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Abstract

The characterization of rigid graphs in Rd is known only in the low dimen-
sional cases (d = 1, 2) and is a major open problem in higher dimensions. In
this note we consider the other extreme case when d is close to n, the number of
vertices of the graph. It turns out that there is a fairly simple characterization
as long as n − d is at most four. We also characterize globally rigid graphs in
this range.

1 Introduction

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is
a map from V to Rd. It is also called a realization of G in Rd. The length of an
edge uv ∈ E in (G, p) is the Euclidean distance between p(u) and p(v). We call the
framework rigid in Rd if every continuous motion of the vertices in d-space which
preserves all edge lengths preserves all pairwise distances. It is globally rigid in Rd if
the edge lengths uniquely determine all pairwise distances in the framework.

A framework (G, p) is said to be generic if the set containing the coordinates of
all its points is algebraically independent over the rationals. We say that G is rigid
(resp. globally rigid) in Rd if every (or equivalently, if some) generic d-dimensional
realization of G is rigid (resp. globally rigid).

Rigid and globally rigid graphs in Rd are well-characterized for d = 1, 2. It remains
an major open problem to extend these results to higher dimensions. There are some
partial results in 3-space but the case when d ≥ 4 is essentially unexplored. We
refer the reader to [6, 8] for a general overview of rigid and globally rigid graphs and
frameworks.

In this note we consider the case when d is high: so high that it differs from n, the
number of vertices, by a constant. The motivation comes from the fact that in some
problems (e.g. in the k-vertex-connectivity augmentation problem [2], or in the study
of graphs with Colin de Verdière invariant µ [7]) the case when the parameter (k, or
µ) is close to n gives rise to interesting and challenging problems.
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1.1 Preliminary results 2

It turns out that the characterization of rigid and globally rigid graphs in Rd is fairly
simple if n − d is at most four. Nevertheless, it may be useful to summarize these
results: for example, the new characterizations give rise to a new range of dimensions
where old or new conjectures can be tested. They also lead to new families of (rigidity)
matroids. Furthermore, an additional by-product is the fact that there is a polynomial
time FPT algorithm for the problem of testing the rigidity or global rigidity of graphs
in Rd, when the parameter is k := n− d.

1.1 Preliminary results

We shall use the following results from rigidity theory. Let G = (V,E) be a graph.
The d-dimensional 0-extension operation adds a new vertex to G and d new edges
incident with v. The 1-extension operation removes an edge uw, and adds a new
vertex v and d + 1 new edges, including vu, vw. The 0-extension operation is known
to preserve rigidity in Rd. The 1-extension operation preserves rigidity as well as
global rigidity in Rd. We call the corresponding inverse operations 0-reduction and
1-reduction, respectively.

The cone of G is obtained from G by adding a new vertex v and new edges from v
to every vertex of G. The graph G is rigid (resp. globally rigid) in Rd if and only if
the cone of G is rigid (resp. globally rigid) in Rd+1. We shall call these results, due
to Whiteley [9] and Connelly and Whiteley [1], respectively, the Coning theorems.

2 Rigid graphs

Let H = (V,E) be a graph. The complement graph and the maximum degree of H
will be denoted by H and ∆(H), respectively. The degree of a vertex set X in H is
denoted by degH(X). If X = {v} then we use degH(v).

Since rigid graphs are dense, when d is close to n, it will be convenient to work with
the complement graph. A graph on at most d+ 1 vertices is rigid in Rd if and only if
it is complete. Hence we shall consider the case n ≥ d+ 2.

Lemma 2.1. Let G = (V,E) be a rigid graph on n vertices in Rd and let n = d + k
for some k ≥ 2. Then

∆(G) ≤ k − 1, (1)

|E(G)| ≤
(
k

2

)
, (2)

and
degG({u, v}) ≤ 2k − 3, for all u, v ∈ V. (3)

Proof. The minimum degree of a rigid graph on at least d + 1 vertices is at least
d. Hence the maximum degree of its complement is at most n− 1− d = k − 1. The
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Section 2. Rigid graphs 3

number of edges of a rigid graph on at least d vertices is at least dn −
(
d+1
2

)
. Hence

the complement graph has at most(
n

2

)
− dn+

(
d+ 1

2

)
=

(
d+ k

2

)
− d(d+ k) +

(
d+ 1

2

)
=

(
k

2

)
edges. Finally, suppose, for a contradiction, that G is rigid but we have degG({u, v}) ≥
2k−2 for some pair u, v ∈ V . Let X = {u, v}. Then the total number of edges incident
with X in G is at most 2(n−2)+1−degG(X) = 2(d+k)−3−(2k−2) ≤ 2d−1. Since
G−X has at least d vertices, its rank (i.e. number of independent length constraints)
is at most d(n−2)−

(
d+1
2

)
, which implies that the rank of G is at most dn−

(
d+1
2

)
−1.

Thus G cannot be rigid (it has at least one degree of freedom). This completes the
proof. �

Let J12 denote the graph obtained from the complete graph K12 by deleting a perfect
matching (i.e. six disjoint edges). By computing the rank of the rigidity matrix of an
appropriate 8-dimensional realization of J12 we can deduce the following fact (see the
Appendix for a proof):

Lemma 2.2. The graph J12 is rigid in R8.

It turns out that J12 plays an important role in the proof of the next theorem,
which is the main result of this section.

Theorem 2.3. Let G = (V,E) be a graph on n vertices and let n = d + k for some
d ≥ 1, 2 ≤ k ≤ 4. Then G is rigid in Rd if and only if it satisfies (1), (2), and (3).

Proof. Necessity follows from Lemma 2.1. We prove sufficiency for each value k ∈
{2, 3, 4} in increasing order. We shall assume that G satisfies (1), (2), and (3). Note
that if k ∈ {2, 3} then (3) follows from (1) and (2). If k = 2 then either G is complete
(and hence rigid) or G = Kd+2−e. In the latter case G can be obtained from the rigid
graph Kd+1 by a 0-extension. Hence G is rigid. If k = 3 then G can be obtained from
Kd+3 be deleting at most three edges (by (2)) which are not allowed to form a star
on three edges (by (1)). By deleting additional edges, if necessary, we may assume
that |E(G)| = 3. First suppose that the edges of G are not pairwise disjoint. Then G
contains a subgraph H isomorphic to Kd+1. By applying two 0-extensions to H we
can obtain G. If the edges of G are pairwise disjoint then G can be obtained from
Kd+1 by two 1-extensions. In each of these cases G is rigid.

Finally, suppose that k = 4. We prove the theorem by induction on n. To verify the
base case we can observe that if n = 5 (and hence d = 1) then (1) and (3) imply that
G is connected, and hence rigid in R1. Consider the general case. If G has a vertex v
with degG(v) = 0 then we can apply induction to G− v by using the Coning theorem.
Note that in this situation we decrease n and d by one, while k is unchanged. Next
suppose that G has a vertex v with degG(v) = 3. Then v has degree d in G. Now we
look at G′ = G − v, which is obtained from G by a 0-reduction. To show that G′ is
rigid we use the fact that the theorem holds for k = 3. Note that the complement of
G′ has at most three edges and it has maximum degree two (for otherwise G violates
(3)). So G′, and hence also G is rigid.
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Section 3. Globally rigid graphs 4

It remains to consider the case when each vertex in the complement of G has degree
one or two. Suppose there is a vertex v with degG(v) = 2. Let vx, vy be the edges
incident with v in G. If G has an edge f which is disjoint from x, y then we can apply
induction to G′ = G−v+f . Observe that G′ is obtained from G by a 1-reduction, and
this operation decreases n and k by one, and the number of edges in the complement
is decreased by three. Thus G′ satisfies the conditions for k = 3, which gives that G′

as well as G are rigid.
Now suppose that every edge of G is incident with v, x, or y. Then, since each vertex

has degree one or two in G and n ≥ 6, there exists a vertex z with degG(v) = 0, a
contradiction.

Finally we consider the case when G is a perfect matching. Then either |E(G)| = 6
and G is isomorphic to J12 (in which case we are done by Lemma 2.2) or G has less
than six edges. In the latter case we can delete an edge from G and create a vertex v
with degG(v) = 2, preserving (1), (2), and (3). After the edge deletion we can apply
the argument we used above to show that G is rigid. �

Remark 1 It may be possible to extend the theorem to a few more values k ≥ 5.
However, the next case k = 5 already includes the double banana graph (for d = 3),
which shows that simple degree conditions are probably insufficient. On the other
hand, at least in dimension 3, one can check by counting edges that up to k = 8
the graph must have at least one vertex of degree at most four. Thus the reduction
methods used above should lead to some kind of characterization. This bound is tight,
as shown by the graph of the icosahedron, which is minimally rigid and has minimum
degree five (d = 3, k = 9).

Remark 2 Inequality (2) and the proof of Theorem 2.3 show that there is a very
simple polynomial time algorithm for testing whether a graph G on n vertices is rigid
in Rd, if k = n − d is fixed. Since the edge set of G spans at most k(k − 1) vertices,
most of the vertices in G are of degree n − 1. We can delete these vertices and use
the Coning theorem to reduce the graph (and the dimension) to a smaller instance,
where the number of vertices and the dimension are bounded by a function of k. In
this case even a symbolic rank computation of the rigidity matrix is efficient1.

3 Globally rigid graphs

In this section we consider the globally rigid version of the problem. A globally rigid
graph in Rd on at most d + 2 vertices is globally rigid if and only if it is complete.
Hence we shall consider the case when n ≥ d+ 3.

Let J10 denote the graph obtained from K10 by deleting a perfect matching. By rank
computations we can verify the following fact (see the Appendix for more details):

Lemma 3.1. The graph J10 is globally rigid in R6.

1This algorithm is called an FPT algorithm, since its running time can be bounded by a polynomial
of n plus a(n exponential) function of k.
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We say that G is redundantly rigid in Rd if G− e is rigid in Rd for all e ∈ E(G). A
graph G is said to be (d + 1)-connected if G− S is connected for all S ⊆ V (G) with
|S| ≤ d. Hendrickson [5] proved that if G is a globally rigid graph in Rd on at least
d+ 2 vertices then G is redundantly rigid and (d+ 1)-connected.

The next result shows that these necessary conditions together are also sufficient
to imply global rigidity in Rd when n ≤ d+ 4, for all d ≥ 1.

Theorem 3.2. Let G = (V,E) be a graph on n vertices and let n = d + k for some
d ≥ 1, 3 ≤ k ≤ 4. Then G is globally rigid in Rd if and only if G is redundantly rigid
in Rd and (d+ 1)-connected.

Proof. Necessity follows from Hendrickson’s theorem. Suppose that G is redundantly
rigid and (d + 1)-connected. Let k = 3. Then, since G − e is rigid for every edge
e ∈ E, Lemma 2.1 implies that G has at most two edges, and these edges are disjoint.
Thus G can be obtained from Kd+3 by deleting (at most) two disjoint edges. Hence
G can be obtained from Kd+2 by a 1-extension operation. So G is globally rigid in
Rd.

Next consider the case k = 4. We can use Theorem 2.3 to deduce that the redun-
dant rigidity and (d + 1)-connectivity of G together are equivalent to the following
conditions:

∆(G) ≤ 2, (4)

|E(G)| ≤ 5, (5)

and
G contains no C4. (6)

We prove the theorem by induction on n. To verify the base case we can observe that
if n = 5 then d = 1, in which case the fact that global rigidity in R1 is equivalent to
2-connectivity implies that G is globally rigid. Consider the general case. If G has a
vertex v with degG(v) = 0 then we can apply induction to G− v by using the globally
rigid Coning theorem. Note that in this situation we decrease n and d by one, while
k is unchanged.

It remains to consider the case when each vertex in the complement of G has
degree one or two. First suppose that there is a vertex v with degG(v) = 2. Now G is
a collection of paths and cycles with at most five edges in total and with no four-cycles
by (6). It is easy to check that in this graph there exists a vertex v of degree two and
an additional edge f , which is disjoint from the neighbours of v, for which G− v − f
is a matching.

Let G′ = G − v + f . Observe that G′ satisfies the conditions of the theorem for
k = 3, and hence it is globally rigid in Rd. Since G can be obtained from G′ by a
1-extension, it is also globally rigid in Rd.

Finally we consider the case when G is a matching of size at most five. Then either
G is isomorphic to J10 (in which case we are done by Lemma 3.1) or the matching has
size at most four. In the latter case we can remove an edge from G without violating
(4), (5), or (6), and then we we can apply the arguments used above to show that G
is globally rigid. �
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Remark 3 We can also test global rigidity in Rd in polynomial time if k is fixed by
an algorithm similar to that of rigidity testing. In this case the symbolic computation
is more involved, as one has to compute the rank of the rigidity matrix as well as a
corresponding stress matrix, see [3, Section 5.1].

4 Concluding remarks

Theorem 2.3 gives rise to a characterization of the d-dimensional rigidity matroid
Rd(Kn) with n ≤ d+ 4, since it describes the spanning sets (and bases). Thus it can
be used to deduce various properties of this matroid. For example, we can obtain a
complete list of circuits as follows.

Suppose that n = d + 4 (the other cases are simpler). Theorem 2.3 says that a
subgraph H of Kn is dependent if Kn − E(H) does not contain a subgraph with
six edges, maximum degree three, and which satisfies (3). A relatively simple case
analysis shows that the minimal subgraphs with respect to these properties (i.e. the
circuits of Rd(Kn)) belong to one of the following categories: (i) they contain all but
exactly five edges of Kn, or (ii) they are isomorphic to Kd+3 minus two disjoint edges,
or (iii) they are isomorphic to Kd+2.

Observe that each of these graphs is rigid in Rd. It follows that the smallest non-
rigid circuits of the d-dimensional rigidity matroid must have at least d + 5 vertices.
This bound is tight, as shown by the double banana graph (in R3) and its cones2.
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Appendix

First we prove Lemma 2.2 by describing a realization of J12 in R8 that can be used to
verify, by computing the rank of its rigidity matrix [8], that J12 is (infinitesimally rigid
[8], and hence) rigid in R8. The rows of following matrix are indexed by the vertices
of J12. The entries in each row are the co-ordinates of the corresponding vertex.

1 0 0 1 0 1 1 1
0 1 0 1 1 1 1 1
0 0 1 1 0 1 0 1
1 0 0 1 0 0 0 0
1 0 1 0 1 1 0 1
1 1 1 1 0 0 1 1
0 1 0 0 0 0 1 0
1 1 0 0 1 0 0 0
0 0 0 0 0 1 1 0
0 0 1 1 1 1 1 1
0 0 1 0 0 1 0 0
1 1 1 0 1 0 0 0


The rows of next matrix are indexed by the vertices of J10 and encode an infinitesimally
rigid 6-dimensional realization (J10, p) in a similar way.
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1 0 1 1 0 0
0 1 0 1 0 1
0 0 0 1 1 0
1 1 0 1 0 1
0 1 0 1 0 0
0 1 1 0 0 0
0 0 1 1 1 1
1 1 1 0 1 1
0 1 0 0 1 1
1 0 0 1 1 1


To verify that J10 is globally rigid in R6 it suffices to find an equilibrium stress on
(J10, p) whose stress matrix has rank 3, see [1, Theorem 5]. The following stress
matrix will do. (The ordering of the rows of the stress matrix corresponds to that of
the realization matrix above.) This proves Lemma 3.1.

1 0 0 0 0 −1 0 0 1 −1
0 0 2 2 −2 0 0 0 0 −2
0 2 2 0 −2 0 −1 1 −1 −1
0 2 0 −2 0 0 −1 1 −1 1
0 −2 −2 0 2 0 1 −1 1 1
−1 0 0 0 0 1 0 0 −1 1
0 0 −1 −1 1 0 0 0 0 1
0 0 1 1 −1 0 0 0 0 −1
1 0 −1 −1 1 −1 0 0 1 0
−1 −2 −1 1 1 1 1 −1 0 1
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