Egerváry Research Group on Combinatorial Optimization

TECHNICAL REPORTS

TR-2020-02. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations

Bill Jackson

Vertex Splitting, Coincident Realisations and Global Rigidity of Braced Triangulations

Bill Jackson *

Abstract

We give a short proof of a result of Jordán and Tanigawa that a 4-connected graph which has a spanning planar triangulation as a proper subgraph is generically globally rigid in \mathbb{R}^{3}. Our proof is based on a new sufficient condition for the so called vertex splitting operation to preserve generic global rigidity in \mathbb{R}^{d}.

Keywords Bar-joint framework, global rigidity, vertex splitting, plane triangulation.
Mathematics Subject Classification 52C25, 05C10, 05C75

1 Introduction

We consider the problem of determining when a configuration consisting of a finite set of points in d-dimensional Euclidean space \mathbb{R}^{d} is uniqely defined up to congruence by a given set of constraints which fix the distance between certain pairs of points. This problem was shown to be NP-hard for all $d \geq 1$ by Saxe [18], but becomes more tractable if we restrict our attention to generic configurations. Gortler, Healy and Thurston [9] showed that, for generic frameworks, uniqueness depends only on the underlying constraint graph. Graphs which give rise to uniquely realisable generic configurations in \mathbb{R}^{d} are said to be globally rigid in \mathbb{R}^{d}. These graphs have been characterised for $d=1,2$, [13], but it is a major open problem in distance geometry to characterise globally rigid graphs when $d \geq 3$.

A recent result of Jordán and Tanigawa [17] characterises when graphs constructed from plane triangulations by adding some additional edges are globally rigid in \mathbb{R}^{3}.

Theorem 1. Suppose that G is a graph which has a planar triangulation T as a spanning subgraph. Then G is globally rigid in \mathbb{R}^{3} if and only if G is 4 -connected and $G \neq T$.

We will give a short proof of this result. The main tool in our inductive proof is the (3-dimensional version of) the following result which gives a sufficient condition for the so called vertex splitting operation to preserve global rigidity in \mathbb{R}^{d}.

[^0]Theorem 2. Let $G=(V, E)$ be a graph which is globally rigid in \mathbb{R}^{d} and $v \in V$. Suppose that G^{\prime} is obtained from G by a vertex splitting operation which splits v into two vertices v^{\prime} and $v^{\prime \prime}$, and that G^{\prime} has an infinitesimally rigid realisation in \mathbb{R}^{d} in which v^{\prime} and $v^{\prime \prime}$ are coincident. Then G^{\prime} is generically globally rigid in \mathbb{R}^{d}.

Theorem 22 may be of independent interest. It has aleady been used by Jordán, Kiraly and Tanigawa in [16] to repair a gap in the proof of their characterision of generic global rigidity for 'body-hinge frameworks' given in [15]. An analogous result to Theorem 2 was used in [12, 14 to obtain a characteriseation of generic global rigidity for 'cylindrical frameworks'. Theorem 2 is a special case of a conjecture of Whiteley, see [3, 4], that the vertex splitting operation preserves global rigidity in \mathbb{R}^{d} if and only if both v^{\prime} and $v^{\prime \prime}$ have degree at least $d+1$ in G^{\prime}.

2 Vertex splitting and coincident realisations

We will prove Theorem 2. We first define the terms appearing in the statement of this theorem. A (d-dimensional) framework is a pair (G, p) where $G=(V, E)$ is a graph and $p: V \rightarrow \mathbb{R}^{d}$ is a point configuration. The rigidity map for G is the map $f_{G}: \mathbb{R}^{d|V|} \rightarrow \mathbb{R}^{|E|}$ which maps a configuration $p \in \mathbb{R}^{d|V|}$ to the sequence of squared edge lengths $\left(\|p(u)-p(v)\|^{2}\right)_{u v \in E}$. The framework (G, p) is gloablly rigid if, for every framework (G, q) with $f_{G}(p)=f_{G}(q)$, we have p is congruent to q. It is rigid if it is globally rigid within some open neighbourhood of p and is infinitesimally rigid if the Jacobean matrix of the rigidity map of G has rank $\min \left\{d|V|-\binom{d+1}{2},\binom{d}{2}\right\}$ at p. Gluck [6] showed that every infinitesimally rigid framework is rigid and that the two properties are equivalent when p is generic i.e. the coordinates of p are algebraically independent over \mathbb{Q}. We say that the graph G is rigid, respectively globally rigid, in \mathbb{R}^{d} if some, or equivalently every, generic framework (G, p) in \mathbb{R}^{d} is rigid, respectively globally rigid. We refer the reader to the survey article [20] for more information on rigid frameworks.

We need the following result of Connelly and Whiteley [5] which shows that global rigidity is a stable property for infinitesimally rigid frameworks.

Lemma 3. Suppose that (G, p) is an infinitesimally rigid, globally rigid framework on n vertices in \mathbb{R}^{d}. Then there exists an open neighbourhood N_{p} of p in $\mathbb{R}^{d n}$ such that (G, q) is infinitesimally rigid and globally rigid for all $q \in N_{p}$.

Given a graph $G=(V, E)$ and $v \in V$ with neighbour set $N(v)$ the (d-dimensional) vertex splitting operation constructs a new graph G^{\prime} by deleting v, adding two new vertices v^{\prime} and $v^{\prime \prime}$ with $N\left(v^{\prime}\right) \cup N\left(v^{\prime \prime}\right)=N(v) \cup\left\{v^{\prime}, v^{\prime \prime}\right\}$ and $\left|N\left(v^{\prime}\right) \cap N\left(v^{\prime \prime}\right)\right|=$ $d-1$. Whiteley [19] showed that vertex splitting preserves generic rigidity in \mathbb{R}^{d} and conjectured in [3, 4] that it will preserve generic global rigidity if and only if both v^{\prime} and $v^{\prime \prime}$ have degree at least $d+1$ in G^{\prime}.

Proof of Theorem 2: Let (G, p) be a generic realisation of G in \mathbb{R}^{d} and let (G^{\prime}, p^{\prime}) be the $v^{\prime} v^{\prime \prime}$-coincident realisation of G^{\prime} obtained by putting $p^{\prime}(u)=p(u)$ for all
$u \in V-v$ and $p^{\prime}\left(v^{\prime}\right)=p^{\prime}\left(v^{\prime \prime}\right)=p(v)$. The genericity of p implies that the rank of the rigidity matrix of any $v^{\prime} v^{\prime \prime}$-coincident realisation of G^{\prime} will be maximised at $\left(G^{\prime}, p^{\prime}\right)$ and hence $\left(G^{\prime}, p^{\prime}\right)$ is infinitesimally rigid. The genericity of p also implies that (G, p) is globally rigid, and this in turn implies that $\left(G^{\prime}, p^{\prime}\right)$ is globally rigid. We can now use Lemma 3 to deduce that $\left(G^{\prime}, q\right)$ is globally rigid for any generic q sufficiently close to p^{\prime}. Hence G^{\prime} is globally rigid.

3 Braced triangulations

A graph T is a planar (near) triangulation if it has a 2-cell embeding in the plane in which every (bounded) face has three edges on its boundary. A braced planar triangulation is a graph $G=(V, E \cup B)$ which is the union of a planar triangulation $T=(V, E)$ and a (possibly empty) set of additional edges B, which we refer to as the bracing edges of G. We say that G is a braced plane triangulation when G is given with a particular 2-cell embedding of T in the plane.

We will need the following notation and elementary results for a plane triangulation T. Every cycle C of T divides the plane into two open regions exactly one of which is bounded. We will refer to the bounded region as the inside of C and the unbounded region as the outside of C. We say that C is a separating cycle of T if both regions contain vertices of T. If S is a minimal vertex cut-set of T then S induces a separating cycle C. It follows that every plane triangulation is 3 -connected and that a plane triangulation is 4 -connected if and only if it contains no separating 3 -cycles. Given an edge e of T which belongs to no separating 3 -cycle of T, we can obtain a new plane triangulation T / e by contacting the edge e and its end-vertices to a single vertex (which is located at the same point as one of the two end-vertices of e), and replacing the multiple edges created by this contraction by single edges.

Given a braced plane triangulation $G=(T, B)$ and an edge e of T which belongs to no separating 3 -cycle of T, we denote the braced plane triangulation obtained by contacting the edge e by $G / e=\left(T / e, B_{e}\right)$ where the set of bracing edges B_{e} is obtained from B by replacing any multiple edges in G / e by single edges (in particular any edge of B which becomes parallel to an edge of T / e is deleted). We say that B crosses a separating cycle C of T if at least one edge of B has one end-vertex inside C and one end-vertex outside C. Thus G is 4 -connected if and only if B crosses every separating 3 -cycle of T.

Our first result implies that every 4-connected braced planar triangulation $G=$ (T, B) can be reduced to a braced octahedron by recursively contracting edges of T. The special case when $B=\emptyset$, i.e. G is a 4 -connected planar triangulation, was obtained by Hama and Nakamoto [10], see also Brinkman et al [1].

Lemma 4. Let $G=(T, B)$ be a 4-connected braced plane triangulation on at least seven vertices and C be the bounding cycle of a face of T. Then $G / e=\left(T / e, B_{e}\right)$ is a 4-connected braced plane triangulation for at least one edge $e \in E(T) \backslash E(C)$. In addition, we may choose e such that $B_{e} \neq \emptyset$ whenever $B \neq \emptyset$.

Proof: It suffices to show that we can find an edge $e \in E(T) \backslash E(C)$ with the properties that e is in no separating 3 -cycle of T, every separating 3 -cycle of T / e is crossed by B_{e}, and $B_{e} \neq \emptyset$ when $B \neq \emptyset$. We may assume without loss of generality that C is the bounding cycle of the outer face of T. Choose a 3 -cycle C_{1} in T as follows. If T has a separating 3 -cycle then choose C_{1} to be a separating 3 -cycle of T such that the set of vertices inside C_{1} is minimal with respect to inclusion. If T has no separating 3 -cycles then put $C_{1}=C$. Let T_{1} be the plane triangulation induced in T by $V\left(C_{1}\right)$ and the vertices inside of C_{1}. The choice of C_{1} implies that T_{1} is either K_{4} or is 4 -connected.

We first consider the case when $T_{1}=K_{4}$. Then G / e will be 4 -connected for all edges $e \in E\left(T_{1}\right) \backslash E\left(C_{1}\right)$, since the set of separating 3-cycles of T / e is the set of all separating 3 -cycles of T other than C_{1} (and hence every separating 3 -cycle of G / e will be crossed by B). The 4 -connectivity of G implies that some edge $b \in B$ crosses C_{1} so we must have $B \neq \emptyset$ in this case. Let $C_{1}=v_{1} v_{2} v_{3} v_{1}$ and $b=u w$ where u is the unique vertex inside C_{1}. If $w v_{i} \notin E(T)$ for some $1 \leq i \leq 3$ then we may choose $e=u v_{i}$ to ensure that $B_{e} \neq \emptyset$. Hence we may assume that $w v_{i} \in E(T)$ for all $1 \leq i \leq 3$. Since G has more than five vertices, $C_{1}^{\prime}=w v_{i} v_{i+1} w$ is a separating cycle of G for some $1 \leq i \leq 3$, reading subscripts modulo three. Hence some edge $b^{\prime} \in B$ crosses C_{1}^{\prime}. We may now choose $e=u v_{j}$ with $j \neq i, i+1$ to ensure that $B_{e} \neq \emptyset$.

We next consider the case when T_{1} is 4 -connected and has no separating cycles of length four. Then T_{1} is 5 -connected and T_{1} / e will be 4 -connected for all $e \in E\left(T_{1}\right)$. Hence G / e is 4-connected for all $e \in E\left(T_{1}\right)$ which are not incident with $V\left(C_{1}\right)$, since T and T / e will have the same set of separating 3 -cycles (and hence every separating 3 -cycle of G / e will be crossed by B). In addition, if $B \neq \emptyset$, then we may ensure that $B_{e} \neq \emptyset$ by choosing an $e \in E\left(T_{1}-C_{1}\right)$ which is not adjacent to some edge in B (this is possible since the 5 -connectivity of T_{1} gives us lots of choices for e).
It remains to consider the case when T_{1} is 4 -connected and has a separating cycle C_{2} of length four. We may suppose that C_{2} has been chosen such that the set of vertices inside C_{2} is minimal with respect to inclusion. Let $C_{2}=v_{1} v_{2} v_{3} v_{4} v_{1}$ and let T_{2} be the plane near triangulation induced in T by $V\left(C_{2}\right)$ and the vertices inside of C_{2}. The choice of C_{2} implies that T_{2} is a wheel on five vertices or T_{2} is 4 -connected.

Consider the subcase when T_{2} is 4 -connected. Then $T_{2}-C_{2}$ is connected, each vertex of C_{2} is adjacent to at least two vertices of $T_{2}-C_{2}$, and no vertex of $T_{2}-C_{2}$ is adjacent to two non-adjacent vertices of C_{2}. Suppose G / e is not 4 -connected for some edge e of $T_{2}-E\left(C_{2}\right)$. Then some separating 3-cycle of T / e is not a separating 3 -cycle of T, and hence e is contained in a separating 4 -cycle C_{3} of T. The minimality of C_{2} implies that $C_{3} \cap T_{2}$ is a path of length three joining two non-adjacent vertices of C_{2}, say v_{1}, v_{3}, and $v_{1} v_{3} \in E(T) \backslash E\left(T_{2}\right)$. Planarity now implies that $v_{2} v_{4} \notin E(T)$ and hence all edges e of $T_{2}-E\left(C_{2}\right)$ for which G / e is not 4 -connected must lie on a $v_{1} v_{3}$-path in $T_{2}-E\left(C_{2}\right)$ of length three. This implies that G / e will be 4 -connected for all edges of $T_{2}-E\left(C_{2}\right)$ which are incident with v_{2} or v_{4}. This gives us sufficiently many edges to choose from to ensure that $B_{e} \neq \emptyset$ when $B \neq \emptyset$.

It remains to consider the subcase when T_{2} is a wheel on five vertices. Let u be the unique vertex of $T_{2}-C_{2}$. Suppose that some vertex w of $T_{1}-T_{2}$ is adjacent to all vertices of C_{2} in T_{1}. Then the subgraph T_{3} of T_{1} obtained by adding w and all edges between w and C_{2} to T_{2} is isomorphic to the octahedron. Since T_{1} is 4-connected and
$T_{3} \subset T_{1}$ we must have $T_{1}=T_{3}$. Since T has at least seven vertices, C_{1} is a separating 3cycle of T (this situation is illustrated in Figure 11). Since G is 4 -connected, some edge $b \in B$ crosses C_{1}. Relabeling u, v_{2}, v_{3} if necessary, we may suppose that b is incident to u. Let $e=v_{2} v_{3}$. Since T_{1} is isomorphic to the icosahedron, $C_{2}=v_{1} v_{2} v_{3} v_{4} v_{1}$ is the unique separating 4 -cycle of T which contains e and hence C_{2} / e is the only separating 3 -cycle of T / e which is not a separating 3 -cycle of T. Since b crosses C_{2} / e in G / e, G / e is 4-connected.

Hence we may suppose that no vertex of $T_{1}-T_{2}$ is adjacent to all vertices of C_{2} in T_{1}. By symmetry and planarity, we may assume that v_{1} and v_{3} do not have a common neighbour in $T_{1}-T_{2}$. Choose $e \in\left\{u v_{1}, u v_{3}\right\}$. Then e is not contained in a separating 4 -cycle of T so G / e is 4 -connected. Furthermore, if $B \neq \emptyset$, then we will have $B_{e} \neq \emptyset$ for either $e=u v_{1}$ or $e=u v_{3}$.

T

Figure 1: The plane triangulations T and T / e in the case when T_{2} is the wheel on five vertices and T_{1} is the octahedron. The edge $e=v_{2} v_{3}$ is contracted to a new vertex x to form T / e.

We are particularly interested in braced triangulations with at least one bracing edge. For such triangulations we can prove a slightly stronger result.

Corollary 5. Let $G=(T, B)$ be a 4-connected braced plane triangulation on at least six vertices with $B \neq \emptyset$ and C be the bounding cycle of a face of T. Then $G / e=$ $\left(T / e, B_{e}\right)$ is a 4-connected braced plane triangulation with $B_{e} \neq \emptyset$ for at least one edge $e \in E(T) \backslash E(C)$.

Proof: The corollary follows immediately from Lemma 4 if G has at least seven vertices so we may assume that $|V(G)|=6$. If T has a separating triangle C then one component of $G-C$ is a single vertex and we may proceed as in the case $T_{1}=K_{4}$ of the proof of Lemma 4. On the other hand, if T has no separating triangle then T is isomorphic to the octahedron and $\left(T / e, B_{e}\right)=\left(K_{5}-f,\{f\}\right)$ for any $f \in B$ and any edge e of T which is not adjacent to f.

We next use Corollary 5 to obtain a result on infinitesimally rigid realisations of 4-connected braced triangultions in \mathbb{R}^{3} in which two adjacent vertices are coincident.

Theorem 6. Let $G=(T, B)$ be a 4-connected braced planar triangulation with $B \neq \emptyset$ and $u, v \in V(G)$. Then G has an infinitesimally rigid realisation (G, p) in \mathbb{R}^{3} with $p(u)=p(v)$.
Proof: We use induction on $|V(G)|$. If $|V(G)|=5$ then $G=K_{5}$ and it is straightforward to check that G has a infinitesimally rigid realisation (G, p) with $p(u)=p(v)$ for all $u, v \in V(G)$. Hence we may suppose that $|V(G)| \geq 6$. By Corollary 5, we can find an edge $f=x y \in E(T)$ with $\{x, y\} \neq\{u, v\}$ and such that $G / f=\left(T / f, B_{f}\right)$ is a 4 -connected braced triangulation with $B_{f} \neq \emptyset$. We label the vertex obtained by contracting f as x, taking $x \in\{u, v\}$ if f is adacent to u or v. By induction G / f has an infinitesimally rigid realisation $(G / f, q)$ with $q(u)=q(v)$. We can now use the vertex-splitting result of Whiteley [19] to deduce that (G, p) is infinitesimally rigid for all p with $p(z)=q(z)$ for $z \in V(G / f)$ and $p(y)$ sufficiently close to $p(x)$.

Proof of Theorem 1: Necessity follows from [11] (using the fact that if $G=T$ then G would not have enough edges to be redundantly rigid). We prove sufficiency by induction on $|V(G)|$. If $|V(G)|=5$ then $G=K_{5}$ and G is globally rigid in \mathbb{R}^{3}. Hence we may suppose that $|V(G)| \geq 6$. By Lemma 4 , we can find an edge $f=x y \in E(T)$ such that $G / f=\left(T / f, B_{f}\right)$ is a 4 -connected braced triangulation with $B_{f} \neq \emptyset$. Then G / f is globally rigid by induction. Since G has an infinitesimally rigid $x y$-coincident realisation by Theorem 6, we can now use Theorem 2 to deduce that G is globally rigid.

4 Closing Remarks

1. It follows from a result of Cauchy [2], that every graph which triangulates the plane is generically rigid in \mathbb{R}^{3}. Fogelsanger [8] extended this result to triangulations of an arbitrary surface. We conjecture that Theorem 1 can be extended in the same way.
Conjecture 7. Let G be a graph which has a triangulation T of some surface S as a spanning subgraph. Then G is globally rigid if and only if G is 4 -connected and, when S has genus zero, $G \neq T$.

The conjecture is true for the special case when G itself is a triangulation of the projective plane or torus by [17, Theorem 10.3].
2. Let $G=(V, E)$ be a graph and $v v^{\prime} \in E$. Fekete, Jordán and Kaszanitzky 7] showed that G can be realised as an infinitesimally rigid bar-joint framework (G, p) in \mathbb{R}^{2} with $p(v)=p\left(v^{\prime}\right)$ if and only if $G-v v^{\prime}$ and $G / v v^{\prime}$ are both generically rigid in \mathbb{R}^{2} (where $G-v v^{\prime}$ and $G / v v^{\prime}$ are obtained from G by, respectively, deleting and contracting the edge $v v^{\prime}$). We conjecture that the same result holds in \mathbb{R}^{d}.
Conjecture 8. Let $G=(V, E)$ be a graph and $v v^{\prime} \in E$. Then G can be realised as an infinitesimally rigid bar-joint framework (G, p) in \mathbb{R}^{d} with $p(v)=p\left(v^{\prime}\right)$ if and only if $G-v v^{\prime}$ and $G / v v^{\prime}$ are both generically rigid in \mathbb{R}^{d}.

The proof in [7] is based on a characterisation of independence in the '2-dimensional generic $v v^{\prime}$-coincident rigidity matroid'. It is unlikely that a similar approach will work in \mathbb{R}^{d} since it is notoriously difficult to characterise independence in the d dimensional generic rigidity matroid for $d \geq 3$. But it is conceivable that there may be a geometric argument which uses the generic rigidity of $G-v v^{\prime}$ and $G / v v^{\prime}$ to construct an infinitesimally rigid $v v^{\prime}$-coincident realisation of G.
3. We can use the proof technique of Theorem 2 to show that Conjecture 8 would imply the following weak version of Whiteley's conjecture on vertex splitting.
Conjecture 9. Let $H=(V, E)$ be a graph which is generically globally rigid in \mathbb{R}^{d} and $v \in V$. Suppose that G is obtained from H by a d-dimensional vertex splitting operation which splits v into two new vertices v^{\prime} and $v^{\prime \prime}$. If $G-v^{\prime} v^{\prime \prime}$ is generically rigid in \mathbb{R}^{d}, then G is generically globally rigid in \mathbb{R}^{d}.

Jordán, Király and Tanigawa [15, Theorem 4.3] state Conjecture 9 as a result of Connelly [4, Theorem 29] but this is not true - they are misquoting Connelly's theorem.

References

[1] G. Brinkmann, C. Larson, J. Souffriau, N. Van Cleemput, Construction of planar 4-connected triangulations, Ars Math. Contemporanea 9 (2015), 145-149
[2] A. L. Cauchy, Sur les polygones et polyedres, second memoire, J. Ecole Polytech. (1813).
[3] M. Cheung, W. Whiteley, Transfer of global rigidity results among dimensions: graph powers and coning, preprint, York University, 2005.
[4] R. Connelly, Questions, conjectures and remarks on globally rigid tensegrities, preprint 2009, available at http://www.math.cornell.edu/~connelly/09-Thoughts.pdf
[5] R. Connelly and W. Whiteley, Global rigidity: the effect of coning, Disc. Comp. Geom. 43 (2010), 717-735.
[6] H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric topology, L. C. Glasing and T. B. Rushing eds., Lecture Notes in Math. 438, Springer, Berlin, 1975, 225-239.
[7] Zs. Fekete, T. Jordán and V. E. Kaszanitzky, Rigid two-dimensional frameworks with two coincident points, Graphs and Combinatorics 31 (2014), 585-599.
[8] A. L. Fogelsanger, The generic rigidity of miniml cycles, Ph.D thesis, Cornell University, 1988, available at
http://www.armadillodanceproject.com/AF/Cornell/rigidity.htm
[9] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity, American J. Math. 132 (2010), 897-939.
[10] M. Hama, A. Nakamoto, Generating 4-connected triangulations on closed surfaces, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 50 (2002), 145-153.
[11] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput. 21 (1992), 65-84
[12] B. Jackson, V. Kaszanitzky and A. Nixon, Rigid cylindrical frameworks with two coincident points, Graphs and Combinatorics 35 (2019), 141-168.
[13] B. Jackson and T. Jordán, Connected rigidity matroids and unique realisations of graphs, J. Combin. Theory Ser. B 94 (2005), 1-29.
[14] B. Jackson and A. Nixon, Global rigidity of generic frameworks on the cylinder, J. Combin. Theory Ser. B, to appear.
[15] T. Jordán, C. Király and S.-I. Tanigawa, Generic global rigidity of bodyhinge frameworks, J. Combin. Theory Ser. B 117 (2016), 59-76.
[16] T. Jordán, C. Király and S.-I. Tanigawa, On the vertex splitting operation in globally rigid body-hinge graphs, preprint.
[17] T. Jordán and S.-I. Tanigawa, Global rigidity of triangulations with braces, J. Combin. Theory Ser. B 136 (2019), 249-288.
[18] J.B. Saxe, Embeddability of weighted graphs in k-space is strongly NP-hard, Tech. Report, Computer Science Department, Carnegie-Mellon University, Pittsburgh, PA, 1979.
[19] W. Whiteley Vertex splitting in isostatic frameworks, Structural Topology 16 (1990), 23-30.
[20] W. Whiteley, Some matroids from discrete applied geometry, in Matroid Theory, J. E. Bonin, J. G. Oxley, and B. Servatius eds., Contemporary Mathematics 197, American Mathematical Society, 1996, 171-313.

[^0]: *School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. E-mail: b.jackson@qmul.ac.uk

