Egerváry Research Group

 on Combinatorial Optimization

Technical Reports

TR-2019-16. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

On the vertex splitting operation in globally rigid body-hinge graphs

Tibor Jordán, Csaba Király, and Shin-ichi Tanigawa

On the vertex splitting operation in globally rigid body-hinge graphs

Tibor Jordán ${ }^{\star}$, Csaba Király**, and Shin-ichi Tanigawa***

Abstract

The authors of this note gave a combinatorial characterization of globally rigid generic body-hinge frameworks in [6]. One step of the proof of this result used a specific property of the so-called vertex-splitting operation in graphs. This property, however, has not yet been verified in its full generality. Here we complete our proof by showing a different argument for this step.

1 Introduction

We start by stating the main result of [6] and refer the reader to our paper for a general introduction and basic definitions in rigidity theory. Our result is about body-hinge graphs. Given a multigraph H, the (d-dimensional) body-hinge graph induced by H, denoted by G_{H}, is obtained from H as follows. Each vertex $v \in V(H)$ corresponds to a complete graph $B(v)$ on $(d-1) d_{H}(v)+d+1$ vertices in G_{H}, in which $d+1$ vertices form the core $C(v)$ of the body $B(v)$ and the remaining vertices are partitioned into sets of $d-1$ vertices so that each set is assigned to one edge incident with v. Here $d_{H}(v)$ denotes the degree of v in H. For each edge $e=u v$ of H the bodies $B(u)$ and $B(v)$ share the $d-1$ vertices assigned to e in these bodies. This set of $d-1$ vertices, assigned to e, is the hinge set corresponding to e, denoted by $H(e)$. The cores of the bodies are pairwise disjoint. There are no other vertices or edges in G_{H}.

For a multigraph H we use $k H$ to denote the graph obtained from H by replacing every edge e by k parallel copies of e. We say that H is m-tree-connected if it contains m edge-disjoint spanning trees. It is highly m-tree-connected if $H-e$ is m-treeconnected for every $e \in E(H)$. The global rigidity of graphs G_{H} possessing this body-hinge structure is characterized as follows.

[^0]Theorem 1. [6, Theorem 4.5] Let $H=(V, E)$ be a multigraph and $d \geq 3$. Then the body-hinge graph G_{H} is globally rigid in \mathbb{R}^{d} if and only if $\left(\binom{d+1}{2}-1\right) H$ is highly $\binom{d+1}{2}$-tree-connected.

In the final step of the inductive proof of the "if" direction of Theorem 1 (the second last sentence of the proof, [6, line 16, page 70]) we used a property of the vertex splitting operation to verify that a certain graph is globally rigid. This operation is defined as follows.

Let G be a graph, let $v_{1} \in V$, let $v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{d}$ be $d-1$ designated edges incident with v_{1}, and let $v_{1} v_{d+1}, \ldots, v_{1} v_{d+k_{1}}$, and $v_{1} v_{d+k_{1}+1}, \ldots, v_{1} v_{d+k_{1}+k_{2}}$ be a bipartition of the remaining edges incident with v_{1}. The (d-dimensional) vertex splitting operation at v_{1} removes the edges $v_{1} v_{d+1}, \ldots, v_{1} v_{d+k_{1}}$, adds a new vertex v_{0}, and adds the new edges $v_{0} v_{1}, v_{0} v_{2}, \ldots, v_{0} v_{d}, v_{0} v_{d+1}, \ldots, v_{0} v_{d+k_{1}}$. The new edge $v_{0} v_{1}$ is called the bridging edge in the resulting graph.

The following conjecture, which is a weaker version of a conjecture of Walter Whiteley posed in [1], see also [3, Conjecture 16], is still unsolved.

Conjecture 1. Let G be globally rigid in \mathbb{R}^{d} and let G^{\prime} be obtained from G by a vertex splitting operation. If $G^{\prime}-e$ is rigid in \mathbb{R}^{d} for the bridging edge e, then G^{\prime} is globally rigid in \mathbb{R}^{d}.

We stated this conjecture as a result of Bob Connelly [2], called it Theorem 4.3, and used it in the proof. However, as it was pointed out by Bill Jackson [4, Connelly's result in [2] is different, and it does not imply the truth of the conjecture. To repair the proof we shall use the following statement, due to Jackson, which provides another way to show that a vertex-splitting operation preserves global rigidity. The proof is based on [3, Theorem 13]. See also [5, Section 5] for an application of this idea.

Lemma 1. [4] Let G be a globally rigid graph in \mathbb{R}^{d} and $v_{1} \in V(G)$. Suppose that G^{\prime} is obtained from G by a vertex splitting operation at v_{1} and that G^{\prime} has an infinitesimally rigid realization $\left(G^{\prime}, p\right)$ in \mathbb{R}^{d} with $p\left(v_{0}\right)=p\left(v_{1}\right)$. Then G^{\prime} is globally rigid in \mathbb{R}^{d}.

In the next section we define the graph that plays the role of G^{\prime} in the proof of Theorem 1 and show that it satisfies the conditions of Lemma 1 .

2 Infinitesimally rigid realizations with coincident vertices

The skeleton S_{H} of the body-hinge graph G_{H} induced by H is obtained from G_{H} by deleting the cores $C(v)$ for all $v \in V(H)$. We showed that G_{H} is globally rigid if and only if S_{H} is globally rigid [6, Lemma 3.1]. Suppose that H contains a vertex v of degree two with $N_{H}(v)=\{u, w\}$. Let $H(u v)=\left\{x_{1}, x_{2}, \ldots, x_{d-1}\right\}$ and $H(v w)=$ $\left\{y_{1}, y_{2}, \ldots, y_{d-1}\right\}$ denote the hinge sets corresponding to edges $u v, u w$. Consider the skeleton S_{H} and define a new graph S_{H}^{v} as follows: if $d \geq 4$ then S_{H}^{v} is obtained from S_{H} by contracting the edges x_{i}, y_{i} for all $3 \leq i \leq d-1$. If $d=3$ then $S_{H}^{v}=S_{H}$. We showed that S_{H} is globally rigid if and only if S_{H}^{v} is globally rigid [6, Lemma 4.4].

In S_{H}^{v} the bodies of u, v, w are modified with respect to S_{H} and the hinge sets of edges $u v, u w$ are also changed. We shall use $B^{v}(a)$ and $H^{v}(e)$ to denote the bodies and hinges in S_{H}^{v} associated with the vertices and edges of H, respectively. The $d-3$ vertices obtained by the contractions are shared by $B^{v}(u), B^{v}(w)$, and $B^{v}(v)$. Thus $B^{v}(v)$ induces a complete graph on $d+1$ vertices. We also introduce $H_{v}=H-v+u w$ in the proof and show that $\left.\binom{d+1}{2}-1\right) H_{v}-2(u w)$ is $\binom{d+1}{2}$-tree-connected, see the proof of [6, Claim 4.6].

Our goal in the proof of Theorem 1 is to prove that S_{H}^{v} (and hence also G_{H}) is globally rigid. Since S_{H}^{v} is obtained from a globally rigid graph by a vertex splitting operation with bridging edge $x_{1} y_{1}$ (as shown in the proof), the global rigidity of S_{H}^{v} will follow from the next lemma. The proof is similar to the proof of [6, Lemma 3.2].

Lemma 2. Let $H=(V, E)$ be a multigraph and let G_{H} be its d-dimensional bodyhinge graph induced by H for some $d \geq 3$. Suppose that v is a vertex of degree two in H and let S_{H}^{v} be graph defined above. Then S_{H}^{v} has an infinitesimally rigid realization $\left(S_{H}^{v}, p\right)$ in \mathbb{R}^{d} with $p\left(x_{1}\right)=p\left(y_{1}\right)$.

Proof. Since $\left(\binom{d+1}{2}-1\right) H_{v}-2(u w)$ is $\binom{d+1}{2}$-tree-connected, it contains $\binom{d+1}{2}$ edgedisjoint spanning trees $T_{i, j}, 0 \leq i<j \leq d$. We shall define a configuration p of $V\left(S_{H}^{v}\right)$ by using these trees. By relabelling some trees, if necessary, we can assume that

$$
\begin{equation*}
T_{0, d}, T_{1, d}, T_{2, d} \text { do not contain (a copy of) edge } u w \tag{1}
\end{equation*}
$$

Let e_{1}, \ldots, e_{d} be the standard basis of \mathbb{R}^{d}. It will be convenient to denote the origin of \mathbb{R}^{d} by e_{0}. Note that $V\left(S_{H}^{v}\right)$ is the disjoint union of the hinge sets $H^{v}(f)$, for $f \in$ $E(H-v)$, the four-tuple $\left\{x_{1}, y_{1}, x_{2}, y_{2}\right\}$, and the vertices $\left\{x_{3}=y_{3}, \ldots, x_{d-1}=y_{d-1}\right\}$ (where the last set of $d-3$ vertices exists only if $d \geq 4$).

For each edge $f \in E(H-v)$ there is at least one tree $T_{k, l}$ which does not contain a copy of f. We fix such a tree and define the realization of the vertices in $H^{v}(f)$ in such a way that

$$
\begin{equation*}
\left\{p(x) \mid x \in H^{v}(f)\right\}=\left\{e_{i} \mid 0 \leq i \leq d, i \neq k, l\right\} \tag{2}
\end{equation*}
$$

holds. For the remaining vertices, we define

$$
\begin{aligned}
& p\left(x_{1}\right)=p\left(y_{1}\right)=e_{0} \\
& p\left(x_{2}\right)=e_{1} \\
& p\left(y_{2}\right)=e_{2} \\
& p\left(x_{i}\right)=e_{i}(3 \leq i \leq d-1)
\end{aligned}
$$

Observe that

$$
\begin{equation*}
p\left(B^{v}(a)\right) \text { affinely spans } \mathbb{R}^{d} \text { for all } a \in V(H)-v \tag{3}
\end{equation*}
$$

since a is incident with an edge of $T_{i, j}$ in H_{v} for every $1 \leq i<j \leq d$.
We shall show that $\left(S_{H}^{v}, p\right)$ is infinitesimally rigid in \mathbb{R}^{d}. Note that the existence (or removal) of the edge $x_{1} y_{1}$ makes no difference since its end-vertices are coincident. It is also useful to remark that the only body which contains $x_{1} y_{1}$ is $B^{v}(v)$.

Consider an infinitesimal motion $m: V\left(S_{H}^{v}\right) \rightarrow \mathbb{R}^{d}$ of $\left(S_{H}^{v}, p\right)$. Since the bodies are complete subgraphs and (3) holds, for each $a \in V(H)-v=V\left(H_{v}\right)$ there exists a $d \times d$ skew-symmetric matrix S_{a} and a vector $t_{a} \in \mathbb{R}^{d}$ such that $m(x)=S_{a} p(x)+t_{a}$ for every $x \in B^{v}(a)$.

Claim Let $f=a b \in T_{i, j}$ be an edge for some $0 \leq i<j \leq d$ and $a, b \in V\left(H_{v}\right)$. Then there is an edge $x y \in E\left(S_{H}^{v}-x_{1} y_{1}\right)$ for which $x \in B^{v}(a), y \in B^{v}(b)$, and $\{p(x), p(y)\}=\left\{e_{i}, e_{j}\right\}$.

Proof. First suppose that $a b \neq u w$. Then it follows from (2) that there is at least one vertex $x \in H^{v}(f)$ for which $p(x)$ is equal to either e_{i} or e_{j}. By (3), there is a vertex y in $B^{v}(b)$ with $\{p(x), p(y)\}=\left\{e_{i}, e_{j}\right\}$. As $H^{v}(f) \subseteq B^{v}(b)$, we also have $x y \in E\left(S_{H}^{v}-x_{1} y_{1}\right)$.

Next suppose that $a b=u w$. Then (1) implies

$$
\begin{equation*}
(i, j) \notin\{(0, d),(1, d),(2, d)\} . \tag{4}
\end{equation*}
$$

If $\{i, j\} \cap\{3, \ldots, d-1\} \neq \emptyset$ (which may hold only if $d \geq 4$), then, since $B^{v}(u) \cap B^{v}(w)=$ $\left\{x_{3}, \ldots, x_{d-1}\right\}$ and (3) holds, there is a pair $x \in B^{v}(u) \cap B^{v}(w)$ and $y \in B^{v}(w)$ with $\{p(x), p(y)\}=\left\{e_{i}, e_{j}\right\}$. Now $x, y \in B^{v}(w)$, and hence we also have $x y \in E\left(S_{H}^{v}-x_{1} y_{1}\right)$, as required. Finally, if $\{i, j\} \cap\{3, \ldots, d-1\}=\emptyset$, then $(i, j) \in\{(0,1),(0,2),(1,2)\}$ by (4). Recall that $S_{H}^{v}-x_{1} y_{1}$ contains the edges $x_{1} y_{2}, x_{2} y_{1}$, and $x_{2} y_{2}$, and $x_{1}, x_{2} \in B^{v}(u)$ and $y_{1}, y_{2} \in B^{v}(w)$ hold. Since $p\left(x_{1}\right)=p\left(y_{1}\right)=e_{0}, p\left(x_{2}\right)=e_{1}$ and $p\left(y_{2}\right)=e_{2}$, the desired edge exists. This completes the proof of the claim.

Consider $f=a b \in T_{i, j}$ for some $0 \leq i<j \leq d$ and $a, b \in V\left(H_{v}\right)$, and a pair $x \in B^{v}(a), y \in B^{v}(b)$ with $x y \in E\left(S_{H}^{v}-x_{1} y_{1}\right)$ and $\{p(x), p(y)\}=\left\{e_{i}, e_{j}\right\}$. Such a pair exists by the Claim. We may assume that $p(x)=e_{i}$ and $p(y)=e_{j}$.

Since m is an infinitesimal motion of $\left(S_{H}^{v}, p\right)$, we have

$$
\langle p(x)-p(y), m(x)-m(y)\rangle=0 .
$$

If $i \geq 1$, this gives

$$
\begin{align*}
0 & =\langle p(x)-p(y), m(x)-m(y)\rangle \\
& =\left\langle p(x)-p(y), S_{a} p(x)+t_{a}-S_{b} p(y)-t_{b}\right\rangle \\
& =\left\langle e_{i}-e_{j}, S_{a} e_{i}+t_{a}-S_{b} e_{j}-t_{b}\right\rangle \\
& =-e_{j}^{\top} S_{a} e_{i}-e_{i}^{\top} S_{b} e_{j}+\left\langle e_{i}-e_{j}, t_{a}-t_{b}\right\rangle . \tag{5}
\end{align*}
$$

On the other hand, if $i=0$, then by $e_{0}=0$ we also have

$$
\left\langle e_{j}, t_{a}-t_{b}\right\rangle=0 \quad \text { for } 1 \leq j \leq d \text { and } a b \in T_{0, j}
$$

This implies $t_{a}=t_{b}$ for each pair $a, b \in V\left(H_{v}\right)$, since $T_{0, j}$ spans $V\left(H_{v}\right)$ for each j. Therefore, by using the skew-symmetry of S_{v} and (5), we can deduce that

$$
S_{a}[i, j]=e_{i}^{\top} S_{a} e_{j}=e_{i}^{\top} S_{b} e_{j}=S_{b}[i, j] \quad \text { for } 1 \leq i<j \leq d \text { and } a b \in T_{i, j} .
$$

Again, since $T_{i, j}$ spans $V\left(H_{v}\right)$ for all i, j, this implies that $S_{a}=S_{b}$ for each pair $a, b \in V(H-v)$. Since every vertex in $S_{H}^{v}-x_{1} y_{1}$ belongs to at least one body $B^{v}(a)$ for some $a \in V\left(H_{v}\right)$, we conclude that there is a skew-symmetric matrix S and a vector $t \in \mathbb{R}^{d}$ such that $m(x)=S p(x)+t$ for every $x \in V\left(S_{H}^{v}\right)$. In other words, m is a trivial infinitesimal motion. This proves that $\left(S_{H}^{v}, p\right)$ is infinitesimally rigid in \mathbb{R}^{d} and completes the proof.

Thus in the modified proof of Theorem 1 the last three sentences [6, lines 15-18, page 70] are as follows: "Therefore by Theorem $4.1 S^{\prime \prime}$ is globally rigid. Since S_{H}^{v} is constructed from S^{\prime} by a vertex splitting operation, we can apply Lemma 1 and Lemma 2 to conclude that S_{H}^{v} is globally rigid. This completes the proof."

3 Acknowledgement

We thank Bill Jackson for pointing out the gap in our original proof and for sharing his note [4] with us.

The first author was supported in part by the Hungarian Scientific Research Fund grant no. K 109240.

References

[1] M. Cheung, W. Whiteley, Transfer of global rigidity results among dimensions: graph powers and coning, preprint, York University, revised 2008.
[2] R. Connelly, Questions, conjectures, and remarks on globally rigid tensegrities, preprint, 2009, see www.math.cornell.edu/ connelly/09-Thoughts.pdf
[3] R. Connelly, W. Whiteley, Global rigidity: the effect of coning, Discrete Comput. Geom. 43 (2010), 717-735.
[4] B. Jackson, Coincident realizations and vertex splitting, manuscript, 2017.
[5] B. Jackson, V. Kaszanitzky, A. Nixon, Rigid cylindrical frameworks with two coincident points, Graphs and Combinatorics, January 2019, Volume 35, Issue 1, pp 141-168.
[6] T. Jordán, Cs. Király, S. Tanigawa, Generic global rigidity of body-hinge frameworks, J. Combin. Theory, Series B, 117 (2016), 59-76.
[7] W. Whiteley, Some matroids from discrete applied geometry, in: Matroid theory (Seattle, WA, 1995), 171-311, Contemp. Math., 197, Amer. Math. Soc., Providence, RI, 1996.

[^0]: *Department of Operations Research, Eötvös University, and MTA-ELTE Egerváry Research Group on Combinatorial Optimization, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. email: jordan@cs.elte.hu
 ${ }^{\star *}$ Department of Operations Research, Eötvös University, and MTA-ELTE Egerváry Research Group on Combinatorial Optimization, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. email: cskiraly@cs.elte.hu
 ***Department of Mathematical Informatics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan. email: tanigawa@mist.i.u-tokyo.ac.jp

