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Abstract

We give a short proof of a result of Jordán and Tanigawa that a 4-connected
graph which has a spanning planar triangulation as a proper subgraph is gener-
ically globally rigid in R3. Our proof is based on a new sufficient condition for
the so called vertex splitting operation to preserve generic global rigidity in Rd.
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1 Introduction

We consider the problem of determining when a configuration consisting of a finite
set of points in d-dimensional Euclidean space Rd is uniqely defined up to congruence
by a given set of constraints which fix the distance between certain pairs of points.
This problem was shown to be NP-hard for all d ≥ 1 by Saxe [18], but becomes more
tractable if we restrict our attention to generic configurations. Gortler, Healy and
Thurston [9] showed that, for generic frameworks, uniqueness depends only on the
underlying constraint graph. Graphs which give rise to uniquely realisable generic
configurations in Rd are said to be globally rigid in Rd. These graphs have been
characterised for d = 1, 2, [13], but it is a major open problem in distance geometry
to characterise globally rigid graphs when d ≥ 3.

A recent result of Jordán and Tanigawa [17] characterises when graphs constructed
from plane triangulations by adding some additional edges are globally rigid in R3.

Theorem 1. Suppose that G is a graph which has a planar triangulation T as a
spanning subgraph. Then G is globally rigid in R3 if and only if G is 4-connected and
G 6= T .

We will give a short proof of this result. The main tool in our inductive proof is
the (3-dimensional version of) the following result which gives a sufficient condition
for the so called vertex splitting operation to preserve global rigidity in Rd.
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Section 2. Vertex splitting and coincident realisations 2

Theorem 2. Let G = (V,E) be a graph which is globally rigid in Rd and v ∈ V .
Suppose that G′ is obtained from G by a vertex splitting operation which splits v into
two vertices v′ and v′′, and that G′ has an infinitesimally rigid realisation in Rd in
which v′ and v′′ are coincident. Then G′ is generically globally rigid in Rd.

Theorem 2 may be of independent interest. It has aleady been used by Jordán,
Kiraly and Tanigawa in [16] to repair a gap in the proof of their characterision of
generic global rigidity for ‘body-hinge frameworks’ given in [15]. An analogous result
to Theorem 2 was used in [12, 14] to obtain a characteriseation of generic global
rigidity for ‘cylindrical frameworks’. Theorem 2 is a special case of a conjecture of
Whiteley, see [3, 4], that the vertex splitting operation preserves global rigidity in Rd

if and only if both v′ and v′′ have degree at least d + 1 in G′.

2 Vertex splitting and coincident realisations

We will prove Theorem 2. We first define the terms appearing in the statement of
this theorem. A (d-dimensional) framework is a pair (G, p) where G = (V,E) is a
graph and p : V → Rd is a point configuration. The rigidity map for G is the map
fG : Rd|V | → R|E| which maps a configuration p ∈ Rd|V | to the sequence of squared
edge lengths (‖p(u)− p(v)‖2)uv∈E. The framework (G, p) is gloablly rigid if, for every
framework (G, q) with fG(p) = fG(q), we have p is congruent to q. It is rigid if it
is globally rigid within some open neighbourhood of p and is infinitesimally rigid if
the Jacobean matrix of the rigidity map of G has rank min{d|V | −

(
d+1
2

)
,
(
d
2

)
} at p.

Gluck [6] showed that every infinitesimally rigid framework is rigid and that the two
properties are equivalent when p is generic i.e. the coordinates of p are algebraically
independent over Q. We say that the graph G is rigid, respectively globally rigid, in
Rd if some, or equivalently every, generic framework (G, p) in Rd is rigid, respectively
globally rigid. We refer the reader to the survey article [20] for more information on
rigid frameworks.

We need the following result of Connelly and Whiteley [5] which shows that global
rigidity is a stable property for infinitesimally rigid frameworks.

Lemma 3. Suppose that (G, p) is an infinitesimally rigid, globally rigid framework
on n vertices in Rd. Then there exists an open neighbourhood Np of p in Rdn such
that (G, q) is infinitesimally rigid and globally rigid for all q ∈ Np.

Given a graph G = (V,E) and v ∈ V with neighbour set N(v) the (d-dimensional)
vertex splitting operation constructs a new graph G′ by deleting v, adding two new
vertices v′ and v′′ with N(v′) ∪ N(v′′) = N(v) ∪ {v′, v′′} and |N(v′) ∩ N(v′′)| =
d− 1. Whiteley [19] showed that vertex splitting preserves generic rigidity in Rd and
conjectured in [3, 4] that it will preserve generic global rigidity if and only if both v′

and v′′ have degree at least d + 1 in G′.

Proof of Theorem 2: Let (G, p) be a generic realisation of G in Rd and let (G′, p′)
be the v′v′′-coincident realisation of G′ obtained by putting p′(u) = p(u) for all
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u ∈ V − v and p′(v′) = p′(v′′) = p(v). The genericity of p implies that the rank
of the rigidity matrix of any v′v′′-coincident realisation of G′ will be maximised at
(G′, p′) and hence (G′, p′) is infinitesimally rigid. The genericity of p also implies that
(G, p) is globally rigid, and this in turn implies that (G′, p′) is globally rigid. We can
now use Lemma 3 to deduce that (G′, q) is globally rigid for any generic q sufficiently
close to p′. Hence G′ is globally rigid. •

3 Braced triangulations

A graph T is a planar (near) triangulation if it has a 2-cell embeding in the plane
in which every (bounded) face has three edges on its boundary. A braced planar
triangulation is a graph G = (V,E ∪ B) which is the union of a planar triangulation
T = (V,E) and a (possibly empty) set of additional edges B, which we refer to as the
bracing edges of G. We say that G is a braced plane triangulation when G is given
with a particular 2-cell embedding of T in the plane.

We will need the following notation and elementary results for a plane triangulation
T . Every cycle C of T divides the plane into two open regions exactly one of which is
bounded. We will refer to the bounded region as the inside of C and the unbounded
region as the outside of C. We say that C is a separating cycle of T if both regions
contain vertices of T . If S is a minimal vertex cut-set of T then S induces a separating
cycle C. It follows that every plane triangulation is 3-connected and that a plane
triangulation is 4-connected if and only if it contains no separating 3-cycles. Given an
edge e of T which belongs to no separating 3-cycle of T , we can obtain a new plane
triangulation T/e by contacting the edge e and its end-vertices to a single vertex
(which is located at the same point as one of the two end-vertices of e), and replacing
the multiple edges created by this contraction by single edges.

Given a braced plane triangulation G = (T,B) and an edge e of T which belongs
to no separating 3-cycle of T , we denote the braced plane triangulation obtained by
contacting the edge e by G/e = (T/e,Be) where the set of bracing edges Be is obtained
from B by replacing any multiple edges in G/e by single edges (in particular any edge
of B which becomes parallel to an edge of T/e is deleted). We say that B crosses a
separating cycle C of T if at least one edge of B has one end-vertex inside C and one
end-vertex outside C. Thus G is 4-connected if and only if B crosses every separating
3-cycle of T .

Our first result implies that every 4-connected braced planar triangulation G =
(T,B) can be reduced to a braced octahedron by recursively contracting edges of
T . The special case when B = ∅, i.e. G is a 4-connected planar triangulation, was
obtained by Hama and Nakamoto [10], see also Brinkman et al [1].

Lemma 4. Let G = (T,B) be a 4-connected braced plane triangulation on at least
seven vertices and C be the bounding cycle of a face of T . Then G/e = (T/e,Be) is
a 4-connected braced plane triangulation for at least one edge e ∈ E(T ) \ E(C). In
addition, we may choose e such that Be 6= ∅ whenever B 6= ∅.
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Proof: It suffices to show that we can find an edge e ∈ E(T )\E(C) with the properties
that e is in no separating 3-cycle of T , every separating 3-cycle of T/e is crossed by
Be, and Be 6= ∅ when B 6= ∅. We may assume without loss of generality that C is the
bounding cycle of the outer face of T . Choose a 3-cycle C1 in T as follows. If T has a
separating 3-cycle then choose C1 to be a separating 3-cycle of T such that the set of
vertices inside C1 is minimal with respect to inclusion. If T has no separating 3-cycles
then put C1 = C. Let T1 be the plane triangulation induced in T by V (C1) and the
vertices inside of C1. The choice of C1 implies that T1 is either K4 or is 4-connected.

We first consider the case when T1 = K4. Then G/e will be 4-connected for all
edges e ∈ E(T1)\E(C1), since the set of separating 3-cycles of T/e is the set of all
separating 3-cycles of T other than C1 (and hence every separating 3-cycle of G/e will
be crossed by B). The 4-connectivity of G implies that some edge b ∈ B crosses C1 so
we must have B 6= ∅ in this case. Let C1 = v1v2v3v1 and b = uw where u is the unique
vertex inside C1. If wvi 6∈ E(T ) for some 1 ≤ i ≤ 3 then we may choose e = uvi to
ensure that Be 6= ∅. Hence we may assume that wvi ∈ E(T ) for all 1 ≤ i ≤ 3. Since
G has more than five vertices, C ′1 = wvivi+1w is a separating cycle of G for some
1 ≤ i ≤ 3, reading subscripts modulo three. Hence some edge b′ ∈ B crosses C ′1. We
may now choose e = uvj with j 6= i, i + 1 to ensure that Be 6= ∅.

We next consider the case when T1 is 4-connected and has no separating cycles of
length four. Then T1 is 5-connected and T1/e will be 4-connected for all e ∈ E(T1).
Hence G/e is 4-connected for all e ∈ E(T1) which are not incident with V (C1), since
T and T/e will have the same set of separating 3-cycles (and hence every separating
3-cycle of G/e will be crossed by B). In addition, if B 6= ∅, then we may ensure that
Be 6= ∅ by choosing an e ∈ E(T1 − C1) which is not adjacent to some edge in B (this
is possible since the 5-connectivity of T1 gives us lots of choices for e).

It remains to consider the case when T1 is 4-connected and has a separating cycle
C2 of length four. We may suppose that C2 has been chosen such that the set of
vertices inside C2 is minimal with respect to inclusion. Let C2 = v1v2v3v4v1 and let
T2 be the plane near triangulation induced in T by V (C2) and the vertices inside of
C2. The choice of C2 implies that T2 is a wheel on five vertices or T2 is 4-connected.

Consider the subcase when T2 is 4-connected. Then T2 − C2 is connected, each
vertex of C2 is adjacent to at least two vertices of T2 − C2, and no vertex of T2 − C2

is adjacent to two non-adjacent vertices of C2. Suppose G/e is not 4-connected for
some edge e of T2 − E(C2). Then some separating 3-cycle of T/e is not a separating
3-cycle of T , and hence e is contained in a separating 4-cycle C3 of T . The minimality
of C2 implies that C3 ∩ T2 is a path of length three joining two non-adjacent vertices
of C2, say v1, v3, and v1v3 ∈ E(T ) \ E(T2). Planarity now implies that v2v4 6∈ E(T )
and hence all edges e of T2 − E(C2) for which G/e is not 4-connected must lie on a
v1v3-path in T2 − E(C2) of length three. This implies that G/e will be 4-connected
for all edges of T2−E(C2) which are incident with v2 or v4. This gives us sufficiently
many edges to choose from to ensure that Be 6= ∅ when B 6= ∅.

It remains to consider the subcase when T2 is a wheel on five vertices. Let u be the
unique vertex of T2 − C2. Suppose that some vertex w of T1 − T2 is adjacent to all
vertices of C2 in T1. Then the subgraph T3 of T1 obtained by adding w and all edges
between w and C2 to T2 is isomorphic to the octahedron. Since T1 is 4-connected and
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T3 ⊂ T1 we must have T1 = T3. Since T has at least seven vertices, C1 is a separating 3-
cycle of T (this situation is illustrated in Figure 1). Since G is 4-connected, some edge
b ∈ B crosses C1. Relabeling u, v2, v3 if necessary, we may suppose that b is incident
to u. Let e = v2v3. Since T1 is isomorphic to the icosahedron, C2 = v1v2v3v4v1 is the
unique separating 4-cycle of T which contains e and hence C2/e is the only separating
3-cycle of T/e which is not a separating 3-cycle of T . Since b crosses C2/e in G/e,
G/e is 4-connected.

Hence we may suppose that no vertex of T1 − T2 is adjacent to all vertices of C2 in
T1. By symmetry and planarity, we may assume that v1 and v3 do not have a common
neighbour in T1− T2. Choose e ∈ {uv1, uv3}. Then e is not contained in a separating
4-cycle of T so G/e is 4-connected. Furthermore, if B 6= ∅, then we will have Be 6= ∅
for either e = uv1 or e = uv3. •

t t

t tt tt tt t
t t

t

t t
tt

v1 v1

w wv4 v4

C C

C1 C1v2

v3

u

T T/e

u
x

Figure 1: The plane triangulations T and T/e in the case when T2 is the wheel on five
vertices and T1 is the octahedron. The edge e = v2v3 is contracted to a new vertex x
to form T/e.

We are particularly interested in braced triangulations with at least one bracing
edge. For such triangulations we can prove a slightly stronger result.

Corollary 5. Let G = (T,B) be a 4-connected braced plane triangulation on at least
six vertices with B 6= ∅ and C be the bounding cycle of a face of T . Then G/e =
(T/e,Be) is a 4-connected braced plane triangulation with Be 6= ∅ for at least one edge
e ∈ E(T ) \ E(C).

Proof: The corollary follows immediately from Lemma 4 if G has at least seven ver-
tices so we may assume that |V (G)| = 6. If T has a separating triangle C then one
component of G−C is a single vertex and we may proceed as in the case T1 = K4 of
the proof of Lemma 4. On the other hand, if T has no separating triangle then T is
isomorphic to the octahedron and (T/e,Be) = (K5 − f, {f}) for any f ∈ B and any
edge e of T which is not adjacent to f . •

We next use Corollary 5 to obtain a result on infinitesimally rigid realisations of
4-connected braced triangultions in R3 in which two adjacent vertices are coincident.
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Theorem 6. Let G = (T,B) be a 4-connected braced planar triangulation with B 6= ∅
and u, v ∈ V (G). Then G has an infinitesimally rigid realisation (G, p) in R3 with
p(u) = p(v).

Proof: We use induction on |V (G)|. If |V (G)| = 5 then G = K5 and it is straight-
forward to check that G has a infinitesimally rigid realisation (G, p) with p(u) = p(v)
for all u, v ∈ V (G). Hence we may suppose that |V (G)| ≥ 6. By Corollary 5, we can
find an edge f = xy ∈ E(T ) with {x, y} 6= {u, v} and such that G/f = (T/f,Bf )
is a 4-connected braced triangulation with Bf 6= ∅. We label the vertex obtained by
contracting f as x, taking x ∈ {u, v} if f is adacent to u or v. By induction G/f
has an infinitesimally rigid realisation (G/f, q) with q(u) = q(v). We can now use the
vertex-splitting result of Whiteley [19] to deduce that (G, p) is infinitesimally rigid for
all p with p(z) = q(z) for z ∈ V (G/f) and p(y) sufficiently close to p(x). •

Proof of Theorem 1: Necessity follows from [11] (using the fact that if G = T then
G would not have enough edges to be redundantly rigid). We prove sufficiency by in-
duction on |V (G)|. If |V (G)| = 5 then G = K5 and G is globally rigid in R3. Hence we
may suppose that |V (G)| ≥ 6. By Lemma 4, we can find an edge f = xy ∈ E(T ) such
that G/f = (T/f,Bf ) is a 4-connected braced triangulation with Bf 6= ∅. Then G/f
is globally rigid by induction. Since G has an infinitesimally rigid xy-coincident reali-
sation by Theorem 6, we can now use Theorem 2 to deduce that G is globally rigid. •

4 Closing Remarks

1. It follows from a result of Cauchy [2], that every graph which triangulates the
plane is generically rigid in R3. Fogelsanger [8] extended this result to triangulations
of an arbitrary surface. We conjecture that Theorem 1 can be extended in the same
way.

Conjecture 7. Let G be a graph which has a triangulation T of some surface S as a
spanning subgraph. Then G is globally rigid if and only if G is 4-connected and, when
S has genus zero, G 6= T .

The conjecture is true for the special case when G itself is a triangulation of the
projective plane or torus by [17, Theorem 10.3].

2. Let G = (V,E) be a graph and vv′ ∈ E. Fekete, Jordán and Kaszanitzky [7]
showed that G can be realised as an infinitesimally rigid bar-joint framework (G, p)
in R2 with p(v) = p(v′) if and only if G − vv′ and G/vv′ are both generically rigid
in R2 (where G − vv′ and G/vv′ are obtained from G by, respectively, deleting and
contracting the edge vv′). We conjecture that the same result holds in Rd.

Conjecture 8. Let G = (V,E) be a graph and vv′ ∈ E. Then G can be realised as
an infinitesimally rigid bar-joint framework (G, p) in Rd with p(v) = p(v′) if and only
if G− vv′ and G/vv′ are both generically rigid in Rd.
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The proof in [7] is based on a characterisation of independence in the ‘2-dimensional
generic vv′-coincident rigidity matroid’. It is unlikely that a similar approach will
work in Rd since it is notoriously difficult to characterise independence in the d-
dimensional generic rigidity matroid for d ≥ 3. But it is conceivable that there may
be a geometric argument which uses the generic rigidity of G − vv′ and G/vv′ to
construct an infinitesimally rigid vv′-coincident realisation of G.

3. We can use the proof technique of Theorem 2 to show that Conjecture 8 would
imply the following weak version of Whiteley’s conjecture on vertex splitting.

Conjecture 9. Let H = (V,E) be a graph which is generically globally rigid in Rd

and v ∈ V . Suppose that G is obtained from H by a d-dimensional vertex splitting
operation which splits v into two new vertices v′ and v′′. If G − v′v′′ is generically
rigid in Rd, then G is generically globally rigid in Rd.

Jordán, Király and Tanigawa [15, Theorem 4.3] state Conjecture 9 as a result of
Connelly [4, Theorem 29] but this is not true - they are misquoting Connelly’s theorem.

References

[1] G. Brinkmann, C. Larson, J. Souffriau, N. Van Cleemput, Construc-
tion of planar 4-connected triangulations, Ars Math. Contemporanea 9 (2015),
145-149

[2] A. L. Cauchy, Sur les polygones et polyedres, second memoire, J. Ecole Poly-
tech. (1813).

[3] M. Cheung, W. Whiteley, Transfer of global rigidity results among dimen-
sions: graph powers and coning, preprint, York University, 2005.

[4] R. Connelly, Questions, conjectures and remarks on globally rigid tensegrities,
preprint 2009, available at
http://www.math.cornell.edu/∼connelly/09-Thoughts.pdf

[5] R. Connelly and W. Whiteley, Global rigidity: the effect of coning, Disc.
Comp. Geom. 43 (2010), 717–735.

[6] H. Gluck, Almost all simply connected closed surfaces are rigid, in Geometric
topology, L. C. Glasing and T. B. Rushing eds., Lecture Notes in Math. 438,
Springer, Berlin, 1975, 225–239.

[7] Zs. Fekete, T. Jordán and V. E. Kaszanitzky, Rigid two-dimensional
frameworks with two coincident points, Graphs and Combinatorics 31 (2014),
585–599.

[8] A. L. Fogelsanger, The generic rigidity of miniml cycles, Ph.D thesis, Cornell
University, 1988, available at
http://www.armadillodanceproject.com/AF/Cornell/rigidity.htm

EGRES Technical Report No. 2020-02

http://www.math.cornell.edu/~connelly/09-Thoughts.pdf
http://www.armadillodanceproject.com/AF/Cornell/rigidity.htm


References 8

[9] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global
rigidity, American J. Math. 132 (2010), 897–939.

[10] M. Hama, A. Nakamoto, Generating 4-connected triangulations on closed
surfaces, Mem. Osaka Kyoiku Univ. Ser. III Nat. Sci. Appl. Sci. 50 (2002),
145-153.

[11] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput.
21 (1992), 65–84

[12] B. Jackson, V. Kaszanitzky and A. Nixon, Rigid cylindrical frameworks
with two coincident points, Graphs and Combinatorics 35 (2019), 141-168.

[13] B. Jackson and T. Jordán, Connected rigidity matroids and unique realisa-
tions of graphs, J. Combin. Theory Ser. B 94 (2005), 1–29.

[14] B. Jackson and A. Nixon, Global rigidity of generic frameworks on the cylin-
der, J. Combin. Theory Ser. B, to appear.
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