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Compressed frameworks and compressible graphs

Tibor Jordán? and Jialin Zhang??

Abstract

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph
and p maps the vertices of G to points in Rd. The edges correspond to the
line segments that connect the points of their end-vertices. We say that (G, p)
is compressed if in every other framework (G, q), with the same graph G and
with the same edge-lengths, we have ||p(u)− p(v)|| ≤ ||q(u)− q(v)|| for all pairs
u, v ∈ V , where ||.|| denotes the Euclidean norm in Rd. A graph G is said to be
compressible in Rd if there exists a compressed d-dimensional framework (G, p).

We characterize the compressible graphs in R1 and give some partial results
in the two-dimensional case. We also consider the case when the coordinates of
the points are generic.

Keywords: framework, graph realization, rigid, globally rigid

1 Introduction

A d-dimensional (bar-and-joint) framework is a pair (G, p), where G = (V,E) is a
graph and p is a map from V to Rd satisfying that p(u) 6= p(v) for all pairs u, v with
uv ∈ E. We consider the framework to be a straight line realization of G in Rd. Two
realizations (G, p) and (G, q) of G are equivalent if ||p(u) − p(v)|| = ||q(u) − q(v)||
holds for all pairs u, v with uv ∈ E, where ||.|| denotes the Euclidean norm in Rd.

We say that (G, p) is compressed if for all equivalent realizations (G, q) we have
||p(u)− p(v)|| ≤ ||q(u)− q(v)|| for all pairs u, v with u, v ∈ V 1. A graph G is called
compressible in Rd if it has a compressed d-dimensional realization (G, p).

A framework (G, p) is generic if the set of the d|V (G)| coordinates of the points
p(v), v ∈ V (G), is algebraically independent over the rationals2. We say that a graph
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dapest, Hungary. Email: jordan@cs.elte.hu
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1We may reverse the inequality in the definition and call a framework (G, p) expanded if for all

equivalent realizations (G, q) we have ||p(u)− p(v)|| ≥ ||q(u)− q(v)|| for all pairs u, v with u, v ∈ V .
In this paper we focus on compressed frameworks.

2Recall that a set of real numbers is said to be algebraically independent over the rationals if they
do not satisfy any non-zero polynomial with rational coefficients.
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Section 2. Rigid and globally rigid frameworks 2

Figure 1: A compressible graph in R1.

Figure 2: A compressed realization of the graph above.

G is generically compressible in Rd if there exists a compressed generic realization
(G, p) of G in Rd.

Our goal is to establish necessary conditions for d-dimensional compressibility and
generic compressibility and to give a complete characterization of these properties in
R1 as well as partial results in R2.

It turns out that the new notion of compressibility is sandwiched between rigidity
and global rigidity, which are central concepts in rigidity theory. In the next section
we give the related definitions and study this connection.

2 Rigid and globally rigid frameworks

Frameworks (G, p), (G, q) are congruent if ||p(u)− p(v)|| = ||q(u)− q(v)|| holds for all
pairs u, v with u, v ∈ V . We say that (G, p) is globally rigid in Rd if every d-dimensional
realization of G which is equivalent to (G, p) is congruent to (G, p).

The framework (G, p) is rigid if there exists an ε > 0 such that, if (G, q) is equivalent
to (G, p) and ||p(v) − q(v)|| < ε for all v ∈ V , then (G, q) is congruent to (G, p).
Intuitively, this means that if we think of a d-dimensional framework (G, p) as a
collection of bars and joints where points correspond to joints and each edge to a rigid
(i.e. fixed length) bar joining its end-points, then the framework is globally rigid if its
bar lengths determine the realization up to congruence. It is rigid if every continuous
motion of the joints that preserves all bar lengths must preserve all pairwise distances
between the joints.

It is a hard problem to decide if a given framework is rigid or globally rigid. It is
NP-hard to decide if even a 1-dimensional framework is globally rigid [10], and the
rigidity problem is NP-hard for 2-dimensional frameworks [1]. Our first result shows
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that testing whether a given framework (G, p) in Rd is compressed is also hard, even
in R1.

Theorem 1. It is NP-hard to decide whether a given 1-dimensional framework is
compressed (resp. expanded).

Proof. We show that the PARTITION problem3 can be reduced to the problem of
testing whether a given framework on the line is compressed (resp. expanded).

Let {a1, a2, ..., an} be an instance of PARTITION. Let C be the cycle of length n+2
on vertex set {v0, v1, ..., vn, w} and edge set {vivi+1, 0 ≤ i ≤ n− 1}

⋃
{vnw,wv0}. Let

b =
∑

1≤i≤n ai

2
. Construct a 1-dimensional framework (C, p) in which the length of edge

vivi+1 is equal to ai+1 for 0 ≤ i ≤ n− 1, the length of each of the edges incident with
vertex w is equal to b, and the map p satisfies p(v0) = 0, p(w) = b, and p(vn) = 2b.
Note that these positions uniquely determine the coordinates of the other vertices and
lead to a “stretched” realization of the path C − w.

The first observation is that if there is an equivalent, but not congruent realization
(C, q), then in this realization the edges incident with w must overlap, q(v0) = q(vn)
must hold, and the edge lengths and vertex positions of the path C −w give rise to a
solution of the given instance of the PARTITION problem. A similar argument shows
that if there is solution of the PARTITION problem then there exists an equivalent,
but not congruent realization (C, q). (This observation shows that global rigidity
testing is NP-hard.)

The next observation is that if there exists such a realization (C, q) then ||p(v0)−
p(vn)|| > ||q(v0) − q(vn)|| and for at least one vertex vi we have ||p(vi) − p(w)|| <
||q(vi)− q(w)|| (unless vertex w is coincident with some other vertex in (C, p), but we
may assume that this situation - in which the PARTITION problem has a solution
- does not hold). Thus (C, p) is globally rigid if and only if it is compressed if and
only if it is expanded if and only if the PARTITION problem has a solution. This
completes the proof.

These problems become more tractable, however, if we consider generic frameworks.
It is known that the rigidity of frameworks in Rd is a generic property, that is, the
rigidity of (G, p) depends only on the graph G and not the particular realization
p, if (G, p) is generic, see [12]. We say that the graph G is rigid in Rd if every
(or equivalently, if some) generic realization of G in Rd is rigid. The problem of
characterizing when a graph is rigid in Rd has been solved for d = 1, 2, and is a major
open problem for d ≥ 3.

A similar situation holds for global rigidity. Gortler, Healy and Thurston [3] proved
that the global rigidity of d-dimensional frameworks is a generic property for all d ≥ 1.
We say that a graph G is globally rigid in Rd if every (or equivalently, if some) generic
realization of G in Rd is globally rigid.

3The input of the PARTITION problem is a set {a1, a2, ..., an} of n positive integers and the goal
is to decide whether there is a subset I ⊆ {1, 2, ..., n} with

∑
1≤i≤n,i∈I ai =

∑
1≤i≤n,i/∈I . It is known

to be NP-complete.
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It is clear from the definition that every globally rigid d-dimensional framework
is compressed in Rd. In the case of generic frameworks it is not hard to see that
compressed frameworks are rigid.

Proposition 2. Let (G, p) be a d-dimensional compressed generic framework. Then
(G, p) is rigid.

Proof. For a contradiction suppose that (G, p) is not rigid. By adding new edges, if
necessary, we may assume that (G+ uv, p) is rigid for some non-adjacent pair u, v of
vertices of G. Since (G, p) is not rigid, it has a continuous motion which results in an
equivalent but non-congruent realization (G, q). By the choice of u, v it is not hard
to see that we must have ||p(u)− p(v)|| 6= ||q(u)− q(v)||.

Furthermore, it follows from [9, Theorems 5.2, 5.8] that such a motion exists even
if we add a “cable” connecting u and v, that is, we do not allow the distance from
u to v to increase. This way we can achieve ||p(u) − p(v)|| > ||q(u) − q(v)||, which
shows that (G, p) is not compressed, a contradiction. This implies the theorem.

In R1 Proposition 2 remains valid without assuming that the framework is generic4.
For d ≥ 2 there exist non-rigid compressed frameworks. Consider for example a d-
dimensional realization (C4, p) of the four-cycle with vertices a, b, c, d and p(a) = p(c)
and p(b) = p(d). This realization is not rigid for d ≥ 2, but it is “universally”
compressed, i.e. it is compressed in every dimension.

Compressibility is not a generic property in Rd for all d ≥ 1. Hence we may also
define a stronger property by calling a graph G generically compressed in Rd if every
generic realization (G, p) is compressed. The fact that every globally rigid graph
is generically compressed, together with Proposition 2, gives the following chain of
containment relations in every fixed dimension:

Globally rigid ⊆ Generically compressed ⊆ Generically compressible ⊆ Rigid

The first containment relation is in fact an equality, showing that this stronger
property is less interesting for generic frameworks.

Proposition 3. Let G be a generically compressed graph in Rd. Then G is globally
rigid in Rd.

Proof. Let G be generically compressed in Rd and suppose, for a contradiction, that
G is not globally rigid in Rd. Consider a generic d-dimensional realization (G, p).
Then there is an equivalent realization (G, q), in which ||q(u)− q(v)|| 6= ||p(u)−p(v)||
for some pair u, v ∈ V (G). Since (G, p) is rigid by Proposition 2, we can use [6,
Corollary 3.7] to deduce that (G, q) is quasi-generic, which means there is an isometry
T of Rd for which the framework T (G, q) is generic. Since the two generic realizations
(G, p) and T (G, q) are equivalent and satisfy ||T (q)(u) − T (q)(v)|| 6= ||p(u) − p(v)||,
at least one of them is not compressed. Thus G is not generically compressed in Rd,
a contradiction.

4This observation follows from the simple fact that a framework (G, p) is rigid in R1 if and only
if G is connected, see e.g. [4].
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3 Necessary conditions

A graph G = (V,E) is said to be k-connected if |V | ≥ k+1 and G−S is connected for
all S ⊂ V with |S| ≤ k−1. A vertex set S of size k for which G−S is disconnected is
a k-separator. For k = 1, 2 a k-separator is sometimes called a cut-vertex or a cut-pair,
respectively.

Consider a d-dimensional realization (G, p) of graph G = (V,E). Let conv(G, p)
denote the convex hull of the points {p(v) : v ∈ V }. We say that u ∈ V is an extreme
vertex in (G, p) is p(u) is on the boundary of polytope conv(G, p).

Lemma 4. Let (G, p) be a compressed d-dimensional framework and suppose that G
is d-connected and the points {p(v) : v ∈ V } are in general position. Let S be a
d-separator in G. Then each vertex of S is extreme.

Proof. The proof is based on the following simple claim.

Claim 5. Let x, y ∈ Rd be two points and let H ⊂ Rd be a hyperplane. Suppose that
x, y /∈ H. Let ȳ be the point obtained by reflecting y to the other side of H. Then we
have ||x− y|| < ||x, ȳ|| if and only if x, y are in the same half-space determined by H.

Proof. Suppose that x, y are in the same half-space and let L denote the line through
x, ȳ. Let z = H ∩ L and consider the triangle 4xyz. Then we have ||x − y|| <
||x− z||+ ||y − z|| = ||x− ȳ||. A similar argument shows that if x, y are on different
sides of H then ||x, ȳ|| < ||x− y||.

Let H be the hyperplane containing conv(S, p|S). Note that the general position
assumption implies that H is unique and it contains no other points of the framework.
Suppose that some point of S is not extreme. Then H is not a supporting hyperplane
of the polytope conv(G, p) and hence we can use Claim 5 to show that by reflecting a
component of G− S about H we obtain an equivalent realization (G, q) in which the
distance between some pair of vertices is strictly smaller than that in (G, p).

It is easy to see that in R1 Lemma 4 remains valid without assuming that the points
are in general position. Thus we have the following corollary. For a graph G = (V,E)
and vertex set X ⊆ V we use G[X] to denote the subgraph of G induced by X.

Lemma 6. Let (G, p) be a compressed one-dimensional framework and let X denote
the set of cut-vertices of G. Then
(i) u is extreme for every u ∈ X,
(ii) G[X] is bipartite,
(iii) if (G, p) is generic then |X| ≤ 2.

Proof. (i) is clear from Lemma 4. Since (G, p) is one-dimensional, all the extreme
vertices are mapped to two specific points of R1. Since coincident extreme points
must be non-adjacent, (ii) follows. In a generic framework there are no coincident
pairs of points. This gives (iii).
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Figure 3: A graph which is not compressible in R1.

Let G be a 2-connected graph on vertex set V . Let V ′ denote the vertices of G
which belong to at least one cut-pair of G and define a graph Ḡ on V ′ by letting
uv ∈ E(Ḡ) if and only if {u, v} is a cut-pair in G.

Since the convex hull of a two-dimensional framework in general position is a strictly
convex polygon, Lemma 4 implies that Ḡ is a subgraph of a cycle:

Lemma 7. Let (G, p) be a compressed two-dimensional framework in general position.
Then Ḡ is either
(i) a cycle, or
(ii) a collection of pairwise vertex-disjoint paths.

We shall characterize compressible graphs in R1 (resp. generically compressible
graphs in R1) by proving that the necessary conditions in Lemma 6(ii) (resp. Lemma
6(iii)) are also sufficient.

In the two-dimensional case we shall obtain a partial result by proving that if the
necessary condition of Lemma 7(i) holds and G is an M -connected graph (we define
M -connected later) then G is compressible in R2.

3.1 Ear-decompositions

The one-dimensional compressed realizations we shall construct will be obtained in-
ductively by using the well-known decomposition resp. construction method that
builds up a graph by adding ears. We recall the definitions.

Let G = (V,E) be a graph. An ear-decomposition of G is a sequence P1, P2, ..., Pt

of subgraphs (called ears) of G satisfying the following properties:
(i) every ear is a (closed or open) path,
(ii) the first ear is closed (that is, P1 is a cycle),
(iii) every edge of G belongs to exactly one ear,
(iv) the intersection of the vertex set of Pi and the union of the vertex sets of
P1, P2, ..., Pi−1 coincides with the end-vertices of Pi, for 2 ≤ i ≤ t.
The ear-decomposition is open if every ear, except for the first one, is open. The next
theorem of H. Whitney is well-known in graph theory.

Theorem 8. [13] A graph G has an open ear-decomposition if and only if G is 2-
connected.
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4 Semi-generic realizations of graphs

It follows from Lemma 6 that if G is compressible then G[X] is bipartite, where X
denotes the set of cut-vertices of G. Furthermore, in any compressed realization (G, p)
each vertex of X is mapped to one of the two boundary points of the realization. Hence
(G, p) is typically highly non-generic with several coincident points.

Non-generic realizations, in general, are difficult to deal with, even in R1. In order
to obtain a managable set of frameworks we shall introduce the concept of stretched
semi-generic realizations of graphs and verify some properties of their equivalent re-
alizations. Based on the lemmas proved in this section we shall be able to prove that
the necessary condition of compressibility, mentioned above, is also sufficient. In the
proof of this result we shall construct special stretched semi-generic realizations for
graphs in which the cut-vertices induce a bipartite subgraph, and show that they are
compressed.

In this section we consider one-dimensional realizations (G, p) of 2-connected graphs
G in standard position, which means that for a designated vertex x0 of G we have
p(x0) = 0. Since every framework can be moved to standard position by a translation,
we preserve (a congruent copy of) every equivalent realization of every framework with
underlying graph G by pinning x to the origin.

Let G = (V,E) be a graph and let X ⊆ V be a vertex set. A one-dimensional
realization (G, p) of G is said to be semi-generic (with respect to X) if
(i) p(x) is an integer for all x ∈ X, and
(ii) the set {p(v) : v ∈ V −X} is algebraically independent over the rationals.

We shall assume that X is non-empty and the pinned vertex x0 belongs to X.
Consider a one-dimensional semi-generic realization (H, p) of some graph H with

respect to a set X ⊆ V (H). Suppose that graph G is obtained from H by adding a
new open ear, that is, by attaching a path P to H along the end-vertices s, t of P .
Let XP be a (possibly empty) subset of the internal vertices of P . Now we define a
specific method for extending (H, p) to a semi-generic realization of G with respect
to X ∪ XP . We assume that if p(s) = p(t) holds then P has at least two edges (for
otherwise no extended framework exists). We need the following notions.

Consider a path T = (a1, a2, ..., ak) on k vertices, in this order, and a one-dimensional
realization (T, p) of T . We say that (T, p) is stretched if the sequence p(a1), p(a2), . . . , p(ak)
is strictly monotone (increasing or decreasing). Note that in this case ||p(ak)−p(a1)|| =∑k

i=2 ||p(ai)−p(ai−1)||. We call a realization (T, p) loop-stretched if p(a1) = p(ak) and
the realization restricted to the subpath (a1, a2, ..., ak−1) is stretched. In this case
||p(ak)− p(ak−1)|| =

∑k−1
i=2 ||p(ai)− p(ai−1)||. See Figure 4.

The vertex set XP decomposes the (edge-set of) P into subpaths T1, T2, ..., Tm that
connect pairs of vertices of the set XP ∪ {s, t}. We say that an extension (G, p′) of
(H, p) is stretched if the realization restricted to Ti is stretched or loop-stretched, for
all 1 ≤ i ≤ m. It is a semi-generic stretched extension if it is a stretched extension
in which the coordinates of the vertices of XP are integers and the set {p(v) : v ∈
(V (H) − X) ∪ (V (P ) − {s, t} − XP )} is generic, i.e. algebraically independent over
the rationals. See Figure 5.

It is useful to observe that in the above construction of a semi-generic stretched
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Figure 4: A looped-stretched realization of a path.

Figure 5: A semi-generic stretched extension.
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extension of (H, p) we may guarantee that {p(v) : v ∈ (V (H)−X)∪ (V (P )−{s, t}−
XP )} is generic by choosing generic edge lengths for all but one of the edges of Ti, for
each 1 ≤ i ≤ m. Let us declare some edge of each path Ti inessential and let us call
all the other edges essential, for 1 ≤ i ≤ m. Let Si denote the set of essential edges
of Ti, 1 ≤ i ≤ m.

Lemma 9. Let (H, p) be semi-generic with respect to X ⊆ V (H) and let (G, p) be a
stretched extension of (H, p). Then (G, p) is semi-generic if and only if
(i) p(x) is an integer for all x ∈ XP , and
(ii) the set {p(v) : v ∈ V (H)−X}, together with the edge lengths of all the essential
edges on P , is algebraically independent over the rationals.

Finally, we define a property of frameworks that will turn out to be crucial when we
show, in the next section, that certain semi-generic frameworks are compressed. We
say that a framework (G, p) is well-behaved if for every equivalent realization (G, q),
and for all v ∈ V , we have that

||q(v)− p(v)|| or ||q(v) + p(v)|| is an even integer. (1)

Thus either the position q(v) can be obtained from p(v) by an even valued translation
or by a reflection about an integer point. In particular, if p(v) is an integer then q(v)
is also an integer.

The main result of this section is as follows.

Theorem 10. Let (H, p) be a well-behaved semi-generic framework with respect to
X and let (G, p′) be a stretched semi-generic extension of (H, p). Then (G, p′) is
well-behaved.

Proof. As above, let P , s, t, XP , and Ti, 1 ≤ i ≤ m be the extending path, its
end-vertices, its designated set of internal vertices, and the corresponding subpaths,
respectively. Let us define some edge of Ti to be inessential for all 1 ≤ i ≤ m.

Consider a realization (G, q) of G which is equivalent to (G, p′). For an edge e = uv
of G let l(e) = ||p(u)− p(v)|| = ||q(u)− q(v)|| denote its length in these realizations.
We first show that (G, q) is also stretched.

Claim 11. If (Ti, p) is stretched (resp. looped-stretched) then (Ti, q) is also stretched
(resp. looped-stretched), for all 1 ≤ i ≤ m.

Proof. Since the restriction of (G, q) to H is an equivalent realization of (H, p), and
(H, p) is well-behaved, it follows that ||q(s) − p(s)|| or ||q(s) + p(s)|| is equal to an
even integer Z(s) and that ||q(t) − p(t)|| or ||q(t) + p(t)|| is equal to an even integer
Z(t).

Observe that the distance between the end-vertices of P is equal to the signed
sum of the distances between the end-vertices si, ti of the Ti’s, in each of the two
realizations. Thus

||p(s)− p(t)|| =
m∑
i=1

±||p(si)− p(ti)||,

EGRES Technical Report No. 2019-10



Section 4. Semi-generic realizations of graphs 10

and a similar equality holds for the q’s. The next key observation is that for each
Ti either we have ||p(si)− p(ti)|| = ||q(si)− q(ti)|| (in which case the claim holds for
Ti) or ||p(si)− p(ti)|| − ||q(si)− q(ti)|| = ±2

∑
e∈Ri

l(e), where Ri ⊆ Si. Thus, in the
latter case (which occurs, roughly speaking, when some edges of Ti are traversed in
the opposite direction in (G, q) when we move from si to ti) the difference is equal to
twice the sum of the edge lengths of some essential edges of Ti. Note that we may
assume that the single inessential edge of Ti is traversed the same way.

Suppose, for a contradiction, that the claim is false and hence the two distances in
question are different for some subpath Ti. Then we can use the previous observations
and the fact that the coordinates of the end-vertices si, ti (except, possibly, for s = s1
and t = tm) are integers, to deduce that

||q(s)− q(t)|| − ||p(s)− p(t)|| = Z ± p(s)± p(t) =
∑
e∈R

±2l(e),

where Z is an integer and R is a non-empty subset of the essential edges of P . This
gives rise to a non-trivial algebraic dependence between some essential edge lengths
and p(s), p(t). By Lemma 9 this contradicts the fact that (G, p) is semi-generic. This
completes the proof of the claim.

We next show that (G, q) is also semi-generic. Since (H, p) is well-behaved, and by
Lemma 9, it suffices to show the following claim.

Claim 12. q(v) is an integer for all v ∈ XP .

Proof. We may suppose that XP is not empty. Let v1 (resp. vr) be the first (resp.
last) internal vertex of P that belongs to XP . We may have v1 = vr. By Claim 11
the distance between the end-vertices of each subpath Ti is the same in (G, p) and in
(G, q). Hence it suffices to show that q(v1) (or q(vr)) is an integer. It is clear if s or
t belongs to X, which includes the case when p(s) = p(t) (since only X-vertices can
be coincident by the semi-generic property of (H, p)).

Thus we may assume that s, t /∈ X. We can use Claim 11 and the fact that (H, p) is
well-behaved to deduce that q(v1) is either an integer or it is equal to an integer plus
or minus 2p(s). Similarly, we obtain that q(vr) is either an integer or it is equal to an
integer plus or minus 2p(t). Since v1, vr ∈ XP , Claim 11 implies that ||q(v1)− q(vr)||
is an integer. Thus q(v1) (as well as q(vr)) must be an integer, for otherwise we obtain
an algebraic dependence between p(s) and p(t), contradicting the fact that (H, p) is
semi-generic and s, t /∈ X.

Finally we show that (G, p′) is well-behaved. Since (H, p) is well-behaved, (1) is
satisfied for all vertices of H. Thus if P has no internal vertices then (G, p′) is clearly
well-behaved. So we may assume that P has at least one internal vertex.

First suppose that no internal vertex of P belongs to XP . Then there is only one
subpath T1 = P . By Claim 11 P is stretched or loop stretched in (G.p′) as well as
in (G, q). If P is loop stretched, then its end-vertices are coincident, with integer
coordinates. This shows that (1) holds for all internal vertices of P . If P is stretched,
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Section 5. Compressible graphs in R1 11

we can also deduce that (1) holds for all internal vertices of P by using that we have
||q(t)− q(s)|| = ||p(t)− p(s)|| and that (H, p) is well-behaved.

Next suppose that at least one internal vertex of P is part of XP . By Claim
12 q(v) is an integer for all v ∈ XP . Let v1 be the first internal vertex of P that
belongs to XP . By Claim 11 the distance from v1 to s is the same in (G, p′) and in
(G, q). Since (H, p) is well-behaved, q(s) and p(s) satisfy one of the two alternatives
in (1). Furthermore, q(v1) is either on the left side or on the right side of q(s).
This gives us four cases to consider. It is easy to check that (1) holds for v1 in the
two cases when s and the first subpath T1 “move together”. In the remaining two
cases we have that q(v1) = p(s) − Ze + (p(s) − p(v1)) = 2p(s) − Ze + p(v1) and
q(v1) = p(s)− 2(p(s)− Z)− (p(s)− p(v1) = p(v1)− 2(p(s)− Z), respectively, where
Ze is an even integer and Z is an integer. By Claim 12 q(v1) is an integer. Moreover,
by the semi-generic property of (H, p), if p(s) is rational then it is an integer. Thus
in each of these cases we obtain that (1) holds for v1.

This implies, by considering the subpaths Ti along P one by one, that (1) holds
for all v ∈ XP and also for all internal vertices of P . Thus (G, p′) is well-behaved, as
claimed.

We can deduce the following corollary on realizations of cycles.

Lemma 13. Let C be a cycle and let X be a set of vertices of C. Then there exists
a well-behaved realization of C which is semi-generic with respect to X.

Proof. Let x0 ∈ X be the vertex fixed to the origin. Apply Theorem 10 so that H is
equal to the one-vertex graph consisting of x0 and G = C.

Theorem 14. Let G be a 2-connected graph and let X be a set of vertices of G. Then
G has a well-behaved semi-generic realization with respect to X.

Proof. By induction on the number of ears. We can use Theorem 8 and Lemma 13,
together with Theorem 10 to construct the required realization as long as we make sure
that whenever a one-edge ear is added, the end-vertices of the ear are not coincident.
This can be achieved, for example, by using different integers for the coordinates of
the vertices in X.

5 Compressible graphs in R1

Note that the proofs of Theorems 10 and 14 show that when we create a well-behaved
semi-generic framework by iteratively adding ears, then in every iteration we can
choose arbitrary integers for the coordinates of the vertices in XP and arbitrary generic
coordinates for the internal vertices of the subpaths Ti, provided we respect the (loop)-
stretched property of Ti. We shall use this freedom in the proof of the next theorem.

Let G be a 2-connected graph and let X be a designated vertex set for which G[X]
is bipartite with bipartition X = A ∪B. We assume that G[X] has at least one edge
(hence A and B are both non-empty).
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We say that a one-dimensional well-behaved semi-generic realization (G, p∗), with
respect to X, is proper if it is obtained by iteratively adding ears and respecting the
following properties:
(i) p(a) = 0, for all a ∈ A,
(ii) p(b) = 1, for all b ∈ B,
(iii) p(v) ∈ (0, 1), for all v ∈ V −X.

By the remarks above, and by Theorem 8, (G, p∗) exists. Note that, since G[X]
is bipartite, (i) and (ii) implies that if a one-edge ear is added, the end-vertices of
the ear cannot be coincident. Also note that in this construction every subpath Ti
(of every ear P ) that connects two vertices from A (or two vertices from B) is loop
stretched, while all the other subpaths are stretched.

Lemma 15. Let (G, p∗) be a proper one-dimensional well-behaved semi-generic real-
ization of a 2-connected graph G. Then (G, p∗) is compressed.

Proof. Let (G, q) be a realization of G equivalent to (G, p∗) and consider two vertices
x, y ∈ V . Suppose, without loss of generality, that 0 ≤ p(x) ≤ p(y) ≤ 1. We use the
fact that (G, p∗) is well-behaved to deduce that the distance from q(x) to some even
integer is at most p(x), and, similarly, the distance from q(y) to some odd integer is
at most 1− p(y). These bounds imply that ||q(x)− q(y)|| ≥ ||p(x)− p(y)||.

If G is not 2-connected, we can construct a compressed realization (G, p) by taking a
proper well-behaved semi-generic realization for every maximal 2-connected subgraph
H, with respect to the set XH of cut-vertices of G included by H. Since the subgraph
of H spanned by XH is bipartite, and due to the tree structure of the maximal 2-
connected subgraphs, this can be done. Note that if H has only two vertices then one
vertex of H is mapped to 0, the other vertex is mapped to 1. Furthermore, observe
that the construction of a proper realization is symmetric in the sense that the pinned
vertex may be chosen from B as well. When we merge two pinned frameworks, only
one vertex remains pinned. A proof similar to that of Lemma 15 shows that this
realization is compressed.

Thus we obtain the main result of this section. Necessity follows from (the remark
after) Proposition 2 and Lemma 6.

Theorem 16. Let G = (V,E) be a graph. Then G is compressible in R1 if and only
if G is connected and the subgraph spanned by its cut-vertices is bipartite.

5.1 Generic realizations

The case of generic compressibility is much simpler.

Theorem 17. Let G be a graph. Then G has a compressed generic realization in R1

if and only if G is connected and has at most two cut-vertices.

Proof. Necessity follows from Proposition 2 and Lemma 6(iii). To prove sufficiency,
first recall that every 2-connected graph has a globally rigid (and hence compressed)
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Figure 6: A compressed generic one-dimensional realization of a graph with two cut-
vertices.

realization in R1, see e.g. [4]. The same holds for a complete graph K2 on two vertices.
Thus we may assume that G has at least three vertices and has at least one cut-vertex.

It is easy to see that if G has at most two cut-vertices then there exists a maximal
2-connected subgraph H of G, or possibly a subgraph H isomorphic to K2, such
that every cut-vertex is part of H. Construct a generic realization (H, p) of H for
which every vertex, which is a cut-vertex of G, is extreme. This realization is globally
rigid. Then extend this to a realization of G by mapping the remaining vertices to
generic points in the interior of conv(H, p), see Figure 6. The extended framework is
compressed.

6 Compressible graphs in R2

The equivalent realizations of a generic rigid framework (G, p) in R2 can be obtained
by a sequence of partial reflections. In R2 it is much more difficult to find a description
of the equivalent realizations for rigid (but not globally rigid) graphs. There exist 3-
connected rigid graphs which are not globally rigid (e.g. the prism), showing that
one needs more complex moves than partial reflections along lines determined by cut-
pairs of G. In this section we shall build on the following “exact” result and consider
compressed generic realizations of M -connected graphs in R2.

Theorem 18. [5] Let (G, p) be a generic realization of an M-connected graph G in R2.
Then we can obtain a representative of each distinct congruence class of frameworks
which are equivalent to (G, p) by iteratively applying the following operation to (G, p):
choose a cut-pair {u, v} of G and reflect some, but not all, of the components of
G− {u, v} in the line through the points p(u), p(v).

The definition of M -connected graphs5 is based on the so-called two-dimensional
rigidity matroid of a graph, see [5]. Here we use a theorem from [5] and provide an

5We also remark that in R2 every globally rigid graph is M -connected and every M -connected
graph is rigid [5]. Furthermore, a graph G is globally rigid if and only if it is 3-connected and
M -connected [5].
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Section 6. Compressible graphs in R2 14

equivalent definition which is based on the decomposition of 2-connected graphs into
cleavage units (or maximal 3-connected subgraphs). We need the following definitions.

Let H = (V,E) be a 2-connected graph and let a, b be a cut-pair in H. Suppose
that H is the union of two subgraphs H1, H2 with V (H1) ∩ V (H2) = {a, b}. For
1 ≤ i ≤ 2 let H ′i = Hi + ab if ab is not an edge of Hi and otherwise put H ′i = Hi. We
say that H ′1, H

′
2 are the cleavage graphs obtained by cleaving H along {a, b}. We say

that a cut-pair {x1, x2} crosses another cut-pair {y1, y2} in a 2-connected graph G, if
x1 and x2 are in different components of G−{y1, y2}. It is easy to see that if {x1, x2}
crosses {y1, y2} then {y1, y2} crosses {x1, x2}. Thus, we can say that these cut-pairs
are crossing.

Let G = (V,E) be a 2-connected graph. The cleavage units of G are the graphs
obtained by recursively cleaving G along each of its cut-pairs. If G has no crossing
cut-pairs, this sequence of operations is uniquely defined and results in a unique set
of cleavage units each of which is 3-connected or isomorphic to K3.

Since M -connected graphs have no crossing cut-pairs or K3 cleavage units (see
[5]), an equivalent definition for the cleavage units in M -connected graphs is to first
construct the augmented graph Ĝ from G by adding all edges uv for which {u, v} is
a cut-pair of G and uv 6∈ E, and then take the cleavage units to be the maximal 3-
connected subgraphs of Ĝ. It can also be shown that the decomposition into cleavage
units has a natural decomposition tree. (These definitions are a special case of a
general decomposition theory for 2-connected graphs due to Tutte [11].)

By combining Theorems 3.7 and 7.1 of [5], we have the following result that we can
use to define M-connectivity.

Theorem 19. [5] A graph G is M-connected if and only if it is 2-connected and each
of its cleavage units is globally rigid.

We need one more structural observation before we can verify the main result of
this section.

Lemma 20. Let G be a 2-connected graph. Suppose that Ḡ is a cycle. Then there is
a cleavage unit H of G with V (Ḡ) ⊆ V (H).

Proof. Let {u, v} be a cut-pair of G and let C = Ḡ. Consider two components X, Y
of G − {u, v} and suppose, for a contradiction, that some vertex a of C is in X and
some other vertex b of C is in Y . Since C is a cycle, it contains a path from a to b
that avoids u, v. Thus there exists an edge xy of C that connects a pair of vertices
that belong to different components of G−{u, v}. This implies that {u, v} and {x, y}
are crossing cut-pairs, a contradiction.

Therefore the vertex set of C intersects exactly one component of G−{u, v}. Hence
we may perform the cleaving operations so that we end up with a cleavage unit H
with V (C) ⊆ V (H).

Theorem 21. Let G be an M-connected graph for which G is a cycle of length t.
Then G is generically compressible in R2.
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Figure 7: A compressed two-dimensional realization of graph G. The dashed edges
represent Ḡ.

Figure 8: The feasible area for the vertices of X.

Proof. By Lemma 20 there is a cleavage unit H of G which contains the vertices of
all cut-pairs {ui, vi}, 1 ≤ i ≤ t and hence each component of G− V (H) corresponds
to a component of G− {ui, vi} for some 1 ≤ i ≤ t.

Let S = V (Ḡ) denote the union of the cut-pairs of G. Construct a realization (G, p)
of G as follows. First map S to generic points in R2 so that conv(S, p) is a (close to)
regular t-gon in which the cyclic ordering of the vertices coincides with that in Ḡ, see
Figure 7. Then map the vertices of each component X of G−{ui, vi} (except for the
one that contains vertices from H), for all 1 ≤ i ≤ t, to generic points in the interior
of conv(S, p) independently, making sure that by reflecting the vertices of X about
the line through p(ui), p(vi), the reflected points stay on the same side of each line
that passes through p(uj), p(vj), for all 1 ≤ j ≤ t, j 6= i. See Figure 8.

This realization is compressed by Claim 5 and Theorem 18.

We believe that the conditions of Lemma 7 together lead to a complete characteri-
zation of generically compressible M -connected graphs:

Conjecture 22. Let G be M-connected in R2. Then G is generically compressible in
R2 if and only if Ḡ is a cycle or a collection of pairwise vertex-disjoint paths.
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7 Concluding remarks

We have a long list of open problems motivated by our new notions and results.
For example, as we noted earlier, we may reverse the inequality in the definition
of compressed frameworks and introduce the notion of expanded frameworks. Then
it is natural to call a graph G (generically) expansible in Rd if it has an expanded
d-dimensional (generic) realization (G, p). Our initial investigations show that it is
not hard to characterize the (generically) expansible graphs in R1, but the higher
dimensional questions remain open.

We may also consider frameworks (G, p) for which there exists a non-congruent
equivalent realization (G, q) in which all pairwise distances are greater than or equal
to the original ones. This happens to be a question about tensegrity frameworks, in
which, on top of the fixed length bars, cables and struts - that give rise to upper or
lower bounds for the distance of their endvertices - may also be present [9]. It is not
hard to observe that (G, p) has this property if and only if the tensegrity framework
(T, p), obtained from (G, p) by adding a strut uv for each non-adjacent pair u, v is
not globally rigid.

If this bar-strut structure (T, p) is not even rigid, the framework (G, p) has a so-
called expansive motion [2]. In this context the notion of compressed framework can
be viewed as a kind of discrete version of expansive motions.
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