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The Steiner problem for count matroids*

Tibor Jordan™, Yusuke Kobayashi, Ryoga Mahara, and
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Abstract

We introduce and study a generalization of the well-known Steiner tree prob-
lem to count matroids. In the count matroid My ;(G), defined on the edge set
of a graph G = (V, E), a set F' C FE is independent if every vertex set X C V
spans at most k|X|—1 edges of F. The graph is called (k,[)-tight if its edge set
is independent in My, ;(G) and |E| = k|V| — [ holds.

Given a graph G = (V, E), a non-negative length function w : E — R, a
set T'C V of terminals and parameters k, [, our goal is to find a shortest (k,)-
tight subgraph of G that contains the terminals. Since M, ;(G) is isomorphic
to the graphic matroid of G, the special case kK = [ = 1 corresponds to the
Steiner tree problem. We obtain other interesting problems by choosing different
parameters: for example, in the case k = 2, [ = 3 the target is a shortest rigid
subgraph containing all terminals.

First we show that this problem is NP-hard even if £k = 2, [ = 3, and w is
metric, or w = 1 and |T| = 2. As a by-product of this result we obtain that
finding a shortest circuit in Ms 3(G) is NP-hard.

Then we design a (k + 1)-approximation algorithm for the metric version of
the problem with parameters (k, k+ 1), for all £ > 2. In particular, we obtain a
3-approximation algorithm for the Steiner version of the shortest rigid subgraph
problem. We also show that the metric version can be solved in polynomial time
for k =2, 1 = 3, provided |T| is fixed.

Keywords: Count matroid; Steiner problem; Rigid graph

*This work was supported by the Research Institute for Mathematical Sciences, an Interna-
tional Joint Usage/Research Center located in Kyoto University, the JSPS KAKENHI grant no.
JP18HO05291, and the Hungarian Scientific Research Fund grant no. K 109240. The first author was
also supported by Project ED-18-1-2019-030 (Application-specific highly reliable IT solutions), which
has been implemented with the support provided from the National Research, Development and In-
novation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme.

**Department of Operations Research, E6tvos University, and the MTA-ELTE Egervéary Research
Group on Combinatorial Optimization, Pdzmény Péter sétany 1/C, 1117 Budapest, Hungary. Email:
jordan@cs.elte.hu
***Research Institute for Mathematical Sciences, Kyoto University, Kyoto, 606-8502, Japan. Email:
{yusuke,ryoga,makino}@kurims.kyoto-u.ac.jp

December 2020
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1 Introduction

Let k be a positive integer and let [ be an integer satisfying 2k — [ > 1. We say that
a graph G = (V, E) is (k,1)-sparse if

ig(X) <k|X| =1, for all X CV with | X| > 2,

where ig(X) denotes the number of edges induced by X in G. The graph is called
(k,1)-tight if it is (k,l)-sparse and |E| = k|V| — [ holds. It is well-known that the
edge sets of the (k,[)-sparse subgraphs of a graph G form the independent sets of a
matroid, defined on the edge set of G. This matroid, denoted by M ;(G), is called
the count matroid of G, with parameters k, [, see e.g. [, [16].

For a graph G = (V, E) and set T' C V of terminal vertices, we say that a subgraph
H = (V',E') of G is T-(k,l)-tight if H is (k,1)-tight and 7" C V’. Given a graph
G = (V,E), a terminal set T C V', a length function w : E — R, and parameters
k,l, the shortest T-(k,1)-tight subgraph problem is to find a T-(k,[)-tight subgraph
H of G with minimum total edge-length. If GG is a complete graph and w is metric
(that is, w satisfies the triangle inequality), this problem is called the metric shortest
T-(k,1)-tight subgraph problem. Note that we use R to denote the set of non-negative
real numbers.

Since M 1(G) is isomorphic to the graphic matroid of G, the special case k = [ =1
corresponds to the Steiner tree problem. Although we may obtain other interesting
optimization problems by choosing different parameters (see below), this is the only
special case of our general problem - that we call the Steiner problem for count ma-
troids - that has been studied before.

1.1 Previous work

The Steiner tree problem is one of the fundamental problems in combinatorial op-
timization: given a graph G = (V,E), a terminal set T C V', a length function
w: E — Ry, find a shortest tree in G which contains all terminal vertices. It is
NP-hard. It is known that there is an approximation factor preserving reduction to
its metric version. The best known approximation factor, due to Byrka et. al [2],
is 1.39. It is also well-known that it can be solved in polynomial time if [T = 2
(which is a shortest path problem) and more generally, if |T| is fixed. This problem
has numerous other versions and extensions, see e.g. [3] 4].

A related notion, which is also relevant in the context of count matroids, is the
Steiner ratio. Consider a metric instance of a Steiner problem, in which we have a
complete graph G = (V, ), a terminal set 7 C V', and a length function w : £ — R,
and we wish to find a shortest subgraph H of G that contains all terminals and satisfies
a given property. For example, we may want to find a connected subgraph, but we
can also think of other properties (e.g. k-edge-connected or (k,1)-tight) satisfied by
G[T] (i.e. the complete subgraph of G induced by 7).

Then the total length of an optimal solution divided by the length of a shortest
spanning subgraph of G[T'] that satisfies the given property is called the Steiner ratio
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1.2 Motivation and new results 3

of the instance. The Steiner ratio of the (metric) problem is the best possible lower
bound on the Steiner ratio that is valid for all instances.

Note that, just like in the Steiner tree problem, the shortest (k,[)-tight spanning
subgraph of G[T, if it exists, can be found in polynomial time by a greedy algorithm.
It holds for all parameters k, [, due to the matroidal nature of the problem, see e.g.

5.

1.2 Motivation and new results

Our motivation to introduce and study this problem comes from rigidity theory and
its applications. In this area count matroids play an important role. For example, a
graph (realized as a generic two-dimensional bar-and-joint structure) is rigid if and
only if it contains a (2, 3)-tight spanning subgraph (see Section [2). Thus, by choosing
k =2 and [ = 3 in our problem, we look for the shortest rigid subgraph of a graph that
contains a designated set of vertices. Other well-studied parameters that show up in
e.g. parallel drawing and in rigidity problems of body-bar and body-hinge frameworks
include the cases when | = k and [ = k + 1, for all k£ > 2. See [16] for more on these
connections. Approximation algorithms for these counts may also be useful in variants
of the sensor network localization problem, where rigidity theory plays a key role, see
[7.

Another reason for investigating the complexity of the Steiner problem for count
matroids is to have a better understanding of the problem of finding the girth of a
(count) matroid, see [I3],[14]. We shall see that the problem of finding a shortest circuit
containing a given element in a matroid My 3(G) is equivalent to the corresponding
Steiner problem with two terminals.

We first show that the Steiner problem for count matroids is NP-hard, even if k = 2,
[ =3, and w is metric, or w = 1 and |T'| = 2. The latter result settles the complexity
status of the girth problem for count matroids with parameters k£ = 2, [ = 3. It also
illustrates that - apart from the graphic matroid (the Steiner tree problem) and the
bicircular matroid (see Section [6]) - the Steiner problem for count matroids is hard
even for two terminals.

Then we give a (k + 1)-approximation algorithm for the metric version for the
counts (k,k + 1), for all & > 2. This specializes to a 3-approximation algorithm for
the shortest rigid subgraph problem. As a corollary we obtain that the Steiner ratio
of the metric shortest T-(k, k + 1)-tight subgraph problem is between % and ﬁ

We also show that the (metric) shortest 7-(2,3)-tight subgraph problem can be
solved in polynomial time for fixed |T'|. The algorithm is based on a structural result:
we prove that there always exists an optimal solution H with |V (H)| < 15|T| — 1.
It shows that, unlike in the case of the Steiner tree problem, the behaviour of the
metric version is quite different from that of the case of general length functions. It
is another new phenomenon for general counts.

We have similar results for the shortest T-(k, k)-tight subgraph problem for all
k > 2. By a result of Nash-Williams (see Theorem below) a graph is (k,k)-
tight if and only if its edge set can be decomposed into k disjoint spanning trees.
Although these graphs are well-studied and occur in important applications, we omit
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the results on (k, k)-tight subgraphs from this version of our paper: the (k, k+1)-tight
case appears to be more involved and the methods used are similar.

2 Preliminary results

In this section we make some preliminary observations and introduce the notions and
earlier results we shall use in this paper.

2.1 The extension operation

We shall frequently use the following operation on graphs. Let G = (V, E) be a
simple graph. The (k,7)-extension operation, for some integers k > 1 and 0 <14 < k,
removes ¢ edges ujvy, ugto, ... u;v; € F from G, and adds a new vertex r and new
edges ruqy, ..., ru;, rv1, ..., TV;, TW1, . .., TWE_;, for some vertices wy, ..., w,_; of G, in
such a way that the resulting graph G’ remains simple. Notice that the new vertex r
has degree k + i in G'.

The following lemma (which is implicit in [6]) is easy to verify. We remark that the
lemma — with minor changes — holds for multigraphs, too. In this paper we restrict
ourselves to simple graphs.

Lemma 2.1. Let G = (V, E) be a (k, k+ 1)-tight simple graph and suppose that G’ is
obtained from G by a (k,1)-extension operation for some 0 < i < k. Then G’ is also
(k,k + 1)-tight.

As the first application of Lemma we show that for every ¢t > 2k there exist
(k, k + 1)-tight graphs on ¢ vertices.

Lemma 2.2. Let k and t be integers with k > 2 and t > 2k 4+ 1. Define Cyy, as the
graph whose vertex set and edge set are {z1,...,x:} and {x;x;41, TiTite, . .., Tilivk |
i € {1,...,t}}, respectively, where we denote xi; = x5 for j = 1,...,t. Let Cf; =
Cip — {1z, 91, ..o, 0124 g1, T }. Then, Cipisa (k,k + 1)-tight graph.

Proof. We show that Cf, is a (k,k + 1)-tight graph by induction on t. We first
consider the case of t = 2k + 1. Let Ky be the complete graph with 2k vertices
To, X3, ..., Tog, Topr1. Then, Ko — {xpzops1} is a (k,k + 1)-tight graph by a sim-
ple counting argument. Since Cy, ,, , is obtained from Ky, — {zrrorp1} by a (k,0)-
extension operation (which adds a new vertex z; and k new edges =12y, x123, ...,
T12k, T1Tp41), We have that Ch ., is a (k, k + 1)-tight graph by Lemma [2.1 This
shows the base case of the induction.

To show the induction step, assume that C’ék is a (k, k+1)-tight graph. We observe
that z;v; s € E(Cy,,) for i = 2,3,...,k — 1. Since C},,, is obtained from Cj, by
a (k,k — 2)-extension operation (which adds a new vertex x;;; together with 2k — 2

new edges x;1x; fort=23,... k—1,t—k,t—k+1,...,t—1 and removes x;x;_x;
fori=23,...,k—1), we have that C}, , is a (k, k + 1)-tight graph by Lemma
This completes the proof. O]
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2.2 Rigid graphs

We say, somewhat informally, that a graph G = (V| E) is generically rigid in the
plane if every bar-and-joint framework in the plane with underlying graph G and with
generic vertex coordinates is rigid: that is, every continuous motion of the vertices
in the plane that preserves the edge lengths preserves all pairwise distances. Laman
[T1] proved that G is generially rigid if and only if it has a (2, 3)-tight spanning
subgraph (or equivalently, its rigidity matroid My 3(G) has rank 2|V| — 3). See [10]
for an introduction to rigidity theory and for further count parameters that show up
in this field, and [9] for more details on the combinatorial and matroidal aspects of
two-dimensional rigidity.

Thus the Steiner problem for count matroids contains the problem of finding a
shortest rigid subgraph containing a given a set of terminals. Since we shall mostly
focus on this special case, for simplicity we shall also use T'-rigid instead of saying that
a subgraph which has a T-(2, 3)-tight spanning subgraph. In this context minimally
T-rigid corresponds to T-(2, 3)-tight.

The extension operations with parameters (2,0) and (2,1) introduced above play
an important role in rigidity theory. If the parameter k = 2 is clear from the context
we use O-extension and l-extension to mean a (2,0)- or (2,1)-extension operation,
respectively. The next lemma is well-known, see e.g. [9].

Lemma 2.3. Let G = (V, E) be a minimally rigid graph and suppose that G’ is
obtained from G by a 0-extension or a 1-extension operation. Then G’ is minimally
rigid.

2.3 Feasibility, components, and sparse input graphs

In this subsection we consider (2,3)-sparsity (and rigidity), but the results easily
extend to all counts studied in this paper.

A basic question concerning an instance of the Steiner problem for count matroids
is whether there exists a feasible solution. The answer is based on the concept of rigid
components: a rigid component of a graph G is a maximal rigid subgraph. It is known
that two rigid components have at most one vertex in common and that the family of
rigid components can be found in polynomial time [9]. Since |T'| > 2, it follows that
all feasible solutions, if they exist, are subgraphs of the same rigid component of G.
Furthermore, there is a feasible solution if and only if G has a rigid component which
contains all the terminals. In this case we can simply delete the complement of this
rigid component and assume that the input graph is rigid.

Next suppose that the input graph G = (V, ) is minimally rigid, that is, rigid and
sparse at the same time. A useful observation is that the shortest T-rigid subgraph
problem has a simple and efficient solution in this case. It follows from the next
lemma, see e.g. [9].

Lemma 2.4. Let G = (V, E) be a minimally rigid graph and let Gy, Gy be minimally
rigid subgraphs of G with |V (G1) NV (G2)| > 2. Then Gy N Gy is minimally rigid.
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Section 3. Hardness results 6

Thus there is a unique smallest rigid subgraph of G that contains 7. Since w is
non-negative, it is an optimal solution.

The following result shows that we can find this smallest rigid subgraph efficiently.
For a given S C V with |S| > 2 let Cs(G) be the unique smallest rigid subgraph of
G with S C V(Cs(G)). If S = {a,b} then we also use the notation C,;(G).

Lemma 2.5. [10] Let G = (V, E) be a minimally rigid graph and S C V with |S| > 2.
Then
Cs(G) = | Can(G).

a,besS

Lemma [2.5shows that we can compute Cs(G) by computing C,,(G) for all pairs in
S. It is not hard to see that for a given pair a,b € S the (edge set of) C, ,(G) is either
ab (if a and b are adjacent) or it is equal to the fundamental circuit of ab with respect
to E (which is a base in the count matroid My 3(G)). Since we have polynomial time
independence oracles (using network flows, bipartite matchings, or graph orientations
[T, 12]), we can find all C,;(G)’s and Cg(G) in polynomial time.

Finally, consider the case when p := |E|—(2|V|—3) is a fixed constant for the input
graph G = (V, E). Let m = |E|. Then G has at most (T;) minimally rigid spanning
subgraphs.

Since every (minimally rigid) feasible solution can be extended to a minimally rigid
spanning subgraph of G, and there is a unique smallest optimal solution whenever
the input is minimally rigid, we can find an optimal solution by enumerating all
minimally rigid spanning subgraphs of G and computing the unique smallest rigid
subgraph containing 7" in each of them.

Proposition 2.6. The shortest T-rigid subgraph problem is polynomial time solvable
if p:=|E| — (2|V]| — 3) is a fixred constant for the input graph G = (V, E).

3 Hardness results

Our first hardness result is as follows.

Theorem 3.1. The shortest T-rigid subgraph problem is NP-hard even if w(e) = 1
for every e € E.

Proof. We reduce the following problem called EXACT 3-COVER, which is known to
be NP-hard:

Input. A set X with |X| = 3n and a family F of 3-element subsets of X.

Problem. Find a subfamily 7' C F such that every element in X is contained in
exactly one 3-element subset in F'.
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Section 3. Hardness results 7

Given an instance of EXACT 3-COVER, we define a graph G = (V| E) as follows:

Vx ={v. |z € X,ie{1,2,3}},
Ve={vL|FecF,ic{1,23}},

V =VxUVzU{rt, 7 r},

Ex ={vivl |z e X, i,j€{1,2,3},i#j},
Er ={vtwl | Fe F, i,je{1,2,3},i#j},
Ey={vvh|ze X, zeFecF, ic{l23}},
Ey={r'vh | F € F,ic{l1,2,3}},
E=FExUErUE UE,U{r'r? 3 rirt}.

Define T' = {v’ |z € X, i € {1,2,3}} U {r',r? r*}. We show the following claim.

Claim 3.2. The original instance of EXACT 3-COVER has a solution if and only if
the obtained graph G has a T-rigid subgraph with 24n + 3 edges.

Proof. (of the Claim) We first show the “only if” part. Suppose that the original
instance of EXACT 3-COVER has a solution F/ C F. Since every element in X is
contained in exactly one 3-element subset in F’', we obtain |F'| = n. Define H =
(V', E') as follows:

Vi={|re X, ie{l,2,3}}u{vh | FeF ic{1,2,3}}u{r,r?r},
E={vv |zeX, ije{l,23}, i u{vivl | FeF, ijec{l,2,3},i#5}
U{vivh |ze X, v e Fe F,ic{1,2,3}}u{rvl | Fe F, ic{1,2,3}}u{rt,r? r}.

Then, H is obtained from a triangle with vertex set {r!,r% r3} by attaching triangles
repeatedly, which shows that H is minimally rigid. (To see this observe that attaching
a triangle can be achieved by two 0-extensions, followed by a 1-extension, c.f. Lemma
2.3l) Since |E'| = 9n+3n+9n+3n+ 3 = 24n + 3, H is a T-rigid subgraph with
24n + 3 edges, which shows the “only if” part.

We next show the “if” part. Suppose that H = (V' E’) is a T-rigid subgraph with
at most 24n + 3 edges. We may assume that H is minimally rigid.

Define Vi = Vz NV’ and consider its size. Since V' = Vyx U VU {r!,r? r*} and
2|V'| =3 =|E'| <24n + 3 as H is minimally rigid, we obtain

Vel = V| —=9n—3<(24n+3+3)/2—9n— 3 = 3n. (1)

By the rigidity of H, it holds that |0z ({v},v2,v3})| > 3 for each x € X, and hence

x) Yxr) T

BN E'| =) [6n({vy, v2,03})] = 3|X| = 9n.

b A v B
zeX

Since [0g(v) N Ey| = 3 for each v € Vi, we obtain |Vz| > |Ey N E'|/3 > 3n. By
combining this with (T]), it holds that |V}| = 3n. Furthermore, since all the above
inequalities must be tight, we obtain |E'| = 24n + 3 and |E; N E'| = 9n.
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Since |[Ex N E'| < |Ex| =9n and |Ey N E'| < |VE| = 3n, we obtain

|ErNE|=|E|—|ExNE|—|E.NE|—|E;nNE|— |{r'r? 7> r*r'} N E|
> (24n+3) —9n —9n — 3n — 3 = 3n. (2)

By |[ExrNE'| > 3n and |Vz| = 3n, we see that ExN E’ consists of n disjoint triangles,
that is, there exists F' C F such that |F'| = n, Vi = {v}; | F € F',i € {1,2,3}},
and Er NE' = {viwl | F € F,i,5 € {1,2,3}, 1 # j}.

For each x € X, since E’ contains an edge between {vl v2 v2} and Vi by the

rigidity of H, there exists F' € F’ with x € F'. This shows that F’ is a solution of the
original instance of EXACT 3-COVER, which completes the “if” part. O

Therefore, EXACT 3-COVER can be reduced to the shortest T-rigid subgraph prob-
lem with uniform edge lengths, which completes the proof of Theorem [3.1] O

We can strengthen Theorem [3.1]by showing that the version with only two terminals
is hard.

Theorem 3.3. The shortest T-rigid subgraph problem is NP-hard even if w(e) = 1
for every e € E and |T| = 2.

Proof. Theorem shows that the shortest T-rigid subgraph problem is NP-hard
even if w(e) = 1 for every e € E. We reduce this problem to the case of |T'| = 2.

Let G = (V,E) and T C V be an instance of the shortest T-rigid subgraph problem
such that |T| > 3 and w(e) = 1 for every e € E. Choose two distinct terminals
t1,to € T arbitrarily. Construct a new graph G' = (V'  E’) from G by adding a
new vertex v together with two edges vt; and wvty. Let 77 = (T \ {t1,t2}) U {v}.
Then, the obtained instance (G’,T") is equivalent to the original instance (G,T') in
the following sense. If G contains a T-rigid subgraph H = (Vy, Ey) with k edges,
then H' = (Vg U {v}, Ey U {vty,vls}) is a T'-rigid subgraph of G’ with k + 2 edges.
Conversely, if G’ contains a T"-rigid subgraph H' = (Vi:, Ey/) with k + 2 edges, then
H = (Vi \{v}, Eg\{vt1, vt2}) is a T-rigid subgraph of G with & edges by Lemma2.3|

By repeating this procedure |T'| — 2 times, we obtain a graph G* = (V*, E*) and
T* C V* with |T*| = 2 such that G contains a T-rigid subgraph with k edges if and
only if G* contains a T*-rigid subgraph with k& + 2(|T'| — 2) edges. This shows that
the original shortest T-rigid subgraph problem can be reduced to the case of |T| = 2,
and hence this problem is NP-hard even when |T'| = 2. O

As a corollary of Theorem we can deduce that finding a shortest circuit in a
matroid Mj3(G) is NP-hard. To see this consider an instance G = (V, E), T C V of
the shortest T-rigid subgraph problem such that || = {u,v} and w(e) = 1 for every
e € E. We may assume that f ¢ E for the edge f = uwv. It is known (see e.g. [9])
that if C C E is a circuit of My3(G + f) with f € C then (V(C),C — f) is rigid.
Furthermore, if H is a rigid subgraph of G with {u,v} C V(H) then H + f contains
a circuit. Thus finding an optimal solution is equivalent to finding a shortest circuit
containing f in Ms3(G + f).

Next we show that the metric shortest T-rigid subgraph problem is also hard.
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Theorem 3.4. The metric shortest T'-rigid subgraph problem is NP-hard.

Proof. We reduce EXACT 3-COVER to this problem. Given an instance of EXACT
3-COVER, we define a graph G = (V| F) and a terminal set 7' C V' in the same way as
in the proof of Theorem 3.1} Let N be a sufficiently large integer (e.g., N = 151+ 4)
and define w : £ — R, as w(e) = N for e € E; and w(e) =1 fore € E\ E;. We
extend the domain of w to V' x V' by taking the metric closure, that is, for any pair
of vertices u,v € V, we define w(u,v) as the length of a shortest path in G between
u and v with respect to w. Let G = (V, E) be the complete graph on V. Then, G, T,
and w form an instance of the metric shortest 7T-rigid subgraph problem. We show
the following claim.

Claim 3.5. The original instance of EXACT 3-COVER has a solution if and only if
G has a T-rigid subgraph whose total length is at most InN + 15n + 3.

Proof. (of the Claim) We first show the “only if” part. When the original instance of
EXACT 3-COVER has a solution F/ C F, we define H = (V’, E') in the same way as in
the proof of the Claim (of the proof of Theorem . Then, H is a T-rigid subgraph
whose total length is 9nN + 15n + 3, which shows the “only if” part.

We next show the “if” part. Suppose that H = (V' E’) is a T-rigid subgraph whose
total length is at most 9nN + 15n + 3. We may assume that H is minimally rigid.
Define V, = {v},v2,v3} for z € X and V, = {r!,r? r3}. Since

U(SH |—|El ZZH —ZH V]:UV)
zeX zeX
> 2V =3) = > (Ve = 3) = 2(|Vr U V| - 3) = 3|X]

zeX

and w(e) > N for every e € §5(V,), it holds that

w(B) > [ | ou(Va)|- N > 3|X|N = 9nN.

zeX

Since w(£') < 9InN + 15n 43 < (In + 1)N, we obtain ||, 0u (V)| = 3|X| = 9In
and w(e) < 2N for every edge e € E’. This shows that E’ contains no edge between
V. and V. for distinct z, 2" € X, and hence E’ contains exactly three edges between
V. and Vx UV, for each x € X by the rigidity of H.

Let Vz =VrN V" and p = |Vz|. Then, |V'| = |Vx|+ |V&| + V.| = 9In+p+ 3 and
|E'| = 2(9n + p+ 3) — 3. Observe that p < 3n, for otherwise we have i(V;zUV,) >
2(p+3) —3 > 6n + 3, and hence w(E') > In+ 9InN + 6n + 3 = 15n + 9InN + 3, a
contradiction. Let ¢ = [Ey N, cy 0m(Vz)], that is, ¢ is the number of edges of length
N in U,cx 0m(V;). This implies that | J,. v 05 (Vz) has 9n — ¢ edges of length at least
N + 1. Since |[0¢(v) N Ey| = 3 for each v € V, it holds that 3p > ¢ and hence, using
that p < 3n, we obtain ¢ — 2p < 3n. Therefore, we have

w(E') > gN + (9n—q)(N + 1)+ (|E'| — 9n)
=9nN+18n+3+2p—q
> 9nN + 15n + 3,
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which shows that all the above inequalities are tight. That is, p = 3n, ¢ = 9n, and
every edge in E'\ (J,cy 0 (Vz) is of length one. In particular, since w(e) € {1, N}
for each e € E’, we obtain £’ C E. Then, by the same calculation as in (2)), Er N E’
consists of n disjoint triangles, that is, there exists 7' C F such that |F'| =n, V; =
{vi. | F e F',i€{1,2,3}},and Exr N E' = {viw} | F € F,i,j € {1,2,3},i # j}.
Then, F’ is a solution of the original instance of EXACT 3-COVER, which shows the
“if” part. O

Therefore, EXACT 3-COVER can be reduced to the metric shortest T-rigid subgraph
problem, which completes the proof of Theorem [3.4] O

In the rest of the paper we shall consider the metric version and design approxima-
tion algorithms as well as an exact algorithm (for fixed |T).

4 An approximation algorithm for the metric case

Let G = (V,E), T CV,w: E — R, be an instance of the metric shortest T-(k, k+1)-
tight subgraph problem, for some k > 2. We shall prove that the total length of a
shortest T-(k, k + 1)-tight spanning subgraph of G[T] is at most (k + 1)OPT, where
OPT denotes the total length of an optimal solution to the shortest T-(k, k + 1)-tight
subgraph problem. Since a shortest T-(k, k 4+ 1)-tight spanning subgraph of G[T'] can
be found in polynomial time, this leads to a (k + 1)-approximation algorithm. In
particular, we obtain a 3-approximation algorithm for the shortest T-rigid subgraph
problem.
In our analysis we shall use the following theorem of Nash-Williams.

Theorem 4.1. [1f] The edge set of a graph G = (V, E) can be partitioned into the
edge sets of k forests if and only if ig(X) < k|X| —Fk for all® # X C V.

A simple counting argument shows that G[T'] does not contain a (k,k + 1)-tight
spanning subgraph if |T'| < 2k —1 (except for k = 2). Otherwise we do have a feasible
solution on vertex set T, c.f. Lemma [2.2]

Theorem 4.2. Let k be an integer with k > 2. Suppose that we are given a complete
graph G = (V| E), a terminal set T C V', and a metric length function w : E — R,..
If |T| > 2k, then a shortest T-(k, k + 1)-tight spanning subgraph of G[T| is a (k +1)-
approximate solution for the metric shortest T-(k,k + 1)-tight subgraph problem in
G.

Proof. Let H = (Vy, Ey) be a shortest T-(k, k + 1)-tight subgraph of G. Our goal
is to show that G[T'] contains a T-(k, k + 1)-tight subgraph whose total length is at
most (k + 1)w(H). For simplicity we shall use w(.J) to denote the total length of the
edges of some graph J.

Let e € (VZH ) be a shortest edge with both endvertices in V. Consider the graph
H + e that might have parallel edges. By Theorem 4.1} the edge set of H + e can
be partitioned into k edge-disjoint spanning trees Fi,...,F; on Vy. By changing
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the indices if necessary, we may assume that w(F;) < M Consider the graph

obtained from Fj by duplicating every edge, which is a connected Eulerian graph.
Then, it contains an Eulerian walk through all vertices in V. Since w is metric and
T C Vg, by shortcuttingﬂ this Eulerian walk, we obtain a cycle C' such that V(C) =T
and

w(C) < (R) < 2 (w(H) + w(e)). Q

Let 1, ..., 2z, be the vertices of C' that appear in this order along C, where ¢ = |T.
For notational convenience, we denote z4; = x; for j = 1,...,t. We consider the
following two cases separately.

Case 1. We first consider the case when ¢t = 2k. Let Ky be the complete graph
with vertex set {x1,..., 22} and pick an edge f in Ky arbitrarily. Since the metric
property implies that w(z;z;y5) < w(xxir1) + w(Ti1Ti0e) + - - + wW(Xipp_12i1p) for
i€{l,...,2k} and for h € {1,...,k}, we have

w(Ko, — f) = Z(w(l’ilﬂl) + o+ w(TiTipe-1)) + Zw(%’ilﬂk) —w(f)
< M2 0) 4 kw(0) — wie)) — wie)
k(k +1)

TSy
< (k+1Dw(H),

where we use in the last inequality. Furthermore, we see that Ko — f is a (k, k+1)-
tight spanning subgraph of G[T] by a simple counting argument. Therefore, G[T]
contains a T-(k, k + 1)-tight subgraph whose total length is at most (k + 1)w(H).

Case 2. We next consider the case when ¢t > 2k. Let Cj, be the (k,k + 1)-tight
subgraph of G[T] defined in Lemma . Then, by a similar calculation to Case 1, we
obtain

w( t'k) = Z(w(xile) + - w(rirag)) — w{Tr, v, - T ka1, TRTE))
< Ww((?) — (k4 Dw(e)
k(k+1)

0 )~ 200
< (k+ Dw(H).

Therefore, G[T'] contains a T-(k, k + 1)-tight subgraph whose total length is at most
(k+ Dw(H). O

'We follow the walk W and we shortcut every maximal subwalk that contains only non-terminal
vertices and vertices already visited by W.
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Since a shortest (k, k + 1)-tight spanning subgraph of G[T] can be computed by
a greedy algorithm, this theorem yields a (k + 1)-approximation algorithm for the
metric shortest T-(k, k + 1)-tight subgraph problem with |T| > 2k.

By specializing the above result to the case when k£ = 2, we obtain:

Corollary 4.3. There is a polynomial time 3-approximation algorithm for the metric
shortest T-rigid subgraph problem.

The following example shows that the approximation factor of the above algorithm
is not better than 2. Suppose that every edge in G[T] has length 2, and every other
edge has length 1. Then the shortest rigid spanning subgraph of G[T] has total
length 4|7| —6. On the other hand the optimum is at most 2|7'|+ 1: pick two vertices
a,b € V — T and consider the complete bipartite subgraph Ky with color classes
X ={a,b} and T. By adding the edge ab to this graph we obtain a feasible solution
(a rigid subgraph of G containing T') of total length 2|7T"| + 1.

Note that if w(e) € {1,2} for all e € E then the approximation ratio of the above
algorithm is not worse than 2. Hence, by the same example, it is equal to 2.

Corollary 4.4. Let r be the Steiner ratio of the metric shortest T-rigid subgraph
problem. Then % <r< %

5 Optimal solutions for fixed |T'| in the metric case

Consider an optimal solution H to some instance of the metric shortest T-rigid sub-
graph problem. One strategy to show that the number of non-terminal vertices in H
is small (compared to |T|), or can be made small, is to apply specific shortcutting
operations that remove vertices (or sets of vertices) of V(H) — 7' maintaning rigidity
and without increasing the total length.

This strategy works easily in the metric Steiner tree problem since degree-one ver-
tices can be removed, degree-two vertices can be shortcut, and hence an upper bound
on |V(H) —T|, in terms of |T'|, follows immediately. This approach, with much more
complicated arguments, works in the k-edge-connected Steiner network problem, too,
see [8].

In our case H is a minimally rigid graph that contains 7. It is easy to eliminate
vertices of degree-two and degree-three from H (see Lemmabelow). The number of
vertices of degree at least five can be bounded by using the fact that |E(H)| = 2|V|—-3
and hence the average degree of H is (a bit less than) four.

Thus the main question is whether the number of degree-four vertices in H can be
bounded by a function of |T'|. We deal with this question in the next subsection.

5.1 Reductions in minimally rigid graphs

Let G = (V, E) be a minimally rigid graph and let v € V' be a designated vertex with
d(v) = r, where d(v) denotes the degree of vertex v. The reduction operation at v
removes v from the graph and adds r — 2 disjoint edges connecting vertices in Ng(v)
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(where N (v) denotes the set of neighbours of v in G). We shall be interested in the
cases when 2 < r < 4. A reduction operation is admissible if the resulting graph is
also minimally rigid. We call v admussible if there exists an admissible reduction at
v. Otherwise v is non-admissible.

The following lemma is well-known, see e.g. [9]. It shows that vertices of degree
two and three are all admissible.

Lemma 5.1. Let G = (V, E) be a minimally rigid graph and v € V. Then
(i) if d(v) = 2 then G — v is minimally rigid,
(1) if d(v) = 3 then there is an admissible reduction at v.

Vertices of degree four may be non-admissible. In such a case there is a simple
certificate of non-admissibility, as we shall prove below.

We say that X C V with |X| > 2 is critical if ic(X) = 2|X]| — 3 holds. The next
lemma is also well-known [9]. Its proof uses the fact that the function ig : 2V — Z
is supermodular. For two disjoint sets X, Y we use d(X,Y) to denote the number of
edges between X and Y.

Lemma 5.2. Let G = (V, E) be a minimally rigid graph and let X,Y,Z be critical
sets in G. Then

(i) if I XNY|>2then XNY and X UY are also critical,

(i) if I XNY|=1andd(X =YY — X)>1 then X UY is critical,

(1)) if XNYNZ =0 and | XNY|=|XNZ|=|YNZ| =1 then XUY UZ is critical.

Let v be a designated vertex with d(v) = 4. We say that three critical sets X,Y, Z C
V — {v} and a vertex p € V — {v} form a flower {X,Y, Z} associated with v, with
core p, if
D) XNY=XNnZ=YNZ={p},

(ii) vp € £, and
(i) d(v, X — {p}) = d(v,Y — {p}) = d(v, Z — {p}) = 1.

Observe that if there is a flower associated with v then v is non-admissible: adding
a new edge connecting the core p to any other neighbour of v violates the sparsity
condition in V' — {v}.

We next prove two key lemmas. The first one shows that every non-admissible
vertex of degree four has an associated flower.

Lemma 5.3. Let G = (V, E) be a minimally rigid graph and let v € V' be a non-
admissible vertex with d(v) = 4. Then there ezists a flower associated with v in G.

Proof. Let uq,us, uz, uy be the neighbours of v in G. First we consider the reduction
that removes v and adds the edges ujus, usuy. Let G’ denote the graph obtained by
the reduction.

Claim 5.4. There is a critical set X CV — {v} with {uy,us} C X or {us,us} C X.

Proof. We have |E(G")| = 2|V (G")| — 3. Thus, since v is non-admissible, there exists
aset X CV —{v} with ie/(X) > 2|X| — 2. If X contains three or more neighbours
of v then X violates the sparsity condition in G, too, a contradiction. If X does not
induce ujug or usuy then we have a similar contradiction. Thus the claim follows. [
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Let us fix a neighbour p := u;. By relabeling the neighbours of v, if necessary, and by
symmetry, the non-admissibility of v and the Claim imply that there exist three critical
sets X, Y, Z CV —{v} with {p,us} € X, {p,us} € Y, and either (a) {p,us} € Z, or
(b) {uz,u3} € Z. In case (b) we can use Lemma [5.2{1),(iii) to deduce that there is a
critical set in V —{v} which contains at least three neighbours of v, a contradiction. In
case (a) we can use Lemma[5.2[(i),(iii) to deduce that XNY = XNZ =Y NZ = {p}.
Thus {X,Y, Z} and p form a flower associated with v. ]

Lemma 5.5. Let G = (V, E) be a minimally rigid graph and let v be a non-admissible
vertex of degree four. Suppose that {X,Y,Z} form a flower associated with v with core
p. If d(p) = 4 then v and p have three common neighbours.

Proof. Let x € X,y € Y,z € Z denote the neighbours of v different from p. Since
every critical set induces a minimally rigid subgraph, every set in the flower is either
a set of size two, inducing an edge, or has size at least three and minimum degree at
least two. The defining properties of the flower and the fact that d(p) = 4 imply that
| X|=Y|=|Z| =2and N(p) = {v,z,y, z}. O

Note that if the conditions of Lemma [5.5{ hold then v, p and their (common) neigh-
bours induce a minimally rigid subgraph isomorphic to K» 3 (plus the edge pv).

Theorem 5.6. Let G = (V,E), T CV, w: E — Z, be an instance of the metric
shortest T-rigid subgraph problem. Then there exists an optimal solution H with
[V(H)| < 15|T) — 1.

Proof. Let H = (V', E') be an optimal solution for which |V’| is as small as possible.
We may assume that H is minimally rigid. Let S=V'—T and X = {v € S : dy(v) =
4}. Since w is metric, we can use Lemma to deduce that

(i) each vertex in S has degree at least four, and

(ii) each vertex in X is non-admissible.

Claim 5.7. Every vertex in X has at least one neighbour in V' — X.

Proof. Consider a vertex v € X. Since it is non-admissible, there is a flower { XY, Z}
with core p in H associated with v. We have pv € E’. For a contradiction suppose
that p € X. By Lemma this implies that v and p have three common neighbours
x,y,z and the set Ny(v) U {v} induces a minimally rigid subgraph in H isomorphic
to Ky 3 (plus the edge pv). It is not hard to see that H' := H — {v,p} + {zy, 2z, yz}
is minimally rigid. Furthermore, w(H') < w(H), since w(xy) < w(zv) + w(vy),
w(zz) < w(zp) +w(pz), and w(yz) < w(yp) + w(pv) + w(vz). Thus H' is a smaller
optimal solution, which contradicts the choice of H. O

By the Claim we have
dr(X) > |X]. (4)

Let Y =5 — X, and let T} be the set, and ¢; be the number of vertices of degree i in
T, for 2 < i < 4. Similarly, let 7" be the set, and ¢* be the number, of vertices of
degree at least five in T'. Then we have

AV/| =6 =2[E'| = du(v) > 2ty + 3ty + 4ty + 5+ + 4| X| + 5[], (5)

veV’
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from which
Aty +tg +tT +|Y]) > 2ty + 3tz + 5T + 5]Y]| (6)
follows. Thus
4ty + 4t3 > 2ty + 3tz +tT + |V, (7)
and hence
2IT| > 2(ty +t3) > 2ty +t3 >t + |Y]. (8)

So we have |Y| < 2|T'|. Now suppose, for a contradiction, that |V’| > 15|T|. Since
T UY| < 3|T|, we have | X| > 12|T|, and hence (4] gives

dy(X,TUY) = dy(X) > 12|T]. 9)

Therefore the average degree of the vertices in TUY is at least four in H. This implies

AV =6 =2/E" =) du(v)+ > du(v) > 4X[+4]V' = X|=4V'|,  (10)

veX veTUY
a contradiction. Hence |V'| < 15|T| — 1, completing the proof of the theorem. O

We can use this result to argue that if we compute a shortest rigid subgraph with
vertex set V' for every V! C V with 7" C V" and |V'| < 15|T| — 1, the shortest one will
correspond to an optimal solution to the shortest T-rigid subgraph problem. Since we
can find a shortest rigid subgraph on V’ in polynomial time for each V', we obtain:

Theorem 5.8. The metric shortest T-rigid subgraph problem can be solved in poly-
nomial time for fized |T)|.

6 Concluding remarks

The Steiner problem for count matroids, introduced in this paper, gives rise to nu-
merous open problems. The most obvious ones are about potential improvements of
the new results: better approximation factors, better bounds for the Steiner ratio,
and extensions to further parameters (k,1).

6.0.1 Two terminals

For the complexity status of the two-terminal case (with general length functions)
there seems to be a clean answer. We conjecture that the proof of Theorem can
be extended to all count parameters (k, ) with £ > 2. The remaining cases (assuming
[ >0)are (1,1) and (1,0). The former case corresponds to the familiar shortest path
problem, which is polynomial time solvable by using Dijkstra’s algorithm. The latter
case is also tractable. Recall that the count matroid M, is the so-called bicircular
matroid, in which a graph H is tight if and only if each connected component of H is
unicyclic, that is, it has exactly one cycle.
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Theorem 6.1. The shortest (1,0)-tight subgraph problem with |T'| = 2 is polynomial
time solvable.

Proof. Consider an instance G = (V,E), T CV, w : E — Ry of the shortest (1,0)-
tight subgraph problem. Suppose that H = (W, F), with 7" C W, is an optimal
solution. Since each component of H is unicyclic and w is non-negative, we may
assume (by removing some zero-length edges from H, if necessary) that each leaf
vertex in H is a terminal. It follows that either H is connected and it consists of a
cycle with two (possibly degenerate) paths to the terminals (that may share a subpath)
or H has two components, and each component is a cycle plus a (possibly degenerate)
path from the cycle to one of the terminals.

In both cases the corresponding paths to the terminals (from the cycle, or from the
branching vertex) are shortest paths and the cycle is a shortest cycle passing through
the edge incident with the attachment vertex.

Thus we can find an optimal solution if we compute the total lengths of all can-
didates. Since each candidate can be identified by two vertices and two edges, or
by three vertices, we have at most |V|* candidates. Computing the total length can
be done by solving shortest path problems and minimum cost 2-flow problems in
vertex-capacitated networks, respectively. O

6.0.2 The local version of the problem

The shortest T-rigid subgraph problem makes sense in higher dimensions, too. There
is also a matroid in the background (the d-dimensional generic rigidity matroid) which
captures the rigidity properties of the graph. Even though it is no longer a count
matroid for d > 3 (in fact, the characterization of these matroids is a major open
problem for d > 3), we may be able to obtain bounds for the Steiner ratio.

Another interesting feature is that the locally T-rigid version of the Steiner problem
is non-trivial. In this version we search for a shortest subgraph H in which each
pair x,y of terminals is “linked”, that is, adding zy to H does not increase its rank.
(Informally speaking it means that no continuous motion of a bar-and-joint framework
of H can change the distance between x and y). We do not require that H as a whole
is rigid. The local version is interesting only in higher dimensions (d > 3), since for
d = 1,2 every locally T-rigid subgraph contains a T-rigid subgraph.
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