements form a matchable set, hence the partition matroid
defined by the partition is a k-colorable rank preserving reduction of the transversal
matroid. �

3.2 Graphic matroids

For a graph G = (V,E), the graphic matroid M = (E, I) of G is defined on
the edge set by considering a subset F ⊆ E to be independent if it is a forest,
that is, I = {F ⊆ E : F does not contain a cycle}. Nash-Williams [30] gave a
characterization for G being decomposable into k forests, or in other words, for the
graphic matroid of G being k-colorable.

Theorem 3.1 (Nash-Williams). Given a graph G = (V,E), the edge set can be de-
composed into k forests if and only if |E[X]| ≤ k(|X| − 1) for every non-empty subset
X of V .

Theorem 1.5. Let M = (S, I) be a k-colorable graphic matroid. Then there exists a
(2k − 1)-colorable partition matroid N with N �r M , and the bound for the coloring
number of N is tight.

Proof. Let G = (V,E) be a graph whose graphic matroid M = (E, I) is k-colorable
and let K ⊆ V be a connected component of G of size at least 2. We claim that
there exists a cut in K of size at most 2k − 1. Indeed, if every cut of K contains at
least 2k edges then K is a 2k-edge-connected component and so |E[K]| ≥ k|K| by
counting the edges around each vertex in K. By Theorem 3.1, this contradicts the
k-colorability of M .
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3.2 Graphic matroids 9

Figure 2: An illustration of the proof of Theorem 1.5. The graph G = (V,E) can be
decomposed into three forests. Let S1, S2, S3 and S4 denote the sets of thick, dashed,
dotted and zigzag edges, respectively. Then Si+1 is a minimum cut in one of the
components of G−

⋃i
j=1 Sj for i = 0, . . . , 3. Observe that there is no rainbow colored

cycle in G (in which any two edges receive different colors).

Set S0 := ∅ and i := 0. As long as there exists a connected component K in
G −

⋃i
j=0 Sj of size at least 2, let Si+1 ⊆ E be a minimum cut of K (see Figure 2),

and update i := i+1. By the above, |Si+1| ≤ 2k−1. Let E = S1∪· · ·∪Sq denote the
partition thus obtained. We claim that the partition matroid corresponding to this
partition is a reduction of M . In order to see this, we have to show that every cycle
of G intersects at least one of the partition classes in at least two elements. Given a
cycle C, let i be the smallest index with |Si ∩ C| > 0. Then C ⊆

⋃q
j≥i Sj and Si is

a cut in
⋃q
j≥i Sj, hence |Si ∩ C| ≥ 2. As the deletion of Si increases the number of

components of G −
⋃i−1
j=0 Sj by exactly one for i = 1, . . . , q, the rank of the partition

matroid thus obtained is the same as the rank of the graphic matroid of G, concluding
the first half of the theorem.

To show that the given bound is tight, let G = (V,E) be a complete graph on 2k
vertices. By Nash-Williams’ theorem, the coloring number of the graphic matroid
of G is k. Observe that reducing the graphic matroid of G to a partition matroid is
equivalent to coloring the edges of the graph in such a way that there is no cycle whose
edges are colored with completely different colors. An edge coloring of a complete
graph is called a Gallai coloring if no triangle is colored with three distinct colors,
which is a weaker restriction than the above. Bialostocki, Dierker and Voxman [3]
showed that every Gallai coloring contains a monochromatic spanning tree. This
means that for any reduction of the graphic matroid of G to a partition matroid,
there is a partition class of size at least 2k − 1. �

Remark 3.2. Theorem 1.5 can be proved in a similar way by observing that any
graph that can be decomposed into k forests contains a vertex of degree at most
2k − 1. The advantage of the proof based on cuts is twofold: it provides a rank
preserving reduction, and it can be straightforwardly extended to arbitrary matroids
in the following sense.

Theorem 3.3. If M = (S, I) is a matroid so that M |S′ has a cut of size at most k
for any S ′ ⊆ S, then M can be reduced to a k-colorable partition matroid.

The proof of Theorem 3.3 is based on the fact that the intersection of a circuit and
a cut in a matroid cannot have size 1.
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3.3 Paving matroids

A matroid M = (S, I) of rank r is called paving if every set of size at most r − 1 is
independent, or in other words, every circuit of the matroid has size at least r.

Although paving matroids have a very restricted structure and so are quite well-
understood, they are playing a fundamental role among matroids. After Blackburn,
Crapo and Higgs [4] enumerated all matroids up to eight elements, it was observed
that most of these matroids are paving matroids. Crapo and Rota suggested that
perhaps paving matroids dominate the enumeration of matroids [6]. This statement
was made precise by Mayhew, Newman, Welsh and Whittle in [29]. They conjectured
that the asymptotic fraction of matroids on n elements that are paving tends to 1 as n
tends to infinity. Although this remains open, a similar statement on the asymptotic
ratio of the logarithms of the numbers of matroids and sparse paving matroids has
been proven in [32].

First we consider paving matroids of arbitrary rank.

Theorem 1.6. Let M = (S, I) be a k-colorable paving matroid of rank r ≥ 2. Then
there exists a d rk

r−1e-colorable partition matroid N with N �M .

Proof. Consider any partition S = S1 ∪ · · · ∪ Sr−1 into r − 1 parts of almost equal
sizes, that is, |Si| = b|S|/(r − 1)c or |Si| = d|S|/(r − 1)e for i = 1, . . . , r − 1. As M
is k-colorable, we have |S| ≤ kr and so |Si| ≤ dkr/(r − 1)e. As M is paving, any set
of size at most r − 1 is independent, hence the partition matroid N defined by the
partition S1 ∪ · · · ∪ Sr−1 is a dkr/(r − 1)e-colorable reduction of M , as required. �

The bound on the coloring number can be improved when r = 2, and the reduction
can be chosen to be rank preserving.

Theorem 1.7. Let M = (S, I) be a k-colorable paving matroid of rank 2. Then
there exists a b4k

3
c-colorable partition matroid N with N �r M , and the bound for the

coloring number of N is tight.

Proof. Let S = T1∪· · ·∪Tq denote the partition of the ground set into classes of parallel
elements, that is, for every x ∈ Ti and y ∈ Tj the set {x, y} is independent if and only
if i 6= j. We may assume that |T1| ≥ · · · ≥ |Tq|. Note that |T1| ≤ k as the matroid is
k-colorable. Let i denote the smallest index such that |T1∪· · ·∪Ti| ≥ |S|/3 holds, and
consider the partition S = S1 ∪ S2 where S1 = T1 ∪ · · · ∪ Ti and S2 = Ti+1 ∪ · · · ∪ Tq.
If i = 1, then |S1| = |T1| ≤ k, otherwise

|S1| = (|T1|+ · · ·+ |Ti−1|) + |Ti| <
|S|
3

+ |Ti| ≤
|S|
3

+ |T1| <
2|S|

3
≤ 4k

3
,

where we used that |S| ≤ 2k holds as M is k-colorable and r = 2. By the definition of
i, we have |S2| ≤ 2|S|/3 ≤ 4k/3 as well. Thus max{|S1|, |S2|} ≤ 4k/3 always holds,
hence the partition matroid N defined by the partition S1 ∪ S2 is a b4k/3c-colorable
reduction of M .

The bound b4k/3c on the coloring number of N is tight. Let S be a set of size 2k
and take a partition S = S1 ∪ S2 ∪ S3 where d|S|/3e = |S1| ≥ |S2| ≥ |S3| = b|S|/3c.
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3.3 Paving matroids 11

Consider the laminar matroid M = (S, I) defined by the laminar family {S, S1, S2, S3}
where X ⊆ S is independent if and only if |X| ≤ 2 and |X∩Si| ≤ 1 for i = 1, 2, 3. It is
not difficult to see that the coloring number of M is k. Suppose that M is reducible to
a partition matroid N . The rank of N is either 1 or 2, as M has rank 2. In the former
case χ(N) = 2k, while in the latter case N is defined by a partition S = P1∪P2. Then
every Si is a subset of either P1 or P2, as otherwise there exists two elements x, y ∈ Si
such that x ∈ P1 and y ∈ P2, implying that {x, y} is independent in N but dependent
in M , a contradiction. Thus P1 or P2 contains at least two of the Si’s, and so has size
at least |S2|+ |S3| = |S| − |S1| = 2k− d2k/3e = b4k/3c, proving χ(N) ≥ b4k/3c. �

For the proof of Theorem 1.8, we will need two technical statements. The first
lemma describes the structure of paving matroids [11,15,36].

Lemma 3.4. Let r ≥ 2 be an integer and S a set of size at least r. Let H =
{H1, . . . , Hq} be a (possibly empty) family of proper subsets of S in which every set
Hi has at least r elements and the intersection of any two of them has at most r − 2
elements. Then the set system BH = {X ⊆ S : |X| = r, X 6⊆ Hi for i = 1, . . . , q}
forms the set of bases of a paving matroid. Moreover, every paving matroid can be
obtained in this form.

The next lemma characterizes the coloring number of paving matroids.

Lemma 3.5. Let H = {H1, . . . , Hq} be a (possibly empty) family satisfying the con-
ditions of Lemma 3.4, and let M = (S, I) be the paving matroid defined by H. Then

χ(M) = max

{⌈
|S|
r

⌉
,

⌈
|H1|
r − 1

⌉
, . . . ,

⌈
|Hq|
r − 1

⌉}
.

Proof. Corollary 2.3 implies that χ(M) = max{d|X|/r(X)e : ∅ 6= X ⊆ S}. Since
r(S) = r and r(Hi) = r− 1 (as every set of size at most r− 1 is independent), we get
that χ(M) ≥ max{d|S|/re, d|H1|/(r − 1)e, . . . , d|Hq|/(r − 1)e}.

To see the reverse inequality, take an arbitrary subset X ⊆ S. If |X| ≤ r − 1, then
r(X) = |X| holds as the matroid is paving, therefore |X|/r(X) = 1. If |X| ≥ r and
X ⊆ Hi for some i, then r(X) = r − 1 and so |X|/r(X) ≤ |Hi|/(r − 1). Finally, if
|X| ≥ r and none of the Hi’s contains X, then r(X) = r and so |X|/r(X) ≤ |S|/r,
proving our claim. �

Now we are ready to prove Theorem 1.8.

Theorem 1.8. Let M = (S, I) be a k-colorable paving matroid of rank 3. Then there
exists a (2k − 1)-colorable partition matroid N with N �r M .

Proof. Let H = {H1, . . . , Hq} be a (possibly empty) family satisfying the condi-
tions of Lemma 3.4 that defines M . Without loss of generality, we may assume
that |H1| ≥ · · · ≥ |Hq|. We distinguish two cases.

Case 1. |S|/r ≤ |H1|/(r − 1).
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3.3 Paving matroids 12

Consider any partition H1 = S1 ∪ · · · ∪ Sr−1 into r − 1 parts of almost equal sizes,
that is, |Si| = b|H1|/(r − 1)c or |Si| = d|H1|/(r − 1)e for i = 1, . . . , r − 1, and
let Sr = S − H1. Note that none of S1, . . . , Sr is empty since H1 is a proper sub-
set of S of size at least r − 1. Taking any elements s1 ∈ S1, . . . , sr ∈ Sr the set
X = {s1, . . . , sr} is independent in M as X 6⊆ Hi (i = 1, . . . , q) by |X ∩H1| = r − 1
and |H1 ∩ Hi| ≤ r − 2 (i = 2, . . . , q). Thus the partition matroid N = (S,J )
defined by the partition S1 ∪ · · · ∪ Sr is a rank preserving reduction of M . N is
clearly χ(M)-colorable as |Si| ≤ d|H1|/(r − 1)e = χ(M) for i = 1, . . . , r − 1 and
|Sr| = |S| − |H1| ≤ r|H1|/(r − 1)− |H1| = |H1|/(r − 1) ≤ χ(M).

Case 2. |S|/r > |H1|/(r − 1).
Pick an arbitrary s ∈ S, let Hi1 , . . . , Hil denote the sets of the family H containing

s and let H ′j = Hij −s for j = 1, . . . , l. The sets H ′1, . . . , H
′
l are disjoint as |Hi∩Hj| ≤

r−2 = 1 for i 6= j. We may assume that |H ′1| ≥ · · · ≥ |H ′l |. Note that for any set T ⊆
S−s which does not intersect any H ′j properly, the partition S = {s}∪T ∪(S−T −s)
defines a partition matroid N = (S,J ) which is a reduction of M .

If |H ′1| + · · · + |H ′l | < |S|/3, let T ⊆ S − s be a set of size b|S|/2c containing
H ′1 ∪ · · · ∪ H ′l . Then χ(N) = max{|T |, |S| − |T | − 1} ≤ |S|/2 < 2|S|/3 ≤ 2χ(M).
If |H ′1| + · · · + |H ′l | ≥ |S|/3, then let j denote the smallest index such that |H ′1| +
· · · + |H ′j| ≥ |S|/3 and let T = H ′1 ∪ · · · ∪ H ′j. If j = 1, then |T | = |H ′1| < 2|S|/3
by our assumption |S|/r > |H1|/(r − 1) and r = 3. Otherwise |H1| < |S|/3 and so
|T | ≤ |S|/3 + |H ′j| ≤ |S|/3 + |H ′1| < 2|S|/3. Thus χ(N) = max{|T |, |S| − |T | − 1} <
2|S|/3 ≤ 2d|S|/3e = 2χ(M). �

Remark 3.6. Note that Case 1 of the proof does not rely on the fact that r = 3.
That is, any paving matroid satisfying the assumption of Case 1 has a rank preserving
reduction N �r M with χ(N) = χ(M).

While Theorem 1.8 provides a rank preserving reduction, Theorem 1.6 gives a better
bound on the coloring number of the reduction for r = 3. The bound d3k/2e is not
necessarily tight. A computer-assisted case checking shows that the tight bound for
k = 3 is 4, an extremal example being the Fano matroid. However, we show that
d3k/2e is tight for infinitely many values of k.

A finite projective plane is a pair (S,L), where S is a finite set of points and
L ⊆ 2S is the family of lines that satisfies the following axioms: (P1) any two distinct
points are on exactly one line, (P2) any two distinct lines have exactly one point in
common, (P3) there exists four points, no three of which are collinear. For every
projective plane there exists a number q called the order, such that (1) each line in
the plane contains q + 1 points, (2) q + 1 lines pass through each point of the plane,
(3) the plane contains q2 + q + 1 points and q2 + q + 1 lines [36].

The family of lines satisfies the conditions of Lemma 3.4, thus every projective plane
defines a paving matroid M = (S, I) of rank 3. A partition matroid N = (S,J ) is a
reduction of M if and only if the coloring of S defined by the partition classes of N
satisfies the conditions of the following theorem.
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3.3 Paving matroids 13

Theorem 3.7. Consider any 3-coloring of the points of a projective plane of order q
such that each line contains at most 2 colors. Then at least one of the following cases
holds:

(i) there exists an empty color class,

(ii) there exists a color class of size 1,

(iii) one of the color classes is the complement of a line.

Proof. Let 1, 2 and 3 denote the three colors and S1, S2, S3 the corresponding color
classes. The proof is based on the following claim.

Claim 3.8. There exists a color class which is a subset of a line.

Proof. Suppose indirectly that each of the three color classes contains three non-
collinear points. Pick arbitrary points p1, p2, p3 from color classes S1, S2, S3, respec-
tively. Let Li denote the line through pi+1 and pi+2, and set mi,i+1 = |Li ∩ Si+1| and
mi,i+2 = |Li∩Si+2| (all indices are meant in a cyclic order). As every line of the plane
has q+ 1 points, we have mi,i+1 +mi,i+2 = q+ 1. Each line through a fixed point of Si
has exactly one common point with the line Li, hence mi,i+1 of them contain colors i
and i+ 1 and mi,i+2 of them contain colors i and i+ 2. Since p1, p2, p3 were arbitrary,
we get that each line containing colors i+ 1 and i+ 2 has mi,i+1 points of color i+ 1
and mi,i+2 points of color i+ 2.

As Si+1 contains three non-collinear points, there exists a point p′i+1 ∈ Si+1 − Li.
By changing i to i + 1 in the previous paragraph, we get that exactly mi+1,i+2 lines
through p′i+1 contain colors i+1 and i+2. As the mi,i+2 lines through p′i+1 and one of
the points of Li ∩Si+2 contain colors i+ 1 and i+ 2, and the number of lines through
p′i+1 with these colors is mi+1,i+2, we get that mi,i+2 ≤ mi+1,i+2. By symmetry, we
obtain mi+1,i+2 = mi,i+2. Therefore

m1,2 = m3,2 = q + 1−m3,1 = q + 1−m2,1 = m2,3 = m1,3 = q + 1−m1,2,

hence mi,i+1 = mi,i+2 = (q + 1)/2 for all i. We get that all lines through pi+1 contain
(q + 1)/2 points of color i, hence |Si| = (q + 1)2/2. Therefore |S1| + |S2| + |S3| =
3(q + 1)2/2 > q2 + q + 1, a contradiction. �

By Claim 3.8, we may assume that S1 ⊆ L for a line L. Suppose indirectly that
none of the cases (i), (ii) and (iii) hold. As |S1| ≥ 2, we can pick two distinct points
p1, p

′
1 ∈ S1. As none of S2 and S3 is the complement of L, there exists p2 ∈ S2 − L

and p3 ∈ S3 − L. The points of the line through p1 and p2 have color 1 or 2 and
the points of the line through p′1 and p3 have color 1 or 3, hence the intersection of
these lines have color 1. This intersection point cannot lie on L, hence S1 6⊆ L, a
contradiction. �

Corollary 3.9. Let M = (S, I) be a paving matroid of rank 3 defined by the lines of
a projective plane of order q. Suppose that N = (S,J ) is a partition matroid such
that N �M . Then

χ(N) ≥

{
(|S| − 1)/2, if q is odd,

(|S|+ 1)/2, if q is even.
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Section 4. Gammoids 14

In particular, if q ≡ 4 (mod 6) then χ(N) ≥
⌈
3χ(M)

2

⌉
, and if equality holds then N is

not a rank preserving reduction of M .

Proof. As N � M , the coloring defined by the partition classes of N satisfies the
conditions of Theorem 3.7. If there exists an empty color class, then one of the
color classes has size at least d|S|/2e = (|S| + 1)/2. If there exists a color class
containing only one point p, then each of the q+1 lines through p are monochromatic
except for p, hence one of the color classes has size at least qd(q + 1)/2e, that is,
q(q+ 1)/2 = (|S|−1)/2 if q is odd, and q(q+ 2)/2 = (|S|+ q−1)/2 if q is even. If one
of the color classes is the complement of a line, then it has size q2 > (|S|+1)/2. In all
three cases, we get a color class of size at least (|S| − 1)/2 if q is odd, and (|S|+ 1)/2
if q is even, proving our bound on the coloring number of N .

Assume now that q ≡ 4 (mod 6). Lemma 3.5 implies that χ(M) = max{d(q2 +
q + 1)/3e, d(q + 1)/2e} = (q2 + q + 1)/3, and so d3χ(M)/2e = d(q2 + q + 1)/2e =
(|S| + 1)/2 ≤ χ(N). If equality holds then N has rank 2, that is, one of the color
classes is empty, since we have strict inequalities above in the other two cases. �

Corollary 3.9 implies that the bound d3k/2e for paving matroids of rank 3 is tight
for infinitely many values of k. Indeed, consider projective planes of order q = 4` for
` ∈ Z>0 and set k = q2+q+1

3
.

4 Gammoids

The aim of this section is to prove the main result of the paper, Theorem 1.9. A gen-
eralization of transversal matroids can be obtained with the help of directed graphs.
Given a directed graph D = (V,A) and two sets X, Y ⊆ V , we say that X is linked
to Y if |X| = |Y | and there exists |X| vertex-disjoint directed paths from X to Y .
Let S ⊆ V be a set of starting vertices and T ⊆ V be a set of destination vertices.
Then the family I = {Y ⊆ T : ∃X ⊆ S s.t. X is linked to Y } forms the independent
sets of a matroid that is called a gammoid. The gammoid is a strict gammoid if
T = V . That is, a gammoid is obtained by restricting a strict gammoid to a subset
of its elements.

Transversal matroids and gammoids are closely related. Ingleton and Piff [17]
showed that strict gammoids are exactly the duals of transversal matroids, hence
every gammoid is the restriction of the dual of a transversal matroid.

Theorem 1.9. Let M = (S, I) be a k-colorable gammoid (k ≥ 2). Then there exists
a (2k−2)-colorable partition matroid N with N �r M , and the bound for the coloring
number of N is tight.

Proof. Let M = (S, I) be a k-colorable gammoid where k ≥ 2. By the result of
Ingleton and Piff, M can be obtained as the restriction of the dual of a transversal
matroid. Let R be such a transversal matroid, and choose R in such a way that its
rank is as small as possible. Let G = (A,B;E) be a bipartite graph defining R with
S ⊆ A and |B| being the rank of R.
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Section 4. Gammoids 15

The high-level idea of the proof is the following. First we show that there exists
a B2-forest F in G. Then, by using an alternating structure on the components of
F , we prove that F can be chosen in such a way that every component contains at
most 2k− 2 vertices from S. Let C denote the set of the connected components of F ,
and let N = (S,J ) be the partition matroid corresponding to partition classes S(C)
for C ∈ C. Every component C is a B2-tree, hence it contains a perfect matching
between B(C) and A(C) − a for any a ∈ A(C). That is, if we leave out exactly one
vertex from A(C) for each C ∈ C, the remaining vertices of A form a basis of R, and
so the set of deleted vertices form a basis in the strict gammoid that is the dual of R.
This implies that N �M with χ(N) ≤ 2k − 2, thus proving the theorem.

We start with an easy observation.

Claim 4.1. G contains k matchings of size |B| such that every vertex in S is covered
by at most k − 1 of them.

Proof. Observe that a set X ⊆ S is independent in M if and only if A−X contains
a basis of R, that is, G −X has a matching covering B. The assumption that M is
k-colorable is equivalent to the condition that S can be partitioned into k independent
sets of M , and the claim follows. �

The following claim proves an inequality that we will rely on.

Claim 4.2. k · (|A| − |B|) − |S − X| ≥ k · max{|Y | − |N(Y )| : Y ⊆ X} for every
X ⊆ A.

Proof. Let R be the matroid that is obtained from R by adding k − 1 parallel copies
of every element in A−S, and adding k−2 parallel copies of every element in S. The
ground set A′ of R has size (k − 1)|S|+ k|A− S|. Then Claim 4.1 states that R has
k pairwise disjoint bases.

Let X ⊆ A be an arbitrary set and let X ′ be the set consisting of all the parallel
copies of the elements of X. Then |X ′| = (k− 1) · |X ∩ S|+ k · |X − S| and rR(X ′) =
rR(X) = min{|X|−|Y |+ |N(Y )| : Y ⊆ X}. Recall that |A′| = (k−1) · |S|+k · |A−S|
and rR(A′) = |B|, hence

|A′| − |X ′| = (k − 1) · |S|+ k · |A− S| − (k − 1) · |X ∩ S| − k · |X − S|
= (k − 1) · |A|+ |A− S| − (k − 1) · |X| − |X − S|
= (k − 1) · |A−X|+ |A− S −X|,

and

rR(A′)− rR(X ′) = |B| −min{|X| − |Y |+ |N(Y )| : Y ⊆ X}
= |B| − |X|+ max{|Y | − |N(Y )| : Y ⊆ X}.

By Corollary 2.4 and Claim 4.1, |A′| − |X ′| ≥ k · (rR(A′)− rR(X ′)), thus we get

(k − 1) · |A−X|+ |A− S −X| ≥ k · (|B| − |X|+ max{|Y | − |N(Y )| : Y ⊆ X}).
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After rearranging, we obtain

k · (|A| − |B|)− |S −X| ≥ k ·max{|Y | − |N(Y )| : Y ⊆ X}

as stated. �

Our next goal is to show that there exists a B2-forest in G.

Claim 4.3. G = (A,B;E) contains a B2-forest.

Proof. As G has a matching of size |B|, the Hall condition holds for every subset of B,
thus |N(U)| ≥ |U | for every U ⊆ B. Let us call a set U ⊆ B tight if |N(U)| = |U |.
Assume that G does not have a B2-forest. Then, by Theorem 2.1, there exists a
non-empty tight set in B. For arbitrary tight sets U,W ⊆ B, we get

|U |+ |W | = |N(U)|+ |N(W )| = |N(U) ∩N(W )|+ |N(U) ∪N(W )|
≥ |N(U ∩W )|+ |N(U ∪W )| ≥ |U ∩W |+ |U ∪W |
= |U |+ |W |,

hence equality holds throughout, and so U ∩W and U ∪W are also tight. This implies
that there is a unique maximal tight set ∅ 6= Z ⊆ B.

Let X = A − N(Z). As Z is a tight set, max{|Y | − |N(Y )| : Y ⊆ X} ≥
|X| − |N(X)| ≥ |A − N(Z)| − |B − Z| = |A| − |B|, thus S − X = N(Z) ∩ S = ∅
by Claim 4.2. Furthermore, every matching of size |B| provides a perfect matching
between Z and N(Z). That is, R is the direct sum of the transversal matroids R′ and
R′′ defined by G[Z ∪N(Z)] and G[(B−Z)∪ (A−N(Z))], respectively. Therefore M
is the restriction of the dual of R′′ to S, contradicting the minimal choice of R. �

Take an arbitrary B2-forest F in G. We will need the following technical claim.

Claim 4.4. Every leaf of F is in S.

Proof. Suppose to the contrary that F has a leaf vertex a ∈ A − S. Let b ∈ B be
the unique neighbor of a in F , and let G′ = G− {a, b} denote the graph obtained by
deleting vertices a and b form G. Let M ′ = (S, I ′) denote the restriction of the dual
of the transversal matroid defined by G′ to S. As the strong Hall condition holds
for G, the maximum size of a matching of G′ is |B| − 1. We claim that M = M ′,
contradicting the minimality of G.

Take an arbitrary set X ∈ I ′. By definition, G′ − X has a matching P ′ covering
B − b. Then P ′ + ab is a matching of G−X covering B, showing that I ′ ⊆ I.

To see the opposite direction, consider any set X ∈ I. By definition, G−X has a
matching P covering B. Take an arbitrary matching P ′ of G′ covering B − b. Now
|P | = |B| = |B − b|+ 1 = |P ′|+ 1, hence the symmetric difference P4P ′ contains an
alternating path Q whose first and last edges are in P , and one of the end vertices of
Q is b. Then P4Q is a matching of G′ −X covering B − b, implying X ⊆ I ′. �
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We denote the difference |A|−|B| by q. As M is the restriction of R to S, rM(S) ≤ q
is clearly satisfied. Moreover, equality holds since, by Claim 4.4, every leaf of F is in
S, and taking an arbitrary leaf in every component of F results a basis of M .

Let C denote the set of connected components of F . Note that the forest might
have components consisting of a single vertex of A. We have |C| = |A| − |B| = q
as |A(C)| = |B(C)| + 1 for each C ∈ C. We call a component C ∈ C large if
|S(C)| ≥ 2k − 1, normal if k ≤ |S(C)| ≤ 2k − 2, and small if |S(C)| ≤ k − 1. We
say that a component C ′ ∈ C is reachable from a component C ′′ ∈ C if there exists
an alternating sequence C1, b1a2, C2, b2a3, . . . , bp−2ap−1, Cp−1, bp−1ap, Cp of components
and edges such that C1 = C ′′, Cp = C ′, and bi ∈ B(Ci), ai+1 ∈ A(Ci+1) hold for
i = 1, . . . , p − 1. Such an alternating sequence is called a path, the length of the
path being p− 1. The distance of C ′ from C ′′ is the minimum length of a path from
C ′′ to C ′.

We define a potential function on the set of B2-forests as follows. Let ν � µ1 �
λ1 � µ2 � λ2 � · · · � µq−1 � λq−1 be a decreasing sequence of 2q − 1 positive
numbers such that the ratio between any two consecutive ones is at least |A| + 2.
Recall that |C| = q. For a component C ∈ C, the minimum distance of C from a large
component is denoted by dist(C). We define dist(C) to be +∞ if C is not reachable
from any of the large components. The potential of the B2-forest F is defined as

ϕ(F ) = ν ·
∑
C∈C

max{|S(C)| − (2k − 2), 0} (total violation)

−
q−1∑
i=1

µi · |{C ∈ C : dist(C) = i}| (number of components at distance i)

+

q−1∑
i=1

λi ·
∑
C∈C

dist(C)=i

|S(C)|. (number of S-vertices in components at distance i)

Let F be a B2-forest for which ϕ(F ) is as small as possible. The following claim
concludes the proof of the theorem.

Claim 4.5. F has no large components.

Proof. Suppose indirectly that there exists a large component. By applying Claim 4.2
with X = ∅, |S| ≤ k · (|A| − |B|) = k · |C|, hence, by the pigeonhole principle, there
exists a small component as well.

First we show that there exists a small component that is reachable from a large
component. Suppose indirectly that this is not true, and let C ′ ⊆ C denote the set
of components that are not reachable from a large component. Note that C ′ consists
of normal and small components. Define X =

⋃
{A(C) : C ∈ C ′}. By the definition

of reachability, N(X) =
⋃
{B(C) : C ∈ C ′} and so |X| − |N(X)| = |C ′|. As every

component in C−C ′ is either normal or large and there is at least one large component,
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(a) A graph G = (A,B;E) with three
matchings of size |B| such that every vertex
in A is covered by at most two of them.

(b) A B2-forest F of G. For simplicity,
every component of F is chosen to be a
path.

C0Cy
1Cx

1

x

b

y a

(c) Alternating structure on the con-
nected components of F .

C0Cy
1Cx

1

x

b

y a

(d) The B2-forest we obtain by substituting
C0 and C1 by C0 + ab+ by + Cy1 and Cx1 .

Figure 3: An illustration of the proof of Theorem 1.9. In the example, k = 3 and
S = A. The only large component of F is C1, all the other components are small.

|S −X| ≥ k · |C − C ′|+ 1. Then

k ·max{|Y | − |N(Y )| : Y ⊆ X} ≥ k · (|X| − |N(X)|)
= k · |C ′|
= k · (|C| − |C − C ′|)
= k · (|A| − |B|)− k · |C − C ′|
≥ k · (|A| − |B|)− |S −X|+ 1,

contradicting Claim 4.2.
Let C0 be a small component with dist(C0) being minimal. By the above, dist(C0) <

+∞. Consider a shortest path from the set of large components to C0, and let C1 be
the last component on the path before C0. By the definition of a path, there exists
an edge ab with a ∈ A(C0) and b ∈ B(C1). Let x, y ∈ A(C1) denote the neighbors of
b in C1. The deletion of b from C1 results in two connected components Cx

1 and Cy
1

such that x ∈ Cx
1 and y ∈ Cy

1 (see Figure 3).
Assume first that C1 is a large component. As |S(C1)| ≥ 2k−1 and |S(C0)| ≤ k−1,

either |S(C0+ab+bx+Cx
1 )| < |S(C1)| or |S(C0+ab+by+Cy

1 )| < |S(C1)| by Claim 4.4.
Hence substituting C0 and C1 either by C0+ab+bx+Cx

1 and Cy
1 or by C0+ab+by+Cy

1

and Cx
1 decreases the total violation in ϕ(F ), a contradiction.

Therefore C1 is a normal component, and there is another non-small component
C2 before C1 on the shortest path from the set of large components to C0, together
with an edge b′a′ with a′ ∈ A(C1) and b′ ∈ A(C2). We may assume that a′ ∈ Cx

1 . We
distinguish two cases.

Case 1. |S(Cx
1 )| ≥ |S(C1)| − |S(C0)|
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Modify F by substituting components C0 and C1 by C0 + ab+ by+Cy
1 and Cx

1 , re-
spectively. By the assumption, |S(C0 +ab+ by+Cy

1 )| = |S(C0)|+ |S(C1)|− |S(Cx
1 )| ≤

2 · |S(C0)| ≤ 2k − 2, thus no new large component appears. Furthermore, the set
of components with distance less than dist(C1) does not change. The distance of Cx

1

remains dist(C1) because of the edge b′a′. If the distance of C0 + ab + by + Cy
1 is

dist(C1), then the number of components at distance dist(C1) increases. Otherwise,
the distance of C0 + ab + by + Cy

1 is at least dist(C1) + 1, hence the number of S-
vertices in components at distance dist(C1) decreases by Claim 4.4. In both cases,
ϕ(F ) decreases, a contradiction.

Case 2. |S(Cx
1 )| < |S(C1)| − |S(C0)|

Modify F by substituting components C0 and C1 by C0 + ab + bx + Cx
1 and Cy

1 ,
respectively. By the assumption, |S(C0+ab+bx+Cx

1 )| ≤ |S(C0)|+|S(C1)|−|S(C0)| =
|S(C1)|. As C1 is normal, no new large component appears. Furthermore, the set
of components with distance less than dist(C1) does not change. The distance of
C0 + ab + bx + Cx

1 remains dist(C1) because of the edge b′a′. The distance of Cy
1 is

either dist(C1) or dist(C0). In the former case, the number of components at distance
dist(C1) increases, while in the latter case, the number of S-vertices in components
at distance dist(C1) decreases as |S(Cx

1 )| + |S(C0)| < |S(C1)|. In both cases, ϕ(F )
decreases, a contradiction. �

By Claim 4.5, F has no large component. As we have seen before, the partition
matroid N = (S,J ) corresponding to partition classes S(C) for C ∈ C is a reduction
of the original gammoid M with coloring number at most 2k−2. By Claim 4.4, S(C)
is non-empty for every C ∈ C and rM(S) = |C| = q, hence the reduction is rank
preserving.

The bound on the coloring number of N is tight. Consider the laminar matroid
M = (S, I) defined by the laminar family {S, S1, . . . , Sk} where S1 ∪ · · · ∪ Sk is a
partition of S into subsets of size k−1. That is, the size of the ground set S is k2−k.
We define a set X ⊆ S to be independent in M if |X ∩ Si| ≤ 1 for i = 1, . . . , k, and
|X| ≤ k−1. It is not difficult to see that M is a strict gammoid with coloring number
k.

We claim that if N �M is a partition matroid, then χ(N) ≥ 2k−2. Let P1∪· · ·∪Pq
denote the partition defining N . Then every Si is a subset of some Pj, as otherwise
there exists two elements x, y ∈ Si such that x ∈ Pa and y ∈ Pb for a 6= b, implying
that {x, y} is independent in N but dependent in M , a contradiction. As the rank of
M is k − 1, we have q ≤ k − 1. By the above, there exists a class Pj that contains at
least two of the Si’s, and so has size at least 2k − 2, proving χ(N) ≥ 2k − 2. �

For the first sight, the proof seems to provide a polynomial-time algorithm for de-
termining the partition matroid, assuming that a digraph D = (V,A) representing
the gammoid is given. A bipartite graph G = (A,B;E) representing R can be con-
structed from D (see e.g. [11]). The reductions appearing in the proofs of Claims 4.3
and 4.4 can be performed in polynomial time, hence we may assume that G contains
a B2-forest F . Such a forest can be found by [26]. By using the alternating structure
described in the proof of Claim 4.5, we can modify F to get a B2-forest in which every
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component contains at most 2k − 2 vertices from S. However, it is not clear how to
bound the number of augmentation steps as the coefficients in the potential function
can be exponential. An interesting question is whether this procedure terminates after
a polynomial number of steps.

5 Truncation and reducibility

Theorem 1.11. The family of matroids M that can be reduced to a 2χ(M)-colorable
partition matroid is closed for truncation.

Proof. Let M = (S, I) denote a matroid of rank r that is reducible to a 2χ(M)-
colorable partition matroid N . As every k-truncation of M can be obtained by a
series of r− 1, r− 2, . . . , k-truncations, it suffices to prove that the (r− 1)-truncation
M ′ of M is reducible to a 2χ(M ′)-colorable partition matroid.

Let S = S1 ∪ · · · ∪ Sq denote the partition that defines N . We may assume that
|S1| ≥ · · · ≥ |Sq|. If q ≤ r − 1, then N is already a 2χ(M)-colorable reduction of M ′

and the claim follows by χ(M ′) ≥ χ(M). Hence assume that q = r. Consider the
partition matroid N ′ defined by the partition classes S1, S2, . . . , Sr−2, Sr−1∪Sr. Then
N ′ is a reduction of M ′, hence it is sufficient to prove that N ′ is 2χ(M ′)-colorable.

If |Sr−1| + |Sr| ≤ |S1|, then χ(N ′) = |S1| = χ(N) ≤ 2χ(M) ≤ 2χ(M ′). Otherwise
|Sr−1| + |Sr| > |S1|, and so χ(N ′) = |Sr−1| + |Sr|. Using |S| = |S1| + · · · + |Sr| and
|Si| ≥ (|Sr−1|+ |Sr|)/2 for i = 1, 2, . . . , r − 2, we get

|S| ≥ (r − 1) · |Sr−1|+ |Sr|
2

+ |Sr−1|+ |Sr|

=
r + 1

2
· (|Sr−1|+ |Sr|)

=
r + 1

2
· χ(N ′).

That is,

χ(N ′) ≤ 2|S|
r + 1

< 2 · |S|
r − 1

≤ 2χ(M ′),

concluding the proof of the theorem. �

Remark 5.1. Note that an analogous statement holds if we replace 2χ(M) by 2χ(M)−
1, as we proved χ(N ′) < 2χ(M ′) in the second case. As laminar matroids can be ob-
tained from free matroids by taking direct sums and truncations, Theorem 1.11 pro-
vides a simple proof that every k-colorable laminar matroid is reducible to a (2k−1)-
colorable partition matroid. As laminar matroids form a subclass of gammoids, The-
orem 1.9 implies that the bound can be improved to 2k − 2. However, it is not clear
whether the analogue of Theorem 1.11 holds if we replace 2χ(M) by 2χ(M)− 2.

6 Reduction to strongly base orderable matroids

Edmonds and Fulkerson [10] characterized the existence of k disjoint bases in a single
matroid. For the case of two matroids M1 = (S, I1) and M2 = (S, I2), Edmonds’
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celebrated matroid intersection theorem characterizes the maximum size of a common
independent set [8]. A fundamental problem of matroid optimization is to characterize
the existence of a partitioning into k common independent sets of two matroids. The
importance of the problem is underpinned by a long list of well-studied conjectures
that can be formalized as a special cases, such as Rota’s beautiful conjecture on the
rearrangements of bases [16], or Woodall’s conjecture on packing dijoins in a directed
graph [38]. Recently, the first two authors verified that the problem is difficult under
the rank oracle model [2]. Although this result settles the complexity of the problem
in general, it has no implications on its special cases. Hence finding matroid classes
for which the problem becomes tractable is of interest.

There are only a few cases in which a proper characterization is known. These
problems include the classical results of Kőnig on 1-factorization of bipartite graph
[23], Edmonds’ theorem on the existence of k disjoint spanning arborescences of a
digraph [9], and the result of Keijsper and Schrijver on packing connectors [19].

In general, there is a natural necessary condition for the existence of a partition into
k common independent sets: the ground set has to be partitionable into k independent
sets in both matroids. This condition is not sufficient in general. However, Davies
and McDiarmid [7] observed that it is sufficient when both matroids are strongly base
orderable. A matroid is strongly base orderable if for every two bases B1 and B2,
there is a bijection γ : B1 → B2 with the property that (B1−X)∪ γ(X) is a basis for
any X ⊆ B1.

Theorem 6.1 (Davies and McDiarmid). Let M1 = (S, I1) and M2 = (S, I2) be
strongly base orderable matroids. If S can be partitioned into k independent sets in
both M1 and M2, then S can be partitioned into k common independent sets.

Given a matroidM = (S, I), an element v ∈ S is said to be k-spanned if there are k
disjoint sets that span v. Kotlar and Ziv [24] proved that if M1 and M2 are matroids
on S and no element is 3-spanned in M1 or M2, then S can be partitioned into 2
common independent sets. They conjectured that this can be generalized to arbitrary
k: if no element is (k + 1)-spanned in M1 or M2, then S can be partitioned into k
common independent sets. It is worth mentioning that if no element is (k+1)-spanned
in a matroid then the matroid is k-colorable, hence the natural necessary condition is
satisfied in this case. In [34], Takazawa and Yokoi proposed a new approach building
upon the generalized-polymatroid intersection theorem. Their result gives a new
interpretation of that of Kotlar and Ziv, and extends the list of those pairs of matroid
classes for which a characterization is known for the existence of a partition into k
common independent sets.

Aharoni and Berger [1] proposed the following conjecture that would give the best
possible upper bound for the minimum number of common independent sets of two
matroids needed to cover the ground set.

Conjecture 6.2 (Aharoni and Berger). Let M1 = (S, I1) and M2 = (S, I2) be loopless
matroids. Then S can be partitioned into max{χ(M1), χ(M2)}+ 1 common indepen-
dent sets.
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The idea of reducing a matroid to a partition matroid can be generalized to strongly
base orderable matroids. Let M1 and M2 be arbitrary matroids on the same ground
set, and assume that they are reducible to k-colorable strongly base orderable matroids
N1 and N2, respectively. Then, by Theorem 6.1, S can be decomposed into k common
independent sets of N1 and N2. As N1 � M1 and N2 � M2, this gives a partition of
S into k common independent sets of M1 and M2.

In particular, the following statement strengthens Conjecture 6.2.

Conjecture 6.3. Let M = (S, I) be a k-colorable matroid. Then M has a (k + 1)-
colorable strongly base orderable reduction.

Indeed, if Conjecture 6.3 is true, then M1 and M2 have (χ(M1)+1) and (χ(M2)+1)-
colorable strongly base orderable reductions N1 and N2, respectively. By Theorem 6.1,
S can be decomposed into max{χ(M1), χ(M2)} + 1 common independent sets, thus
proving Conjecture 6.2. Although we do not expect Conjecture 6.3 to hold in general,
it might help to identify special cases for which the Aharoni–Berger conjecture holds.

Remark 6.4. The bound of k + 1 for the strongly base orderable reduction of M
in Conjecture 6.3 is best possible, that is, a k-colorable matroid is not necessarily
reducible to a k-colorable strongly base orderable matroid.

Consider the graphic matroid M of the complete graph K4 on four vertices. It is
not difficult to check that M is not strongly base orderable. Suppose indirectly that
M is reducible to a 2-colorable strongly base orderable matroid N . Let BM and BN
denote the sets of bases of M and N , respectively. Then BM consists of 12 paths of
length three and 4 stars. As N is 2-colorable, its ground set can be partitioned into
two disjoint bases, thus BN contains a path of length three and its complement (since
the complement of a star with three edges is a triangle).

In what follows, we see BN = BM , which contradicts that N is strongly base or-
derable. Let v1, v2, v3, v4 denote the vertices of K4. By the above, we may assume
that B1 = {v1v2, v2v3, v3v4} ∈ BN and B2 = {v2v4, v4v1, v1v3} ∈ BN . By the sym-
metric exchange property, there exists an edge e ∈ B2 such that B1 − v1v2 + e ∈
BN and B2 − e + v1v2 ∈ BN . As B1 − v1v2 + v2v4 = {v2v3, v2v4, v3v4} 6∈ BM ,
B2 − v1v3 + v1v2 = {v1v2, v1v4, v2v4} 6∈ BM and BN ⊆ BM hold, we get e 6= v2v4
and e 6= v1v3, hence e = v4v1. Therefore B1 − v1v2 + v1v4 = {v2v3, v3v4, v4v1} ∈ BN
and B2 − v4v1 + v1v3 = {v3v1, v1v2, v2v4} ∈ BN . Using the same argument for these
two bases, and then once again for the two bases thus obtained, we get that

{vivi+1, vi+1vi+2, vi+2vi+3}, {vi+1vi+3, vi+3vi, vivi+2} ∈ BN

holds for i = 1, 2, 3, 4 (where indices are meant in a cyclic order).
Applying the symmetric exchange property to B3 = {vivi+1, vi+1vi+2, vi+2vi+3} ∈
BN , B4 = {vi+2vi, vivi+1, vi+1vi+3} ∈ BN and vi+2vi+3 ∈ B3 − B4, we get that there
exists an e ∈ B4 − B3 such that B3 − vi+2vi+3 + e ∈ BN and B4 − e+ vi+2vi+3 ∈ BN .
As B3 − vi+2vi+3 + vivi+2 = {vivi+1, vivi+2, vi+1vi+2} 6∈ BN , we get e 6= vivi+2, hence
e = vi+1vi+3. Therefore

{vivi+1, vi+1vi+2, vi+1vi+3}, {vi+1vi, vivi+2, vi+2vi+3} ∈ BN
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for i = 1, 2, 3, 4.
It is not difficult to check that the we listed all 16 bases of M , therefore BN = BM

and N = M .
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