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On the vertex splitting operation in globally rigid
body-hinge graphs

Tibor Jordán?, Csaba Király??, and Shin-ichi Tanigawa? ? ?

Abstract

The authors of this note gave a combinatorial characterization of globally
rigid generic body-hinge frameworks in [6]. One step of the proof of this result
used a specific property of the so-called vertex-splitting operation in graphs.
This property, however, has not yet been verified in its full generality. Here we
complete our proof by showing a different argument for this step.

1 Introduction

We start by stating the main result of [6] and refer the reader to our paper for a general
introduction and basic definitions in rigidity theory. Our result is about body-hinge
graphs. Given a multigraph H, the (d-dimensional) body-hinge graph induced by H,
denoted by GH , is obtained from H as follows. Each vertex v ∈ V (H) corresponds to
a complete graph B(v) on (d− 1)dH(v) + d+ 1 vertices in GH , in which d+ 1 vertices
form the core C(v) of the body B(v) and the remaining vertices are partitioned into
sets of d − 1 vertices so that each set is assigned to one edge incident with v. Here
dH(v) denotes the degree of v in H. For each edge e = uv of H the bodies B(u) and
B(v) share the d− 1 vertices assigned to e in these bodies. This set of d− 1 vertices,
assigned to e, is the hinge set corresponding to e, denoted by H(e). The cores of the
bodies are pairwise disjoint. There are no other vertices or edges in GH .

For a multigraph H we use kH to denote the graph obtained from H by replacing
every edge e by k parallel copies of e. We say that H is m-tree-connected if it contains
m edge-disjoint spanning trees. It is highly m-tree-connected if H − e is m-tree-
connected for every e ∈ E(H). The global rigidity of graphs GH possessing this
body-hinge structure is characterized as follows.
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Theorem 1. [6, Theorem 4.5] Let H = (V,E) be a multigraph and d ≥ 3. Then
the body-hinge graph GH is globally rigid in Rd if and only if (

(
d+1
2

)
− 1)H is highly(

d+1
2

)
-tree-connected.

In the final step of the inductive proof of the “if” direction of Theorem 1 (the second
last sentence of the proof, [6, line 16, page 70]) we used a property of the vertex
splitting operation to verify that a certain graph is globally rigid. This operation is
defined as follows.

Let G be a graph, let v1 ∈ V , let v1v2, v1v3, ..., v1vd be d−1 designated edges incident
with v1, and let v1vd+1, ..., v1vd+k1 , and v1vd+k1+1, ..., v1vd+k1+k2 be a bipartition of the
remaining edges incident with v1. The (d-dimensional) vertex splitting operation at v1
removes the edges v1vd+1, ..., v1vd+k1 , adds a new vertex v0, and adds the new edges
v0v1, v0v2, ..., v0vd, v0vd+1, ..., v0vd+k1 . The new edge v0v1 is called the bridging edge in
the resulting graph.

The following conjecture, which is a weaker version of a conjecture of Walter White-
ley posed in [1], see also [3, Conjecture 16], is still unsolved.

Conjecture 1. Let G be globally rigid in Rd and let G′ be obtained from G by a vertex
splitting operation. If G′ − e is rigid in Rd for the bridging edge e, then G′ is globally
rigid in Rd.

We stated this conjecture as a result of Bob Connelly [2], called it Theorem 4.3, and
used it in the proof. However, as it was pointed out by Bill Jackson [4], Connelly’s
result in [2] is different, and it does not imply the truth of the conjecture. To repair
the proof we shall use the following statement, due to Jackson, which provides another
way to show that a vertex-splitting operation preserves global rigidity. The proof is
based on [3, Theorem 13]. See also [5, Section 5] for an application of this idea.

Lemma 1. [4] Let G be a globally rigid graph in Rd and v1 ∈ V (G). Suppose that G′ is
obtained from G by a vertex splitting operation at v1 and that G′ has an infinitesimally
rigid realization (G′, p) in Rd with p(v0) = p(v1). Then G′ is globally rigid in Rd.

In the next section we define the graph that plays the role of G′ in the proof of
Theorem 1 and show that it satisfies the conditions of Lemma 1.

2 Infinitesimally rigid realizations with coincident

vertices

The skeleton SH of the body-hinge graph GH induced by H is obtained from GH by
deleting the cores C(v) for all v ∈ V (H). We showed that GH is globally rigid if
and only if SH is globally rigid [6, Lemma 3.1]. Suppose that H contains a vertex v
of degree two with NH(v) = {u,w}. Let H(uv) = {x1, x2, . . . , xd−1} and H(vw) =
{y1, y2, . . . , yd−1} denote the hinge sets corresponding to edges uv, uw. Consider the
skeleton SH and define a new graph Sv

H as follows: if d ≥ 4 then Sv
H is obtained from

SH by contracting the edges xi, yi for all 3 ≤ i ≤ d− 1. If d = 3 then Sv
H = SH . We

showed that SH is globally rigid if and only if Sv
H is globally rigid [6, Lemma 4.4].
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In Sv
H the bodies of u, v, w are modified with respect to SH and the hinge sets of

edges uv, uw are also changed. We shall use Bv(a) and Hv(e) to denote the bodies
and hinges in Sv

H associated with the vertices and edges of H, respectively. The d− 3
vertices obtained by the contractions are shared by Bv(u), Bv(w), and Bv(v). Thus
Bv(v) induces a complete graph on d+1 vertices. We also introduce Hv = H−v+uw
in the proof and show that (

(
d+1
2

)
− 1)Hv − 2(uw) is

(
d+1
2

)
-tree-connected, see the

proof of [6, Claim 4.6].
Our goal in the proof of Theorem 1 is to prove that Sv

H (and hence also GH) is
globally rigid. Since Sv

H is obtained from a globally rigid graph by a vertex splitting
operation with bridging edge x1y1 (as shown in the proof), the global rigidity of Sv

H

will follow from the next lemma. The proof is similar to the proof of [6, Lemma 3.2].

Lemma 2. Let H = (V,E) be a multigraph and let GH be its d-dimensional body-
hinge graph induced by H for some d ≥ 3. Suppose that v is a vertex of degree two in
H and let Sv

H be graph defined above. Then Sv
H has an infinitesimally rigid realization

(Sv
H , p) in Rd with p(x1) = p(y1).

Proof. Since (
(
d+1
2

)
− 1)Hv − 2(uw) is

(
d+1
2

)
-tree-connected, it contains

(
d+1
2

)
edge-

disjoint spanning trees Ti,j, 0 ≤ i < j ≤ d. We shall define a configuration p of V (Sv
H)

by using these trees. By relabelling some trees, if necessary, we can assume that

T0,d, T1,d, T2,d do not contain (a copy of) edge uw (1)

Let e1, . . . , ed be the standard basis of Rd. It will be convenient to denote the origin
of Rd by e0. Note that V (Sv

H) is the disjoint union of the hinge sets Hv(f), for f ∈
E(H − v), the four-tuple {x1, y1, x2, y2}, and the vertices {x3 = y3, . . . , xd−1 = yd−1}
(where the last set of d− 3 vertices exists only if d ≥ 4).

For each edge f ∈ E(H − v) there is at least one tree Tk,l which does not contain
a copy of f . We fix such a tree and define the realization of the vertices in Hv(f) in
such a way that

{p(x) | x ∈ Hv(f)} = {ei | 0 ≤ i ≤ d, i 6= k, l} (2)

holds. For the remaining vertices, we define

p(x1) = p(y1) = e0,

p(x2) = e1,

p(y2) = e2,

p(xi) = ei (3 ≤ i ≤ d− 1).

Observe that
p(Bv(a)) affinely spans Rd for all a ∈ V (H)− v (3)

since a is incident with an edge of Ti,j in Hv for every 1 ≤ i < j ≤ d.
We shall show that (Sv

H , p) is infinitesimally rigid in Rd. Note that the existence
(or removal) of the edge x1y1 makes no difference since its end-vertices are coincident.
It is also useful to remark that the only body which contains x1y1 is Bv(v).
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Consider an infinitesimal motion m : V (Sv
H)→ Rd of (Sv

H , p). Since the bodies are
complete subgraphs and (3) holds, for each a ∈ V (H) − v = V (Hv) there exists a
d × d skew-symmetric matrix Sa and a vector ta ∈ Rd such that m(x) = Sap(x) + ta
for every x ∈ Bv(a).

Claim Let f = ab ∈ Ti,j be an edge for some 0 ≤ i < j ≤ d and a, b ∈ V (Hv).
Then there is an edge xy ∈ E(Sv

H − x1y1) for which x ∈ Bv(a), y ∈ Bv(b), and
{p(x), p(y)} = {ei, ej}.

Proof. First suppose that ab 6= uw. Then it follows from (2) that there is at least
one vertex x ∈ Hv(f) for which p(x) is equal to either ei or ej. By (3), there is
a vertex y in Bv(b) with {p(x), p(y)} = {ei, ej}. As Hv(f) ⊆ Bv(b), we also have
xy ∈ E(Sv

H − x1y1).
Next suppose that ab = uw. Then (1) implies

(i, j) /∈ {(0, d), (1, d), (2, d)}. (4)

If {i, j}∩{3, . . . , d−1} 6= ∅ (which may hold only if d ≥ 4), then, since Bv(u)∩Bv(w) =
{x3, . . . , xd−1} and (3) holds, there is a pair x ∈ Bv(u) ∩ Bv(w) and y ∈ Bv(w) with
{p(x), p(y)} = {ei, ej}. Now x, y ∈ Bv(w), and hence we also have xy ∈ E(Sv

H−x1y1),
as required. Finally, if {i, j}∩{3, . . . , d− 1} = ∅, then (i, j) ∈ {(0, 1), (0, 2), (1, 2)} by
(4). Recall that Sv

H−x1y1 contains the edges x1y2, x2y1, and x2y2, and x1, x2 ∈ Bv(u)
and y1, y2 ∈ Bv(w) hold. Since p(x1) = p(y1) = e0, p(x2) = e1 and p(y2) = e2, the
desired edge exists. This completes the proof of the claim.

Consider f = ab ∈ Ti,j for some 0 ≤ i < j ≤ d and a, b ∈ V (Hv), and a pair
x ∈ Bv(a), y ∈ Bv(b) with xy ∈ E(Sv

H − x1y1) and {p(x), p(y)} = {ei, ej}. Such a
pair exists by the Claim. We may assume that p(x) = ei and p(y) = ej.

Since m is an infinitesimal motion of (Sv
H , p), we have

〈p(x)− p(y),m(x)−m(y)〉 = 0.

If i ≥ 1, this gives

0 = 〈p(x)− p(y),m(x)−m(y)〉
= 〈p(x)− p(y), Sap(x) + ta − Sbp(y)− tb〉
= 〈ei − ej, Saei + ta − Sbej − tb〉
= −e>j Saei − e>i Sbej + 〈ei − ej, ta − tb〉. (5)

On the other hand, if i = 0, then by e0 = 0 we also have

〈ej, ta − tb〉 = 0 for 1 ≤ j ≤ d and ab ∈ T0,j.

This implies ta = tb for each pair a, b ∈ V (Hv), since T0,j spans V (Hv) for each j.
Therefore, by using the skew-symmetry of Sv and (5), we can deduce that

Sa[i, j] = e>i Saej = e>i Sbej = Sb[i, j] for 1 ≤ i < j ≤ d and ab ∈ Ti,j.
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Again, since Ti,j spans V (Hv) for all i, j, this implies that Sa = Sb for each pair
a, b ∈ V (H − v). Since every vertex in Sv

H − x1y1 belongs to at least one body Bv(a)
for some a ∈ V (Hv), we conclude that there is a skew-symmetric matrix S and a
vector t ∈ Rd such that m(x) = Sp(x) + t for every x ∈ V (Sv

H). In other words, m
is a trivial infinitesimal motion. This proves that (Sv

H , p) is infinitesimally rigid in Rd

and completes the proof.

Thus in the modified proof of Theorem 1 the last three sentences [6, lines 15-18,
page 70] are as follows: “Therefore by Theorem 4.1 S ′ is globally rigid. Since Sv

H

is constructed from S ′ by a vertex splitting operation, we can apply Lemma 1 and
Lemma 2 to conclude that Sv

H is globally rigid. This completes the proof.”
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