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Abstract

In the random subgraph model we consider random subgraphs G(t) of a
graph G obtained as follows: for each edge in G we independently decide to
retain the edge with probability t and discard the edge with probability 1 − t,
for some 0 ≤ t ≤ 1. A special case of this model is the Erdős-Rényi random
graph model, where the host graph is the complete graph Kn.

In this paper we analyze the rigidity properties of random subgraphs and
give new upper bounds on the threshold t0 for which Gt is a.a.s. rigid or globally
rigid when t ≥ t0. By specializing our results to complete host graphs we obtain,
among others, that an Erdős-Rényi random graph is a.a.s. globally rigid in Rd
if t ≥ Cd logn

n for some constant Cd.
We also consider random subframeworks of (bar-and-joint) frameworks, which

are geometric realizations of our graphs. Our bounds for the rigidity thresh-
old of random subgraphs are in terms of the smallest non-zero eigenvalue of
the stiffness matrix of the framework, which is the Gramian of its normalized
rigidity matrix. Motivated by this connection, we introduce the concept of d-
dimensional algebraic connectivity of graphs and provide upper or lower bounds
for this value of several fundamental graph classes. The case d = 1 corresponds
to the well-known algebraic connectivity, that is, the second smallest Laplacian
eigenvalue of the graph.

We also consider the rigidity threshold in random molecular graphs, also
called bond-bending networks, which are used in the study of rigidity properties
of molecules. In this model we are concerned with the rigidity of the square
graph of some graph G. We give an upper bound for the rigidity threshold of
the square of random subgraphs in terms of the algebraic connectivity of the
host graph. This enables us to derive an upper bound for the rigidity threshold
for sparse host graphs.
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1 Introduction

A d-dimensional (bar-and-joint) framework (or geometric graph) is a pair (G,p), where
G = (V,E) is a (finite, simple) graph on n vertices with vertex set V = {1, 2, . . . , n}
and edge set E, and p : V (G) → Rd is a map (or point configuration). We say
that (G,p) is a realization of G in Rd. Each edge uv ∈ E corresponds to a line
segment between p(u) and p(v). The framework (G,p) is rigid, if every continuous
motion of the points of G in Rd which preserves all edge lengths takes the framework
to a congruent realization of G. In other words, there is no continuous deformation
of the framework. A d-dimensional framework (G,p) is globally rigid if every other
d-dimensional realization of G in which corresponding edges have the same length
is congruent to (G,p). Since continuous deformations give rise to infinitely many
non-congruent realizations, it follows that global rigidity is stronger than rigidity.

Frameworks can be used to model various structures with fixed pairwise distances,
including biomolecules and sensor networks. Thus results on the rigidity and flexibil-
ity properties of frameworks are vital in the analysis of the mechanical properties of
biomolecules [35], in the localization problem of networks [18], and elsewhere. An ac-
tive research area within the theory of rigid frameworks is concerned with the rigidity
transition of random frameworks. These investigations are motivated by the analysis
of rigidity percolation, which is the rigidity analogue of the conventional connectivity
percolation. Rigidity percolation has been extensively studied by physicists in order
to develop mathematical models for phase transitions of physical properties of dif-
ferent materials such as glass networks and proteins, see, e.g. [15, 21, 31]. Although
several computational studies are available, the mathematical background is not fully
explored.

In this paper we shall work with the random subgraph model (which is sometimes
called the random dilution model or bond percolation model in physics). In this model
we consider random subgraphs G(t) of a graph G obtained as follows: for each edge
in G we independently decide to retain the edge with probability t and discard the
edge with probability 1 − t, for some 0 ≤ t ≤ 1. A special case of this model is the
Erdős-Rényi random graph model, where the host graph is the complete graph Kn.

A fundamental problem is to determine (upper or lower bounds for) the critical
value t0 for which G(t), with t ≥ t0, satisfies a given property with high probability:
for example, we may require that it has a giant connected component, or that G(t)
itself is connected. We shall consider the critical value with respect to the rigidity
and global rigidity of random subgraphs and random subframeworks in Rd. It is well-
known that the rigidity of a framework (G,p) in R1 depends only on the underlying
graph G: the framework is rigid if and only if G is connected. In this sense our problem
is the d-dimensional extension of the connectivity problem of random graphs.

For this core problem, and for a complete host graph Kn, Erdős and Rényi [9]
determined the corresponding critical values. For general host graphs there are several
partial results (on dense graphs, bounded degree graphs, regular graphs, expander
graphs) concerning the giant component problem, see e.g. [4].

In higher dimensions, however, the rigidity of a framework (G,p) depends on the
realization, too. It gives rise to the version where we consider the rigidity (and a
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1.1 New results 3

potential giant rigid component) of a random subframework. For generic (to be defined
in the next section) frameworks rigidity is a graph property for all d ≥ 1, and we can
deal with random subgraphs in this context.

In the analysis of the rigidity properties of random graphs a frequently used ap-
proach is based on the so-called Maxwell count, which provides a simple combinatorial
necessary condition for the rigidity of generic frameworks: if (G,p) is rigid in Rd then
G has a spanning subgraph H = (V, F ) with |F | = d|V | −

(
d+1

2

)
which satisfies

|F ′| ≤ d|V ′| −
(
d+1

2

)
for every subgraph H ′ = (V ′, F ′) of H with |V ′| ≥ d + 1. Al-

though this condition is, in general, not sufficient for d ≥ 3, it gives rise to a purely
combinatorial approach and can be used in heuristic results as well as in some special
cases.

In R2 the above count condition is also sufficient [25]. Based on this fact, it has
been possible to obtain rigorous proofs for several results on the rigidity of random
graphs. Consider for example the Erdős-Rényi random graph model and use Gn,t to
denote the random graph on n vertices, where each edge is present with probability
t. Jackson, Servatius, and Servatius [19] proved that Gn,t is asymptotically almost

surely rigid (resp. globally rigid) in R2 if t ≥ logn
n

+ (k+δ) log logn
n

for any δ > 0, where
k = 2 (resp. k = 3). Kasiviswanathan, Moore, and Theran [22] analysed the size
of a giant rigid component of Gn,t in R2. There are also results in different random
framework models in R2, such as [8].

By using a completely different approach, Király and Theran [24] gave the first
bound for the rigidity threshold in general dimension d in the Erdős-Rényi model.
They proved that Gn,t is a.a.s. rigid in Rd if t ≥ Cd logn

n
for some constant C. Instead

of using the Maxwell count, they estimate the rank of the rigidity matrix (defined
below) directly, applying methods from the matrix completion problem [3].

Although the random subgraph model is frequently used in experimental simu-
lations in physics (see, e.g., [31]), little is known about the mathematical analysis,
even in the 2-dimensional case. For infinite lattices the problem can be considered
as a ”d-dimensional version” of the classical connectivity percolation problem. There
are a few results concerning the uniqueness of an infinite rigid component [13, 14]
and a comparison of the rigidity threshold with the connectivity threshold for some
lattices [17]. However, giving a quantitative analysis of the size of the giant rigid
component or computing the exact threshold for general host graphs is a challenging
open problem.

1.1 New results

In this paper we verify several algebraic properties of stiffness matrices of frameworks
and, using these new results, we obtain new bounds for the critical values for the
rigidity and global rigidity of random graphs in the random subgraph model.

In more detail, we give bounds for the smallest non-zero eigenvalue of the (nor-
malized) stiffness matrix of the framework, which is the Gramian of its (normalized)
rigidity matrix. We also extend the well-known concept of algebraic connectivity of
graphs and introduce the d-dimensional algebraic connectivity of a graph G, which is
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Section 2. Rigid Frameworks and Graphs 4

the supremum of the smallest non-zero eigenvalues over all d-dimensional realizations
of G. This parameter plays a key role in our approach to random graphs.

Our bounds for the critical values are in terms of the d-dimensional algebraic con-
nectivity of the graph. In the special case of the Erdős-Rényi random graph model,
we show that Gn,t is a.a.s. globally rigid in Rd if t ≥ Cd logn

n
for some constant Cd.

When d ≤ 100, we have Cd = 8(d+1)3

2d2+d
.

We shall also consider the rigidity of random molecular graphs, also called bond-
bending networks, which are frequently used in the study of rigidity percolation (see,
e.g., [31]). In this model the goal is to analyze the rigidity of the square G2 of G. We
give a better upper bound for the rigidity threshold of the square G2 in terms of the
second smallest Laplacian eigenvalue of the underlying graph G. This enables us to
derive an upper bound for the rigidity threshold even for some sparse host graphs.

The structure of the paper is as follows. In Section 2 we introduce a few more basic
notions of rigidity theory, including infinitesimal rigidity and the rigidity matrix. In
Section 3 we define the stiffness matrix of a framework and introduce the concept of
d-dimensional algebraic connectivity of a graph. Sections 4 and 5 contain our results
on the eigenvalues of stiffness matrices. The same holds for Section 6, where we focus
on regular graphs. In the rest of the paper we consider random subframeworks and
random graphs. We start with a preliminary result on random submatrices, given in
Section 7. Sections 8 and 9 contain the main results on rigidity and global rigidity
properties of random graphs and random molecular graphs, respectively.

2 Rigid Frameworks and Graphs

Testing or analysing the rigidity of a framework (G,p) is a hard problem in R2 and
in higher dimensions. A standard approach is to work with the stronger and more
tractable property of infinitesimal rigidity, defined as follows. Let (G,p) be a d-
dimensional framework. For simplicity we shall always suppose that there is no proper
affine subspace of Rd which contains the whole point configuration p(V ). In particular,
this implies |V | ≥ d+ 1.

The normalized rigidity matrix R(G,p) of (G,p) is a matrix of size d|V |×|E|, where
each vertex has an associated d-tuple of rows and each edge ij ∈ E(G) is associated
with a column vector rij which has the following form:

r>ij :=
[ i j

0 . . . 0 d>ij 0 . . . 0 −d>ij 0 . . . 0
]
, (1)

where dij ∈ Rd is the edge-direction vector defined by dij = p(i)−p(j)
‖p(i)−p(j)‖ , if p(i) 6= p(j),

and dij = 0 otherwise. (Note that our definition is different from the usual definition
of the rigidity matrix in the sense that we consider the transpose and normalize it.)
It is well-known that the rank of R(G,p) is at most d|V | −

(
d+1

2

)
. The framework

(G,p) is said to be infinitesimally rigid if the rank is equal to d|V | −
(
d+1

2

)
. Further-

more, infinitesimal rigidity implies rigidity. For generic frameworks (where the set of
d|V | coordinates of the points is algebraically independent over the rationals) (G,p)
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Section 3. Stiffness Matrices and the Generalized Algebraic Connectivity 5

is rigid if and only if (G,p) is infinitesimally rigid. Thus, in this case, the rigidity and
infinitesimal rigidity of the framework depend only on the graph G. Hence we call a
graph G rigid in Rd if the rank of R(G,p) is equal to d|V | −

(
d+1

2

)
for some (or equiv-

alently, for all generic) d-dimensional realization of G. Note that the characterization
of rigid graphs as well as the complexity of testing whether a graph is rigid in Rd, for
d ≥ 3, are still major open problems in this area.

The rigidity matrix R(G,p) represents the following system of linear equations with
variables x : V → Rd:

〈x(i)− x(j),dij〉 = 0 (ij ∈ E).

A solution x of the system or equivalently, a vector in the left kernel of R(G,p), is
called an infinitesimal motion of (G,p). (Here we regard x as a vector in Rdn, for
n = |V |, in which x(i) occupies d consecutive entries for each i ∈ V .)

Every framework admits infinitesimal motions that do not depend on the graph:
infinitesimal translations and infinitesimal rotations. An infinitesimal translation xt :
V → Rd satisfies that xt(i) = xt(j) for every i, j ∈ V . An infinitesimal rotation
(about the origin) xr : V → Rd has the form xr(i) = Sp(i) (i ∈ V ) for some skew-
symmetric matrix S of size d. A linear combination of infinitesimal translations and
infinitesimal rotations is called a trivial infinitesimal motion. The space of all trivial
infinitesimal motions of (G,p) has dimension

(
d+1

2

)
(provided p(V ) affinely spans Rd).

Thus rankR(G,p) ≤ d|V | −
(
d+1

2

)
. In what follows we shall use D =

(
d+1

2

)
, where the

positive integer d is clear from the context.
We refer the reader to [20, 27] for more details of the theory of rigid and globally

rigid graphs and frameworks.

3 Stiffness Matrices and the Generalized Algebraic

Connectivity

Given a d-dimensional framework (G,p), its stiffness matrix L(G,p) is defined to be

L(G,p) := R(G,p)R(G,p)>.

This square matrix of size dn×dn (where n is the number of vertices) can be considered
as a natural geometric-graph version of the Laplacian. Indeed, for a graph G = (V,E),
consider a 1-dimensional realization (G,p) of G on the line, and orient each edge

uv ∈ E from left to right. Then the vertex-edge incidence matrix I(~G) of the resulting

oriented graph ~G is equal to R(G,p), and the Laplacian L(G) of G satisfies

L(G) = I(~G)I(~G)> = R(G,p)R(G,p)> = L(G,p).

In this sense the Laplacian of a graph is exactly the stiffness matrix of its 1-dimensional
realizations. Hence the results of spectral graph theory can be used to analyze the
1-dimensional case. However, for d ≥ 2 one obtains several new and interesting
questions.
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Section 4. Eigenvalues of Stiffness Matrices 6

This connection to the Laplacian motivates us to investigate the following graph
parameter. For a symmetric matrix A, let λk(A) be the k-th smallest eigenvalue of A
(counted with multiplicities). Let G be a graph and d ≥ 1. Recall that D =

(
d+1

2

)
.

The d-dimensional algebraic connectivity of G, denoted by ad(G), is defined by

ad(G) := sup
{
λD+1(L(G,p)) | p : V (G)→ Rd

}
.

The 1-dimensional algebraic connectivity a1(G) of a graph G is equal to the second
smallest eigenvalue of the Laplacian of G, which is often called the algebraic connec-
tivity of G, see [10, 11].

Let (G,p) be a d-dimensional framework, and suppose that p(V ) spans Rd affinely.
The first observation is that, since L(G,p) = R(G,p)R(G,p)>, we have λD+1(L(G,p)) 6=
0 if and only if (G,p) is infinitesimally rigid.

Let ei ∈ Rn be the n-dimensional unit vector whose i-th coordinate is one and
zero elsewhere. Then the column vector rij of R(G,p) associated with an edge ij is
written by rij = (ei − ej)⊗ dij. Hence the stiffness matrix is written by

L(G,p) =
∑

e=ij∈E

rijr
>
ij =

∑
e=ij∈E

(ei − ej)(ei − ej)
> ⊗ dijd

>
ij. (2)

In the one-dimensional case, dij is either 1 or −1, and hence we obtain, as above, that
L(G,p) =

∑
e=ij∈E(ei − ej)(ei − ej)

> = L(G).
The quadratic form becomes

x>L(G,p)x =
∑

e=ij∈E

〈x(i)− x(j),dij〉2. (3)

This value has the following physical interpretation. When we consider x(i) as an
infinitesimal displacement of p(i), then 〈x(i) − x(j),dij〉 is the strain along an edge
ij and x>L(G,p)x is the potential energy caused by the displacement. In this sense,
λD+1(L(G,p)) can be considered as a quantitive measure for the stiffness of (G,p).

Stiffness matrices (and their submatrices) are also used in the stability analysis of
truss structures in structural engineering [2, 6]. They occurred in rigidity theory, too,
in certain sufficient conditions for the rigidity of frameworks [7, 16]. Recently stiffness
matrices have been studied by the control theory community [32, 36, 37, 38].

4 Eigenvalues of Stiffness Matrices

In this section we give various bounds for the eigenvalue λD+1 of the stiffness matrix
of a d-dimensional framework.

Throughout the paper we use the following notation. Let Id denote the identity
matrix of size d, and let Jd denote the all-one matrix of size d. For symmetric matrices
A and B, we use A � B to denote that A−B is positive semidefinite.

The largest and the smallest eigenvalues of a square matrix A are denoted by
λmax(A) and λmin(A), respectively. For a square matrix A, the Moore-Penrose pseudo-
inverse of A is denoted by A†. If A is symmetric and has eigenvalue decomposition
A =

∑n
i=1 λiviv

>
i , where each λi is an eigenvalue of A and the corresponding unit

eigenvector is vi, then A† =
∑

i:λi 6=0
1
λi
viv
>
i .
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4.1 Upper bounds based on graph Laplacians 7

4.1 Upper bounds based on graph Laplacians

We shall frequently use the following key result, called the Courant-Fisher min-max
theorem.

Theorem 4.1 (Courant-Fisher). For a symmetric matrix A of size n,

λk(A) = max
U

min
x∈U⊥\{0}

x>Ax

x>x

where the maximum is taken over all (k−1)-dimensional subspaces U of Rn. Similarly,

λn−k+1(A) = min
U

max
x∈U⊥\{0}

x>Ax

x>x

where the minimum is taken over all (k − 1)-dimensional subspaces U of Rn.

Our first upper bound is based on the Laplacian of the graph.

Theorem 4.2. Let (G,p) be a d-dimensional realization of a graph G on n vertices.
Then

λk(L(G,p)) ≤ λd k
d
e(L(G)).

Proof.

λk(L(G,p)) = max
U

min
x∈U⊥\{0}

x>L(G,p)x

x>x
(by Theorem 4.1)

= max
U

min
x∈U⊥\{0}

∑
ij∈E〈xi − xj,

pi−pj
‖pi−pj‖〉

2

x>x

≤ max
U

min
x∈U⊥\{0}

∑
ij∈E ‖xi − xj‖2

x>x
(by the Cauchy-Schwarz inequality)

= max
U

min
x∈U⊥\{0}

x>(L(G)⊗ Id)x
x>x

= λk(L(G)⊗ Id) (by Theorem 4.1)

= λd k
d
e(L(G)),

where each maximum is taken over all (k − 1)-dimensional subspaces of Rdn.

By Theorem 4.2 we can use several well-known results on the spectrum of the
Laplacian of a graph in order to estimate the spectrum of the stiffness matrices of its
realizations.

4.2 Complete graphs in the plane

Let Kn be the complete graph on n vertices. As an application of Theorem 4.2 we
shall give the explicit value of the 2-dimensional algebraic connectivity a2(Kn) of Kn.
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4.3 Vertex removal 8

Lemma 4.3. For any p : V (Kn)→ Rd, the largest eigenvalue of L(Kn,p) is n.

Proof. We may suppose that the center of gravity of (Kn,p) is at the origin, i.e.,∑
i∈V p(i) = 0. Then we have∑

ij∈E(Kn)

‖p(i)−p(j)‖2 = (n−1)
∑
i∈V

‖p(i)‖2−
∑
i∈V

∑
j 6=i

〈p(i),p(j)〉 = n
∑
i∈V

‖p(i)‖2 = n‖p‖2.

Furthermore, we can use (3) to deduce

p>L(Kn,p)p

‖p‖2
=

∑
ij∈E(Kn) ‖p(i)− p(j)‖2

‖p‖2
= n,

which implies λmax(L(Kn,p)) ≥ n by Theorem 4.1. On the other hand, it is well-
known that λmax(L(Kn)) = n. Hence Theorem 4.2 gives λmax(L(Kn,p)) = n.

A 2-dimensional framework (Kn,p) is said to be planar regular if the set of points
forms the vertices of a regular n-gon on the unit circle. The following result is essen-
tially due to G. Zhu [37, Remark 3.4.1], who determined the eigenvalues of L(Kn,p),
when (Kn,p) is planar regular.

Theorem 4.4. Let (Kn,p) be the planar regular realization of Kn. Then

a2(Kn) = λ4(L(Kn,p)) =
n

2
.

Proof. Let x1 and x2 denote the infinitesimal translations to the x-direction and to the
y-direction, respectively, with ‖x1‖ = ‖x2‖ = 1, and let x12 denote the infinitesimal
rotation about the origin with ‖x12‖ = 1. Zhu [37] observed that

L(Kn,p) =
n

2
(I2n + pp> − x1x

>
1 − x2x

>
2 − x12x

>
12)

by regarding each of x1,x2 and x12 as a 2n-dimensional vector. This means that the
fourth smallest eigenvalue is n

2
.

On the other hand, for any 2-dimensional framework (Kn, q), the largest eigenvalue
is n by Lemma 4.3. Since the trace of L(Kn, q) is 2|E(Kn)| = n(n − 1), the fourth

smallest eigenvalue is at most n(n−1)−n
2n−4

= n
2
. Hence λ4 is maximized by the planar

regular realization, as claimed.

4.3 Vertex removal

The following vertex-removal lemma provides a lower bound on λD+1 of the induced
subgraphs of a graph. It extends the one-dimensional result due to Fiedler [11]. For
some vertex i of graph G the set of vertices adjacent to i (the neighbours of i) is
denoted by NG(i).

Lemma 4.5. Let (G,p) be a d-dimensional framework and (G−i,p′) be the subframe-
work of (G,p) obtained by removing i ∈ V . Then λD+1(L(G−i,p′)) ≥ λD+1(L(G,p))−
1.
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4.4 The adjacency matrix for frameworks 9

Proof. Let x′ : V \{i} → Rd be the unit eigenvector of λD+1(L(G− i,p′)), and extend
it to x : V → Rd by setting x(i) = 0. Then x is in the orthogonal complement of the
kernel of L(G,p) by the construction. Therefore,

λD+1(L(G,p)) ≤ x>L(G,p)x (by Theorem 4.1)

= x′>

L(G− v,p) +
∑

j∈NG(i)

dijd
>
ij ⊗ eje

>
j

x′

= λD+1(L(G− i,p′)) + x′>

 ∑
j∈NG(i)

(dij ⊗ ej)(dij ⊗ ej)
>

x′

≤ λD+1(L(G− i,p′)) + 1,

where the last inequality follows since {dij ⊗ ej : j ∈ NG(i)} is an orthonormal set of
vectors.

4.4 The adjacency matrix for frameworks

The Laplacian matrix L(G) of a graph G can be written as D(G) − A(G), where
D(G) is the diagonal matrix whose i-th diagonal entry is equal to degG(i) (the degree
of vertex i in G), and A(G) is the adjacency matrix of G. In a similar manner, we
define

D(G,p) =


B11 0 . . . 0

0 B22
...

...
. . .

0 . . . Bnn

 and A(G,p) =


0 B12 . . . B1n

B12 0
...

...
. . .

B1n . . . 0


where Bij = dijd

>
ij, if i 6= j, and Bii =

∑
j∈NG(i) dijd

>
ij. Recall that dij ∈ Rd is the edge

direction vector defined in Section 2. Note that we have L(G,p) = D(G,p)−A(G,p).
We have the following inequality for the eigenvalues.

Lemma 4.6. Let G be a graph on n vertices and let (G,p) be a d-dimensional real-
ization of G. Then for every 1 ≤ i ≤ dn we have

λi(L(G,p)) ≤ λmax(D(G,p))− λdn−i+1(A(G,p)).

Proof. By Theorem 4.1, λi(L(G,p)) = minx∈Û⊥\{0}
x>L(G,p)x

x>x
for some (i−1)-dimensional
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Section 5. Balanced Complete Multipartite Graphs 10

subspace Û of Rdn. Hence

λi(L(G,p)) = min
x∈Û⊥\{0}

x>L(G,p)x

x>x

= min
x∈Û⊥\{0}

x>(D(G,p)− A(G,p))x

x>x

≤ λmax(D(G,p))− max
x∈Û⊥\{0}

x>A(G,p)x

x>x

≤ λmax(D(G,p))− min
U :dimU=i−1

max
x∈U⊥\{0}

x>A(G,p)x

x>x

= λmax(D(G,p))− λdn−i+1(A(G,p)) (by Theorem 4.1)

5 Balanced Complete Multipartite Graphs

As we showed in Theorem 4.2, we can obtain an upper bound on ad(G), for some graph
G, in terms of certain eigenvalues of L(G). It turns out that proving lower bounds
on ad(G) is substantially more difficult. In particular, deciding whether ad(G) 6= 0
is equivalent to deciding whether G is rigid in Rd. Since the complexity of testing
whether G is rigid in Rd is still open for d ≥ 3, this indicates the potential difficulties.
In fact it seems that finding reasonable lower bounds on ad(G) is not easy even if G is
dense and rigid. Computing ad(Kn) for d ≥ 3 is already a challenging open problem.

In this section we give a lower bound for ad(G) when G is a balanced complete
multipartite graph. As a corollary, we obtain a lower bound for ad(Kn). The proof of
this bound is not short, but having such a lower bound is essential: we shall need it
later in the proofs of our results on the rigidity of random subgraphs.

For n ≥ q ≥ 2, the balanced complete multipartite graph, denoted by Kn:q is the
graph on n vertices whose vertex set V can be partitioned into q parts {V1, . . . , Vq} in
such a way that ||Vi|− |Vj|| ≤ 1 holds for every 1 ≤ i, j ≤ q, and two vertices u, v ∈ V
are adjacent if and only if they belong to different members of this partition.

A regular d-simplex in Rd is a simplex (with d + 1 vertices) in which the edge
lengths are the same. It will be convenient to consider a specific regular simplex,
or equivalently, a specific realization of Kd+1. Let (Kd+1,p

∗) be the framework in
which all points lie on the unit sphere with center at the origin, and induce a regular
d-simplex in Rd. Let sd = λD+1(L(Kd+1,p

∗)).
The main result of this section is as follows. The proof will be given in Subsec-

tion 5.2.

Theorem 5.1. Let n ≥ d+ 1 ≥ 3 be integers. Then ad(Kn:d+1) ≥ 2d2+d
2(d+1)3

sdn− d.

Theorem 5.1 implies the following by using the monotonicity of ad.

Corollary 5.2. Let n ≥ d+ 1 ≥ 3 be integers. Then ad(Kn) ≥ 2d2+d
2(d+1)3

sdn− d.
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5.1 Trivial motions of the regular simplex 11

In the special case d = 2, Theorem 4.4 implies that s2 = 3
2
. By using a computer

we have checked that sd = 1 holds for 3 ≤ d ≤ 100, and we strongly believe that
sd = 1 for all d ≥ 3. In fact our computational results suggest the following more
general conjecture.

Conjecture 1. Let d ≥ 2. Then the spectrum of the stiffness matrix of regular
d-simplex (Kd+1,p

∗) is given by[
0 1 d+1

2
d+ 1

(d+1)d
2

(d+1)(d−2)
2

d 1

]
where the first row is the list of the eigenvalues and the second row contains their
multiplicities.

5.1 Trivial motions of the regular simplex

In the proof of Theorem 5.1 we shall use properties of the space of trivial motions of
the regular d-simplex (Kd+1,p

∗) defined above.

Lemma 5.3. The framework (Kd+1,p
∗) satisfies∑

i∈V (Kd+1)

p∗(i)p∗(i)> =

(
1 +

1

d

)
Id.

Proof. For i, j ∈ V (Kd+1) with i 6= j, let θ = 〈p∗(i),p∗(j)〉. The regularity implies
that θ is independent of the choice of i and j. Since the center of gravity of (Kd+1,p

∗)
is the origin, we have

∑
i∈V (Kd+1) p

∗(i) = 0. By taking the inner product with p∗(1),

we get 0 = 〈p∗(1),
∑

i∈V (Kd+1) p
∗(i)〉 = 1 + dθ, implying θ = −1

d
.

For every j ∈ V (Kd+1), we have ∑
i∈V (Kd+1)

p∗(i)p∗(i)>

p∗(j) = p∗(j)+
∑
i:i 6=j

θp∗(i) = p∗(j)−θp∗(j) =

(
1 +

1

d

)
p∗(j).

Hence every p∗(j) is an eigenvector of
(∑

i∈V (Kd+1) p
∗(i)p∗(i)>

)
whose corresponding

eigenvalue is
(
1 + 1

d

)
. Since the set {p∗(j) : j ∈ V (Kd+1)} of vectors spans Rd, this

in turn implies that all eigenvalues of
(∑

i∈V (Kd+1) p
∗(i)p∗(i)>

)
are equal to

(
1 + 1

d

)
.

Hence the lemma follows.

Denote the standard basis of Rd by {ei : 1 ≤ i ≤ d}. Given a d-dimensional frame-
work (G,p), we can define infinitesimal translations x∗a : V (G)→ Rd and infinitesimal
rotations x∗ab : V (G)→ Rd as follows. Let

x∗a(i) :=
1√
d+ 1

ea (i ∈ V (G)) (4)
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5.2 Proof of Theorem 5.1 12

for each a with 1 ≤ a ≤ d, and

x∗ab(i) =

√
d

2(d+ 1)2

(
eae

>
b − ebe

>
a

)
p(i) (i ∈ V (G)) (5)

for each a, b with 1 ≤ a < b ≤ d. (Note that eae
>
b − ebe

>
a is skew-symmetric.) Since

x∗a and x∗ab are trivial, they belong to the kernel of L(G,p).
We can say more when the framework comes from the regular simplex.

Lemma 5.4. The vectors {x∗a : 1 ≤ a ≤ d} ∪ {x∗ab : 1 ≤ a < b ≤ d} form an
orthonormal basis of the kernel of L(Kd+1,p

∗).

Proof. We have already seen that each of these vectors belongs to the kernel of
L(Kd+1,p

∗). We also know that the dimension of the kernel is D, which is equal
to the cardinality of the set of vectors.

Let us prove that they are orthogonal. One can easily check that x∗a and x∗b are
orthogonal if a 6= b, and x∗a and x∗bc are orthogonal (by using the fact that the
center of the gravity is the origin). To show the orthogonality of x∗ab and x∗a′b′ , let

yab :=
√

2(d+1)2

d
x∗ab. We show that

〈yab,ya′b′〉 :=
∑

i∈V (Kd+1)

yab(i)ya′b′(i) = 0 (6)

for any (a, b) and (a′, b′) with (a, b) 6= (a′, b′). Denote the a-th coordinate of p∗(i) by
(p∗(i))a. Then, by (5), yab(i) = (p∗(i))bea − (p∗(i))aeb. Hence, (6) obviously holds if
{a, b}∩{a′, b′} = ∅. If a = a′ and b 6= b′, then 〈yab,ya′b′〉 =

∑
i∈V (Kd+1)(p

∗(i))b(p
∗(i))b′ ,

which is equal to zero since the right term is equal to the (b, b′)-th entry of
∑

i∈V (Kd+1) p
∗(i)p∗(i)>,

which is zero by Lemma 5.3. Thus (6) holds.
It remains to check that each vector has unit length. Indeed, 〈x∗a,x∗a〉 = 1

d+1
(d+1) =

1 for every a by the definition (4). Also, by (5), we have

〈x∗ab,x∗ab〉 =
d

2(d+ 1)2

∑
i∈V (Kd+1)

(
(p∗(i))2

a + (p∗(i))2
b

)
=

d

2(d+ 1)2
·(d+1)·2·

(
1 +

1

d

)
= 1,

where the second equation follows from Lemma 5.3.

5.2 Proof of Theorem 5.1

Proof of Theorem 5.1. For simplicity, we denote L∆ = L(Kd+1,p
∗) and V (Kd+1) =

{1, . . . , d+ 1} = [d+ 1]. We first verify some properties of L∆. Recall that sd denotes
the smallest nonzero eigenvalue of L∆. By Lemma 5.4 the vectors {x∗a : 1 ≤ a ≤
d} ∪ {x∗ab : 1 ≤ a < b ≤ d} form an orthonormal basis of kerL∆. Hence we have the
following.
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5.2 Proof of Theorem 5.1 13

Claim 5.5. Define a d(d+ 1)× d(d+ 1)-matrix by

T∆ =
∑

a:1≤a≤d

x∗a(x
∗
a)
> +

∑
a,b:1≤a<b≤d

x∗ab(x
∗
ab)
>,

where each of trivial motions x∗a : [d + 1]→ Rd and x∗ab : [d + 1]→ Rd is regarded as
a d(d+ 1)-dimensional vector. Then L∆ � sd(Id+1 − T∆) holds.

We shall use the following decomposition of T∆ into d× d-blocks Tij:

T∆ =



1 2 ... d d+1

1 T11 T12 . . . . . . T1,d+1

2 T21 T22
...

...
...

. . .
...

d Td,d Td,d+1

d+1 Td+1,1 . . . . . . Td+1,d Td+1,d+1

, (7)

where each Tij is associated with a pair (i, j) of vertices of Kd+1. Then

Tij =
∑

a:1≤a≤d+1

x∗a(i)x
∗
a(j)

> +
∑

a,b:1≤a<b≤d+1

x∗ab(i)x
∗
ab(j)

>. (8)

Claim 5.6. For each i,

Tii �
3d+ 2

2(d+ 1)2
Id.

Proof. Plugging (4) and (5) into (8), we have Tii = 1
d+1

Id+ d
2(d+1)2

(Id−p∗(i)p∗(i)>) =
3d+2

2(d+1)2
Id − d

2(d+1)2
p∗(i)p∗(i)> � 3d+2

2(d+1)2
Id.

Now we start the main part of the proof of Theorem 5.1. In light of Lemma 4.5,
we may focus on proving

ad(Kn:d+1) ≥ 2d2 + d

2(d+ 1)3
sdn (9)

in the case when n
d+1

= k for some integer k ≥ 1. Let V1, . . . , Vd+1 denote the balanced
partition of the vertex set of Kn:d+1 into d+ 1 parts of size k each.

Now define a realization p : V (Kn:d+1)→ Rd of Kn:d+1 by putting

p(v) = p∗(i) (v ∈ Vi, i ∈ [d+ 1]).

In other words, all vertices of Vi are mapped to a vertex of the regular d-simplex.
Then (9) will follow if we can show that

λD+1(L(Kn:d+1,p)) ≥ 2d2 + d

2(d+ 1)3
sdn. (10)

In order to prove (10), we consider a vertex-disjoint packing of d-simplices in Kn:d+1.
Formally, a family {∆1,∆2, . . . ,∆k} of subgraphs of Kn:d+1 is said to be a simplex
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5.2 Proof of Theorem 5.1 14

packing if each ∆i is isomorphic to Kd+1 and V (∆i) ∩ V (∆j) = ∅ for any i, j with

i 6= j. Note that
⋃k
i=1 V (∆i) = V (Kn:d+1).

Let P = {∆1,∆2, . . . ,∆k} be a simplex packing. Let LP be the stiffness matrix of
the union of the subframeworks induced by the members of P . Since the simplices
are vertex-disjoint, LP can be written as

LP =
k∑
i=1

∑
e∈E(∆i)

rer
>
e =

k⊕
i=1

L(∆i, p|V (∆i)), (11)

where
⊕

denotes a block-diagonalized matrix consisting of matrices in the summation.
(Recall also that re denotes the column vector of the rigidity matrix associated with
e.) Since each (∆i, p|V (∆i)) is identical to (Kd+1,p

∗), (11) and Claim 5.5 imply

LP =
k⊕
i=1

L∆ �
k⊕
i=1

sd(Id − T∆) = sd(In −
k⊕
i=1

T∆). (12)

Let α be the number of all possible simplex packings in Kn:d+1 and β be the number
of all possible simplex packings containing a specified edge. A simple calculation shows

α = (k!)d+1

k!
and β = ((k−1)!)2(k!)d−1

(k−1)!
, and hence

α

β
= k =

n

d+ 1
. (13)

If we consider all possible simplex packings in Kn:d+1, then each edge is used in β
packings, which means

βL(Kn:d+1,p) =
∑

P:a simplex packing

LP . (14)

Combining (12) and (14), we have

βL(Kn:d+1,p) � sd

(
αIn −

∑
P:a simplex packing

⊕
T∆

)
,

but this relation is not precise because the block-structures (when taking
⊕

) depend
on P and they are not consistent over all packings. To get a precise relation, recall
that T∆ is decomposed into Tij’s as described in (7), where each Tij is associated with
a pair (i, j) of vertices of Kd+1. In Kn:d+1, each vertex is covered by α simplices over
all P , while each edge is covered by β simplices over all P . Hence, the precise relation
obtained from (12) and (14) is

βL(Kd+1
n ,p) � sd(αIn − T ), (15)

where

T =



V1 V2 ... Vd Vd+1

V1 αT11 ⊗ Ik βT12 ⊗ Jk . . . . . . βT1,d+1 ⊗ Jk
V1 βT21 ⊗ Jk αT22 ⊗ Ik

...
...

...
. . .

...
Vd αTd,d ⊗ Ik βTd,d+1 ⊗ Jk
Vd+1 βTd+1,1 ⊗ Jk . . . . . . βTd+1,d ⊗ Jk αTd+1,d+1 ⊗ Ik

.
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5.2 Proof of Theorem 5.1 15

In order to analyze T , we define infinitesimal motions xa and xab of (Kn:d+1,p) by

xa(v) = x∗a(i) (v ∈ Vi, i ∈ [d+ 1] = V (Kd+1))

for 1 ≤ a ≤ d, and

xab(v) = x∗ab(i) (v ∈ Vi, i ∈ [d+ 1] = V (Kd+1))

for 1 ≤ a < b ≤ d. Then, by the fact that x∗a and x∗ab are trivial motions of (Kd+1,p
∗),

xa and xab are trivial motions of (Kn:d+1,p). Let

S :=
∑

a:1≤a≤d

xax
>
a +

∑
a,b:1≤a<b≤d

xabx
>
ab. (16)

Then we have

S =



V1 V2 ... Vd Vd+1

V1 T11 ⊗ Jk T12 ⊗ Jk . . . . . . T1,d+1 ⊗ Jk
V1 T21 ⊗ Jk T22 ⊗ Jk

...
...

...
. . .

...
Vd Td,d ⊗ Jk Td,d+1 ⊗ Jk
Vd+1 Td+1,1 ⊗ Jk . . . . . . Td+1,d ⊗ Jk Td+1,d+1 ⊗ Jk

.

We compare S and T . Then

T = βS+


V1 V2 ... Vd+1

V1 T11 ⊗ (αId − βJk) 0 . . . 0

V2 0 T22 ⊗ (αId − βJk)
...

...
...

. . . 0
Vd+1 0 . . . 0 Td+1,d+1 ⊗ (αId − βJk)


(17)

By (8), each Tii is positive semidefinite, and hence so is Tii ⊗ Jk. Hence (17) implies

T � βS +


V1 V2 ... Vd+1

V1 T11 ⊗ (αId) 0 . . . 0

V2 0 T22 ⊗ (αId)
...

...
...

. . . 0
Vd+1 0 . . . 0 Td+1,d+1 ⊗ (αId)


and, by Claim 5.6, we further have

T � βS +
3d+ 2

2(d+ 1)2
αIn. (18)

By (15) and (18), we finally obtain

L(Kn:d+1,p) � sd
β

(αIn − T ) � sd

(
α

β

2d2 + d

2(d+ 1)2
In − S

)
.

EGRES Technical Report No. 2020-08



Section 6. Regular Graphs 16

By the definition of S from (16), and the fact that xa and xab are trivial mo-
tions, this relation implies that the smallest nonzero eigenvalue of L(Kn:d+1,p) is

at least sd

(
α
β

2d2+d
2(d+1)2

)
. Since α

β
= n

d+1
by (13), we conclude that λD+1(L(Kn:d+1,p)) ≥

2d2+d
2(d+1)3

sdn as we stated in (10). This completes the proof of Theorem 5.1.

6 Regular Graphs

In this section we consider the d-dimensional algebraic connectivity of regular graphs.
The one-dimensional version (the algebraic connectivity of regular graphs) is one of
the central topics in spectral graph theory. The Laplacian version of (a strengthening
of) a key result of Alon and Boppana is as follows, see [1].

Theorem 6.1. Let G be a k-regular graph. Then

λ2(L(G)) ≤ k − 2
√
k − 1 +O

( √
k − 1

diam(G)− 4

)
.

Since the diameter grows when n→ +∞ (assuming k is fixed), this gives an asymp-
totic upper bound k− 2

√
k − 1 for the algebraic connectivity. In particular it follows

that for k = 2 the algebraic connectivity converges to zero as the size of the graph
increases. (This fact can also be deduced from the explicit formula 2(1 − cos 2π

n
) for

the algebraic connectivity of the cycle on n vertices.)
Given our d-dimensional extension of the algebraic connectivity of a graph, one

natural question is whether Theorem 6.1 can be extended to stiffness matrices of d-
dimensional realizations of graphs. For simplicity let us consider the case d = 2 and
a two-dimensional realization (G,p) of a k-regular graph G. Theorem 4.2 implies
that λ4(L(G,p)) is less than or equal to the upper bound given in Theorem 6.1. We
believe that the tight bound is (asymptotically) much smaller. In fact, based on our
computational results, we conjecture that the asymptotic bound is actually 0 if k = 4.

Conjecture 2. Let

amax
2,4,n = max{a2(G) : G is a 4-regular graph on n vertices}.

Then limn→+∞ a
max
2,4,n = 0.

Friedman [12] proved that the algebraic connectivity of a random k-regular graph is
essentially equal to the upper bound of Theorem 6.1. Again, based on a computational
experiment, we expect the d-dimensional algebraic connectivity of k-regular graphs
are (asymptotically) attained by random k-regular graphs. The general case seems to
be hard to attack. Our next result at least suggests the correct bound is better than
the bound of Theorem 6.1 for large k.

Theorem 6.2. Let G be a k-regular graph on n vertices, for some k ≥ 2, and let
(G,p) be a two-dimensional realization of G in which the points p(v), v ∈ V (G),
form a regular n-gon on the unit circle centered around the origin. Then

λ4(L(G,p)) ≤ n2

2n2 − n− 1

(
k −

√
k

2

)
.
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Section 6. Regular Graphs 17

Proof. Recall the definitions of D(G,p), A(G,p), and Lemma 4.6 from Section 4.
The lemma shows that in order to upper bound λ4(L(G,p)) it suffices to bound
λmax(D(G,p)) from above and bound λ2n−3(A(G,p)) from below. Note that D(G,p)
is block diagonal, and hence

λmax(D(G,p)) = max
i∈V

λmax(Bii).

Here λmax(D(G,p)) can be as large as k. To obtain an improved bound we show the
following.

Lemma 6.3. Suppose that λmax(Bii) ≥ a for some positive number a and i ∈ V .
Then

λ4(L(G,p)) ≤ n2(k − a)

n2 − n− 1
.

Proof. Informally, the idea of the proof is based on the observation that if λmax(Bii)
is large, then NG(i) ∪ {i} induces a thin subframework in (G,p) and hence it is easy
to deform the framework by applying a force to i in the direction orthogonal to this
thin part.

Formally, suppose that λmax(Bii) ≥ a. Let v ∈ R2 be the unit eigenvector of the
smallest eigenvalue of Bii, and define z : V (G)→ R2 by

z(j) =

{
(n− 1)v (j = i)

−v (j 6= i).

Just like in (4) and (5), we define the canonical trivial motions x1,x2,x12 of (G,p).
Namely, let x1 and x2 denote the translations of (G,p) to the x- and y-directions,
respectively, with ‖x1‖ = ‖x2‖ = 1, and let x12 denote the infinitesimal rotation
about the origin with ‖x12‖ = 1. By Lemma 5.4, {x1,x2,x12} form an orthonormal
basis of the space of trivial infinitesimal motions of (G,p). One can easily check that
〈z,x1〉 = 〈z,x2〉 = 0. Also, since x12 is the infinitesimal rotation about the origin
with ‖x12‖ = 1, x12(j) = 1

n
p(j)⊥ for j ∈ V (G), where p(j)⊥ denotes the 90 degree

rotation of p(j). Thus

〈z,x12〉 =
1

n

(
〈(n− 1)v,p(i)⊥〉+

∑
j:j 6=i

〈−v,p(j)⊥〉

)
= 〈v,p(i)⊥〉,

where the second equation follows from
∑n

j=1 p(j)⊥ = 0. Hence by setting z̄ =
z− 〈z,x12〉x12, z̄ is orthogonal to the space of trivial infinitesimal motions of (G,p).

We have

z̄L(G,p)z̄ =
∑

j∈NG(i)

〈dij, (n− 1)v − (−v)〉2 = n2v>Biiv = n2λmin(Bii)

and

z̄>z̄ = ‖z‖2−〈z,x12〉2 = (n−1)2+n−1−〈v,p(i)⊥〉2 ≥ n2−n−‖p(i)⊥‖2 = n2−n−1,
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Section 6. Regular Graphs 18

where the third inequality follows from the Cauchy-Schwarz inequality. Moreover

k = Tr(Bii) ≥ a+ λmin(Bii).

Hence we get

λ4(L(G,p)) ≤ z̄>L(G,p)z̄

z̄>z̄
≤ n2λmin(Bii)

n2 − n− 1
≤ n2(k − a)

n2 − n− 1
.

We next derive another bound based on a standard trace argument.

Lemma 6.4. Tr(A(G,p)2) = kn.

Proof. Observe that the (i, i)-th block of A(G,p)2 is
∑

j∈NG(i) B
2
ij. Moreover, B2

ij =

dijd
>
ijdijd

>
ij = dijd

>
ij = Bij. As Tr(Bij) = 1, Tr(A(G,p)2) is equal to twice the number

of edges, which is kn as G is k-regular.

Lemma 6.5. λmax(A(G,p)) ≤ k.

Proof. Note that λmax(Bii) ≤ k for each i as Tr(Bii) = k. Hence λmax(D(G,p)) ≤ k.
This and Lemma 4.6 imply 0 = λmin(L(G,p)) ≤ λmax(D(G,p)) − λmax(A(G,p)) ≤
k − λmax(A(G,p)), implying the claim.

Lemma 6.6. λ2n−3(A(G,p)) ≥
√

kn−3k2

2n−3
.

Proof. By Lemmas 6.4 and 6.5,

kn = Tr(A(G,p)2) =
2n∑
j=1

λj(A(G,p)2) ≤ 3k2 + (2n− 3)λ2n−3(A(G,p)),

implying λ2n−3(A(G,p)) ≥ kn−3k2

2n−3
.

By Lemma 4.6 and Lemma 6.6, we obtain

λ4(L(G,p)) ≤ max
i∈V

λmax(Bii)−
√
kn− 3k2

2n− 3
.

By combining this with Lemma 6.3, we have

λ4(L(G,p)) ≤ min

{
n2(k − a)

n2 − n− 1
, a−

√
kn− 3k2

2n− 3

}
.

for some number a with 0 ≤ a ≤ k. Thus λ4(L(G,p)) ≤ maxa:0≤a≤k min{n
2(k−a)
n2−n−1

, a−√
kn−3k2

2n−3
} ≤ n2

2n2−n−1

(
k −

√
kn−3k2

2n−3

)
≤ n2

2n2−n−1

(
k −

√
k
2

)
. This completes the proof

of Theorem 6.2.
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Section 7. Random Submatrices 19

7 Random Submatrices

In the rest of the paper we apply our algebraic results on stiffness matrices to obtain
new results on the rigidity of random graphs and frameworks. In this section we prove
a theorem on random submatrices that we shall employ later. We need the following
Matrix Chernoff Bound, see e.g. [33].

Theorem 7.1. Let {Xi} be a finite sequence of independent, random, positive semidef-
inite matrices of size m × m, and suppose that λmax(Xi) ≤ L for every i. Let
Y =

∑
iXi and k = dim kerE(Y ). Then, for any ε ∈ [0, 1),

P [λk+1(Y ) ≤ (1− ε)λk+1(E(Y ))] ≤ (m−k)

(
e−ε

(1− e)1−ε

)λk+1(E(Y ))

L

≤ (m−k)e−
ε2λk+1(E(Y ))

2L

Oliveira [26] showed how to use a matrix concentration inequality for analyzing
the connectivity in the random subgraph model. A simpler argument based on the
Matrix Chernoff bound was used to construct spectral sparsifiers in spectral graph
theory [28], and now the technique is widely used for designing fast matrix approxi-
mation algorithms, see, e.g. [5]. The following theorem (Theorem 7.2) is obtained by
adapting the argument in [28, 5]. We give a formal proof since the technique is new
in the rigidity context.

Let E be a finite set. Let A ∈ Rn×m be a matrix and let E be a finite set such that
each element e ∈ E is associated with a submatrix Ae of A of size n×ke in such a way
that the columns of these submatrices form a partition of the columns of A. Thus
m =

∑
e ke holds. In this case we simply write A = [Ae : e ∈ E]. For t ∈ [0, 1], let

A(t) be the matrix obtained by deleting (the columns of) Ae from A with probability
1− t, independently for each e ∈ E.

Theorem 7.2. Let E be a finite set, let c ≥ 1, and let A ∈ Rn×m with A = [Ae : e ∈ E]
and r = rankA. Suppose that λmax(AeA

>
e ) ≤ h for every e ∈ E, and

1 ≥ t ≥ h log(rc)

λn−r+1(AA>)
.

Then rankA(t)A(t)> = rankAA> holds with probability at least 1− 1
c
.

Proof. Let L = AA>. Then L =
∑

e∈E AeA
>
e . For each e ∈ E, define

Ve =
A>L†Ae√

t
,

and let Xe be a random matrix which is equal to VeV
>
e with probability t and is equal

to the zero matrix with probability 1− te. Let Y =
∑

e∈E Xe. We remark that

P
[
rankA(t)A(t)> < r (= rankL)

]
≤ 1

c
(19)

if and only if

P [rankY < r] ≤ 1

c
. (20)
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Indeed, for any subset E ′ of E, we have

∑
e∈E′

VeV
>
e = A>L†

(∑
e∈E′

AeA
>
e

t

)
L†A.

Since t > 0 and L† is the pseudo-inverse of AA>, we have

rank
∑
e∈E′

VeV
>
e = rank

∑
e∈E′

AeA
>
e .

Recall that A(t)A(t)> is obtained by adding AeA
>
e with probability t while Y is

obtained by adding VeV
>
e with probability t. Hence (19) holds if and only if (20)

holds.
We shall prove (20) by applying the Matrix Chernoff Bound, Theorem 7.1 to the

matrices {Xe}, e ∈ E. First we show the following.

Claim 7.3. λmax(Xe) ≤ 1
log(rc)

.

Proof. It suffices to show that λmax(VeV
>
e ) ≤ 1

log(rc)
. By Theorem 4.1 we have

λmax(VeV
>
e ) =

1

t
λmax(A>L†AeA

>
e L
†A) =

1

t

(
max

y∈imageA>:‖y‖=1
y>A>L†AeA

>
e L
†Ay

)
.

(21)
If y satisfies y ∈ image A> and ‖y‖ = 1, then there is an x ∈ (kerA>)⊥ such that
y = A>x and ‖A>x‖ = 1. Note that ‖A>x‖ = 1 implies

‖x‖ ≤ 1

λn−r+1(L)
,

since ‖A>x‖2 = x>AA>x = x>Lx ≥ ‖x‖λn−r+1(L) by x ∈ (kerA>)⊥ = (kerL)⊥,
dim kerL = n − r, and by Theorem 4.1. Hence, by relaxing the domain of the
maximization in (21), we have

tλmax(VeV
>
e ) ≤ max

x:‖x‖≤ 1
λn−r+1(L)

(A>x)>A>L†AeA
>
e L
†A(A>x). (22)

The term we maximize in (22) satisfies

(A>x)>A>L†AeA
>
e L
†A(A>x) = x>LL†AeA

>
e L
†Lx = x>AeA

>
e x ≤ λmax(AeA

>
e )‖x‖ ≤ h‖x‖.

By combining these inequalities we get λmax(VeV
>
e ) ≤ h

tλn−r+1(L)
≤ 1

log(rc)
.

Claim 7.3 gives the upper bound on λmax(Xe). Also, since

E[Y ] =
∑
e∈E

tVeV
>
e =

∑
e∈E

A>L†AeA
>
e L
†A = A>L†

(∑
e∈E

AeA
>
e

)
L†A

= A>L†LL†A = A>L†A,
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we have
(E[Y ])2 = A>L†AA>L†A = A>L†LL†A = A>L†A = E[Y ].

This implies that E[Y ] is a symmetric projection matrix, and each eigenvalue of E[Y ]
is either 1 or 0. Moreover, by E[Y ] = A>L†A, the rank of E[Y ] is equal to that of A,
which is equal to r.

We now apply Theorem 7.1 to {Xe}. Then, by Claim 7.3, and since λn−r+1(E[Y ]) =
1, we have

P [rankY < rankE[Y ] = r] ≤ r

(
e−ε

(1− e)1−ε

)log(rc)

(23)

for any ε ∈ [0, 1). By letting ε→ 1, we obtain P [rankY < r] ≤ 1
c
, which yields (20).

This completes the proof.

8 Rigidity of Random Subgraphs

Given a graph G, the random subgraph G(t) with parameter t ∈ [0, 1] is the probability
distribution over the spanning subgraphs of G obtained by picking each edge with
probability t. Given a framework (G,p) in Rd, the random subframework (G(t),p) is
defined similarly.

Theorem 7.2 gives the following bound.

Theorem 8.1. Let G be a rigid graph on n vertices and let (G,p) be an infinitesimally
rigid realization of G in Rd. Let c ≥ 1. If

1 ≥ t ≥ 2 log(dnc)

λD+1(L(G,p))
,

then (G(t),p) is infinitesimally rigid with probability at least 1− 1
c
.

Proof. We apply Theorem 7.2 to the rigidity matrixR(G,p) with the partitionR(G,p) =
[re : e ∈ E(G)] corresponding to the edges of G. Note that λmax(rer

>
e ) = 2 for each

e ∈ E, and rankR(G,p) = dn−D. Hence the theorem follows from Theorem 7.2 by
choosing h = 2 and r = dn−D.

We next consider the rigidity of random subgraphs G(t) (rather than subframeworks
(G(t),p)). The main point is that when we use Theorem 8.1 to analyze the rigidity
of G(t), we are free to choose the realization. Recall that the existence of a single
infinitesimally rigid realization of G implies that G is rigid. So by choosing p so
that λD+1(L(G,p)) is larger, we obtain better upper bounds on the rigidity threshold
t. To make this idea work we can use our bounds on the d-dimensional algebraic
connectivity.

Theorem 8.1 implies the following.

Corollary 8.2. Let G = (V,E) be a rigid graph in Rd on n vertices. Let c ≥ 1. If

1 ≥ t >
2 log(dnc)

ad(G)
,

then G(t) is rigid in Rd with probability at least 1− 1
c
.
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With the help of the following sufficient condition for global rigidity, we shall obtain
a globally rigid version of this corollary. We call a graph G vertex-redundantly rigid
in Rd if G− v is rigid in Rd for all v ∈ V (G).

Theorem 8.3. [29] Suppose that G is vertex-redundantly rigid in Rd. Then G is
globally rigid in Rd.

Thus we have the following bound for the global rigidity of random subgraphs.

Corollary 8.4. Let G = (V,E) be a vertex-redundantly rigid graph in Rd on n ver-
tices. Let c ≥ 1. If

1 ≥ t >
2 log(dn2c)

ad(G)− 1
,

then G(t) is globally rigid with probability at least 1− 1
c
.

Proof. By Theorem 8.3 it suffices to show that (G− v)(t) is rigid, for all v ∈ V , with
probability at least 1− 1

c
.

Consider a vertex v ∈ V . By Lemma 4.5, ad(G − v) ≥ ad(G) − 1. Hence, by the
choice of t, Corollary 8.2 implies that (G − v)(t) is rigid with probability at least
1− 1

cn
. Hence, by the union bound, (G− v)(t) is rigid for all v ∈ V with probability

at least 1− 1
c
.

Recall that Kn:d+1 denotes the balanced complete (d+1)-partite graph on n vertices.
This graph is vertex-redundantly rigid in Rd, provided n ≥ (d+ 2)(d+ 1). To see this
observe that in this case each partition class has size at least d+2, and hence for each
vertex v the graph Kn:d+1−v contains a spanning subgraph isomorphic to a complete
bipartite graph Kd+1,n−(d+1) on more than

(
d+2

2

)
vertices, which is rigid in Rd, see [27,

Theorem 61.1.5]. As we defined earlier, sd denotes the smallest nonzero eigenvalue of
the regular d-simplex (Kd+1,p

∗). By combining Corollaries 8.2, 8.4, and Theorem 5.1
we obtain the following inequalities.

Theorem 8.5. Suppose that

t ≥
(

4(d+ 1)3

(2d2 + d)sd
+ ε

)
· log n

n

for some ε > 0. Then Kn:d+1(t) is a.a.s. rigid in Rd.

Theorem 8.6. Suppose that

t ≥
(

8(d+ 1)3

(2d2 + d)sd
+ ε

)
· log n

n

for some ε > 0. Then Kn:d+1(t) is a.a.s. globally rigid in Rd

As we remarked earlier, we have s2 = 3
2

and we conjecture that sd = 1 for all d ≥ 3.
By using a computer we have verified this up to d = 100.

Theorem 8.5 and Theorem 8.6 can be used to obtain the same upper bounds for
the rigidity and global rigidity thresholds of the Erdős-Rényi random graph Gn,t in
Rd. In the case of rigidity, we get a bound which is essentially the same as that of
Király and Theran [24] (assuming that sd can be bounded by an absolute constant).
For global rigidity we have the first upper bound in general dimension as follows.
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Section 9. Rigidity of Frames and the Bond-bending Model 23

Theorem 8.7. Suppose that

t ≥
(

8(d+ 1)3

(2d2 + d)sd
+ ε

)
· log n

n

for some ε > 0. Then Gn,t is a.a.s. globally rigid in Rd.

As we mentioned in the introduction, the 2-dimensional special case (with a better
– essentially best possible – constant) was settled in [19].

9 Rigidity of Frames and the Bond-bending Model

In this section we consider the rigidity properties of frames and introduce their stiffness
matrices. The concept of k-frame was introduced by W. Whiteley (and also implicitly
and independently by Tay in [30]) in his analysis of the so-called body-bar frameworks
[34]. These objects, which are closely related to frameworks, can be used to analyze
the 3-dimensional rigidity of (random subgraphs of) squares of graphs, also called
molecular graphs, or bond-bending networks.

9.1 (k, l)-frames and tree packings

Let k and ` be two positive integers with k ≥ `. A (k, l)-frame is a pair (G, b), where
G = (V,E) is a simple graph and b : E → Rk×` is a map, which assigns a k × `
semi-orthogonal matrix be to each edge e ∈ E. A matrix is semi-orthogonal if the
column vectors form an orthonormal set. The frame matrix F (G, b) of a (k, `)-frame
(G, b) is a matrix of size k|V | × `|E| in which the `-tuple of columns associated with
edge e = ij ∈ E has the following entries:

f>e :=
[ i j

0 . . . 0 b>e 0 . . . 0 −b>e 0 . . . 0
]

(24)

In the special case ` = 1 we obtain the familiar concept of a (k, 1)-frame, or simply
k-frame, which are used in the analysis of body-bar frameworks [34, 30]. Note that,
for a d-dimensional framework (G,p) we have F (G, b) = R(G,p) if we take bij = dij
for each e = ij ∈ E. In this sense, every d-dimensional framework is a special d-frame.

It is easy to see that if we assign the same k-dimensional vector to each vertex of G
then (by concatenating these vectors) we obtain a vector in the left kernel of F (G, b)
for every (k, l)-frame (G, b). Hence dim kerF (G, b) ≥ k and rankF (G, b) ≤ k|V | − k.
We say that a (k, l)-frame (G, b) is rigid if rankF (G, b) = k|V | − k.

A (k, l)-frame (G, b) is said to be generic if each column-induced submatrix of
F (G, b) has maximum rank over all (k, l)-frame realizations of G. The rigidity of
generic (k, l)-frames can be characterized by the following combinatorial property.
For a graph G and integer s we use sG to denote the graph obtained from G by
replacing each edge with s parallel copies.

Theorem 9.1. Let (G, b) be a generic (k, l)-frame. Then (G, b) is rigid if and only
if `G contains k edge-disjoint spanning trees.
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Notice that the special case ` = 1 implies that F (G, b) is a linear representation of
the union of k copies of the graphic matroid of G.

As we shall see below, the case k = 6, ` = 5 is important in the rigidity analysis of
molecular graphs.

9.2 Stiffness matrices of (k, l)-frames and random subgraphs

In order to analyze the rigidity of (random sub)frames, we shall follow the approach
we used for frameworks. First we define the stiffness matrix T (G, b) of a (k, l)-frame
(G, b) by letting T (G, b) = F (G, b)F (G, b)>, c.f. (2). By expanding this formula, we
get

T (G, b) =
∑

e=ij∈E(G)

(ei − ej)(ei − ej)
> ⊗ beb

>
e .

Since the kernel of F (G, b) is at least k-dimensional, the k-th smallest eigenvalues of
T (G, b) are zeros. Furthermore, for generic frames, we have that λk+1(T (G, b)) > 0
if and only if `G contains k edge-disjoint spanning trees by Theorem 9.1.

The definition of a random subframe (G(t), b) of a (k, l)-frame (G, b) is similar to
that of random subframeworks. The previous observations and Theorem 7.2 give the
following bound for random subframes.

Theorem 9.2. Let (G, b) be a rigid (k, `)-frame with n vertices and let c ≥ 1. Suppose
that

1 ≥ t ≥ 2 log(knc)

λk+1(T (G, b))
.

Then (G(t), b) is rigid with probability at least 1− 1
c
.

Proof. We apply Theorem 7.2 to F (G, b) with F (G, b) = [fe : e ∈ E(G)]. Note that
λmax(fef

>
e ) = 2 for every e ∈ E(G) since be is semi-orthogonal (and hence the column

vectors fe are pairwise orthogonal with length equal to two). Also rankF (G, b) =
kn − k. Hence the statement follows from Theorem 7.2 by putting h = 2 and r =
kn− k.

Given a graph G and a pair (k, `), we define

tk,l(G) := sup{λk+1(T (G, b)) : (G, b) is a (k, l)-frame}.

By using the proof method of Theorem 4.2, one can easily prove that tk,`(G) ≤
λ2(L(G)). Recall that λ2(L(G)) denotes the second smallest eigenvalue of the ordinary
Laplacian of G. Interestingly, in the case of tk,`(G), we can also derive a lower bound
by using the same Laplacian eigenvalue.

Lemma 9.3. Let G be a graph, let k, l be positive integers, and let ε ∈ (0, 1). Let

q = k/`. Suppose that λ2(L(G)) > 4q log(kn)
ε2

. Then

1− ε
q

λ2(L(G)) ≤ tk,`(G).

EGRES Technical Report No. 2020-08



9.3 Squares of graphs and the rigidity of molecules 25

Proof. We shall consider the case when ` = 1 since the proof can be easily adapted
to the general case. Let ui′ be the i′-th column vector of the k × k identity matrix
Ik. We shall consider a random k-frame (G, b) of G defined by setting be = ui′ with
probability 1

k
for 1 ≤ i′ ≤ k and e ∈ E(G). Then the corresponding stiffness matrix

T (G, b) is a probability distribution over matrices of the form
∑

e∈E Xe, where for
each e = ij ∈ E

P
[
Xe = (ei − ej)(ei − ej)

> ⊗ ui′u
>
i′

]
=

1

k
(1 ≤ i′ ≤ k).

Since ‖(ei − ej)⊗ ui′‖ = 2, we have λmax(Xe) = 2. Moreover,

E[T (G, b)] =
∑
e∈E

k∑
i′=1

1

k
(ei − ej)(ei − ej)

> ⊗ ui′u
>
i′ =

1

k
L(G)⊗ Ik,

implying that the smallest nonzero eigenvalue of E[T (G, b)] is λ2(L(G))
k

. Thus, by the
Matrix Chernoff Bound (Theorem 7.1), we have

P
[
λk+1(T (G, b)) ≤ (1− ε)λ2(L(G))

k

]
≤ kn · exp

(
−ε

2λ2(L(G))

4k

)
< 1,

where the last inequality follows from our assumption λ2(L(G)) > 4k log(kn)
ε2

. This
in particular implies that there is a k-frame (G, b∗) such that λk+1(T (G, b∗)) ≥
(1−ε)λ2(L(G))

k
.

Combining Theorems 9.1, 9.2, and Lemma 9.3, we obtain the following.

Corollary 9.4. Let q = k/`, ε ∈ (0, 1), and G a graph on n vertices such that `G
contains k edge-disjoint spanning trees. Suppose that

λ2(L(G)) >
4q log(kn)

ε2
and 1 ≥ t ≥ 2q log(knc)

(1− ε)λ2(L(G))
.

Then `G(t) contains k edge-disjoint spanning trees with probability at least 1− 1
c
.

9.3 Squares of graphs and the rigidity of molecules

The square G2 of a graph G is obtained from G by adding the edges uv for all pairs u, v
of non-adjacent vertices of G which have a common neighbour in G (i.e. by connecting
second neighbours). Squares of graphs, which are sometimes called molecular graphs,
can be used in the analysis of the rigidity or flexibility of a molecule in R3. In this
model the molecule is represented by a graph G in which each vertex represents an
atom and each edge represents a covalent bond. The edges represent fixed inter-
atomic distances. Furthermore, since the angles between incident bonds uw,wv are
also fixed, or equivalently, the distance between the atoms u and v is fixed, we add
an edge uv for each incident edge pair uw,wv in order to represent these additional
constraints. By adding these edges to G, we obtain the square G2. This model is
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also known as the bond-bending model in the literature, and frequently appears in the
context of rigidity transition or percolation [31, 35].

It turns out that for the three-dimensional rigidity of squares there is a purely
combinatorial characterization. This result is due to N. Katoh and the second author
[23]. Let δ(G) denote the smallest degree over all vertices of G.

Theorem 9.5. Let (G,p) be a generic 3-dimensional framework with δ(G) ≥ 2. Then
(G2,p) is rigid if and only if 5G contains 6 edge-disjoint spanning trees.

We can combine the previous theorem with Corollary 9.4 to deduce the next result.
To the best of our knowledge, this is the first theoretical result on ”bond-bending
rigidity” in the random subgraph model.

Corollary 9.6. Let G be a graph on n vertices with δ(G) ≥ 2. Suppose that 5G
contains 6 edge-disjoint spanning trees. Let ε ∈ (0, 1). If

λ2(L(G)) >
4.8 log(6n)

ε2
and 1 ≥ t ≥ 2.4 log(6nc)

(1− ε)λ2(L(G))
,

then (G(t))2 is rigid in R3 with probability at least 1− 1
c
.

We may obtain explicit lower bounds by using results on the algebraic connectivity
of some families of graphs. For example, by using the well-known equality λ2(Kn,n) =
n, we can deduce that (Kn,n(t))2 is a.a.s. rigid in R3 if t ≥ 2.4 logn

n
.

Remarkably the bound is still applicable for sparse graphs G with Θ(n log n) edges
as long as λ2(L(G)) ≥ 9 log(6nc). The reader is referred to [28] for sparse graphs with
large spectral gaps.

Acknowledgement

This work was supported by the Research Institute for Mathematical Sciences, an In-
ternational Joint Usage/Research Center located in Kyoto University, and the Hungar-
ian Scientific Research Fund grant no. K 109240. The first author was also supported
by Project ED-18-1-2019-030 (Application-specific highly reliable IT solutions), which
has been implemented with the support provided from the National Research, De-
velopment and Innovation Fund of Hungary, financed under the Thematic Excellence
Programme funding scheme. The second author was supported by JST ERATO Grant
Number JPMJER1903 and JSPS KAKENHI Grant Number JP18K11155. The sec-
ond author would like to thank Ryoshun Oba for simplifying the proof of Lemma 5.3.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica, 6 (1986) 83-96.

[2] C. R. Calladine and S. Pellegrino, First-order infinitesimal mechanisms.
International Journal of Solids and Structures, 27(4), 505–515, 1991.

EGRES Technical Report No. 2020-08



References 27

[3] E. J. Candés and B. Recht, Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics. 9(6), 717–772, 2009.

[4] F. Chung, P. Horn, L. Lu, The Giant Component in a Random Subgraph of
a Given Graph, K. Avrachenkov, D. Donato, and N. Litvak (Eds.): WAW 2009,
LNCS 5427, pp. 38–49, 2009. Springer-Verlag Berlin Heidelberg.

[5] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sid-
ford, Uniform sampling for matrix approximation. In Proc. ITCS2015, pages
181–190, 2015.

[6] R. Connelly and S. Guest, Frameworks, tensegrities and symmetry: under-
standing stable structures, book draft.

[7] R. Connelly and W. Whiteley, Second-order rigidity and prestress stability
for tensegrity frameworks, SIAM J. Disc. Math., Vol. 9(3), 453-491, 1996.

[8] W.G. Ellenbroek and X. Mao, Rigidity percolation on the square lattice,
EPL, 96 (2011) 54002.
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