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Complexity of the NTU International Matching

Game

Tamás Király? and Zsuzsa Mészáros-Karkus??

Abstract

Motivated by the real-world problem of international kidney exchange, [Biró
et al., Generalized Matching Games for International Kidney Exchange, 2019]
introduced a generalized transferable utility matching game featuring a partition
of the node set into countries, and analyzed its complexity. We explore the
non-transferable utility (NTU) variant of the game and prove computational
complexity results about the weak and strong cores under various assumptions
on the countries.

1 Introduction

The NTU International Matching Game is de�ned by a graph G = (V ;E) and a
partition V = V1 ∪ V2 ∪ · · · ∪ Vm of V . There are m players, or countries, and the
nodes in Vi belong to player i. Given a matching M in G, the utility of M for country
i is given by

ui(M) = |V (M) ∩ Vi|,

where V (M) denotes the node set of M .
A coalition (i1, i2, . . . , ik) of countries is strongly blocking for matching M if there

exists a matchingM0 in the induced subgraphG[Vi1∪Vi2∪· · ·∪Vik ] such that uij(M0) >
uij(M) for every j ∈ [k]. Similarly, a coalition (i1, i2, . . . , ik) of countries is weakly
blocking for a matching M if there exists a matching M0 in the induced subgraph
G[Vi1 ∪ Vi2 ∪ · · · ∪ Vik ] such that uij(M0) ≥ uij(M) for every j ∈ [k], and uij(M0) >
uij(M) for at least one j ∈ [k].
The International Matching Game, in a TU version, was introduced by Biró et al. [3]

motivated by the kidney exchange problem. In that setting, the nodes correspond
to patient-donor pairs, and edges represent the possible pairwise exchanges. The
partition V1, . . . , Vm can be thought of as a partitioning of the patients according to
countries, but we can also think of hospitals instead of countries, with each hospital

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University,
Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. Email: tkiraly@cs.elte.hu

??Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest,
Hungary, H-1117. Email: karkuszsuzsi@gmail.com

September 2019



Section 2. General hardness 2

being interested in successful transplants for their own patients. The problem is
studied from the point of view of cooperative games: are there matchings that are
acceptable for all possible coalitions of countries?
In the NTU setting, a matchingM is in the weak core if there is no strongly blocking

coalition for it, and it is in the strong core if there is no weakly blocking coalition. It
is easy to see that if M is in the strong core, then it is also in the weak core.
We study the computational complexity of membership and non-emptiness of the

weak and strong cores, under various assumptions on the countries. In Section 2,
we show that without further restrictions, it is NP-hard to decide whether a given
matching is in the weak/strong core. We then study the problems with the restriction
that the number of countries is constant (Section 3) or the size of countries is constant
(Section 4). In the latter case, it is still hard to decide non-emptiness of both the weak
and strong cores. In contrast, we show in Section 5 that the weak core is always non-
empty if the size of each country is 2.

Related work

In [1, 2], Ashlagi and Roth considered individual rationality in the multi-hospital
kidney exchange problem. In our terms, individual rationality means that there is no
single blocking country. They also studied the problem of incentive-compatibility, i.e.,
whether hospitals are motivated to underreport their patient-donor pairs. Carvalho
et al. [4] studied the properties of Nash-equilibria in the two-hospital case. Gourvès,
Monnot and Pascual [5] considered a weighted bipartite graph model, where the pro�t
of an edge in the matching is divided between the two endpoints according to a �xed
ratio. They proved that it is NP-hard to decide if there is an individually rational
maximum weight matching.

2 General hardness

In this section, we prove that it is hard to decide whether a given matching is in the
weak or strong core. As we will see later, the problem can be decided in polynomial
time if the number of countries is constant.

2.1 Membership in the weak core

Theorem 1. It is coNP-complete to decide if a given matching M is in the weak core.

The problem is in coNP because it can be decided in polynomial time if a given
matching M0 is a good witness for a given coalition being strongly blocking for M .
We prove coNP-completeness of a hypergraph problem that is equivalent to a special
case of our problem.
Let G = ∪n

i=1Gi be a union of complete graphs. The nodes of G are partitioned
into m countries such that every country has one or two nodes in every complete
graph. A max-size matching M in G leaves exactly one node unmatched in every
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2.1 Membership in the weak core 3

complete graph of odd size. We assume that every country has at least one node that
is unmatched in M .
We de�ne a hypergraph HM with a weight function wM on the hyperedges. The

nodes of HM are [n] := {1, 2, ..., n} where i corresponds to the complete graph Gi. The
hyperedges of HM correspond to the countries. A node i belongs to a hyperedge A if
the country corresponding to A has one node in Gi. The weight wM(A) is the number
of nodes belonging to the country corresponding to A that is left unmatched in M
minus 1. The motivation for this de�nition is the following: a coalition (i1, i2, . . . , ik)
of countries is blocking if and only if there is a matching in the induced subgraph
G[Vi1 ∪ Vi2 ∪ · · · ∪ Vik ] such that every country A of the coalition has at most wM(A)
unmatched nodes. Note that the sum of weights are the number of odd sized complete
graphs minus the number of countries.

De�nition 2. A subhypergraph S of H is called a blocking subhypergraph if the
number of odd-degree nodes in S is at most the sum of weights of the edges of S.

Claim 3. A coalition of countries B = (i1, i2, ...ik) is blocking with respect to M if and
only if the hyperedges corresponding to these countries form a blocking subhypergraph
S.

Proof. The subgraph GB = G[Vi1 ∪ Vi2 ∪ ... ∪ Vik] of G is also a union of complete
graphs. The number of odd-degree nodes in S equals the number of odd size complete
graphs in GB which is the number of nodes left unmatched in any max-size matching
of GB. B is blocking if and only if there is a matching in GB such that every country A
in B has at most wM(A) unmatched nodes. From this it is clear that if B is blocking,
then the inequality holds for S. If S is blocking, then B is blocking because every
country has a node in every complete graph, therefore for every odd size complete
graph we can choose which country should the unmatched node belong to. So we
can distribute the nodes left unmatched in a max-size matching of MB (their number
is the number of odd-degree nodes in S) among the countries in B in a way that a
country A has at most wM(A) unmatched nodes.

Claim 4. Suppose we have a hypergraph H with n nodes and m hyperedges, and a
weight function w on the hyperedges such that the sum of weights equals the number
of odd-degree nodes in H minus m. Then there is a graph G and a max-size matching
M of G with the following properties: G is a union of n complete graphs, and the
nodes of G are partitioned into m countries, such that every complete graph contains
one or two nodes from every country. Furthermore, there is at least one node from
every country that is left unmatched by M , and H = HM .

Proof. If a node i belongs to the hyperedge A in H, then the corresponding complete
graph Gi of G should contain one node that belongs to the country corresponding
to A; otherwise it should contain two. The number of nodes left unmatched by any
max-size matching is the number of odd size complete graphs in G which is equal to
the number of odd-degree nodes in H which is equal to the sum of weights plus m.
The number of nodes in a country corresponding to the hyperedge A left unmatched
by M should be w(A) + 1 which can be achieved since for every odd size complete
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2.1 Membership in the weak core 4

graph we can choose which country should the unmatched node belong to (because
every complete graph contains a node from every country).

Theorem 5. For a hypergraph H with a weight function w on the hyperedges such
that the sum of weights equals the number of odd-degree nodes in H minus the number
of hyperedges, it is NP-complete to decide if there is a blocking subhypergraph S of H.

We reduce from the 1-in-3 SAT problem. First we describe the construction. We
are given a boolean formula with k clauses and n variables. For every clause we de�ne
a clause gadget which consists of

• three edges Ci1, Ci2 and Ci3, such that the intersection of any two of them is
Ci1 ∩ Ci2 ∩ Ci3, this is disjoint from any other edge, and |Ci1 ∩ Ci2 ∩ Ci3| = c.
These edges represent the 3 literals li1, li2 and li3 of the ith clause.

• a fourth edge Ci such that Ci ∩ Cij is disjoint from any other edge, its size is c′

for j = 1, 2, 3, and Ci \ (Ci1 ∪Ci2 ∪Ci3) = {ci, ci+1}, where ck+1 = c1. Note that
Ci ∩ Ci−1 = ci, Ci ∩ Ci+1 = ci+1 and Ci is disjoint from Cj if j 6= i− 1, i, i + 1,
where C0 = Ck.

For every variable xi, we de�ne a variable gadget which consists of three edges,
Xi, Xi, and Yi such that |Xi∩Xi| = x, Xi∩Xi ⊆ Yi, |Yi∩Xi| = |Yi∩Xi| = x+x′ and
Yi \ (Xi ∪Xi) = {yi, yi+1} where yn+1 = y1. Note that Yi ∩ Yi−1 = yi, Yi ∩ Yi+1 = yi+1

and Yi is disjoint from Yj if j 6= i− 1, i, i + 1, where Y0 = Yn.
The clause gadgets intersect with the variable gadgets in the following way.

• The edge Cij intersects Xi in 2 nodes if it represents the variable xi in unnegated
form, and it intersects Xi in 2 nodes if it represents the variable xi in negated
form. These intersections are disjoint from any other edges.

• The edges Cij, Xi and Xi do not contain any nodes which do not belong to an
intersection described previously.

Now we describe the weights. Let w(Ci) = c′ for i ∈ [k], w(Yi) = x′ for i ∈ [n], and
let the weight of every other edge be zero.
The sum of odd-degree nodes is kc + nx (only the nodes of Ci1 ∩ Ci2 ∩ Ci3 and

the nodes of Xi ∩ Xi have odd degree, since their degree is 3, while all the other
nodes have degree 2), and the number of edges is 4k + 3n (there are 4 edges in every
clause gadget and 3 edges in every variable gadget). The sum of weights (which is
kc′+nx′) has to be the number of odd-degree nodes minus the number of edges which
is k(c − 4) + n(x − 3), so we set c′ = c − 4 and x′ = x − 3. (We can set c = 6 and
x = 5 for example).

Notation 6. Let Zi = (Xi ∩ Yi) \ (Xi ∩Xi) and Zi = (Xi ∩ Yi) \ (Xi ∩Xi).

Lemma 7. For every hyperedge A with w(A) > 0 that belongs to a blocking subhyper-
graph S, there are at least w(A) nodes in it (not contained in other hyperedges with
positive weight) that have odd degree in S.
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2.1 Membership in the weak core 5

Proof. The only edges with positive weight are Yi for i ∈ [n], (w(Yi) = x′), and Ci for
i ∈ [k], (w(Ci) = c′).
If A = Yi for some i ∈ [n], then Zi and Zi both have size x′ and since they are

subsets of Yi which belongs to S, nodes in both of these sets only have even degree in
S if Xi and Xi both belong to S. But then the nodes in Yi ∩Xi ∩Xi have degree 3,
and |Yi ∩Xi ∩Xi| = x = x′ + 3.
If A = Ci for some i ∈ [k], then the set of nodes Cij ∩ Ci for j = 1, 2, 3 have size c′

and nodes in all three of these sets only have even degree in S if Cij belongs to S for
j = 1, 2, 3. But then the nodes in Ci1 ∩Ci2 ∩Ci3 have degree 3 and |Ci1 ∩Ci2 ∩Ci3| =
c = c′ + 4.

Lemma 8. Let us call the nodes that do not belong to Zi or Zi for any i ∈ {1, 2, ...n}
and do not belong to Ci ∩ Cij for any i ∈ [k], j ∈ {1, 2, 3} ordinary.

(i) If Yi belongs to a blocking subhypergraph, then the nodes of Yi that have odd
degree in the subhypergraph are either Zi or Zi, so the number of such nodes is
x′ = w(Yi).

(ii) If Ci belongs to a blocking subhypergraph, then the nodes of Ci that have odd
degree in the subhypergraph are Ci ∩Cij for j = 1, 2 or 3, so the number of such
nodes is c′ = w(Ci).

(iii) Ordinary nodes can not have odd degree in a blocking subhypergraph.

Proof. (iii) In a blocking subhypergraph S, the number of odd-degree nodes in S is
at most the sum of weights in S, and Lemma 7 shows that in every edge A in S with
positive weight, there are w(A) nodes that have odd degree in S. This means that
there cannot be more nodes in A with odd degree in S. Furthermore besides the w(A)
nodes for every edge A in S with positive weight that have odd degree in S, no other
node can have odd degree in S so (iii) holds. (i) and (ii) follow from the proof of
Lemma 7.

Lemma 9. If for two edges A and A′ there is an ordinary node in A ∩ A′ that does
not belong to any other edge, then if A belongs to a blocking subhypergraph, A′ has to
belong to it too.

Proof. This is a direct consequence of point (iii) of Lemma 8.

Lemma 10. If there is a blocking subhypergraph S, then it contains exactly one of Xi

and Xi for i = 1, . . . , n.

Proof. If Cm is in S for somem ∈ [k], then Cmj has to be in S too for some j ∈ {1, 2, 3},
otherwise Cm would have at least 3c′ odd-degree nodes in S.
If Cij is in S, then there exists a t ∈ [n] such that Cij ∪Xt or Cij ∪Xt is not empty,

moreover it contains an ordinary node not contained in any other edge, so Lemma 9
implies that Xt or Xt has to belong to S too.
If Xt or Xt is in S, then Yt has to be in S as well. Indeed, if Yt does not belong to

S, then the nodes of Zt or Zt have odd degree in S but then the sum of odd-degree
nodes in S is greater than the sum of weights of the edges of S because of Lemma 7.
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2.1 Membership in the weak core 6

If Yt belongs to S, then Yi belongs to S for every i ∈ [n]. This is because Yt ∩ Yt+1

contains an ordinary node that only belongs to these edges, so from Lemma 9 Yt+1

has to belong to S; then Yt+1 ∩ Yt+2 contains an ordinary node that only belongs to
these edges, and so on.
If Yi belongs to S, then exactly one of Xi and Xi belongs to S. This is because

point (i) of Lemma 8.

Lemma 11. The 1-in-3 SAT instance is satis�able if and only if the constructed
hypergraph has a blocking subhypergraph.

Proof. First suppose the 1-in-3 SAT instance is satis�able. We prove that the subhy-
pergraph S that consists of the following edges is a blocking subhypergraph:

• Xi and every Clm intersecting Xi for xi set to false,

• Xj and every Clm intersecting Xj for xj set to true,

• Yi for i ∈ [n],

• Ci for i ∈ [k].

There are exactly two false literals in every clause, therefore in every clause gadget
exactly two of Ci1, Ci2 and Ci3 are in the subhypergraph, so the nodes in Ci1∩Ci2∩Ci3

have even degree (they have degree 2). It is easy to see that all the other nodes in Cij

have degree 2 if Cij is in the subgraph. If the jth literal of clause i was set to true,
then the nodes of Cij ∩Ci have degree 1, and all the other nodes of Ci have degree 2.
Therefore the number of nodes in a clause gadget with odd degree is c′.
For every i ∈ [n], exactly one of Xi and Xi is chosen to be in the subhypergraph,

say it is Xi. Then the nodes in Zi have degree 1 (if Xi was chosen, then the nodes in
Zi have degree 1). Either way, the number of odd-degree nodes in a variable gadget
is x′ since it is easy to see that all the other nodes in the variable gadget have even
degree.
We obtain that the total number of odd-degree nodes in the subhypergraph is

kc′ + nx′ which is equal to the sum of weights, which means that this subhypergraph
is a blocking subhypergraph.

Now suppose that there is a blocking subhypergraph S in the constructed hyper-
graph. The following is a satisfying assignment of the 1-in-3 SAT instance: we set xi

to be false if and only if Xi belongs to S.
Because of Lemma 10, exactly one of xi and xi is set to false. For every Cij, there is

a t such that Xt ∩Cij or Xt ∩Cij is not empty and contains an ordinary node that is
only contained in these edges. Because of Lemma 9, Cij belongs to S if and only if Xt

belongs to S (if Xt∩Cij was nonempty) or Xi belongs to S (if Xt∩Cij was nonempty).
This means that Cij belongs to S if and only if the literal lij it corresponds to is set
to false.
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2.2 Membership in the strong core 7

If Cij belongs to S, then Ci has to belong to S too, otherwise the nodes of Cij ∩Ci

would have odd degree in S, but then the sum of odd-degree nodes in S would be
greater than the sum of weights of the edges of S because of Lemma 7.
If Ci belongs to S, then Cm has to belong to S too for every m ∈ [k]. This is

because Ci∩Ci+1 contains an ordinary node that only belongs to these edges, so from
Lemma 9 Ci+1 has to belong to S, Ci+1 ∩ Ci+2 contains an ordinary node that only
belongs to these edges, and so on.
If Cm belongs to S, then exactly two of Cmj for j = 1, 2, 3 belongs to S. This

follows from point (ii) of Lemma 8.
The above statements prove that exactly two literals are set to false in every clause.

2.2 Membership in the strong core

Theorem 12. It is coNP-complete to decide if a given matching is in the strong core.

We are given a graph G =
n⋃

i=1

Gi and a matching M described in section 2.1 except

that we do not assume that there is an unmatched node in every country. We de�ne
a hypergraph H in the same way as in section 2.1, but we de�ne a di�erent weight
function w′M on the hyperedges. Let w′M(A) be the number of nodes belonging to the
country corresponding to A that is left unmatched in M .

De�nition 13. We are given a hypergraph H with a weight function w on the hy-
peredges. A subhypergraph S of H is called a weakly blocking subhypergraph if the
number of odd-degree nodes in S is less than the sum of weights of the edges of S.

Claim 14. A set of countries B = (i1, i2, . . . , ik) is weakly blocking with respect to M
if an only if the hyperedges corresponding to these countries form a weakly blocking
subhypergraph S.

Proof. The subgraph GB = G[Vi1 ∪ Vi2 ∪ · · · ∪ Vik] of G is also a union of complete
graphs. The number of odd-degree nodes in S equals the number of odd-size complete
graphs in GB which is the number of nodes left unmatched in any max-size matching
of GB. B is weakly blocking if and only if there is a matching in GB such that every
country A in B has at most w′M(A) unmatched nodes, and at least one country has
less than w′M(A). From this it is clear that if B is blocking, the inequality holds for
S. If S is blocking, then B is blocking because every country has a node in every
complete graph, therefore for every odd size complete graph we can choose which
country should the unmatched node belong to. So we can distribute the nodes left
unmatched in a max-size matching of MB (their number is the number of odd-degree
nodes in S) among the countries in B in a way that a country A has at most w′M(A)
unmatched nodes and at least one country has less than w′M(A).

Claim 15. Suppose we have a hypergraph H with n nodes and m hyperedges, and a
weight function w′ on the hyperedges such that the sum of weights equals the number
of odd-degree nodes in H. Then there is a graph G and a max-size matching M in G
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with the following properties: G is a union of n complete graphs, and the nodes of G
can be partitioned into m countries, such that every complete graph contains one or
two nodes from every country, and H = HM , w′ = w′M .

Proof. If a node i belongs to the hyperedge A in H, then the corresponding complete
graph Gi of G should contain one node that belongs to the country corresponding
to A, otherwise it should contain two. The number of nodes left unmatched by any
max-size matching is the number of odd size complete graphs in G, which is equal
to the number of odd-degree nodes in H, which is equal to the sum of weights. The
number of nodes in a country corresponding to the hyperedge A left unmatched by
M should be w′(A) which can be achieved since for every odd size complete graph
we can choose which country should the unmatched node belong to (because every
complete graph contains a node from every country).

Theorem 16. For a hypergraph H with a weight function w′ on the hyperedges such
that the sum of weights equals the number of odd-degree nodes in H, it is NP-complete
to decide if there is a weakly blocking subhypergraph S of H.

Proof. We reduce from the 1-in-3 SAT problem. We will use the construction in the
proof of Theorem 5 with slight modi�cations. The weights are the same except that
we change the weight of Y1 to w′(Y1) = x′ + 1 (w′(A) = w(A) for all edges A 6= Y1 of
H.) Let

∑
w′ =

∑
w′(A): A is an edge of H. The new hypergraph H ′ is the same as

H except we add an extra edge F of zero weight to the construction, which contains
all the odd-degree nodes of H and besides these, it contains

∑
w′ extra nodes that

are not contained in any other edge. In this modi�ed hypergraph H ′, the odd-degree
nodes are these

∑
w′ extra nodes. However, since F has zero weight, their number is

equal the sum of weights in H ′, so H ′ satis�es the conditions of the theorem. F cannot
belong to a weakly blocking subhypergraph, because it contains

∑
w′ nodes that have

odd degree in any subhypergraph that contains F . This means that a subhypergraph
of H ′ is weakly blocking if and only if it is a weakly blocking subhypergraph of H. It
is not hard to check that the lemmas of the proof of Theorem 5 still hold for weak
blocking too (for the original weight w).

3 Constant number of countries

If the number of countries, m, is constant, then all the questions that we study can
be decided in polynomial time. This is a consequence of the following known result
on matchings:

Lemma 17. Let k be a constant. Given a graph G = (V ;E), a partition V =
V1 ∪ V2 ∪ · · · ∪ Vk of V , and a vector x ∈ Zk

+, it can be decided in polynomial time if
there is a matching N such that |V (N) ∩ Vi| ≥ xi for every i ∈ [k].

The lemma immediately implies that it can be decided in polynomial time if a
given matching M is in the weak core. Indeed, the number of possible coalitions is
polynomial, and for a given coalition (i1, i2, . . . , ik), we can decide if there is a matching
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N in the induced subgraphG[Vi1∪Vi2∪· · ·∪Vik ] such that |V (N)∩Vij | ≥ |V (M)∩Vij |+1
for every j ∈ [k].
Membership in the strong core can be decided similarly, but for every coalition

(i1, i2, . . . , ik) and every ` ∈ [k], we check if there is a matching N in the induced
subgraph G[Vi1 ∪ Vi2 ∪ · · · ∪ Vik ] such that |V (N) ∩ Vij | ≥ |V (M) ∩ Vij | for every
j ∈ [k] \ ` and |V (N) ∩ Vi` | ≥ |V (M) ∩ Vi`|+ 1.
Deciding non-emptiness of the weak and strong cores is somewhat more di�cult,

but still polynomial-time solvable. The crucial observation is that the membership
of a matching M in these cores only depends on the values |V (M) ∩ Vi| (i ∈ [m]).
Using Lemma 17, we can �nd in polynomial time all component-wise maximal vectors
x ∈ Zm

+ for which a matching M with |V (M) ∩ Vi| = xi for every i ∈ [m] exists (we
can check all possible vectors since m is constant, and xi ≤ |V | (i ∈ [m]) can be
assumed). For such a vector x, we can again check (by using Lemma 17 for every
coalition) whether any matching M with |V (M) ∩ Vi| = xi (i ∈ [m]) is in the strong
or weak core. If the answer is negative for every maximal vector x, then the core is
empty, otherwise it is non-empty.

4 Countries of constant size

In contrast to the polynomial-time solvability of problems with constant number of
countries, restricting the size of the countries does not automatically make the prob-
lems tractable. In this section, we show that deciding emptiness of the core is hard
even for small countries. In Section 5, we will separately discuss countries of size 2.

4.1 Emptiness of the weak core is NP-hard

The following example of an empty weak core was given by Zsuzsanna Jankó.

Example 18. Let A = {a1, a2, . . . , a7}, B = {b1, . . . , b7}, and C = {c1, . . . , c7} be
three countries each having seven nodes. The graph consists of �ve disjoint complete
graphs, three K5's: {a1, c2, c3, b4, b5}, {b1, a2, a3, c4, c5} and {c1, b2, b3, a4, a5}, and two
K3's: {a6, b6, c6} and {a7, b7, c7}.
This instance does not admit a matching in the weak core. Indeed, if there was a

matching in the weak core, then there would also be a max-size matching in it. Let M
be any max-size matching, covering 16 nodes. We may assume that every country has
at least 4 nodes covered, since otherwise that single country would block M . The two
countries who have the least number of nodes covered have together at most 2

3
×16 < 11

nodes covered, therefore they have at most 10. If both of them have 5 covered in M ,
then they form a blocking coalition because there is a matching where both of them have
6 nodes covered. If one of them has 4 nodes covered while the other 6, then they form
a blocking coalition because there is a matching where the �rst country has 5 nodes
covered while the second has 7. Hence, there is always a strongly blocking coalition.

We will use this example in our gadgets to prove that deciding the emptiness of the
weak core is hard.
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4.1 Emptiness of the weak core is NP-hard 10

Theorem 19. It is NP-hard to decide whether a matching in the weak core exists.

Before proving the theorem, we introduce the notion of special edges. We say that
there is a special edge between two nodes u and v if there is a gadget described below
between u and v. Let E be a copy of the instance in Example 18. Let S be a country
with four nodes s1, s2, s3 and s4. There is an edge between s2 and a1. Let T be a
country with two nodes, t1 and t2. The following edges belong to the gadget: s1t1,
s4t2, us1, s4v and s2s3. See Figure 1.

Figure 1

Lemma 20. Suppose an instance of the NTU international matching game contains
a special edge between u and v. This special edge cannot belong to a matching in the
weak core, but it can belong to a strongly blocking coalition in the following sense:

i) If there is a matching M in the weak core, s2a1, s1t1 and s4t2 has to belong to
M . This means that us1 and s4v cannot belong to M .

ii) Suppose the edges us1 and s4v do not belong to a matching M . If by replacing the
special edge between u and v with an edge uv, u and v would belong to a strongly
blocking coalition w.r.t. M restricted to the graph we get if we delete the special
edge, then M does not belong to the weak core.

Proof. i) We have seen that if there are no additional edges, then E cannot admit a
matching in the weak core. Therefore if s2a1 does not belong to M , then the whole
instance could not admit a matching in the weak core.
Suppose s1t1 does not belong to M , so t1 is unmatched in M . We know that s2a1

belongs to M , therefore s3 is unmatched in M . But this means that the countries S
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and T with the matching M ′ = {s1t1, s2s3, s4t2} form a blocking coalition, because
M ′ covers every node of S ∪ T .
ii) We have already seen that if the edges s1t1, s2a1 and s4t2 do not belong to M ,

then M is not in the weak core. Suppose these edges belong to M , so s3 is unmatched
in M . Let M ′ be the blocking matching. Let M ′′ be the matching we get if we leave
out the edge uv from M ′ and add the edges us1, s4v and s2s3. The countries that
belonged to the strongly blocking coalition would also be better o� byM ′′, so together
with S, they form a strongly blocking coalition: S prefers M ′′ because all nodes of S
are covered by M ′′.

Proof of Theorem 19. We reduce from 3-SAT. Given an instance I of 3-SAT, we con-
struct an instance J of the NTU international matching game. For every variable of
I, we construct a variable gadget, and for every clause we construct a clause gadget.
After that, we describe the interconnecting edges between the clause gadgets and the
variable gadgets.
Variable gadget. For a variable xi, we de�ne four sets of nodes, Xi, X̄i, Yi and

Ȳi. Xi contains a node for every occurrence of the variable xi in unnegated form, and
the nodes of Xi belong to one country. X̄i contains a node for every occurrence of
the variable xi in negated form, and the nodes of X̄i belong to one country. For every
node in Xi, there is a separate node in Yi so that there is an edge between them, and
each node of Yi belongs to a separate country of size one. Similarly for every node in
X̄i, there is a separate node in Ȳi so that there is an edge between them, and each
node of Ȳi belongs to a separate country of size one. Every node of Yi is connected to
every node of Ȳi by a special edge. See Figure 2.

Figure 2: The variable gadget. The dotted lines represent special edges.

Clause gadget. To each clause cj, we associate a copy of the instance in Example
18. We use the same notation for the nodes as in the example, but every node gets
an upper index j. Let aj1, b

j
1 and cj1 correspond to the three literals in clause cj.
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Interconnecting edges Now we describe the edges between the clause gadgets and
the variable gadgets. To every literal that appears in a clause, there is a corresponding
node in the clause gadget and a corresponding node in the variable gadget. We connect
these two nodes with an edge.

Claim 21. For any matching M in the weak core of J, there is a truth assignment
satisfying I.

Proof. If M is in the weak core, Yi or Ȳi has all its nodes covered by M . Indeed, if
there were a node u ∈ Yi and a node v ∈ Ȳi so that neither is covered by M , then the
countries {u} and {v} together with the special edge connecting them would form a
strongly blocking coalition (see Lemma 20). Since the special edges cannot belong to
M , every node of Xi (or X̄i) is matched to a node in Yi (or Ȳi). In the �rst case we
set the variable xi to be false, and in the second case we set it to be true. If both hold
simultaneously, we arbitrarily set xi to be true or false, but it still holds that if xi is
set to false, every node in Xi is matched to a node in Yi in M .
A clause gadget is a copy of the instance in Example 18, therefore without the

additional (interconnecting) edges, it cannot admit a matching in the weak core, thus
M has to contain an interconnecting edge leaving this clause gadget. The intercon-
necting edge corresponds to a literal which cannot be set to false, because then the
node corresponding to it in Xi or X̄i for some i would be matched to a node in Yi or
Ȳi in M . This means that in this truth assignment, every clause contains a literal set
to true, thus it satis�es I.

Claim 22. For any truth assignment satisfying I, it is possible to construct a matching
M in the weak core of J.

Proof. If a variable xi is set to true (false), let M contain all the edges between X̄i

(Xi) and Ȳi (Yi), and all interconnecting edges incident to Xi (X̄i). See �gure 3. In

Figure 3: Red edges are in M . The dotted lines represent special edges.

a special edge uv, let s1t1, s2a1, s4t2 and c2c3, b4b5, a2a3, c4c5, b2b3, a4a5, b6c6, b7c7
belong to M . See �gure 4.
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Figure 4: The red edges belong to M .

In every clause gadget, there is at least one node corresponding to a literal that is
matched via an interconnecting edge in M since every clause contains a literal set to
true. Suppose that aj1 is such a node in the clause gadget corresponding to cj. Let
the edges cj2c

j
3, b

j
4b

j
5, a

j
2a

j
3, c

j
4c

j
5, b

j
2b

j
3, a

j
4a

j
5, b

j
6c

j
6 and bj7c

j
7 belong to M .

Now we show for every country that it cannot belong to a strongly blocking coali-
tion. If the variable xi is set to true, then all the nodes in Xi, X̄i and Ȳi are matched
in M , therefore the countries Xi, X̄i and the singleton countries of Ȳi cannot belong
to a strongly blocking coalition. Since a node (which is also a country) in Yi is only
connected to one of these countries, it also cannot belong to a blocking coalition. If
xi is set to false, a similar argument shows that these countries cannot belong to a
strongly blocking coalition.
Next, we show that the countries of a special edge cannot belong to a strongly

blocking coalition. T cannot, since it is fully matched in M . S cannot, since it has
only one node unmatched in M , and s1 is only connected to a node in Yi or Ȳi and a
node in T , therefore it would be unmatched in any blocking coalition. It remains to
check that some of the countries A, B and C do not form a blocking coalition. This
is because the maximum matchings in A, B, C, A ∪B ∪ C and B ∪ C cover at most
as many nodes as M , and a maximum matching in A∪B (or A∪C) covers 12 nodes
while M covers 11 nodes of A ∪B (and A ∪ C).
This last argument about the countries of the example shows that the countries of

a clause gadget also cannot belong to a strongly blocking coalition, which completes
the proof.

This concludes the proof of Theorem 19.
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4.2 Emptiness of the strong core is NP-hard

Theorem 23. It is NP-hard to decide whether a matching in the strong core exists.

As in the previous section, we introduce the notion of special edges. The role of
special edges is similar, but we need a di�erent gadget for the de�nition. We say that
there is a special edge between two nodes u and v if there is a gadget described below
between u and v. Let Ci = {ci, c′i} be countries of size two for i = 1, 2, 3, and let the
following edges belong to the graph: uc1, c

′
1c2, c

′
2v, c

′
2c3, c

′
3c1. See Figure 5.

Figure 5: Gadget for special edge

Lemma 24. Suppose an instance of the NTU international matching game contains
a special edge between u and v. This special edge cannot belong to a matching in the
strong core, but it can belong to a weakly blocking coalition in the following sense:

i) If there is a matching M in the strong core, then c′1c2, c
′
2c3, and c′3c1 has to belong

to M . This means that uc1 and c′2v cannot belong to M .

ii) Suppose the edges uc1 and c′2v do not belong to a matching M . If by replacing the
special edge between u and v with an edge uv, u and v would belong to a weakly
blocking coalition w.r.t. M restricted to the graph we get if we delete the special
edge, then M does not belong to the strong core.

Proof. i) The countries Ci (i = 1, 2, 3) form a weakly blocking coalition unless all of
their nodes are covered by M . The latter is possible only if the edges c′1c2, c

′
2c3, and

c′3c1 belong to M .
ii) We add the countries C1 and C2 to the blocking coalition, and instead of the

edge uv we add the edges uc1, c
′
1c2 and c′2v to the blocking matching.

Proof of Theorem 23. We reduce from 3-SAT. Given an instance I of the 3-SAT,
we construct an instance J of the NTU international matching game. For every
variable of I, we construct a variable gadget, and for every clause we construct a clause
gadget. Then we describe the interconnecting edges between the clause gadgets and
the variable gadgets.
Variable gadget. A variable xi de�nes 3 countries Xi = {xi}, Yi = {yi, y′i} and

Zi = {zi, z′i}. The edges xiy
′
i, xiz

′
i and yizi belong to the gadget.
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Clause gadget. To a clause cj, we associate 3 countries of size 5: Aj = {aj1, aj2, ..., aj5},
Bj = {bj1, bj2, ..., bj5} and Dj = {dj1, dj2, ..., dj5}. Each of these countries correspond
to a literal of the clause cj. The following edges belong to the gadget. aj1aj2, aj2bj3,
bj3dj4, bj1bj2, bj2dj3, dj3aj4, dj1dj2, dj2aj3, aj3bj4, aj5bj5 , bj5dj5, dj5aj5. See Figure 6.

Figure 6: The clause gadget

Interconnecting edges Now we describe the edges between the clause gadgets
and the variable gadgets. If a variable xi is in a clause cj in negated or unnegated
form, and say the country Aj corresponds to this literal, then we connect aj1 with yi
by a special edge if xi was in unnegated form, and we connect aj1 with zi by a special
edge if xi was in negated form.

Claim 25. For any truth assignment satisfying I, it is possible to construct a matching
M in the strong core of J.

Proof. For every variable gadget, the matching M contains the edge yizi, and xi is
matched to y′i in M if the variable xi is set to true and it is matched to z′i if xi is set
to false.
Every clause cj contains a true literal, say Dj corresponds to a true literal. Let M

contain the following edges of the clause gadget corresponding to cj: aj1aj2, bj3dj4,
bj1bj2, dj3aj4, dj1dj2, aj3bj4, and aj5bj5. See Figure 7. This is the unique matching
that covers all the nodes of Aj ∪Bj ∪Dj except d5. This completes the description of
M ; we now prove that M is in the strong core.
Suppose there is a weakly blocking coalition w.r.t. M . Then this contains a country

who is better o� by a matching M ′, therefore it was not fully matched by M , so either
a) it is a country in a clause gadget who is not fully matched and therefore corresponds
to a literal set to true, or b) it is Yi (in this case xi is set to false) or c) Zi (in this
case xi is set to true) for some i.
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Figure 7: The red edges belong to M

In case a) if in the clause cj the country Dj is not fully matched by M , but Dj is in
a weakly blocking coalition and it is better o� by a matching M ′, then M ′ fully covers
Dj (since M only left dj5 unmatched). The node dj4 can only be matched by the
edge bj3dj4, therefore Bj has to belong to the blocking coalition, and has to be fully
matched by M ′. This means that bj4aj3 has to belong to M ′, implying that Aj has to
belong to the blocking coalition as well, and has to be fully matched by M ′. Thus Aj,
Bj and Dj belong to the blocking coalition, and all of them are fully matched by M ′,
but this is impossible, since one of aj5, bj5 and dj5 is left unmatched by any matching.
In case b) the matching M ′ has to contain xiy

′
i, which means that it leaves z′i

unmatched, therefore Zi cannot belong to the blocking coalition. This means that
yi has to be matched by a special edge in M ′, say yiaj1 ∈ M ′. Since xi was set to
false, Aj corresponds to a false literal and therefore it is fully covered by M , so Aj

has to be fully covered by M ′. This means that aj2bj3 ∈ M ′ (thus dj4 is unmatched
by M ′), and aj4dj3 ∈M ′. Therefore Aj, Bj and Dj all have to belong to the blocking
coalition, and at least two nodes of Aj ∪Bj ∪Dj are left unmatched by M ′ (dj4, and
one of aj5, bj5 and dj5 is left unmatched by any matching). This is a contradiction,
since M covers all but one node of Aj ∪Bj ∪Dj.
Case c) is similar to case b).

Claim 26. For any matching M in the strong core of J, there is a truth assignment
satisfying I.

Proof. Suppose there is a matching M in the strong core. M has to cover all but
one node of every clause gadget, since otherwise the 3 countries of the clause with
the matching in Figure 7 (with the node left unmatched chosen appropriately) form
a weakly blocking coalition. A matching that covers all but one node of Aj ∪Bj ∪Dj

is unique except that we can choose any edge of the triangle aj5bj5dj5.
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The matching M has to cover xi for every i, otherwise Xi and Yi would form a
weakly blocking coalition. If xi is matched to y′i, then we set xi to be true, and if it
is matched to z′i we set xi to be false.
We show that every clause contains a true literal. Suppose clause cj does not. Let

dj5 be the node left unmatched by M in Aj ∪ Bj ∪ Dj. If Dj corresponds to the
variable xi in unnegated form, then dj1 is connected to yi by a special edge and since
Dj corresponds to a false literal, xiz

′
i ∈M . But then the countries Xi, Yi, Dj and Aj

form a weakly blocking coalition with the matching M ′ shown in �gure 8. Similarly,

Figure 8: The blocking matching M ′. The dotted line represents a special edge.

if Dj corresponds to the variable xi in negated form, then dj1 is connected to zi by a
special edge, and the countriesXi, Zi, Dj and Aj form a weakly blocking coalition.

This concludes the proof of Theorem 23.

5 Countries of size 2

In this section, we study the case when every country has size 2. We connect the
two nodes of each country with a country edge. The prefect matching de�ned by the
country edges is denoted by MC .

Lemma 27. A matching M is in the strong core if and only if

a) every country that is in an alternating cycle w.r.t. MC has both its nodes covered
by M ,
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b) there is no alternating path w.r.t. MC from a country that has none of its nodes
covered by M to a country that has at most one node covered by M ,

c) there is no alternating path w.r.t. MC that has 3 countries in it, such that each of
them has one node covered by M .

Proof. It is easy to see that if M is in the strong core, then these conditions hold,
since otherwise the matching given by the alternating path or cycle would block M .
Suppose the conditions hold, but the matching M is not in the strong core. Then
there is a weakly blocking coalition of countries with a matching M ′ such that there is
one country that is better o� with M ′ than M , and the others are no worse o�. Take
the symmetric di�erence of M ′ and MC . This is a disjoint union of alternating cycles
and paths. If the country that is better o� by M ′ has 0 nodes covered by M , then
it has at least one node covered by M ′, so it is either in an alternating cycle, which
contradicts condition a), or it is in an alternating path. In the latter case, the two red
edges at the ends of the path are countries that have one node covered by M ′, so they
have at most one node covered by M , which contradicts condition b). If the country
that is better o� by M ′ has 1 node covered by M , then it has two nodes covered by
M ′, so it is either in an alternating cycle, which contradicts condition a), or it is in
an alternating path (and it is not at the end of the path), but the two country edges
at the ends of the path are countries that have one node covered by M ′, so they have
at most one node covered by M , which contradicts condition b) or c).

Theorem 28. If every country has size 2, then we can decide in polynomial time if
a given matching M is in the strong core.

Proof. We need to show that we can check the conditions given by Lemma 27 in
polynomial time. We can check if a given red edge is in an alternating cycle, since it
is equivalent to checking if, after the deletion of this edge, the remaining graph (the
original graph G together with the red edges) has a perfect matching. We can do this
for every red edge with at most one node covered by M . We can check whether there
is an alternating path between two given country edges, knowing that these do not
belong to an alternating cycle, since this is equivalent to checking if by deleting these
two edges the remaining graph has a matching of size one less than a perfect matching.
We can do this for any two country edges such that one of them has 0 nodes covered
by M , and the other one has at most one node covered by M . For three given country
edges, such that we know that none of them belong to an alternating cycle, we can
check if there is an alternating path that contains all three of them, because this is
equivalent to checking if by deleting all three of these edges, the remaining graph has
a matching of size one less then a perfect matching. We can check this for any three
country edges that have one node covered by M .

Lemma 29. A matching M is in the weak core if and only if

a) there is no alternating cycle w.r.t. MC such that every country edge in it has at
most one node covered by M ,
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b) there is no alternating path w.r.t. MC such that the country edges at the two ends
of the path have 0 nodes covered by M , and the country edges in the middle have
one node covered by M .

Proof. IfM is in the weak core, then the conditions a) and b) hold, since otherwise the
matching de�ned by the alternating path or cycle would block M . Suppose a) and b)
hold, but M is not in the weak core. There is a coalition of countries with a matching
M ′ such that every country in the coalition is strictly better o� with M ′, therefore
those countries who have both of their nodes covered by M cannot belong to the
coalition � we can delete these countries from the graph. Take the symmetric di�erence
of the remaining country edges with M ′. This consists of alternating cycles and paths.
If there is an alternating cycle in the symmetric di�erence, then it contradicts a). If
there is an alternating path, then the country edges at the two ends of the path have
one node covered by M ′, therefore they have 0 nodes covered by M , which contradicts
b).

Theorem 30. If every country has size 2, then we can decide in polynomial time if
a given matching M is in the weak core.

Proof. We can check the conditions of Lemma 29 in polynomial time.

Theorem 31. If every country has size 2, then the weak core is never empty.

Proof. We can construct a matching M∗ in the weak core the following way. Let MC

be as before. We check if there is an alternating cycle w.r.t. MC in the current graph.
If there is, then let the edges of the cycle belong toM , and delete the nodes of the cycle
from the graph. Repeat this with the remaining graph, until there are no alternating
cycles with respect to MC . Let M∗ be a maximum size matching that covers every
node of M . We claim that M∗ is in the weak core, since the conditions of Lemma 29
are met. Condition a) clearly holds, since the construction deleted countries that were
covered twice by M (and hence by M∗), and the remaining graph did not contain an
alternating cycle.
Suppose for contradiction that condition b) does not hold, i.e. there is an alternating

path P w.r.t. MC such that the country edges at the two ends of the path have 0
nodes covered by M∗, and the country edges in the middle have one node covered by
M∗. Let N∗ be the set of edges of M∗ that contain a node from path P . We have
|N∗| ≤ |P ∩MC |−2 = |P ∩E|−1. Therefore, (M∗\N∗)∪(P ∩E) is a larger matching
than M∗, contradicting the choice of M∗ as a max-size matching.

It remains an intriguing open question whether the emptiness of the strong core
can be decided in polynomial time if all countries have size 2.
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