Egerváry Research Group on Combinatorial Optimization

Technical reportS

TR-2019-07. Published by the Egerváry Research Group, Pázmány P. sétány $1 / \mathrm{C}, \mathrm{H}-1117$, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Discrete Decreasing Minimization, Part I: Base-polyhedra with Applications in Network Optimization

András Frank and Kazuo Murota

Discrete Decreasing Minimization, Part I: Base-polyhedra with Applications in Network Optimization

András Frank ${ }^{\star}$ and Kazuo Murota*夫

Abstract

Motivated by resource allocation problems, Borradaile et al. (2017) investigated orientations of an undirected graph in which the sequence of in-degrees of the nodes, when arranged in a decreasing order, is lexicographically minimal in the sense that the largest in-degree is as small as possible, within this, the next largest in-degree is as small as possible, and so on. They called such an orientation egalitarian but we prefer to use the term decreasingly minimal (=dec-min) to avoid confusion with another egalitarian-felt orientation where the smallest in-degree is as large as possible, within this, the next smallest in-degree is as large as possible, and so on. Borradaile et al. proved that an orientation is dec-min if and only if there is no dipath for which the in-degree of its last node is at least two larger than the in-degree of its first node. They conjectured that an analogous statement holds for strongly connected dec-min orientations, as well. We prove not only this conjecture but its extension to k-edgeconnected orientations, as well, even if additional in-degree constraints are imposed on the nodes.

Resource allocation was also the motivation behind an earlier framework by Harvey et al. (2006) who introduced and investigated semi-matchings of bipartite graphs. As a generalization of their results, we characterize degree-constrained subgraphs of a bipartite graph $G=(S, T ; E)$ which have a given number of edges and their degreesequence in S is decreasingly minimal. We also provide a solution to a discrete version of Megiddo's 'lexicographically' optimal (fractional) network flow problem (1974, 1977).

Furthermore, we exhibit a generalization of a result of Levin and Onn (2016) on 'shifted' matroid optimization, and describe a way of finding a basis of each of k matroids so that the sum of their incidence vectors is decreasingly minimal.

Our main goal is to integrate these cases into a single framework. Namely, we characterize dec-min elements of an M-convex set (which is nothing but the set of integral

[^0]points of an integral base-polyhedron), and prove that the set of dec-min elements is a special M-convex set arising from a matroid base-polyhedron by translation. The topic of our investigations may be interpreted as a discrete counter-part of the work by Fujishige (1980) on the (unique) lexicographically optimal base of a base-polyhedron. On the dual side, as an extension of a result of Borradaile et al. (2018) on density decomposition of networks, we exhibit a canonical chain (and partition) associated with a base-polyhedron. We also show that dec-min elements of an M-convex set are exactly those which minimize the square-sum of components, and describe a new min-max formula for the minimum square-sum.

Our approach gives rise to a strongly polynomial algorithm for computing a dec\min element, as well as the canonical chain. The algorithm relies on a submodular function minimizer oracle in the general case, which can, however, be replaced by more efficient classic flow- and matroid algorithms in the relevant special cases.

This paper constitutes the first part of a series of our papers on discrete decreasing minimization. In Part II, we offer a broader structural view from discrete convex analysis (DCA). In particular, min-max formulas will be derived as special cases of general DCA results. Furthermore, the relationship between continuous and discrete problems will also be clarified. In Part III we describe the structure of decreasingly minimal integral feasible flows and develop a strongly polynomial algorithm for finding such a dec-min flow. In Part IV we consider the discrete decreasing minimization problem over the intersection of two base-polyhedra, and also over submodular flows. Finally, Part V deals with discrete decreasing minimality with respect to a weight vector.

Keywords: base-polyhedron, lexicographic minimization, M-convex set, matroid, network optimization, polynomial algorithm, resource allocation, submodular optimization.

Contents

1 Introduction 5
1.1 Background problems 5
1.1.1 Orientations of graphs 5
1.1.2 A resource allocation problem and network flows 6
1.1.3 Matroid bases 8
1.2 Main goals 9
1.3 Notation 10
2 Base-polyhedra 12
3 Decreasingly minimal elements of M-convex sets 14
3.1 Decreasing minimality 14
3.2 Characterizing dec-min elements 15
3.3 Minimizing the sum of the k largest components 18
3.4 An example for the intersection of two base-polyhedra 19
4 Characterizing the set of pre-decreasingly minimal elements 20
4.1 Max-minimizers and pre-dec-min elements 20
4.2 The peak-set S_{1} 22
4.3 Separating along S_{1} 23
4.4 The matroid M_{1} on S_{1}. 25
4.5 Value-fixed elements of S_{1} 26
5 The set of dec-min elements of an M-convex set 28
5.1 Canonical partition and canonical chain 28
5.2 Obtaining the canonical chain and value-sequence from a dec-min element 30
5.3 Matroidal description of the set of dec-min elements 32
6 Integral square-sum and difference-sum minimization 33
6.1 Symmetric convex minimization 34
6.2 Min-max theorem for integral square-sum 37
6.3 The set of optimal duals to integral square-sum minimization 41
7 Algorithms 44
7.1 The basic algorithm for computing a dec-min element 45
7.2 Computing the essential value-sequence, the canonical chain and partition 46
7.3 Maximizing $\left.\frac{p(X)}{b(X)}\right]$ with the Newton-Dinkelbach (ND) algorithm 47
7.4 Computing a dec-min element in strongly polynomial time 50
8 Applications 51
8.1 Background 51
8.2 Matroids 51
8.3 Flows 53
8.3.1 A base polyhedron associated with net-in-flows 53
8.3.2 Discrete version of Megiddo's flow problem 53
8.4 Further applications 54
8.4.1 Root-vectors of arborescences 54
8.4.2 Connectivity augmentations 54
9 Orientations of graphs 55
9.1 Decreasingly minimal orientations 55
9.2 Capacitated orientation 56
9.3 Canonical chain and essential value-sequence for orientations 57
9.4 Cheapest dec-min orientations 58
9.5 Orientation with dec-min in-degree vector and dec-min out-degree vector 58
10 In-degree constrained orientations of graphs 59
10.1 Computing a dec-min in-degree constrained orientation 59
10.2 Cheapest dec-min in-degree constrained orientations 61
10.3 Dec-min (f, g)-bounded orientations minimizing the in-degree of T 63
10.4 Application in resource allocation: semi-matchings 65
11 Orientations of graphs with edge-connectivity requirements 68
11.1 Strongly connected orientations 68
11.2 A counter-example for mixed graphs 70
11.3 Higher edge-connectivity 71

References

1 Introduction

1.1 Background problems

There are three independent sources of the topic we study.

1.1.1 Orientations of graphs

Let $G=(V, E)$ be an undirected graph. Orienting an edge $e=u v$ means the operation that replaces e by one of the two oppositely directed edges (sometimes called arcs) $u v$ or $v u$. A directed graph arising from G by orienting all of its edges is called an orientation of G. A graph orientation problem consists of finding an orientation of G meeting some specified properties such as in-degree constraints (lower and upper bounds) and/or various connectivity prescriptions. One goal is to characterize undirected graphs for which the requested orientation exists, and a related other one is to design an algorithm for finding the orientation. The first orientation result is due to Robbins [57] who proved that exactly the 2 -edge-connected graphs admit strongly connected (strong, for short) orientations. The indegree constrained orientation problem is equivalent to an in-degree constrained subgraph problem for directed graphs. An explicit characterization was formulated by Frank and Gyárfás [18], but this may be considered as an appropriate adaptation (or reformulation) of a characterization of degree-constraints for subgraphs of a digraph ([12], Theorem 11.1). The proper novelty of [18] was a solution to an amalgam of the two orientation problems above when one is interested in the existence of a strong orientation which, in addition, complies with upper and lower bounds on the in-degrees of nodes.

The literature is quite rich in orientation results, for a relatively wide overview, see the book [17]. There are, however, other type of requirements for an orientation of G where, rather than having prescribed upper and lower bounds for the in-degrees of nodes (or, sometimes, beside these bounds), one is interested in the global distribution of the in-degrees of nodes. That is, the goal is to find orientations (with possible connectivity expectations) whose in-degree vector (on the node-set) is felt intuitively evenly distributed: 'fair', 'equitable', 'egalitarian', 'uniform'. For example, how can one determine the minimum value β_{1} of the largest in-degree of a (k-edge-connected) orientation? Even further, after determining β_{1}, it might be interesting to minimize the number of nodes with in-degree β_{1} among orientations of G with largest in-degree β_{1}. Or, a more global equitability feeling is captured if we minimize the sum of squares of the in-degrees. For example, the in-degree sequence $(1,2,6,8)$ (with square-sum 105) is felt less 'fair' or 'egalitarian' or 'evenly distributed' than $(4,4,4,5)$ (with square-sum 73). For an in-degree distribution, yet another natural way to measure its deviation from uniformity is to consider the sum $\sum[\varrho(v)-\varrho(u) \mid: u, v, \in V]$, where $\varrho(v)$ denotes the in-degree of v. One feels an orientation 'fair' if this sum is as small as possible.

A formally different definition was recently suggested and investigated by Borradaile et al. [6] who called an orientation of $G=(V, E)$ egalitarian if the highest in-degree of the nodes is as small as possible, and within this, the second highest (but not necessarily distinct) in-degree is as small as possible, and within this, the third highest in-degree is as small as possible, and so on. In other words, if we rearrange the in-degrees of nodes in a
decreasing order, then the sequence is lexicographically minimal. In order to emphasize that the in-degrees are considered in a decreasing order, we prefer the use of the more expressive term decreasingly minimal (dec-min, for short) for such an orientation, rather than egalitarian.

This change of terminology is reasonable since one may also consider the mirror problem of finding an increasingly maximal (or inc-max, for short) orientation that is an orientation of G in which the smallest in-degree is as large as possible, within this, the second smallest in-degree is as large as possible, and so on. Intuitively, such an orientation may equally be felt 'egalitarian' in the informal meaning of the word.

Borradaile et al. [6], however, proved that an orientation of a graph is decreasingly minimal (egalitarian in their original term) if and only if there is no 'small' improvement, where a small improvement means the reorientation of a dipath from some node s to another node t with in-degrees $\varrho(t) \geq \varrho(s)+2$. This theorem immediately implies that an orientation is decreasingly minimal if and only if it is increasingly maximal, and therefore we could retain the original terminology 'egalitarian orientation' used in [6].

However, when orientations are considered with specific requirements such as strong (or, more generally, k-edge-) connectivity and/or in-degree bounds on the nodes, the possible equivalence of decreasingly minimal and increasingly maximal orientations had not yet been investigated. Actually, Borradaile et al. conjectured that a strong orientation of a graph is decreasingly minimal (among strong orientations) if and only if there is no small improvement preserving strong connectivity, and this, if true, would imply immediately that decreasing minimality and increasing maximality do coincide for strong orientations, as well.

We shall prove this conjecture in its extended form concerning k-edge-connected and in-degree constrained orientations. This result implies immediately that the notions of decreasing minimality and increasing maximality coincide for k-edge-connected and indegree constrained orientations, as well. We hasten to emphasize that this coincidence is not at all automatic or inevitable. For example, although Robbins' theorem on strong orientability of undirected graphs nicely extends to mixed graphs, as was pointed out by Boesch and Tindell [4], it is not true anymore that a decreasingly minimal strong orientation of a mixed graph is always increasingly maximal. (For a counterexample, see Section 11.2.) This discrepancy may be explained by the fact that the in-degree vectors of strong orientations of a graph form an M-convex set while the set of in-degree vectors of strong orientations of a mixed graph is not M-convex anymore: it is the intersection of two Mconvex sets. (The definition of an M-convex set was mentioned in the Abstract and will be introduced formally in Section 2.)

Interestingly, it will turn out that for k-edge-connected and in-degree constrained orientations of undirected graphs not only decreasing minimality and increasing maximality coincide but such orientations are exactly those minimizing the square-sum of the in-degrees of the nodes.

1.1.2 A resource allocation problem and network flows

Another source of our investigations is due to Harvey et al. [34] who solved the problem of minimizing $\sum\left[d_{F}(s)\left(d_{F}(s)+1\right): s \in S\right]$ over the semi-matchings F of a simple bipartite
graph $G=(S, T ; E)$. Here a semi-matching is a subset F of edges for which $d_{F}(t)=1$ holds for every node $t \in T$. Harada et al. [33] solved the minimum cost version of this problem. The framework of Harvey et al. was extended by Bokal et al. [5] to quasi-matchings, and, even further, to degree-bounded quasi-matchings by Katrenič and Semanišin [43]. It turns out that these problems are strongly related to minimization of a separable convex function over (integral elements of) a base-polyhedron which has been investigated in the literature under the name of 'resource allocation problems under submodular constraints'([11], [37], [36], [42], [39], [41]). Ghodsi et al. [30] considered the problem of finding a semi-matching F of $G=(S, T ; E)$ whose degree-vector restricted to S is increasingly maximal. This problem, under the name 'constrained max-min fairness' originated from a framework to model a fair sharing problem for datacenter jobs. Here T corresponds to the set of available computers while S to the set of users. An edge $s t$ belongs to E if user s can run her program on computer t. Ghodsi et al. also consider the fractional version when, instead of finding a semi-matching of G, one is to find a real vector $x: E \rightarrow \mathbf{R}_{+}$so that $d_{x}(t)=1$ for every $t \in T$ and the vector $\left(d_{x}(s): s \in S\right)$ is increasingly maximal. (Here $\left.d_{x}(v):=\sum[x(u v): u v \in E]\right)$. When x is requested to be $(0,1)$-valued, we are back at the subgraph version.

It should be emphasized that, unlike the well-known situation with ordinary bipartite matchings or b-matchings, in this problem the optima for the subgraph version and for the fractional version may be different. For example, if T consists of a single node $t, S=$ $\left\{s_{1}, s_{2}\right\}$, and $E=\left\{s_{1} t, s_{2} t\right\}$, then the original subgraph problem has two inc-max solutions: $F_{1}=\left\{s_{1} t\right\}$ and $F_{2}=\left\{s_{2} t\right\}$, where the degree-vector in S is $(1,0)$ in the first case, and $(0,1)$ in the second case. (Note that both F_{1} and F_{2} are also dec-min in S.) On the other hand, in the fractional version there is a unique inc-max fractional solution: $x\left(s_{1} t\right)=1 / 2$ and $x\left(s_{2} t\right)=$ $1 / 2$ (and this happens to be the unique dec-min solution). Here the 'fractional degreevector' of x in S is ($1 / 2,1 / 2$). Obviously, the fractional vector ($1 / 2,1 / 2$) is decreasingly smaller (and increasingly larger) than $(1,0)$.

We shall solve the following generalization of the subgraph problem. Suppose that we are also given a positive integer γ, a lower bound function $f: V \rightarrow \mathbf{Z}_{+}$and an upper bound function $g: V \rightarrow \mathbf{Z}_{+}$with $f \leq g$ where $V:=S \cup T$. The problem is to find a subgraph $H=(S, T ; F)$ of G with $|F|=\gamma$ for which $f(v) \leq d_{F}(v) \leq g(v)$ for every node $v \in V$ and the degree-vector of H in S (!) is increasingly maximal (or decreasingly minimal). It will turn out that in this case a solution is dec-min if and only if it is inc-max. We emphasize that in this problem the roles of S and T are not symmetric since we require that the restriction on S of the degree-vector of the degree-constrained subgraph H in S should be decreasingly minimal. The symmetric version when the degree-vector requested to be dec-min on the whole node-set $V=S \cup T$ is definitely more difficult, and will be solved in [24]. An explanation for this difference of the two seemingly quite similar problems is that the first one may be viewed as a problem concerning a single base-polyhedron while the second one may be viewed as a problem on the intersection of two base-polyhedra.

We also solve the degree-constrained subgraph problem when the subgraph, in addition, is requested to have a maximum number of edges (not just an arbitrarily prescribed number γ), and we are interested in such a subgraph for which its degree vector on the whole nodeset $S \cup T$ is decreasingly minimal.

There is a much earlier, strongly related problem concerning network flows, due to

Megiddo [48], [49]. We are given a digraph $D=(V, A)$ with a source-set $S \subset V$ and a single sink-node $t \in V-S$. (The more general case, when the sink-set $T \subseteq V-S$ may consist of more than one node can easily be reduced to the special case when $T=\{t\}$). Let $g: A \rightarrow \mathbf{R}_{+}$be a capacity function. By an $S t$-flow, or just a flow, we mean a function $x: A \rightarrow \mathbf{R}_{+}$for which the net out-flow $\delta_{x}(v)-\varrho_{x}(v)=0$ if $v \in V-(S+t)$ and $\delta_{x}(v)-\varrho_{x}(v) \geq 0$ if $v \in S$. (Here $\varrho_{x}(v):=\sum[x(u v): u v \in A]$ and $\delta_{x}(v):=\sum[x(v u): v u \in A]$.) The flow is feasible if $x \leq g$. The flow amount of x is defined by $\varrho_{x}(t)-\delta_{x}(t)$. Megiddo solved the problem of finding a feasible flow of maximum flow amount which is, with his term, 'source-optimal' at S. Source-optimality is the same as requiring that the net out-flow vector on S is increasingly maximal. Note that there is a formally different but technically equivalent version of Megiddo's problem when $S=\{s\}, T=\{t\}$ (with no arcs entering s) and we are interested in finding a feasible flow x of maximum amount for which the restriction of x onto the set of arcs leaving s is increasingly maximal. It must be emphasized that the flow in Megiddo's problem is not requested to be integer-valued.

The integrality property is a fundamental feature of ordinary network flows. It states that in case of an integer-valued capacity function g there always exists a maximum flow which is integer-valued. In this light, it is quite surprising that the integer-valued (or discrete) version of Megiddo's inc-max problem (source-optimal with his term), when the capacity function g is integer-valued and the max flow is required to be integer-valued, has not been investigated in the literature, and we consider the present work as the first such attempt.

We solve this discrete version of Megiddo's problem in a more general form concerning base-polyhedra (or M-convex sets) and this approach gives rise to a strongly polynomial algorithm.

1.1.3 Matroid bases

A third source of discrete decreasing minimality problems is due to Levin and Onn [44] who used the term 'shifted optimization'. They considered the following matroid optimization problem. For a specified integer k, find k bases $Z_{1}, Z_{2}, \ldots, Z_{k}$ of a matroid M on S in such a way that the vector $\sum_{i} \chi_{Z_{i}}$ be, in our terms, decreasingly minimal, where χ_{Z} is the incidence (or characteristic) vector of a subset Z. They apply the following natural approach to reduce the problem to classic results of matroid theory. Replace first each element s of S by k copies to be parallel in the resulting matroid M^{\prime} on the new ground-set $S^{\prime}=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ where S_{1}, \ldots, S_{k} are the k copies of S. Assign then a 'rapidly increasing' cost function to the copies. (The paper [44] explicitly describes what rapidly increasing means). Then a minimum cost basis of the matroid M_{0} obtained by multiplying $M^{\prime} k$-times will be a solution to the problem. (By definition, a basis of M_{0} is the union of k disjoint bases of M^{\prime}).

Our goal is to provide a solution to a natural generalization of this problem when k matroids M_{1}, \ldots, M_{k} are given on the common ground-set S and we want to select a basis Z_{i} of each matroid M_{i} in such a way that $\sum_{i} \chi_{Z_{i}}$ should be decreasingly minimal. The approach of Levin and Onn does not seem to work in this more general setting. We can even prescribe upper and lower bounds on the elements s of S to constrain the number of the bases containing s.

1.2 Main goals

Each of the three problems above may be viewed as a special case of a single discrete optimization problem: characterize decreasingly minimal elements of an M-convex set (or, in other words, dec-min integral elements of a base-polyhedron). By one of its equivalent definitions, an M-convex set is nothing but the set of integral elements of an integral basepolyhedron. The notion was introduced and investigated by Murota [51], [52].

We characterize dec-min elements of an M-convex set as those admitting no local improvement, and prove that the set of dec-min elements is itself an M-convex set arising by translating a matroid base-polyhedron with an integral vector. This result implies that decreasing minimality and increasing maximality coincide for M-convex sets. We shall also show that an element of an M-convex set is dec-min precisely if it is a square-sum minimizer. Using the characterization of dec-min elements, we shall derive a novel minmax theorem for the minimum square-sum of elements of an integral member of a basepolyhedron. Furthermore, we describe a strongly polynomial algorithm for finding a decmin element. The algorithm relies on a subroutine to minimize a submodular function but in the special cases mentioned above this general routine can be replaced by known strongly polynomial network flow and matroid algorithms.

The structural description of the set of dec-min elements of an M-convex set (namely, that this set is a matroidal M-convex set) makes it possible to solve the algorithmic problem of finding a minium cost dec-min element. (In the continuous case this problem simply did not exist due to the uniqueness of the fractional dec-min element of a base-polyhedron.) We shall also describe a polynomial algorithm for finding a minimum cost (in-degree constrained) dec-min orientation. Furthermore, we shall outline an algorithm to solve the minimum cost version of the resource allocation problem of Harvey et al. [34] mentioned at the beginning of Section 1.1.2. Furthermore, as an essential extension of the algorithm of Harada et al. [33], we describe a strongly polynomial algorithm to solve the minimum cost version of the decreasingly minimal degree-bounded subgraph problem.

The topic of our investigations may be interpreted as a discrete counter-part of the work by Fujishige [27] from 1980 on the lexicographically optimal base of a base-polyhedron B, where lexicographically optimal is essentially the same as decreasingly minimal. He proved that there is a unique lexicographically optimal member x_{0} of B, and x_{0} is the unique minimum norm (that is, the minimum square-sum) element of B. This uniqueness result reflects a characteristic difference between the behaviour of the fractional and the discrete versions of decreasing minimization since in the latter case the set of dec-min elements (of an M-convex set) is typically not a singleton, and it actually has, as indicated above, a matroidal structure.

Fujishige also introduced the concept of principal partitions concerning the dual structure of the minimum norm point of a base-polyhedron. Actually, he introduced a special chain of the subsets of ground-set S and his principal partition arises by taking the difference sets of this chain. We will prove that there is an analogous concept in the discrete case, as well. As an extension of the above-mentioned elegant result of Borradaile et al. [7] concerning graphs, we show that there is a canonical chain describing the structure of dec-min elements of an M-convex set. We will point out in Part II [22], that Fujishige's principal partition is a refinement of our canonical partition. Our approach gives rise to a combinatorial algorithm
to compute the canonical chain.
Outlook The present work is the first member of a five-partite series. In Part II [22], we offer a broader structural view from discrete convex analysis (DCA). In particular, minmax formulas will be derived as special cases of general DCA results. Furthermore, the relationship between continuous and discrete problems will also be clarified. In Part III [23] we describe the structure of decreasingly minimal integral feasible flows and develop a strongly polynomial algorithm for finding such a dec-min flow. Part IV [24] describes a strongly polynomial algorithm for the discrete decreasing minimization problem over the intersection of two M-convex sets, and also over the integral elements of an integral submodular flow. One of the motivations behind these investigations was the observation mentioned earlier that, for strong orientations of mixed graphs, dec-min orientations and inc-max orientations do not coincide. The reason behind this phenomenon is that the set of in-degree vectors of strong orientations of a mixed graph is not an M-convex set anymore. It is, in fact, the intersection of two M-convex sets, and therefore the results of Part IV can be used to solve this special case, as well. Finally, in Part V [25] we consider discrete decreasing minimality with respect to a weight vector.

1.3 Notation

Throughout the paper, S denotes a finite non-empty ground-set. For elements $s, t \in S$, we say that $X \subset S$ is an $s \bar{t}$-set if $s \in X \subseteq S-t$. For a vector $m \in \mathbf{R}^{S}$ (or function $m: S \rightarrow \mathbf{R}$), the restriction of m to $X \subseteq S$ is denoted by $m \mid X$. We also use the notation $\widetilde{m}(X)=\sum[m(v): v \in X]$. With a small abuse of notation, we do not distinguish between a one-element set $\{s\}$ called a singleton and its only element s. When we work with a chain C of non-empty sets $C_{1} \subset C_{2} \subset \cdots \subset C_{q}$, we sometimes use C_{0} to denote the empty set without assuming that C_{0} is a member of C.

Two subsets X and Y of S are intersecting if $X \cap Y \neq \emptyset$ and properly intersecting if none of $X-Y, Y-X$ and $X \cap Y$ is empty. If, in addition, $S-(X \cup Y) \neq \emptyset$, the two sets are crossing.

We assume that the occurring graphs or digraphs have no loops but parallel edges are allowed. For a digraph $D=(V, A)$, the in-degree of a node v is the number of arcs of D with head v. The in-degree $\varrho_{D}(Z)=\varrho(Z)$ of a subset $Z \subseteq V$ denotes the number of edges ($=$ arcs) entering Z, where an arc $u v$ is said to enter Z if its head v is in Z while its tail u is in $V-Z$.

The out-degree $\delta_{D}(Z)=\delta(Z)$ is the number of arcs leaving Z, that is $\delta(Z)=\varrho(V-Z)$. The number of edges of a directed or undirected graph H induced by $Z \subseteq V$ is denoted by $i(Z)=i_{H}(Z)$. In an undirected graph $G=(V, E)$, the degree $d(Z)=d_{G}(Z)$ of a subset $Z \subseteq V$ denotes the number of edges connecting Z and $V-Z$ while $e(Z)=e_{G}(Z)$ denotes the number of edges with one or two end-nodes in Z. Clearly, $e(Z)=d(Z)+i(Z)$.

The characteristic (or incidence) vector of Z is denoted by χ_{z}, that is, $\chi_{Z}(v)=1$ if $v \in Z$ and $\chi_{Z}(v)=0$ otherwise.

For a polyhedron B, \dddot{B} (pronounce: dotted B) denotes the set of integral members (elements, vectors, points) of B.

For a set-function h, we allow it to have value $+\infty$ or $-\infty$. Unless otherwise stated, $h(\emptyset)=0$ is assume throughout. Where $h(S)$ is finite, the complementary function \bar{h} is defined by $\bar{h}(X)=h(S)-h(S-X)$. Observe that the complementary function of \bar{h} is h itself.

Let b be a set-function for which $b(X)=+\infty$ is allowed but $b(X)=-\infty$ is not. The submodular inequality for subsets $X, Y \subseteq S$ is defined by

$$
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y)
$$

We say that b is submodular if the submodular inequality holds for every pair of subsets $X, Y \subseteq S$ with finite b-values. When the submodular inequality is required only for intersecting (crossing) pairs of subsets, we say that b is intersecting (crossing) submodular. When we say that a function b is submodular, this formally always means that b is fully submodular, but to avoid any misunderstanding we sometimes emphasize this by writing (fully) submodular, in particular in an environment where intersecting or crossing submodular functions also show up.

A set-function p is (fully, intersecting, crossing) supermodular if $-p$ is (fully, intersecting, crossing) submodular. When a submodular function b and a supermodular function p meet the cross-inequality

$$
b(X)-p(Y) \geq b(X-Y)-p(Y-X)
$$

for every pair $X, Y \subseteq S$, we say that (p, b) is a paramodular pair (a strong pair, for short). If b is intersecting submodular, p is intersecting supermodular, and the cross-inequality holds for intersecting pairs of sets, we speak of an intersecting paramodular pair (or for short, a weak pair).

For functions $f: S \rightarrow \mathbf{Z} \cup\{-\infty\}$ and $g: S \rightarrow \mathbf{Z} \cup\{+\infty\}$ with $f \leq g$, the polyhedron $T(f, g)=\left\{x \in \mathbf{R}^{S}: f \leq x \leq g\right\}$ is called a box. If $g(s) \leq f(s)+1$ holds for every $s \in S$, we speak of a small box. For example, the (0,1)-box is small.

Acknowledgement The authors are grateful to the six authors of the paper by Borradaile et al. [6] because that work triggered the present research (and this is so even if we realized later that there had been several related works). We thank S. Fujishige and S. Iwata for discussion about the history of convex minimization over base-polyhedra. We also thank A. Jüttner and T. Maehara for illuminating the essence of the Newton-Dinkelbach algorithm. J. Tapolcai kindly draw our attention to engineering applications in resource allocation. Z. Király played a similar role by finding an article which pointed to a work of Levin and Onn on decreasingly minimal optimization in matroid theory. We are also grateful to M. Kovács for drawing our attention to some important papers in the literature concerning fair resource allocation problems. Special thanks are due to T. Migler for her continuous availability to answer our questions concerning the paper [6] and the work by Borradaile, Migler, and Wilfong [7], which paper was also a prime driving force in our investigations. This research was supported through the program "Research in Pairs" by the Mathematisches Forschungsinstitut Oberwolfach in 2019. The two weeks we could spend at Oberwolfach provided an exceptional opportunity to conduct particularly intensive research.

2 Base-polyhedra

Let S be a finite non-empty ground-set and let b be a (fully) submodular integer-valued set-function on S for which $b(\emptyset)=0$ and $b(S)$ is finite. A (possibly unbounded) basepolyhedron $B=B(b)$ in \mathbf{R}^{S} is defined by

$$
B=\left\{x \in \mathbf{R}^{S}: \widetilde{x}(S)=b(S), \widetilde{x}(Z) \leq b(Z) \text { for every } Z \subset S\right\}
$$

A special base-polyhedron is the one of matroids. Given a matroid M, Edmonds proved that the polytope (that is, the convex hull) of the incidence (or characteristic) vectors of the bases of M is the base-polyhedron $B(r)$ defined by the rank function r of M, that is, $B(r)=\left\{x \in \mathbf{R}^{S}: \widetilde{x}(S)=r(S)\right.$ and $\widetilde{x}(Z) \leq r(Z)$ for every subset $\left.Z \subset S\right\}$. (Note that there is no need to require explicitly the non-negativity of x, since this follows from the monotonicity of the rank function $r: x(s)=\widetilde{x}(S)-\widetilde{x}(S-s) \geq r(S)-r(S-s) \geq 0)$. It can be proved that a kind of converse also holds, namely, every (integral) base-polyhedron in the unit $(0,1)$-cube is a matroid base-polyhedron.

For a weak pair (p, b), the polyhedron $Q=Q(p, b):=\{x: p(Z) \leq \widetilde{x}(Z) \leq b(Z)$ for every $Z \subseteq S\}$ is called a generalized polymatroid (g-polymatroid, for short). By convention, the empty set is also considered a g-polymatroid. In the special case, when $p \equiv 0$ and b is monotone non-decreasing, we are back at the concept of polymatroids, introduced by Edmonds [8]. G-polymatroids were introduced by Frank [15] who proved that $Q(p, b)$ is a non-empty integral polyhedron, a g-polymatroid uniquely determines its defining strong pair, and the intersection of two integral g-polymatroids $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ is an integral polyhedron which is non-empty if and only if $p_{1} \leq b_{2}$ and $p_{2} \leq b_{1}$.

The book of Frank [17] includes an overview of basic properties and constructions of base-polyhedra and g-polymatroids. For example, the following operations on a g-polymatroid result in a g-polymatroid: projection along axes, translation (or shifting) by a vector, negation (that is, reflection through the origin), intersection with a box $T(f, g):=\{x: f \leq$ $x \leq g\}$, intersection with a plank $\{x: \alpha \leq \widetilde{x}(S) \leq \beta\}$, and taking a face.

A base-polyhedron is a special g-polymatroid (where $p(S)=b(S)$) and every g-polymatroid arises from a base-polyhedron by projecting it along a single axis. Each of the operations of translation, intersection with a box, negation, taking a face, when applied to a base-polyhedron, results in a base-polyhedron. The intersection of a g-polymatroid with a hyperplane $\{x: \widetilde{x}(S)=\gamma\}$ is a base-polyhedron. Each of the operations above, when applied to an integral g-polymatroid (base-polyhedron) results in an integral g-polymatroid (basepolyhedron). The (Minkowski) sum of g-polymatroids (base-polyhedra) is a g-polymatroid (base-polyhedron).

We call the translation of a matroid base-polyhedron a translated matroid base-polyhedron. It follows that the intersection of a base-polyhedron with a small box is a translated matroid base-polyhedron.

A base-polyhedron $B(b)$ is never empty, and $B(b)$ is known to be an integral polyhedron. (A rational polyhedron is integral if each of its faces contains an integral element. In particular, a pointed rational polyhedron is integral if all of its vertices are integral.) By convention, the empty set is also considered a base-polyhedron. Note that a real-valued submodular function b also defines a base-polyhedron $B(b)$ but in the present work we are interested only in integer-valued submodular functions and integral base-polyhedra.

We call the set \ddot{B} of integral elements of an integral base-polyhedron B an M-convex set. Originally, this basic notion of Discrete Convex Analysis (DCA), introduced by Murota [51] (see, also the book [52]), was defined as a set of integral points in \mathbf{R}^{S} satisfying certain exchange axioms, and it is known that the two properties are equivalent ([52], Theorem 4.15). The set of integral elements of a translated matroid base-polyhedron will be called a matroidal M-convex set.

Since in the present work the central notion is that of base-polyhedra, we define Mconvex sets via base-polyhedra. The set of integral points of an integral g-polymatroid is called by Murota [52] an M^{\natural}-convex set (pronounce M-natural convex). Since a basepolyhedron is a special g-polymatroid, an M-convex set is a special M^{\natural}-convex set. Note that the original definition of M^{\natural}-convex sets is different (and it is a theorem that the two definitions are equivalent).

A non-empty base-polyhedron B can also be defined by a supermodular function p for which $p(\emptyset)=0$ and $p(S)$ is finite as follows: $B=B^{\prime}(p)=\left\{x \in \mathbf{R}^{S}: \widetilde{x}(S)=p(S), \widetilde{x}(Z) \geq\right.$ $p(Z)$ for every $Z \subset S\}$.

For a set $Z \subset S, p \mid Z(=p-(S-Z))$ denotes the restriction of p to Z (that is, $p \mid Z$ is obtained from p by deleting $S-Z)$, while $p^{\prime}=p / Z(=p \div(S-Z))$ is the set-function on $S-Z$ obtained from p by contracting Z, which is defined for $X \subseteq S-Z$ by $p^{\prime}(X)=p(X \cup Z)-p(Z)$. Note that p / Z and $\bar{p} \mid(S-Z)$ are complementary set-functions. It is also known for disjoint subsets Z_{1} and Z_{2} of S that

$$
\begin{equation*}
\left(p / Z_{1}\right) / Z_{2}=p /\left(Z_{1} \cup Z_{2}\right) \tag{2.1}
\end{equation*}
$$

that is, contracting first Z_{1} and then Z_{2} is the same as contracting $Z_{1} \cup Z_{2}$. (Indeed, this follows from $p_{1}^{\prime}\left(X \cup Z_{2}\right)-p_{1}^{\prime}\left(Z_{2}\right)=p\left(X \cup Z_{1} \cup Z_{2}\right)-p\left(Z_{1}\right)-\left[p\left(Z_{1} \cup Z_{2}\right)-p\left(Z_{1}\right)\right]=$ $p\left(X \cup Z_{1} \cup Z_{2}\right)-p\left(Z_{1} \cup Z_{2}\right)$.) Furthermore, $\left(p / Z_{1}\right) \mid Z_{2}=\left(p \mid\left(Z_{1} \cup Z_{2}\right)\right) / Z_{1}$.

It is known that B uniquely determines both p and b, namely, $b(Z)=\max \{\widetilde{x}(Z): x \in B\}$ and $p(Z)=\min \{\widetilde{x}(Z): x \in B\}$. The functions p and b are complementary functions, that is, $b(X)=p(S)-p(S-X)$ or $p(X)=b(S)-b(S-X)($ where $b(S)=p(S))$.

Let $\left\{S_{1}, \ldots, S_{q}\right\}$ be a partition of S and let p_{i} be a supermodular function on S_{i}. Let p denote the supermodular function on S defined by $p(X):=\sum\left[p_{i}\left(S_{i} \cap X\right): i=1, \ldots, q\right]$ for $X \subseteq S$. The base-polyhedron $B^{\prime}(p)$ is called the direct sum of the q base-polyhedra $B^{\prime}\left(p_{i}\right)$. Obviously, a vector $x \in \mathbf{R}^{S}$ is in $B^{\prime}(p)$ if and only if each x_{i} is in $B^{\prime}\left(p_{i}\right) \quad(i=1, \ldots, q)$, where x_{i} denotes the restriction $x \mid S_{i}$ of x to S_{i}.

Let Z be a subset of S for which $p(Z)$ is finite. The restriction of a base-polyhedron $B^{\prime}(p)$ to Z is the base-polyhedron $B^{\prime}(p \mid Z)$.

It is known that a face F of a non-empty base-polyhedron B is also a base-polyhedron. The (special) face of $B^{\prime}(p)$ defined by the single equality $\widetilde{x}(Z)=p(Z)$ is the direct sum of the base polyhedra $B^{\prime}(p \mid Z)$ and $B^{\prime}(p / Z)$. More generally, any face F of B can be described with the help of a chain $(\emptyset \subset) C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}=S$ of subsets by $F:=\{z: z \in$ $B, p\left(C_{i}\right)=\widetilde{z}\left(C_{i}\right)$ for $\left.i=1, \ldots, \ell\right\}$. (In particular, when $\ell=1$, the face F is B itself.) Let $S_{1}:=C_{1}$ and $S_{i}:=C_{i}-C_{i-1}$ for $i=2, \ldots, \ell$. Then F is the direct sum of the base-polyhedra $B^{\prime}\left(p_{i}\right)$, where p_{i} is a supermodular function on S_{i} defined by $p_{i}(X):=p\left(X \cup C_{i-1}\right)-p\left(C_{i-1}\right)$ for $X \subseteq S_{i}$. In other words, p_{i} is a set-function on S_{i} obtained from p by deleting C_{i-1} and contracting $S-C_{i}$. The unique supermodular function p_{F} defining the face F is given by $\sum\left[p_{i}\left(S_{i} \cap X\right): i=1, \ldots, \ell\right]$. The polymatroid greedy algorithm of Edmonds [8] along
with the proof of its correctness, when adapted to base-polyhedra, shows that F is the set of elements x of B minimizing $c x$ whenever $c: S \rightarrow \mathbf{R}$ is a linear cost function such that $c(s)=c(t)$ if $s, t \in S_{i}$ for some i and $c(s)>c(t)$ if $s \in S_{i}$ and $t \in S_{j}$ for some subscripts $i<j$.

The intersection of an integral base-polyhedron $B=B^{\prime}(p)(=B(\bar{p}))$ and an integral box $T(f, g)$ is an integral base-polyhedron. The intersection is non-empty if and only if

$$
\begin{equation*}
p \leq \widetilde{g} \quad \text { and } \quad \widetilde{f} \leq \bar{p} \tag{2.2}
\end{equation*}
$$

Note that g occurs only in the first inequality and f occurs only in the second inequality, from which it follows that if B has an element $x_{1} \geq f$ and B has an element $x_{2} \leq g$, then B has an element x with $f \leq x \leq g$. This phenomenon is often called the linking principle or linking property.

For an element m of a base-polyhedron $B=B(b)$ defined by a (fully) submodular function b, we call a subset $X \subseteq S m$-tight (with respect to b) if $\widetilde{m}(X)=b(X)$. Clearly, the empty set and S are m-tight, and m-tight sets are closed under taking union and intersection. Therefore, for each subset $Z \subseteq S$, there is a unique smallest m-tight set $T_{m}(Z ; b)$ including Z. When $Z=\{s\}$ is a singleton, we simply write $T_{m}(s ; b)$ to denote the smallest m-tight set containing s. When the submodular function b in this notation is unambiguous from the context, we abbreviate $T_{m}(Z ; b)$ to $T_{m}(Z)$.

Analogously, when $B=B^{\prime}(p)$ is given by a supermodular function p, we call $X \subseteq S$ m-tight (with respect to p) if $\widetilde{m}(X)=p(X)$. In this case, we also use the analogous notation $T_{m}(Z)=T_{m}(Z ; p)$ and $T_{m}(s)=T_{m}(s ; p)$. Observe that for complementary functions b and p, X is m-tight with respect to b precisely if $S-X$ is m-tight with respect to p.

In applications it is important that weaker set-functions may also define base-polyhedra. For example, if p is an integer-valued crossing supermodular function, then $B^{\prime}(p)$ is still an integral base-polyhedron, which may, however, be empty. This result was proved independently in [14] and in [28]. To prove theorems on base-polyhedra, it is much easier to work with base-polyhedra defined by fully sub- or supermodular functions. On the other hand, in applications, base-polyhedra are often defined with a crossing sub- or supermodular (or even weaker) function. For example, the in-degree vectors of the k-edge-connected orientations of a $2 k$-edge-connected graph are the integral elements of a base-polyhedron defined by a crossing supermodular function, as was pointed out in an even more general setting [13]. It is exactly the combination of these double features that makes it possible to prove a conjecture of Borradaile et al. [6] even in an extended form. Details will be discussed in Sections 10 and 11.

3 Decreasingly minimal elements of M-convex sets

3.1 Decreasing minimality

For a vector x, let $x \downarrow$ denote the vector obtained from x by rearranging its components in a decreasing order. For example, We call two vectors x and y (of same dimension) valueequivalent if $x \downarrow=y \downarrow$. For example, $(2,5,5,1,4)$ and $(1,4,5,2,5)$ are value-equivalent while the vectors $(3,5,5,3,4)$ and $(3,4,5,4,4)$ are not.

A vector x is decreasingly smaller than vector y, in notation $x<_{\text {dec }} y$ if $x \downarrow$ is lexicographically smaller than $y \downarrow$ in the sense that they are not value-equivalent and $x \downarrow(j)<y \downarrow(j)$ for the smallest subscript j for which $x \downarrow(j)$ and $y \downarrow(j)$ differ. For example, $x=(2,5,5,1,4)$ is decreasingly smaller than $y=(1,5,5,5,1)$ since $x \downarrow=(5,5,4,2,1)$ is lexicographically smaller than $y \downarrow=(5,5,5,1,1)$. We write $x \leq_{\text {dec }} y$ to mean that x is decreasingly smaller than or value-equivalent to y.

For a set Q of vectors, $x \in Q$ is globally decreasingly minimal or simply decreasingly minimal (dec-min, for short) if $x \leq_{\operatorname{dec}} y$ for every $y \in Q$. Note that the dec-min elements of Q are value-equivalent. Therefore an element m of Q is dec-min if its largest component is as small as possible, within this, its second largest component (with the same or smaller value than the largest one) is as small as possible, and so on. An element x of Q is said to be a max-minimized element (a max-minimizer, for short) if its largest component is as small as possible. A max-minimizer element x is pre-decreasingly minimal (pre-dec-min, for short) in Q if the number of its largest components is as small as possible. Obviously, a dec-min element is pre-dec-min, and a pre-dec-min element is max-minimized.

In an analogous way, for a vector x, we let $x \uparrow$ denote the vector obtained from x by rearranging its components in an increasing order. A vector y is increasingly larger than vector x, in notation $y>_{\text {inc }} x$, if they are not value-equivalent and $y \uparrow(j)>x \uparrow(j)$ holds for the smallest subscript j for which $y \uparrow(j)$ and $x \uparrow(j)$ differ. We write $y \geq_{\text {inc }} x$ if either $y>_{\text {inc }} x$ or x and y are value-equivalent. Furthermore, we call an element m of Q (globally) increasingly maximal (inc-max for short) if its smallest component is as large as possible over the elements of Q, within this its second smallest component is as large as possible, and so on. Similarly, we can use the analogous terms min-maximized and pre-increasingly maximal (pre-inc-max).

It should be emphasized that a dec-min element of a base-polyhedron B is not necessarily integer-valued. For example, if $B=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=1\right\}$, then $x^{*}=(1 / 2,1 / 2)$ is a dec-min element of B. In this case, the dec-min members of B are $(0,1)$ and $(1,0)$.

Therefore, finding a dec-min element of B and finding a dec-min element of \ddot{B} (the set of integral points of B) are two distinct problems, and we shall concentrate only on the second, discrete problem. In what follows, the slightly sloppy term integral dec-min element of B will always mean a dec-min element of \dddot{B}. (The term is sloppy in the sense that an integral dec-min element of B is not necessarily a dec-min element of B).

We call an integral vector $x \in \mathbf{Z}^{S}$ uniform if all of its components are the same integer ℓ, and near-uniform if its largest and smallest components differ by at most 1 , that is, if $x(s) \in\{\ell, \ell+1\}$ for some integer ℓ for every $s \in S$. Note that if Q consists of integral vectors and the component-sum is the same for each member of Q, then any near-uniform integral member of Q is obviously both decreasingly minimal and increasingly maximal integral vector.

3.2 Characterizing dec-min elements

Let $B=B(b)=B^{\prime}(p)$ be a base-polyhedron defined by an integer-valued submodular function b or a supermodular function p (where b and p are complementary set-functions). Let m be an integral member of B, that is, $m \in \dddot{B}$. A set $X \subseteq S$ is m-tight with respect to b
precisely if its complement $S-X$ is m-tight with respect to p. Recall that $T_{m}(s ; b)$ denoted the unique smallest m-tight set (with respect to b) containing s. In other words, $T_{m}(s ; b)$ is the intersection of all m-tight sets containing s. The easy equivalences in the next claim will be used throughout.

Claim 3.1. Let s and t be elements of S and let $m^{\prime}:=m+\chi_{s}-\chi_{t}$. The following properties are pairwise equivalent.
(A) $m^{\prime} \in \dddot{B}$.
(P1) There is no $t \bar{s}$-set which is m-tight with respect to p.
(P2) $s \in T_{m}(t ; p)$.
(B1) There is no st-set which is m-tight with respect to b.
(B2) $t \in T_{m}(s ; b)$.
A 1-tightening step for $m \in B$ is an operation that replaces m by $m^{\prime}:=m+\chi_{s}-\chi_{t}$ where s and t are elements of S for which $m(t) \geq m(s)+2$ and m^{\prime} belongs to \ddot{B}. (See Claim 3.1 for properties equivalent to $m^{\prime} \in \dddot{B}$.) Note that m^{\prime} is both decreasingly smaller and increasingly larger than m.

Since the mean of the components of m does not change at a 1-tightening step while the square-sum of the components of m strictly drops, consecutive 1-tightening steps may occur only a finite number of times (even if B is unbounded).

A member m of \dddot{B} is locally decreasingly minimal in \dddot{B} if there are no two elements s and t of S such that $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is an element of \dddot{B} and m^{\prime} is decreasingly smaller than m. Note that m^{\prime} is decreasingly smaller than m precisely if $m(t) \geq m(s)+2$. Obviouly, m is locally decreasingly minimal if and only if there is no 1 -tightening step for m. Note that in this case, m^{\prime} is also increasingly larger than m. Analogously, m is locally increasingly maximal if there are no two elements s and t of S such that $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is an element of \dddot{B} and m^{\prime} is decreasingly larger than m.

The equivalence of the properties in the next claim is immediate from the definitions.
Claim 3.2. For an integral element m of the integral base-polyhedron $B=B(b)=B^{\prime}(p)$, the following conditions are pairwise equivalent.
(A1) There is no 1-tightening step for m.
(A2) m is locally decreasingly minimal.
(A3) m is locally increasingly maximal.
(P1) $m(s) \geq m(t)-1$ holds whenever $t \in S$ and $s \in T_{m}(t ; p)$.
(P2) Whenever $m(t) \geq m(s)+2$, there is a $t \bar{s}$-set X which is m-tight with respect to p.
(B1) $m(s) \geq m(t)-1$ holds whenever $s \in S$ and $t \in T_{m}(s ; b)$.
(B2) Whenever $m(t) \geq m(s)+2$, there is an $s \bar{t}$-set Y which is m-tight with respect to b.
For a given vector m in \mathbf{R}^{S}, we call a set $X \subseteq S$ an m-top set (or a top-set with respect to m) if $m(u) \geq m(v)$ holds whenever $u \in X$ and $v \in S-X$. Both the empty set and the ground-set S are m-top sets, and m-top sets are closed under taking union and intersection. If $m(u)>m(v)$ holds whenever $u \in X$ and $v \in S-X$, we speak of a strict m-top set. Note that the number of strict non-empty m-top sets is at most n for every $m \in \dddot{B}$ while $m \equiv 0$ exemplifies that even all of the non-empty subsets of S can be m-top sets.

Theorem 3.3. Let b be an integer-valued submodular function and let $p:=\bar{b}$ be its complementary (supermodular) function. For an integral element m of the integral basepolyhedron $B=B(b)=B^{\prime}(p)$, the following four conditions are pairwise equivalent.
(A) There is no 1-tightening step for m (or anyone of the six other equivalent properties holds in Claim 3.2.
(B) There is a chain C of m-top sets $(\emptyset \subset) C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}=S$ which are m-tight with respect to p (or equivalently, whose complements are m-tight with respect to b) such that the restriction $m_{i}=m \mid S_{i}$ of m to S_{i} is near-uniform for each member S_{i} of the S-partition $\left\{S_{1}, \ldots, S_{\ell}\right\}$, where $S_{1}=C_{1}$ and $S_{i}:=C_{i}-C_{i-1}(i=2, \ldots, \ell)$.
(C1) m is (globally) decreasingly minimal in \bar{B}.
(C2) m is (globally) increasingly maximal in \bar{B}.
Proof. (B) \rightarrow (A): If $m(t) \geq m(s)+2$, then there is an m-tight set C_{i} containing t and not containing s, from which Property (A) follows from Claim 3.2.
(A) \rightarrow (B): Let C be a longest chain consisting of non-empty m-tight and m-top sets $C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}=S$. For notational convenience, let $C_{0}=\emptyset$ (but C_{0} is not a member of of C). We claim that C meets the requirement of (B). If, indirectly, this is not the case, then there is a subscript $i \in\{1, \ldots, \ell\}$ for which m is not near-uniform within $S_{i}:=C_{i}-C_{i-1}$. This means that the max m-value β_{i} in S_{i} is at least 2 larger than the $\min m$-value α_{i} in S_{i}, that is, $\beta_{i} \geq \alpha_{i}+2$. Let $Z:=\cup\left[T_{m}(t ; p): t \in S_{i}, m(t)=\beta_{i}\right]$. Then Z is m-tight. Since C_{i} is m-tight, $T_{m}(t ; p) \subseteq C_{i}$ holds for $t \in S_{i}$ and hence $Z \subseteq C_{i}$. Furthermore, (A) implies that $m(v) \geq \beta_{i}-1$ for every $v \in Z \cap S_{i}$.

Consider the set $C^{\prime}:=C_{i-1} \cup Z$. Then C^{\prime} is m-tight, and $C_{i-1} \subset C^{\prime} \subset C_{i}$. Moreover, we claim that C^{\prime} is an m-top set. Indeed, if, indirectly, there is an element $u \in C^{\prime}$ and an element $v \in S-C^{\prime}$ for which $m(u)<m(v)$, then $u \in Z \cap S_{i}$ and $v \in C_{i}-Z$ since both C_{i-1} and C_{i} are m-top sets. But this is impossible since the m-value of each element of Z is β_{i} or $\beta_{i}-1$ while the m-value of each element of $C_{i}-Z$ is at most $\beta_{i}-1$.

The existence of C^{\prime} contradicts the assumption that C was a longest chain of m-tight and m-top sets, and therefore m must be near-uniform within each S_{i}, that is, C meets indeed the requirements in (B).
$(\mathrm{C} 1) \rightarrow(\mathrm{A})$ and $(\mathrm{C} 2) \rightarrow(\mathrm{A}):$ Property (A) must indeed hold since a 1 -tightening step for m results in an element m^{\prime} of B which is both decreasingly smaller and increasingly larger than m.
(B) \rightarrow (C1): We may assume that the elements of S are arranged in an m-decreasing order s_{1}, \ldots, s_{n} (that is, $\left.m\left(s_{1}\right) \geq m\left(s_{2}\right) \geq \cdots \geq m\left(s_{n}\right)\right)$ in such a way that each C_{i} in (B) is a starting segment. Let m^{\prime} be an element of \vec{B} which is decreasingly smaller than or value-equivalent to m. Recall that $m \mid X$ denoted the vector m restricted to a subset $X \subseteq S$.

Lemma 3.4. For each $i=0,1, \ldots, \ell$, vector $m^{\prime} \mid C_{i}$ is value-equivalent to vector $m \mid C_{i}$.
Proof. Induction on i. For $i=0$, the statement is void so we assume that $1 \leq i \leq \ell$. By induction, we may assume that the statement holds for $j \leq i-1$ and we want to prove it for i. Since $m^{\prime} \mid C_{i-1}$ is value-equivalent to $m \mid C_{i-1}$ and C_{i-1} is m-tight, it follows that C_{i-1} is m^{\prime}-tight, too.

Let β_{i} denote the max m-value of the elements of $S_{i}=C_{i}-C_{i-1}$. By the hypothesis in (B), the maximum and the minimum of the m-values in S_{i} differ by at most 1. Hence we can assume that there are $r_{i}>0$ elements in S_{i} with m-value β_{i} and $\left|S_{i}\right|-r_{i} \geq 0$ elements with m-value $\beta_{i}-1$.

As $m \mid C_{i-1}$ is value-equivalent to $m^{\prime} \mid C_{i-1}$ and m^{\prime} was assumed to be decreasingly smaller than or value-equivalent to m, we can conclude that $m^{\prime} \mid\left(S-C_{i-1}\right)$ is decreasingly smaller than or value-equivalent to $m \mid\left(S-C_{i-1}\right)$. Therefore, S_{i} contains at most r_{i} elements of m^{\prime}-value β_{i} and hence

$$
\begin{aligned}
p\left(C_{i}\right) & \leq \widetilde{m}^{\prime}\left(C_{i}\right)=\widetilde{m}^{\prime}\left(C_{i-1}\right)+\widetilde{m}^{\prime}\left(S_{i}\right) \\
& \leq \widetilde{m}^{\prime}\left(C_{i-1}\right)+r_{i} \beta_{i}+\left(\left|S_{i}\right|-r_{i}\right)\left(\beta_{i}-1\right) \\
& =\widetilde{m}\left(C_{i-1}\right)+r_{i} \beta_{i}+\left(\left|S_{i}\right|-r_{i}\right)\left(\beta_{i}-1\right)=p\left(C_{i}\right),
\end{aligned}
$$

from which equality follows everywhere. In particular, S_{i} contains exactly r_{i} elements of m^{\prime}-value β_{i} and $\left|S_{i}\right|-r_{i}$ elements of m^{\prime}-value $\beta_{i}-1$, proving the lemma.

By the lemma, m^{\prime} is value-equivalent to m, and hence m is a decreasingly minimal element of \dddot{B}, that is, (C1) follows.
$(\mathrm{B}) \rightarrow(\mathrm{C} 2)$: The property in (C1) that m is globally decreasing minimal in B is equivalent to the statement that $-m$ is globally increasing maximal in $-\dddot{B}$, that is, (C2) holds with respect to $-m$ and $-\ddot{B}$. As we have already proved the implications $(\mathrm{C} 2) \rightarrow(\mathrm{A}) \rightarrow(\mathrm{B}) \rightarrow(\mathrm{C} 1)$, it follows that (C 1) holds for $-m$ and $-\dddot{B}$. But (C 1) for $-m$ and $-\dddot{B}$ is just the same as (C2) for m and \dddot{B}.

3.3 Minimizing the sum of the k largest components

A decreasingly minimal element of \dddot{B} has the starting property that its largest component is as small as possible. As a natural extension, one may be interested in finding a member of \overleftrightarrow{B} for which the sum of the k largest components is as small as possible. We refer to this problem as $\boldsymbol{\operatorname { m i n }} k$-largest-sum.

Theorem 3.5. Let B be an integral base-polyhedron and k an integer with $1 \leq k \leq n$. Then any dec-min element m of \dddot{B} is a solution to Problem min k-largest-sum.
Proof. Observe first that if z_{1} and z_{2} are dec-min elements of \dddot{B}, then it follows from the very definition of decreasing minimality that the sum of the first j largest components of z_{1} and of z_{2} are the same for each $j=1, \ldots, n$. Let K denote the sum of the first k largest components of any dec-min element, and assume indirectly that there is a member $y \in \dddot{B}$ for which the sum of its first largest components is smaller than K. Assume that the componentwise square-sum of y is as small as possible. By the previous observation, y is not a dec-min element. Theorem 3.3 implies that there are elements s and t of S for which $y(t) \geq y(s)+2$ and $y^{\prime}:=y-\chi_{t}+\chi_{s}$ is in \dddot{B}. The sum of the first k largest components of y^{\prime} is at most the sum of the first k largest components of y, and hence this sum is also smaller than K. But this contradicts the choice of y since the componentwise square-sum of y^{\prime} is strictly smaller than that of y.

The theorem implies that a dec-min element m is a solution to the min k-largest-sum problem for each $k=1, \ldots, n$. In [22], we will point out that this property characterizes dec-min elements and is closely related to the notion of least majorization investigated in [3], [46], [59].

3.4 An example for the intersection of two base-polyhedra

We proved for a single base-polyhedron that an integral element is decreasingly minimal if and only if it is increasingly maximal (and therefore the two properties could jointly be called egalitarian). The following example shows that the two properties may differ if the polyhedron is the intersection of two (integral) base-polyhedra.

Let $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ be the common ground-set of two rank-2 matroids M_{1} and M_{2} which are described by their circuits. Both matroids have two 2-element circuits. Namely, the circuits of M_{1} are $\left\{s_{1}, s_{4}\right\}$ and $\left\{s_{2}, s_{3}\right\}$, while the circuits of M_{2} are $\left\{s_{1}, s_{3}\right\}$ and $\left\{s_{2}, s_{4}\right\}$. Both matroids have four bases:

$$
\begin{aligned}
& \mathcal{B}_{1}:=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\},\left\{s_{1}, s_{3}\right\},\left\{s_{2}, s_{4}\right\}\right\}, \\
& \mathcal{B}_{2}:=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\},\left\{s_{1}, s_{4}\right\},\left\{s_{2}, s_{3}\right\}\right\} .
\end{aligned}
$$

Let B_{1} and B_{2}, respectively, denote the base-polyhedra of M_{1} and M_{2}. (That is, B_{i} is the convex hull of the incidence vectors of the four members of \mathcal{B}_{i}.) The common bases are as follows:

$$
\mathcal{B}:=\mathcal{B}_{1} \cap \mathcal{B}_{2}=\left\{\left\{s_{1}, s_{2}\right\},\left\{s_{3}, s_{4}\right\}\right\} .
$$

Let B denote the convex hull of the incidence vectors of the two members of \mathcal{B}. That is, B is the line segment connecting $(1,1,0,0)$ and $(0,0,1,1)$. Note that $B=B_{1} \cap B_{2}$ since the intersection of two matroid base-polyhedra is an integral polyhedron, by a theorem of Edmonds [8]. Let B_{i}^{\prime} denote the base-polyhedron obtained from B_{i} by adding the vector $(1,-1,0,0)$ to B_{i}. Let B^{\prime} be obtained from B in the same way. Then we have:

$$
\begin{aligned}
\dddot{B_{1}^{\prime}} & =\{(2,0,0,0),(1,-1,1,1),(2,-1,1,0),(1,0,0,1)\} \\
\widetilde{B_{2}^{\prime}} & =\{(2,0,0,0),(1,-1,1,1),(2,1,0,1),(1,0,1,0)\} \\
\dddot{B} & =\{(2,0,0,0),(1,-1,1,1)\} .
\end{aligned}
$$

Now $x=(2,0,0,0)$ is an increasingly maximal element of \dddot{B} while $y=(1,-1,1,1)$ is decreasingly minimal.

Therefore finding a decreasingly minimal integral element and an increasingly maximal integral element of the intersection B of two base-polyhedra are two different problems (unlike the analogous problems for a single base-polyhedron). The two problems, however, are equivalent in the sense that an element x of B is decreasingly minimal if and only if $-x$ is an increasingly maximal element of $-\dddot{B}$, and if B is the intersection of two base-polyhedra, then so is $-B$.

Furthermore, we claim that the intersection B has no integral least majorized element (see [3], [46] as well as Part II [22] for the definition). Indeed, we have only the two possible choices $x=(2,0,0,0)$ and $y=(1,-1,1,1)$, but x is not least majorized since the largest
component of y is smaller than the largest component of x, and y is neither a least majorized element of \vec{B} since the sum of the 3 largest components of x is smaller than the sum of the 3 largest components of y.

In Part IV [24], we shall consider the even more general problem of finding an increasingly minimal (integral) submodular flow. Note that that submodular flows not only generalize ordinary flows and circulations but the intersection of two g-polymatroids is also a special submodular flow polyhedron.

4 Characterizing the set of pre-decreasingly minimal elements

We continue to assume that p is an integer-valued (with possible $-\infty$ values but with finite $p(S))$ supermodular function, which implies that $B=B^{\prime}(p)$ is a non-empty integral basepolyhedron. We have already proved that an integral element m of B (that is, an element of B) is decreasingly-minimal (= dec-min) precisely if m is increasingly-maximal (= inc-max).

One of our main goals is to prove that the set $\operatorname{dm}(\ddot{B})$ of all dec-min elements of \dddot{B} is an M-convex set, meaning that there exists an integral base-polyhedron $B^{\bullet} \subseteq B$ such that $\operatorname{dm}(\ddot{B})$ is the set of integral elements of B^{\bullet}. In addition, we shall show that $\operatorname{dm}(\vec{B})$ is actually a matroidal M-convex set, that is, B^{\bullet} is a special base-polyhedron which is obtained from a matroid base-polyhedron by translating it with an integral vector.

The base-polyhedron B^{\bullet} will be obtained with the help of a decomposition of B along a certain 'canonical' partition $\left\{S_{1}, S_{2}, \ldots, S_{q}\right\}$ of S into non-empty sets. To this end, we start by introducing the first member S_{1} of this partition along with a matroid on S_{1}. The set S_{1}, depending only on B, will be called the peak-set of S.

4.1 Max-minimizers and pre-dec-min elements

Recall that an element of \vec{B} was called a max-minimizer if its largest component was as small as possible, while a max-minimizer was called a pre-dec-min element of \ddot{B} if the number of its maximum components was as small as possible. As a dec-min element of \dddot{B} is automatically pre-dec-min (in particular, a max-minimizer), we start our investigations by studying max-minimizers and pre-dec-min elements of \ddot{B}. For a number β, we say that a vector is β-covered if each of its components is at most β. Throughout our discussions,

$$
\begin{equation*}
\beta_{1}:=\beta(B) \tag{4.1}
\end{equation*}
$$

denotes the smallest integer for which \breve{B} has a β_{1}-covered element. In other words, β_{1} is the largest component of a max-minimizer of \bar{B}. Therefore β_{1} is the largest component of any pre-dec-min (and hence any dec-min) element of B. Note that an element m of B is β_{1}-covered precisely if m is a max-minimizer.

Theorem 4.1. For the largest component β_{1} of a max-minimizer of \dddot{B}, one has

$$
\begin{equation*}
\beta_{1}=\max \left\{\left[\frac{p(X)}{|X|}\right]: \emptyset \neq X \subseteq S\right\} . \tag{4.2}
\end{equation*}
$$

Proof. It follows from formula (2.2) that B has a β-covered element if and only if

$$
\begin{equation*}
\beta|X| \geq p(X) \text { whenever } X \subseteq S \tag{4.3}
\end{equation*}
$$

Moreover, if β is an integer and (4.3) holds, then B has an integral β-covered element. As $\beta|X| \geq p(X)$ holds for an arbitrary β when $X=\emptyset$, it follows that the smallest integer β meeting this (4.3) is indeed max $\left.\left\{\frac{p(X)}{|X|}\right\rceil: \emptyset \neq X \subseteq S\right\}$.

For a β_{1}-covered element m of \dddot{B}, let $r_{1}(m)$ denote the number of β_{1}-valued components of m. Recall that for an element $s \in S$ we denoted the unique smallest m-tight set containing s by $T_{m}(s)=T_{m}(s ; p)$ (that is, $T_{m}(s)$ is the intersection of all m-tight sets containing s). Furthermore, let

$$
\begin{equation*}
S_{1}(m):=\cup\left\{T_{m}(t): m(t)=\beta_{1}\right\} . \tag{4.4}
\end{equation*}
$$

Then $S_{1}(m)$ is m-tight and $S_{1}(m)$ is actually the unique smallest m-tight set containing all the β_{1}-valued elements of m.

Theorem 4.2. A β_{1}-covered element m of \widetilde{B} is pre-dec-min if and only if $m(s) \geq \beta_{1}-1$ for each $s \in S_{1}(m)$.

Proof. Necessity. Let m be a pre-dec-min element of \dddot{B}. For any β_{1}-valued element $t \in S$ and any element $s \in T_{m}(t)$, we claim that $m(s) \geq \beta_{1}-1$. Indeed, if we had $m(s) \leq \beta_{1}-2$, then the vector m^{\prime} arising from m by decreasing $m(t)$ by 1 and increasing $m(s)$ by 1 belongs to B (since $T_{m}(t)$ is the smallest m-tight set containing t) and has one less β_{1}-valued components than m has, contradicting the assumption that m is pre-dec-min.

Sufficiency. Let m^{\prime} be an arbitrary β_{1}-covered integral element of B. Abbreviate $S_{1}(m)$ by Z and let h^{\prime} denote the number of elements $z \in Z$ for which $m^{\prime}(z)=\beta_{1}$. Then

$$
\begin{aligned}
& |Z|\left(\beta_{1}-1\right)+r_{1}(m)=\widetilde{m}(Z)=p(Z) \leq \widetilde{m}^{\prime}(Z) \\
& \leq h^{\prime} \beta_{1}+\left(|Z|-h^{\prime}\right)\left(\beta_{1}-1\right)=|Z|\left(\beta_{1}-1\right)+h^{\prime} \\
& \leq|Z|\left(\beta_{1}-1\right)+r_{1}\left(m^{\prime}\right)
\end{aligned}
$$

from which $r_{1}(m) \leq r_{1}\left(m^{\prime}\right)$, as required.
Define the set-function h_{1} on S as follows.

$$
\begin{equation*}
h_{1}(X):=p(X)-\left(\beta_{1}-1\right)|X| \text { for } X \subseteq S . \tag{4.5}
\end{equation*}
$$

Theorem 4.3. For the minimum number r_{1} of β_{1}-valued components of a β_{1}-covered member of \bar{B}, one has

$$
\begin{equation*}
r_{1}=\max \left\{h_{1}(X): X \subseteq S\right\} . \tag{4.6}
\end{equation*}
$$

Proof. Let m be an element of \dddot{B} for which the maximum of its components is β_{1}, and let X be an arbitrary subset of S. Suppose that X has $\ell \beta_{1}$-valued components. Then

$$
\begin{equation*}
p(X) \leq \widetilde{m}(X) \leq \ell \beta_{1}+(|X|-\ell)\left(\beta_{1}-1\right)=|X|\left(\beta_{1}-1\right)+\ell \leq|X|\left(\beta_{1}-1\right)+r_{1}(m), \tag{4.7}
\end{equation*}
$$

from which $r_{1}(m) \geq p(X)-\left(\beta_{1}-1\right)|X|=h_{1}(X)$, implying that

$$
r_{1}=\min \left\{r_{1}(m): m \in \dddot{B}, m \text { is } \beta_{1} \text {-covered }\right\} \geq \max \left\{h_{1}(X): X \subseteq S\right\} .
$$

In order to prove the reverse inequality, we have to find a β_{1}-covered integral element m of B and a subset X of S for which $r_{1}(m)=h_{1}(X)$, which is equivalent to requiring that each of the three inequalities in (4.7) holds with equality. That is, the following three optimality criteria hold: (a) X is m-tight, (b) X contains all β_{1}-valued components of m, and (c) $m(s) \geq \beta_{1}-1$ for each $s \in X$.

Let m be a pre-dec-min element of B. Then $S_{1}(m)$ is m-tight, $S_{1}(m)$ contains all β_{1} valued elements and, by Theorem 4.2, $m(s) \geq \beta_{1}-1$ for all $s \in S_{1}(m)$, therefore m and $S_{1}(m)$ satisfy the three optimality criteria.

Note that r_{1} is the number of β_{1}-valued components of any pre-dec-min element (and in particular, any dec-min element) of \dddot{B}.

4.2 The peak-set S_{1}

Since the set-function h_{1} introduced in (4.5) is supermodular, the maximizers of h_{1} are closed under taking intersection and union. Let S_{1} denote the unique smallest subset of S maximizing h_{1}. In other words, S_{1} is the intersection of all sets maximizing h_{1}. We call this set S_{1} the peak-set of B (and of \vec{B}).

Theorem 4.4. For every pre-dec-min (and in particular, for every dec-min) element m of \widetilde{B}, the set $S_{1}(m)$ introduced in (4.4) is independent of the choice of m and $S_{1}(m)=S_{1}$, where S_{1} is the peak-set of B.

Proof. It follows from Theorem4.3 that, given a pre-dec-min element m of B, a subset X is maximizing h_{1} precisely if the three optimality criteria mentioned in the proof hold. Since $S_{1}(m)$ meets the optimality criteria, it follows that $S_{1} \subseteq S_{1}(m)$. If, indirectly, there is an element $s \in S_{1}(m)-S_{1}$, then $m(s)=\beta_{1}-1$ since S_{1} contains all the β_{1}-valued elements. By the definition of $S_{1}(m)$, there is a β_{1}-valued element $t \in S_{1}(m)$ for which the smallest m-tight set $T_{m}(t)$ contains s, but this is impossible since S_{1} is an m-tight set containing t but not s.

Since $S_{1}=S_{1}(m)$ is m-tight and near-uniform, we obtain that

$$
\beta_{1}=\left\lceil\frac{\widetilde{m}_{1}\left(S_{1}\right)}{\left|S_{1}\right|}\right\rceil=\left\lceil\frac{p\left(S_{1}\right)}{\left|S_{1}\right|}\right\rceil,
$$

and the definitions of S_{1} and r_{1} imply that

$$
\begin{equation*}
r_{1}=p\left(S_{1}\right)-\left(\beta_{1}-1\right)\left|S_{1}\right| . \tag{4.8}
\end{equation*}
$$

Proposition 4.5. $S_{1}=\left\{s \in S\right.$: there is a pre-dec-min element $m \in \dddot{B}$ with $\left.m(s)=\beta_{1}\right\}$. For every pre-dec-min element m of $\dddot{B}, m(s) \geq \beta_{1}-1$ for every $s \in S_{1}$ and $m(s) \leq \beta_{1}-1$ for every $s \in S-S_{1}$.
Proof. If $m(s)=\beta_{1}$ for some pre-dec-min m, then $s \in S_{1}(m)=S_{1}$. Conversely, let $s \in S_{1}$ and let m be a pre-dec-min element. We are done if $m(s)=\beta_{1}$. If this is not the case, then $m(s)=\beta_{1}-1$ by Theorem4.2. By the definition of $S_{1}(m)$, there is an element $t \in S_{1}(m)$ for which $m(t)=\beta_{1}$ and $s \in T_{m}(t)$. But then $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is in $B, m^{\prime}(s)=\beta_{1}$ and m^{\prime} is also pre-dec-min as it is value-equivalent to m.

4.3 Separating along S_{1}

Let S_{1} be the peak-set occurring in Theorem 4.4 and let $S_{1}^{\prime}:=S-S_{1}$. Let $p_{1}=p \mid S_{1}$ denote the restriction of p to S_{1}, and let $B_{1} \subseteq \mathbf{R}^{S_{1}}$ denote the base-polyhedron defined by p_{1}, that is, $B_{1}:=B^{\prime}\left(p_{1}\right)$. Suppose that $S_{1}^{\prime} \neq \emptyset$ and let $p_{1}^{\prime}:=p / S_{1}$, that is, p_{1}^{\prime} is the set-function on S_{1}^{\prime} obtained from p by contracting $S_{1}\left(p_{1}^{\prime}(X)=p\left(S_{1} \cup X\right)-p\left(S_{1}\right)\right.$ for $\left.X \subseteq S_{1}^{\prime}\right)$.

Consider the face F of B determined by S_{1}, that is, F is the direct sum of the basepolyhedra $B_{1}=B^{\prime}\left(p_{1}\right)$ and $B_{1}^{\prime}=B^{\prime}\left(p_{1}^{\prime}\right)$. Then the dec-min elements of \dddot{B}_{1} are exactly the integral elements of the intersection of B_{1} and the box given by $\left\{x: \beta_{1}-1 \leq x(s) \leq\right.$ β_{1} for every $\left.s\right\}$. Hence the dec-min elements of \dddot{B}_{1} are near-uniform.

Theorem 4.6. An integral vector $m=\left(m_{1}, m_{1}^{\prime}\right)$ is a dec-min element of \overparen{B} if and only if m_{1} is a dec-min element of \dddot{B}_{1} and m_{1}^{\prime} is a dec-min element of \bar{B}_{1}^{\prime}.

Proof. Suppose first that m is a dec-min element of \dddot{B}. Then $S_{1}=S_{1}(m)$ by Theorem 4.4 and m is a max-minimizer, implying that every component of m in S_{1} is of value $\beta_{1}-1$ or value β_{1}, and m has exactly r_{1} components of value β_{1}. Therefore each of the components of m_{1} is $\beta_{1}-1$ or β_{1}, that is, m_{1} is near-uniform. Since m_{1} is obviously in \dddot{B}_{1}, m_{1} is indeed dec-min in \dddot{B}_{1}.

Since $\widetilde{m}\left(S_{1}\right)=p\left(S_{1}\right)$, for a set $X \subseteq S_{1}^{\prime}$, we have

$$
\widetilde{m}_{1}^{\prime}(X)=\widetilde{m}(X)=\widetilde{m}\left(S_{1} \cup X\right)-\widetilde{m}\left(S_{1}\right)=\widetilde{m}\left(S_{1} \cup X\right)-p\left(S_{1}\right) \geq p\left(S_{1} \cup X\right)-p\left(S_{1}\right)=p_{1}^{\prime}(X)
$$

Furthermore

$$
\widetilde{m}_{1}^{\prime}\left(S_{1}^{\prime}\right)=\widetilde{m}\left(S_{1}^{\prime}\right)=\widetilde{m}\left(S_{1} \cup S_{1}^{\prime}\right)-\widetilde{m}\left(S_{1}\right)=p\left(S_{1} \cup S_{1}^{\prime}\right)-p\left(S_{1}\right)=p_{1}^{\prime}\left(S_{1}^{\prime}\right),
$$

that is, m_{1}^{\prime} is in $\widetilde{B_{1}^{\prime}}$. If, indirectly, m_{1}^{\prime} is not dec-min, then, by applying Theorem 3.3 to S_{1}^{\prime}, m_{1}^{\prime}, and p_{1}^{\prime}, we obtain that there are elements t and s of S_{1}^{\prime} for which $m_{1}^{\prime}(t) \geq m_{1}^{\prime}(s)+2$ and $(*)$ no $t \bar{s}$-set exists which is m_{1}^{\prime}-tight with respect to p_{1}^{\prime}. On the other hand, m is a dec-min element of \dddot{B} for which

$$
m(t)=m_{1}^{\prime}(t) \geq m_{1}^{\prime}(s)+2=m(s)+2,
$$

and hence there must be a $t \bar{s}$-set Y which is m-tight with respect to p.
Since S_{1} is m-tight with respect to p, the set $S_{1} \cup Y$ is also m-tight with respect to p. Let $X:=S_{1}^{\prime} \cap Y$. Then

$$
\widetilde{m}(X)+\widetilde{m}\left(S_{1}\right)=\widetilde{m}\left(S_{1} \cup Y\right)=p\left(S_{1} \cup Y\right)=p\left(S_{1} \cup X\right),
$$

and hence

$$
\widetilde{m}_{1}^{\prime}(X)=\widetilde{m}(X)=p\left(S_{1} \cup X\right)-\widetilde{m}\left(S_{1}\right)=p\left(S_{1} \cup X\right)-p\left(S_{1}\right)=p_{1}^{\prime}(X),
$$

that is, X is a $t \bar{s}$-set which is m_{1}^{\prime}-tight with respect to p_{1}^{\prime}, in contradiction with statement $(*)$ above that no such set exists.

To see the converse, assume that m_{1} is a dec-min element of \dddot{B}_{1} and m_{1}^{\prime} is a dec-min element of B_{1}^{\prime}. This immediately implies that m is in the face F of B determined by S_{1}. Suppose, indirectly, that m is not a dec-min element of B. By Theorem 3.3, there are elements t and s of S for which $m(t) \geq m(s)+2$ and (**) no $t \bar{s}$-set exists which is m-tight with respect to p. If $t \in S_{1}$, then s cannot be in S_{1} since the m-value of each element of S_{1} is β_{1} or $\beta_{1}-1$. But S_{1} is m_{1}-tight with respect to p and hence it is m-tight with respect to p, contradicting property $(* *)$. Therefore t must be in S_{1}^{\prime}, implying, by Proposition 4.5, that s is also in S_{1}^{\prime}.

Since m_{1}^{\prime} is a dec-min element of \bar{B}_{1}^{\prime}, there must be a $t \bar{s}$-set $Y \subset S_{1}^{\prime}$ which is m_{1}^{\prime}-tight with respect to p_{1}^{\prime}. It follows that

$$
\widetilde{m}(Y)=\widetilde{m}_{1}^{\prime}(Y)=p_{1}^{\prime}(Y)=p\left(S_{1} \cup Y\right)-p\left(S_{1}\right) \leq \widetilde{m}\left(S_{1} \cup Y\right)-\widetilde{m}\left(S_{1}\right)=\widetilde{m}(Y),
$$

from which $\widetilde{m}\left(S_{1} \cup Y\right)=p\left(S_{1} \cup Y\right)$, contradicting property $(* *)$ that no $t \bar{s}$-set exists which is m-tight with respect to p.

An important consequence of Theorem 4.6 is that, in order to find a dec-min element of \dddot{B}, it will suffice to find separately a dec-min element of $\dddot{B_{1}}$ (which was shown above to be a near-uniform vector) and a dec-min element of $\overline{B_{1}^{\prime}}$. The algorithmic details will be discussed in Section 7 .

Theorem 4.7. Let S_{1} be the peak-set of \bar{B}. For an element m_{1} of $\dddot{B_{1}}$, the following properties are pairwise equivalent.
(A1) m_{1} has $r_{1}\left(=p\left(S_{1}\right)-\left(\beta_{1}-1\right)\left|S_{1}\right|>0\right)$ components of value β_{1} and $\left|S_{1}\right|-r_{1}(\geq 0)$ components of value $\beta_{1}-1$.
(A2) m_{1} is near-uniform.
(A3) m_{1} is dec-min in \vec{B}_{1}.
(B1) m_{1} is the restriction of a dec-min element m of \dddot{B} to S_{1}.
(B2) m_{1} is the restriction of a pre-dec-min element m of \dddot{B} to S_{1}.
Proof. The implications $(\mathrm{A} 1) \rightarrow(\mathrm{A} 2) \rightarrow(\mathrm{A} 3)$ and $(\mathrm{B} 1) \rightarrow(\mathrm{B} 2)$ are immediate from the definitions.
$(\mathrm{A} 3) \rightarrow(\mathrm{B} 1):$ Let m_{1}^{\prime} be an arbitrary dec-min element of $\widetilde{B_{1}^{\prime}}$. By Theorem 4.6, $m:=$ (m_{1}, m_{1}^{\prime}) is a dec-min element of \dddot{B} and hence m_{1} is indeed the restriction of a dec-min element of \dddot{B} to S_{1}.
(B2) \rightarrow (A1): By Theorems 4.2 and 4.4, we have $m_{1}(s) \geq \beta_{1}-1$ for each $s \in S_{1}(m)=S_{1}$, that is, $\beta_{1}-1 \leq m_{1}(s) \leq \beta_{1}$. By letting r^{\prime} denote the number of β_{1}-valued components of m_{1}, we obtain by (4.8) that

$$
r_{1}+\left(\beta_{1}-1\right)\left|S_{1}\right|=p_{1}\left(S_{1}\right)=\widetilde{m}_{1}\left(S_{1}\right)=\left(\beta_{1}-1\right)\left|S_{1}\right|+r^{\prime}
$$

and hence $r^{\prime}=r_{1}$.
Theorem 4.6 implies that, in order to characterize the set of dec-min elements of \dddot{B}, it suffices to characterize the set of dec-min elements of $\cdots \bar{B}_{1}^{\prime}$.

Theorem 4.8. Let β_{2} denote the smallest integer for which ${\overline{B_{1}^{\prime}}}^{\prime}$ has a β_{2}-covered element, that is, $\beta_{2}=\beta\left(B_{1}^{\prime}\right)$. Then

$$
\begin{equation*}
\left.\beta_{2}=\max \left\{\frac{p_{1}^{\prime}(X)}{|X|}\right\rceil: \emptyset \neq X \subseteq S-S_{1}\right\} \tag{4.9}
\end{equation*}
$$

where $p_{1}^{\prime}(X)=p\left(X \cup S_{1}\right)-p\left(S_{1}\right)$. Furthermore, β_{2} is the largest component in $S-S_{1}$ of every dec-min element of \bar{B}, and $\beta_{2}<\beta_{1}$.

Proof. Formula (4.9) follows by applying Theorem 4.1 to base-polyhedron $B_{1}^{\prime}\left(=B^{\prime}\left(p_{1}^{\prime}\right)\right)$ in place of B. By Theorem 4.6, the largest component in $S-S_{1}$ of any dec-min element m of \dddot{B} is β_{2}. By Theorem 4.4, $S_{1}(m)=S_{1}$, and the definition of $S_{1}(m)$ shows that $m(s) \leq \beta_{1}-1$ holds for every $s \in S-S_{1}$, from which $\beta_{2}<\beta_{1}$ follows.

4.4 The matroid M_{1} on S_{1}

It is known from the theory of base-polyhedra that the intersection of an integral basepolyhedron with an integral box is an integral base-polyhedron. Moreover, if the box in question is small, then the intersection is actually a translated matroid base-polyhedron (meaning that the intersection arises from a matroid base-polyhedron by translating it with an integral vector). This result is a consequence of the theorem that ($*$) any integral basepolyhedron in the unit $(0,1)$-cube is the convex hull of (incidence vectors of) the bases of a matroid.

Consider the special small integral box $T_{1} \subseteq \mathbf{Z}^{S_{1}}$ defined by

$$
T_{1}:=\left\{x: \beta_{1}-1 \leq x(s) \leq \beta_{1}\right\}
$$

and its intersection $B_{1}^{*}:=B_{1} \cap T_{1}$ with the base-polyhedron B_{1} investigated above. Therefore B_{1}^{\bullet} is a translated matroid base-polyhedron and Theorem4.7 implies the following.

Corollary 4.9. The dec-min elements of \ddot{B}_{1} are exactly the integral elements of the translated matroid base-polyhedron B_{1}^{\bullet}.

Our next goal is to reprove Corollary 4.9 by concretely describing the matroid in question and not relying on the background theorem ($*$) mentioned above. For a dec-min element m_{1} of $\dddot{B_{1}}$, let

$$
L_{1}\left(m_{1}\right):=\left\{s \in S_{1}: m_{1}(s)=\beta_{1}\right\} .
$$

We know from Theorem 4.7 that $\left|L_{1}\left(m_{1}\right)\right|=r_{1}$. Define a set-system \mathcal{B}_{1} as follows:

$$
\begin{equation*}
\mathcal{B}_{1}:=\left\{L \subseteq S_{1}: L=L_{1}\left(m_{1}\right) \text { for some dec-min element } m_{1} \text { of } \dddot{B_{1}}\right\} \tag{4.10}
\end{equation*}
$$

We need the following characterization of \mathcal{B}_{1}.
Proposition 4.10. An r_{1}-element subset L of S_{1} is in \mathcal{B}_{1} if and only if

$$
\begin{equation*}
|L \cap X| \geq p_{1}^{\prime}(X):=p_{1}(X)-\left(\beta_{1}-1\right)|X| \text { whenever } X \subseteq S_{1} \tag{4.11}
\end{equation*}
$$

Proof. Suppose first that $L \in \mathcal{B}_{1}$, that is, there is a dec-min element m_{1} of $\dddot{B_{1}}$ for which $L=L_{1}\left(m_{1}\right)$. Then

$$
\left(\beta_{1}-1\right)|X|+|X \cap L|=\widetilde{m}_{1}(X) \geq p_{1}(X)
$$

for every subset $X \subseteq S_{1}$ from which (4.11) follows.
To see the converse, let $L \subseteq S_{1}$ be an r_{1}-element set meeting (4.11). Let

$$
m_{1}(s):= \begin{cases}\beta_{1} & \text { if } \quad s \in L \tag{4.12}\\ \beta_{1}-1 & \text { if } \quad s \in S-L\end{cases}
$$

Then obviously $L=L_{1}\left(m_{1}\right)$. Furthermore,

$$
\widetilde{m}_{1}\left(S_{1}\right)=\left(\beta_{1}-1\right)\left|S_{1}\right|+|L|=\left(\beta_{1}-1\right)\left|S_{1}\right|+r_{1}=p\left(S_{1}\right)
$$

and

$$
\widetilde{m}_{1}(X)=\left(\beta_{1}-1\right)|X|+|L \cap X| \geq p_{1}(X) \text { whenever } X \subset S_{1},
$$

showing that $m_{1} \in B_{1}$. Since $m_{1} \in T_{1}$, we conclude that m_{1} is a dec-min element of $\dddot{B_{1}}$.
Theorem 4.11. The set-system \mathcal{B}_{1} defined in (4.10) forms the set of bases of a matroid M_{1} on ground-set S_{1}.

Proof. The set-system \mathcal{B}_{1} is clearly non-empty and all of its members are of cardinality r_{1}. It is widely known [8] that for an integral submodular function b on a ground-set S_{1} the set-system

$$
\left\{L \subseteq S_{1}:|L \cap X| \leq b(X) \text { whenever } X \subset S_{1},|L|=b\left(S_{1}\right)\right\}
$$

if non-empty, satisfies the matroid basis axioms. This implies for the supermodular function p_{1}^{\prime} that the set-system $\left\{L:|L \cap X| \geq p_{1}^{\prime}(X)\right.$ whenever $\left.X \subset S_{1},|L|=p_{1}^{\prime}\left(S_{1}\right)\right\}$, if non-empty, forms the set of bases of a matroid. By applying this fact to the supermodular function p_{1}^{\prime} defined by $p_{1}^{\prime}(X):=p_{1}(X)-\left(\beta_{1}-1\right)|X|$, one obtains that \mathcal{B}_{1} is non-empty and forms the set of bases of a matroid.

In this way, we proved the following more explicit form of Corollary 4.9 .
Corollary 4.12. Let $\Delta_{1}: S_{1} \rightarrow \mathbf{Z}$ denote the integral vector defined by $\Delta_{1}(s):=\beta_{1}-1$ for $s \in S_{1}$. A member m_{1} of $\dddot{B_{1}}$ is decreasingly minimal if and only if there is a basis B_{1} of M_{1} such that $m_{1}=\chi_{B_{1}}+\Delta_{1}$.

4.5 Value-fixed elements of S_{1}

We say that an element $s \in S$ is value-fixed with respect to \bar{B} if $m(s)$ is the same for every dec-min element m of \vec{B}. In Section 6.3, we will show a description of value-fixed elements of \dddot{B}. In the present section, we consider the value-fixed elements with respect to B_{1}, that is, $s \in S_{1}$ is value-fixed if $m_{1}(s)$ is the same for every dec-min element $m_{1} \in \dddot{B_{1}}$. Recall that $m_{1} \in \dddot{B_{1}}$ was shown to be dec-min precisely if $\beta_{1}-1 \leq m_{1}(s) \leq \beta_{1}$ for each $s \in S_{1}$.

A loop of a matroid is an element $s \in S_{1}$ not belonging to any basis. (Often the singleton $\{s\}$ is called a loop, that is, $\{s\}$ is a one-element circuit). A co-loop (or cut-element or isthmus) of a matroid is an element s belonging to all bases.

Proposition 4.13. M_{1} has no loops.
Proof. By Proposition 4.5, for every $s \in S_{1}$ there is a pre-dec-min element m of \dddot{B} for which $m(s)=\beta_{1}$. Then $m_{1}:=m \mid S_{1}$ is a pre-dec-min element of \dddot{B}_{1} by Theorem 4.7 from which s_{1} belongs to a basis of M_{1} by Corollary 4.12 .

The proposition implies that:
Proposition 4.14. If $s \in S_{1}$ is value-fixed (with respect to B_{1}), then $m_{1}(s)=\beta_{1}$ for every dec-min element m_{1} of B_{1}.

By Corollary 4.12, an element $s \in S_{1}$ is a co-loop of M_{1} if and only if $m_{1}(s)=\beta_{1}$ holds for every dec-min element m_{1} of \dddot{B}_{1}. This and Theorem 4.6 imply the following.

Theorem 4.15. For an element $s \in S_{1}$, the following properties are pairwise equivalent.
(A) s is a co-loop of M_{1}.
(B) s is value-fixed.
(C) $m(s)=\beta_{1}$ holds for every dec-min element m of \ddot{B}.

Our next goal is to characterize the set of value-fixed elements of S_{1}. Consider the family of subsets S_{1} defined by

$$
\begin{equation*}
\mathcal{F}_{1}:=\left\{X \subseteq S_{1}: \beta_{1}|X|=p_{1}(X)\right\} . \tag{4.13}
\end{equation*}
$$

The empty set belongs to \mathcal{F}_{1} and it is possible that \mathcal{F}_{1} has no other members. By standard submodularity arguments, \mathcal{F}_{1} is closed under taking union and intersection. Let F_{1} denote the unique largest member of \mathcal{F}_{1}. It is possible that $F_{1}=S_{1}$ in which case we call S_{1} degenerate.

Theorem 4.16. An element $s \in S_{1}$ is value-fixed if and only if $s \in F_{1}$.
Proof. Let m_{1} be a dec-min member of $\dddot{B_{1}}$. Then

$$
\beta_{1}\left|F_{1}\right| \geq \widetilde{m}_{1}\left(F_{1}\right) \geq p_{1}\left(F_{1}\right)=\beta_{1}\left|F_{1}\right|
$$

and hence we must have $\beta_{1}=m_{1}(s)$ for every $s \in F_{1}$, that is, the elements of F_{1} are indeed value-fixed.

Conversely, let s be value-fixed, that is, $m_{1}(s)=\beta_{1}$ for each dec-min element m_{1} of \widetilde{B}_{1}. Let m_{1} be a dec-min member of $\dddot{B_{1}}$. Let Z denote the unique smallest set containing s for which $\widetilde{m}_{1}(Z)=p_{1}(Z)$. (That is, $Z=T_{m_{1}}\left(s ; p_{1}\right)$.) We claim that $m_{1}(t)=\beta_{1}$ for every element $t \in Z$. For if $m_{1}(t)=\beta_{1}-1$ for some t, then $m_{1}^{\prime}:=m_{1}-\chi_{s}+\chi_{t}$ would also be a dec-min member of B_{1}, contradicting the assumption that s is value-fixed. Therefore $p_{1}(Z)=\widetilde{m}_{1}(Z)=\beta_{1}|Z|$ from which the definition of F_{1} implies that $Z \subseteq F_{1}$ and hence $s \in F_{1}$.

5 The set of dec-min elements of an M-convex set

Let $B=B^{\prime}(p)$ denote again an integral base-polyhedron defined by the (integer-valued) supermodular function p. As in the previous section, \dddot{B} continues to denote the M-convex set consisting of the integral vectors (points, elements) of B. Our present goal is to provide a complete description of the set of decreasingly-minimal (= egalitarian) elements of \dddot{B} by identifying a partition of the ground-set, to be named the canonical partition, inherent in this problem. As a consequence, we show that the set of dec-min elements has a matroidal structure and this feature makes it possible to solve the minimum cost dec-min problem.

5.1 Canonical partition and canonical chain

In Section 4 we introduced the integer β_{1} as the minimum of the largest component of the elements of B as well as the notion of peak-set S_{1} of S. We considered the face of B defined by S_{1} that was the direct sum of base-polyhedra $B_{1}=B^{\prime}\left(p_{1}\right)$ and $B_{1}^{\prime}=B^{\prime}\left(p_{1}^{\prime}\right)$, where p_{1} denoted the restriction of p to S_{1} while p_{1}^{\prime} arose from p by contracting S_{1} (that is, $\left.p_{1}^{\prime}(X)=p\left(S_{1} \cup X\right)-p\left(S_{1}\right)\right)$.

A consequence of Theorem 4.6 is that, in order to characterize the set of dec-min elements of \dddot{B}, it suffices to characterize separately the dec-min elements of \ddot{B}_{1} and the decmin elements of $\widetilde{B_{1}^{\prime}}$. In Theorem 4.7, we characterized the dec-min elements of \widetilde{B}_{1} as those belonging to the small box $T_{1}:=\left\{x \in \mathbf{R}^{S_{1}}: \beta_{1}-1 \leq x(s) \leq \beta_{1}\right.$ for $\left.s \in S_{1}\right\}$. We also proved that the set \dddot{B}_{1}^{*} of dec-min elements of $\dddot{B_{1}}$ can be described with the help of matroid M_{1}. If the peak-set S_{1} happens to be the whole ground-set S, then the characterization of the set of dec-min elements of \dddot{B} is complete. If $S_{1} \subset S$, then our remaining task is to characterize the set of dec-min elements of $\dddot{B_{1}^{\prime}}$. This can be done by repeating iteratively the separation procedure to the base-polyhedron $B_{1}^{\prime}=B^{\prime}\left(p_{1}^{\prime}\right) \subseteq \mathbf{R}^{S-S_{1}}$ described in Section 4 for B.

In this iterative way, we are going to define a partition $\mathcal{P}^{*}=\left\{S_{1}, S_{2}, \ldots, S_{q}\right\}$ of S which determines a chain $C^{*}=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ where $C_{i}:=S_{1} \cup S_{2} \cup \cdots \cup S_{i}$ (in particular $C_{q}=S$), and the supermodular function

$$
p_{i}^{\prime}:=p / C_{i} \quad \text { on set } \overline{C_{i}}:=S-C_{i}
$$

which defines the base-polyhedron $B_{i}^{\prime}=B^{\prime}\left(p_{i}^{\prime}\right)$ in $\mathbf{R}^{\bar{C}_{i}}$. Moreover, we define iteratively a decreasing sequence $\beta_{1}>\beta_{2}>\cdots>\beta_{q}$ of integers, a small box

$$
\begin{equation*}
T_{i}:=\left\{x \in \mathbf{R}^{S_{i}}: \beta_{i}-1 \leq x(s) \leq \beta_{i} \text { for } s \in S_{i}\right\}, \tag{5.1}
\end{equation*}
$$

and the supermodular function p_{i} on S_{i}, where

$$
\begin{equation*}
p_{i}:=p_{i-1}^{\prime} \mid S_{i} \quad\left(=\left(p / C_{i-1}\right) \mid S_{i}\right) \tag{5.2}
\end{equation*}
$$

that is,

$$
p_{i}(X)=p\left(X \cup C_{i-1}\right)-p\left(C_{i-1}\right) \text { for } X \subseteq S_{i} .
$$

Let $B_{i}:=B^{\prime}\left(p_{i}\right) \subseteq \mathbf{R}^{S_{i}}$ be the base-polyhedron defined by p_{i}.

In the general step, suppose that the pairwise disjoint non-empty sets $S_{1}, S_{2}, \ldots, S_{j-1}$ have already been defined, along with the decreasing sequence $\beta_{1}>\beta_{2}>\cdots>\beta_{j-1}$ of integers. If $S=S_{1} \cup \cdots \cup S_{j-1}$, then by taking $q:=j-1$, the iterative procedure terminates. So suppose that this is not the case, that is, $C_{j-1} \subset S$. We assume that p_{j-1} on S_{j-1} has been defined as well as p_{j-1}^{\prime} on $\overline{C_{j-1}}$.

Let

$$
\begin{equation*}
\beta_{j}=\max \left\{\left\{\frac{p_{j-1}^{\prime}(X)}{|X|}\right\rceil: \emptyset \neq X \subseteq \overline{C_{j-1}}\right\}, \tag{5.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\beta_{j}=\max \left\{\left[\frac{p\left(X \cup C_{j-1}\right)-p\left(C_{j-1}\right)}{|X|}\right\rceil: \emptyset \neq X \subseteq \overline{C_{j-1}}\right\} . \tag{5.4}
\end{equation*}
$$

Note that, by the iterative feature of these definitions, Theorem4.8 implies that

$$
\beta_{j}<\beta_{j-1} .
$$

Furthermore, let h_{j} be a set-function on $\overline{C_{j-1}}$ defined as follows:

$$
\begin{equation*}
h_{j}(X):=p_{j-1}^{\prime}(X)-\left(\beta_{j}-1\right)|X| \text { for } X \subseteq \overline{C_{j-1}}, \tag{5.5}
\end{equation*}
$$

and let $S_{j} \subseteq \overline{C_{j-1}}$ be the peak-set of $\overline{C_{j-1}}$ assigned to $B_{j-1}^{\prime}:=B^{\prime}\left(p_{j-1}^{\prime}\right)$, that is, S_{j} is the smallest subset of \bar{C}_{j-1} maximizing h_{j}. Finally, let $p_{j}:=p_{j-1}^{\prime} \mid S_{j}$ and let $p_{j}^{\prime}:=p_{j-1}^{\prime} / S_{j}$. Observe by (2.1) that $p_{j}^{\prime}=p / C_{j}$. Therefore p_{j} is a set-function on S_{j} while p_{j}^{\prime} is defined on $\overline{C_{j}}$.

We shall refer to the partition \mathcal{P}^{*} and the chain C^{*} defined above as the canonical partition and canonical chain of S, respectively, assigned to B, while the sequence $\beta_{1}>\cdots>\beta_{q}$ will be called the essential value-sequence of B. Let B^{\oplus} denote the face of B defined by the canonical chain C^{*}, that is, B^{\oplus} is the direct sum of the q base-polyhedra $B^{\prime}\left(p_{i}\right)(i=1, \ldots, q)$. Finally, let T^{*} be the direct sum of the small boxes $T_{i}(i=1, \ldots, q)$, that is, T^{*} is the integral box defined by the essential value-sequence as follows:

$$
\begin{equation*}
T^{*}:=\left\{x \in \mathbf{R}^{S}: \beta_{i}-1 \leq x(s) \leq \beta_{i} \text { whenever } s \in S_{i}(i=1, \ldots, q)\right\}, \tag{5.6}
\end{equation*}
$$

and let

$$
B^{\bullet}:=B^{\oplus} \cap T^{*} .
$$

is always an integral base-polyhedron and hence B^{\bullet} is an integral base-polyhedron. Furthermore, B^{\bullet} is the direct sum of the q base-polyhedra $B_{i} \cap T_{i}(i=1, \ldots, q)$, where $B_{i}=B^{\prime}\left(p_{i}\right)$, implying that a vector m is in B^{\bullet} if and only if each m_{i} is in $\ddot{B}_{i} \cap T_{i}$, where $m_{i}=m \mid S_{i}$.

Theorem 5.1. Let $B=B^{\prime}(p)$ be an integral base-polyhedron on ground-set S. The set of decreasingly-minimal elements of \bar{B} is (the M-convex set) B°. Equivalently, an element $m \in \dddot{B}$ is decreasingly-minimal if and only if its restriction $m_{i}:=m \mid S_{i}$ to S_{i} belongs to $B_{i} \cap T_{i}$ for each $i=1, \ldots, q$, where $\left\{S_{1}, \ldots, S_{q}\right\}$ is the canonical partition of S belonging to B, T_{i} is the small box defined in (5.1), and B_{i} is the base-polyhedron $B^{\prime}\left(p_{i}\right)$ belonging to the supermodular set-function p_{i} defined in (5.2).

Proof. We use induction on q. Suppose first that $q=1$, that is, $S_{1}=S$ and $B_{1}=B$. If m is a dec-min element of B, then the equivalence of Properties (A1) and (A3) in Theorem 4.7 implies that m is in B^{\bullet}. If, conversely, $m \in B^{\bullet}$, then m is near-uniform and, by the equivalence of Properties (A1) and (A3) in Theorem 4.7 again, m is dec-min.

Suppose now that $q \geq 2$ and consider the base-polyhedron $B_{1}^{\prime}=B^{\prime}\left(p_{1}^{\prime}\right)$ appearing in Theorem4.6. The iterative definition of the canonical partition \mathcal{P}^{*} implies that the canonical partition of $S-S_{1}$ assigned to B_{1}^{\prime} is $\left\{S_{2}, \ldots, S_{q}\right\}$ and the essential value-sequence belonging to B_{1}^{\prime} is $\beta_{2}>\beta_{3}>\cdots>\beta_{q}$. Also, the canonical chain $C^{\prime}:=\left\{C_{2}^{\prime}, \ldots, C_{q}^{\prime}\right\}$ of B_{1}^{\prime} consists of the sets $C_{i}^{\prime}=S_{2} \cup \cdots \cup S_{i}=C_{i}-S_{1}(i=2, \ldots, q)$.

By applying the inductive hypothesis to B_{1}^{\prime}, we obtain that an integral element m_{1}^{\prime} of B_{1}^{\prime} is dec-min if and only if m_{1}^{\prime} is in the face of B_{1}^{\prime} defined by chain C^{\prime} and m_{1}^{\prime} belongs to the box $T^{\prime}:=\left\{x \in \mathbf{R}^{S-S_{1}}: \beta_{i}-1 \leq x(s) \leq \beta_{i}\right.$ whenever $\left.s \in S_{i}(i=2, \ldots, q)\right\}$. By applying Theorem4.6, we are done in this case as well.

Corollary 5.2. Let $B=B^{\prime}(p)$ be an integral base-polyhedron on ground-set S. Let $\left\{C_{1}, \ldots, C_{q}\right\}$ be the canonical chain, $\left\{S_{1}, \ldots, S_{q}\right\}$ the canonical partition of S, and $\beta_{1}>\beta_{2}>\cdots>\beta_{q}$ the essential value-sequence belonging to \dddot{B}. Then an element $m \in \dddot{B}$ is decreasingly-minimal if and only if each C_{i} is m-tight (that is, $\widetilde{m}\left(C_{i}\right)=p\left(C_{i}\right)$) and $\beta_{i}-1 \leq m(s) \leq \beta_{i}$ holds for each $s \in S_{i}(i=1, \ldots, q)$.

5.2 Obtaining the canonical chain and value-sequence from a dec-min element

The main goal of this section is to show that the canonical chain and value-sequence can be rather easily obtained from an arbitrary dec-min element of \ddot{B}. This approach will be crucial in developing a polynomial algorithm in Section 7.2 for computing the essential value-sequence along with the canonical chain and partition.

Let m be an element of \dddot{B}. We called a set $X \subseteq S m$-tight if $\widetilde{m}(X)=p(X)$. Recall from Section 2 that, for a subset $Z \subseteq S, T_{m}(Z)=T_{m}(Z ; p)$ denoted the unique smallest m-tight set including Z, that is, $T_{m}(Z)$ is the intersection of all the m-tight sets including Z. Obviously,

$$
\begin{equation*}
T_{m}(Z)=\cup\left(T_{m}(z): z \in Z\right) . \tag{5.7}
\end{equation*}
$$

Let m be an arbitrary dec-min element of \dddot{B}. We proved that m is in the face B^{\oplus} of B defined by the canonical chain $C^{*}=\left\{C_{1}, \ldots, C_{q}\right\}$ belonging to B. Therefore each C_{i} is m tight with respect to p. Furthermore $m_{i}:=m \mid S_{i}$ belongs to the box T_{i} defined in 5.1). This implies that $m(s) \geq \beta_{i}-1$ for every $s \in C_{i}$ and $m\left(s^{\prime}\right) \leq \beta_{i+1}$ for every $s^{\prime} \in \bar{C}_{i}$. (The last inequality holds indeed since $s^{\prime} \in \bar{C}_{i}$ implies that $s^{\prime} \in S_{j}$ for some $j \geq i+1$ from which $m\left(s^{\prime}\right) \leq \beta_{j} \leq \beta_{i+1}$.) Since $\beta_{i+1} \leq \beta_{i}-1$, we obtain that each C_{i} is an m-top set.

Since m_{i} is near-uniform on S_{i} with values β_{i} and possibly $\beta_{i}-1$, we obtain

$$
\beta_{i}=\left\lceil\frac{\widetilde{m}_{i}\left(S_{i}\right)}{\left|S_{i}\right|}\right\rceil=\left\lceil\frac{p_{i}\left(S_{i}\right)}{\left|S_{i}\right|}\right\rceil=\left\lceil\frac{p\left(C_{i}\right)-p\left(C_{i-1}\right)}{\left|S_{i}\right|}\right\rceil .
$$

Let $L_{i}:=\left\{s \in S-C_{i-1}: m(s)=\beta_{i}\right\}$ and let $r_{i}:=\left|L_{i}\right|$. Then $p_{i}\left(S_{i}\right)=\widetilde{m}_{i}\left(S_{i}\right)=\left(\beta_{i}-1\right)\left|S_{i}\right|+r_{i}$ and hence

$$
\begin{equation*}
r_{i}=p\left(C_{i}\right)-p\left(C_{i-1}\right)-\left(\beta_{i}-1\right)\left|S_{i}\right| . \tag{5.8}
\end{equation*}
$$

The content of the next lemma is that, once C_{i-1} is given, the next member C_{i} of the canonical chain (and hence S_{i}, as well) can be expressed with the help of m. Recall that $T_{m}\left(L_{i}\right)=T_{m}\left(L_{i} ; p\right)$ denoted the smallest m-tight set including L_{i}.

Lemma 5.3. $C_{i}=C_{i-1} \cup T_{m}\left(L_{i} ; p\right)$.
Proof. Recall the definition of function h_{i} given in (5.5). We have

$$
\begin{equation*}
h_{i}\left(S_{i}\right)=r_{i} \tag{5.9}
\end{equation*}
$$

since $h_{i}\left(S_{i}\right)=p_{i-1}^{\prime}\left(S_{i}\right)-\left(\beta_{i}-1\right)\left|S_{i}\right|=p\left(S_{i} \cup C_{i-1}\right)-p\left(C_{i-1}\right)-\left(\beta_{i}-1\right)\left|S_{i}\right|=\widetilde{m}\left(C_{i}\right)-\widetilde{m}\left(C_{i-1}\right)-$ $\left(\beta_{i}-1\right)\left|S_{i}\right|=\widetilde{m}\left(S_{i}\right)-\left(\beta_{i}-1\right)\left|S_{i}\right|=r_{i}$.

Since $L_{i} \subseteq C_{i}$ and each of C_{i-1}, C_{i}, and $T_{m}\left(L_{i}\right)$ are m-tight, we have $C_{i-1} \cup T_{m}\left(L_{i} ; p\right) \subseteq C_{i}$. For $X^{\prime}:=T_{m}\left(L_{i}\right) \cap \overline{C_{i-1}}$ we have

$$
\begin{aligned}
h_{i}\left(X^{\prime}\right) & =p\left(C_{i-1} \cup T_{m}\left(L_{i}\right)\right)-p\left(C_{i-1}\right)-\left(\beta_{i}-1\right)\left|X_{i}^{\prime}\right| \\
& =\widetilde{m}\left(C_{i-1} \cup T_{m}\left(L_{i}\right)\right)-\widetilde{m}\left(C_{i-1}\right)-\left(\beta_{i}-1\right)\left|X_{i}^{\prime}\right| \\
& =\widetilde{m}\left(X^{\prime}\right)-\left(\beta_{i}-1\right)\left|X_{i}^{\prime}\right|=\left|L_{i}\right|=r_{i}=h_{i}\left(S_{i}\right),
\end{aligned}
$$

that is, X^{\prime} is also a maximizer of $h_{i}(X)$. Since S_{i} was the smallest maximizer of h_{i}, we conclude that $C_{i-1} \cup T_{m}\left(L_{i} ; p\right) \supseteq C_{i}$.

The lemma implies that both the essential value-sequence $\beta_{1}>\cdots>\beta_{q}$ and the canonical chain C^{*} belonging to \vec{B} can be directly obtained from m.

Corollary 5.4. Let m be an arbitrary dec-min element of \bar{B}. The essential value-sequence and the canonical chain belonging to \dddot{B} can be described as follows. Value β_{1} is the largest m-value and C_{1} is the smallest m-tight set containing all β_{1}-valued elements. Moreover, for $i=2, \ldots, q, \beta_{i}$ is the largest value of $m \mid \overline{C_{i-1}}$ and C_{i} is the smallest m-tight set (with respect to p) containing each element of m-value at least β_{i}.

A detailed algorithm based on this corollary will be described in Section 7.2. Note that a dec-min element m of \dddot{B} may have more than q distinct values. For example, if $q=1$ and $L_{1} \subset C_{1}=S$, then m has two distinct values, namely β_{1} on the elements of L_{1} and $\beta_{1}-1$ on the elements of $S-L_{1}$, while its essential value-sequence consists of the single member β_{1}.

A direct proof Corollary 5.4 implies that the chain of subsets and value-sequence assigned to a dec-min element m of \dddot{B} in the corollary do not depend on the choice of m. Here we describe an alternative, direct proof of this consequence.

Theorem 5.5. Let m be an arbitrary dec-min element of B. Let β_{1} denote the largest value of m and let C_{1} denote the smallest m-tight set (with respect to p) containing all β_{1}-valued elements. Moreover, for $i=2,3, \ldots, q$, let β_{i} denote the largest value of $m \mid \overline{C_{i-1}}$ and let C_{i} denote the smallest m-tight set containing each element of m-value at least β_{i}. Then the chain $C_{1} \subset C_{2} \subset \cdots \subset C_{q}$ and the sequence $\beta_{1}>\beta_{2}>\cdots>\beta_{q}$ do not depend on the choice of m.

Proof. Let z be dec-min element of \ddot{B}. We use induction on the number of elements t of S for which $m(t)>z(t)$. If no such an element t exists, then $m=z$ and there is nothing to prove. So assume that $z \neq m$.

Let $L_{i}:=\left\{t \in S_{i}: m(t)=\beta_{i}\right\}$. As m is dec-min, the definition of C_{i} implies that $m(s)=\beta_{i}-1$ holds for every element $s \in S_{i}-L_{i}$. Let $t \in L_{i}$ and let $s \in T_{m}(t)-L_{i}$. Then $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is also a dec-min element of \dddot{B}, and we say that m^{\prime} is obtained from m by an elementary step. Observe that $T_{m}(t)=T_{m^{\prime}}(s)$ and hence the chain and the value-sequence assigned to m^{\prime} is the same as those assigned to m.

Let i denote the smallest subscript for which $m \mid S_{i}$ and $z \mid S_{i}$ differ. Since z is dec-min, $z(s) \leq \beta_{i}$ holds for every $s \in S_{i}$. Let $L_{i}^{\prime}:=\left\{t \in S_{i}: z(t)=\beta_{i}\right\}$. Then $z(v) \leq \beta_{i}-1$ for every $v \in S_{i}-L_{i}^{\prime}$, and $\left|L_{i}^{\prime}\right| \leq\left|L_{i}\right|$ as z is dec-min. Therefore

$$
\widetilde{z}\left(S_{i}\right) \leq \beta_{i}\left|L_{i}^{\prime}\right|+\left(\beta_{i}-1\right)\left(\left|S_{i}-L_{i}^{\prime}\right|\right)=\left(\beta_{i}-1\right)\left|S_{i}\right|+\left|L_{i}^{\prime}\right| \leq\left(\beta_{i}-1\right)\left|S_{i}\right|+\left|L_{i}\right| .
$$

On the other hand,

$$
\begin{aligned}
\widetilde{z}\left(S_{i}\right) & =\widetilde{z}\left(C_{i}\right)-\widetilde{z}\left(C_{i-1}\right)=\widetilde{z}\left(C_{i}\right)-\widetilde{m}\left(C_{i-1}\right) \\
& \geq p\left(C_{i}\right)-\widetilde{m}\left(C_{i-1}\right)=\widetilde{m}\left(C_{i}\right)-\widetilde{m}\left(C_{i-1}\right)=\widetilde{m}\left(S_{i}\right)=\left(\beta_{i}-1\right)\left|S_{i}\right|+\left|L_{i}\right| .
\end{aligned}
$$

Therefore we have equality throughout, in particular, $\widetilde{z}\left(C_{i}\right)=p\left(C_{i}\right),\left|L_{i}^{\prime}\right|=\left|L_{i}\right|$, and $z(v)=$ $\beta_{i}-1$ for every $v \in S_{i}-L_{i}^{\prime}$.

Let $t \in L_{i}$ be an element for which $m(t)>z(t)$. Then $m(t)=\beta_{i}$ and $z(t)=\beta_{i}-1$. It follows that $T_{m}(t)$ contains an element s for which $z(s)>m(s)$, implying that $m(s)=\beta_{i}-1$ and $z(s)=\beta_{i}$. Now $m(t)>m^{\prime}(t)=z(t)$ holds for the dec-min element $m^{\prime}:=m+\chi_{s}-\chi_{t}$ obtained from m by an elementary step, and therefore we are done by induction.

5.3 Matroidal description of the set of dec-min elements

In Section 4.4, we introduced a matroid M_{1} on S_{1} and proved in Corollary 4.9 that the dec-min elements of \dddot{B}_{1} are exactly the integral elements of the translated base-polyhedron of M_{1}, where the translation means the addition of the constant vector $\left(\beta_{1}-1, \ldots, \beta_{1}-\right.$ 1) of dimension $\left|S_{1}\right|$. The same notions and results can be applied to each subscript $i=$ $2, \ldots, q$. Furthermore, by formulating Lemma 4.11 for subscript i in place of 1 , we obtain the following.

Proposition 5.6. The set-system $\mathcal{B}_{i}:=\left\{L \subseteq S_{i}: L=L_{i}\left(m_{i}\right)\right.$ for some dec-min element m_{i} of $\dddot{B_{i}}$ \} forms the set of bases of a matroid M_{i} on ground-set S_{i}. An r_{i}-element subset L of S_{i} is a basis of M_{i} if and only if

$$
\begin{equation*}
|L \cap X| \geq p_{i}^{\prime}(X):=p_{i}(X)-\left(\beta_{i}-1\right)|X| \tag{5.10}
\end{equation*}
$$

holds for every $X \subseteq S_{i}$.
It follows that a vector m_{i} on S_{i} is a dec-min element of \ddot{B}_{i} if and only if $\beta_{i}-1 \leq m_{i}(s) \leq \beta_{i}$ for each $s \in S_{i}$ and the set $L_{i}:=\left\{s \in S_{i}: m_{i}(s)=\beta_{i}\right\}$ is a basis of M_{i}. Let M^{*} denote the direct sum of matroids M_{1}, \ldots, M_{q} and let $\Delta^{*} \in \mathbf{Z}^{S}$ denote the translation vector defined by

$$
\Delta^{*}(s):=\beta_{i}-1 \text { whenever } s \in S_{i}, i=1, \ldots, q .
$$

By integrating these results, we obtain the following characterization.

Theorem 5.7. Let B be an integral base-polyhedron. An element m of (the M-convex set) \overleftrightarrow{B} is decreasingly minimal if and only if m can be obtained in the form $m=\chi_{L}+\Delta^{*}$ where L is a basis of the matroid M^{*}. The base-polyhedron B^{\bullet} arises from the base-polyhedron of M^{*} by adding the translation vector Δ^{*}. Concisely, the set of dec-min elements of \dddot{B} is a matroidal M-convex set.

Cheapest dec-min element An important algorithmic consequence of Theorems 5.1 and 5.7 is that they help solve the cheapest dec-min element problem, which is as follows. Let $c: S \rightarrow \mathbf{R}$ be a cost function and consider the problem of computing a dec-min element m of an M-convex set \vec{B} for which $c m$ is as small as possible.

By Theorem 5.7 the set B^{\bullet} of dec-min elements of \dddot{B} can be obtained from a matroid M^{*} by translation. Namely, there is a vector $\Delta^{*} \in \mathbf{Z}^{S}$ such that m is in B^{\bullet} if and only if there is a basis L of M^{*} for which $m=\chi_{L}+\Delta^{*}$. Note that the matroid M^{*} arises as the direct sum of matroids M_{i} defined on the members S_{i} of the canonical partition. M_{1} is described in Proposition 4.10 and the other matroids M_{i} may be determined analogously in an iterative way. To realize this algorithmically, we must have a strongly polynomial algorithm to compute the canonical partition as well as the essential value-sequence. Such an algorithm will be described in Section 7.2.

Therefore, in order to find a minimum c-cost dec-min element of \ddot{B}, it suffices to find a minimum c-cost basis of M^{*}. Note that, in applying the greedy algorithm to the matroids M_{i} in question, we need a rank oracle, which can be realized with the help of a submodular function minimization oracle by relying on the definition of bases in (4.11).

Recall that for integral bounds $f \leq g$, the intersection B_{1} of a base-polyhedron B and the box $T(f, g)$, if non-empty, is itself a base-polyhedron. Therefore the algorithm above can be applied to the M-convex set \widetilde{B}_{1}, that is, we can compute a cheapest dec-min element of the intersection $\dddot{B_{1}}=\dddot{B} \cap T(f, g)$.

6 Integral square-sum and difference-sum minimization

For a vector $z \in \mathbf{Z}^{S}$, we can conceive several natural functions to measure the uniformity of its component values $z(s)$ for $s \in S$. Here are two examples:

$$
\begin{array}{ll}
\text { square-sum : } & W(z):=\sum\left[z(s)^{2}: s \in S\right] \\
\text { difference-sum }: & \Delta(z):=\sum[|z(s)-z(t)|: s \neq t, s, t \in S] \tag{6.2}
\end{array}
$$

For vectors z_{1} and z_{2} with $\widetilde{z}_{1}(S)=\widetilde{z}_{2}(S), z_{1}$ may be felt more uniform than z_{2} if $W\left(z_{1}\right)<$ $W\left(z_{2}\right)$, and z_{1} may also be felt more uniform if $\Delta\left(z_{1}\right)<\Delta\left(z_{2}\right)$. The first goal of this section is to show, by establishing a fairly general theorem, that a dec-min element of an M-convex set \dddot{B} is simultaneously a minimizer of these two functions. The second goal of this section is to derive a min-max formula for the minimum integral square-sum of an element of an M-convex set \dddot{B}, along with characterizations of (integral) square-sum minimizers and dual optimal solutions.

6.1 Symmetric convex minimization

Let S be a non-empty ground-set of n elements: $S=\{1,2, \ldots, n\}$. We say that function $\Phi: \mathbf{Z}^{S} \rightarrow \mathbf{R}$ is symmetric if

$$
\begin{equation*}
\Phi(z(1), z(2), \ldots, z(n))=\Phi(z(\sigma(1)), z(\sigma(2)), \ldots, z(\sigma(n))) \tag{6.3}
\end{equation*}
$$

for all permutations σ of $(1,2, \ldots, n)$. We call a function $\Phi: \mathbf{Z}^{S} \rightarrow \mathbf{R}$ convex if

$$
\begin{equation*}
\lambda \Phi(x)+(1-\lambda) \Phi(y) \geq \Phi(\lambda x+(1-\lambda) y) \tag{6.4}
\end{equation*}
$$

whenever $x, y \in \mathbf{Z}^{S}, 0<\lambda<1$, and $\lambda x+(1-\lambda) y$ is an integral vector; and strictly convex if

$$
\begin{equation*}
\lambda \Phi(x)+(1-\lambda) \Phi(y)>\Phi(\lambda x+(1-\lambda) y) \tag{6.5}
\end{equation*}
$$

whenever $x, y \in \mathbf{Z}^{S}, 0<\lambda<1$, and $\lambda x+(1-\lambda) y$ is an integral vector.
In the special case where φ is a function in one variable, it can easily be shown that the convexity of φ is equivalent to the weaker requirement that the inequality

$$
\begin{equation*}
2 \varphi(k) \leq \varphi(k-1)+\varphi(k+1) \tag{6.6}
\end{equation*}
$$

holds for every integer k. It is strictly convex in the sense of (6.5) if and only if $2 \varphi(k)<$ $\varphi(k-1)+\varphi(k+1)$ holds for every integer k. For example, $\varphi(k)=k^{2}$ is strictly convex while $\varphi(k)=|k|$ is convex but not strictly. Given a function φ in one variable, define Φ by

$$
\begin{equation*}
\Phi(z):=\sum[\varphi(z(s)): s \in S] \tag{6.7}
\end{equation*}
$$

for $z \in \mathbf{Z}^{S}$. Such a function Φ is called a symmetric separable convex function; note that Φ is indeed convex in the sense of (6.4). When φ is strictly convex, Φ is also called strictly convex.

Example 6.1. The square-sum $W(z)$ in 6.1 is a symmetric convex function which is separable and strictly convex.

Example 6.2. The difference-sum $\Delta(z)$ in 6.2 is a symmetric convex function which is neither separable nor strictly convex. More generally, for a nonnegative integer K, the function defined by

$$
\Delta_{K}(z):=\sum\left[(|z(s)-z(t)|-K)^{+}: s \neq t, s, t \in S\right]
$$

is a symmetric convex function, where $(x)^{+}=\max \{x, 0\}$.
The following statements show a close relationship between decreasing minimality and the minimization of symmetric convex Φ over an M-convex set \dddot{B}.

Proposition 6.1. Let B be an integral base-polyhedron and Φ a symmetric convex function. Then each dec-min element of \dddot{B} is a minimizer of Φ over \dddot{B}.

Proof. Since the dec-min elements of \bar{B} are value-equivalent and Φ is symmetric, the Φ value of each dec-min element is the same value μ. We claim that $\Phi(m) \geq \mu$ for each $m \in \dddot{B}$. Suppose indirectly that there is an element m of \dddot{B} for which $\Phi(m)<\mu$. Then m is not dec-min in \dddot{B} and Property (A) in Theorem 3.3 implies that there is a 1 -tightening step for m resulting in decreasingly smaller member of B, that is, there exist $s, t \in S$ such that $m(t) \geq m(s)+2$ and $m^{\prime}:=m+\chi_{s}-\chi_{t} \in \ddot{B}$.

Let $\alpha=m(t)-m(s)$, where $\alpha \geq 2$, and define $z=m+\alpha\left(\chi_{s}-\chi_{t}\right)$. Since z is obtained from m by interchanging the components at s and $t, \Phi(m)=\Phi(z)$ by symmetry (6.3). Note that the vector z may not be a member of B. For $\lambda=1-1 / \alpha$ we have

$$
\begin{equation*}
\lambda m+(1-\lambda) z=\left(1-\frac{1}{\alpha}\right) m+\frac{1}{\alpha}\left(m+\alpha\left(\chi_{s}-\chi_{t}\right)\right)=m+\chi_{s}-\chi_{t}=m^{\prime} \in \dddot{B}\left(\subseteq \mathbf{Z}^{S}\right), \tag{6.8}
\end{equation*}
$$

from which $\lambda \Phi(m)+(1-\lambda) \Phi(z) \geq \Phi\left(m^{\prime}\right)$ by convexity (6.4). Since $\Phi(m)=\Phi(z)$, this implies $\Phi(m) \geq \Phi\left(m^{\prime}\right)$. After a finite number of such 1-tightening steps, we arrive at a dec-min element m_{0} of \ddot{B}, for which $\mu=\Phi\left(m_{0}\right) \leq \Phi(m)<\mu$, a contradiction.

Note that if Φ is convex but not strictly convex, then Φ may have minimizers that are not dec-min elements. This is exemplified by the identically zero function Φ for which every member of \dddot{B} is a minimizer. However, for strictly convex functions we have the following characterization.

Theorem 6.2. Given an integral base-polyhedron B and a symmetric strictly convex function Φ, an element m of \dddot{B} is a minimizer of Φ if and only if m is a dec-min element of B.

Proof. If m is a dec-min element, then m is a Φ-minimizer by Proposition 6.1. To see the converse, let m be a Φ-minimizer of \dddot{B}. If, indirectly, m is not a dec-min element, then Property (A) in Theorem 3.3 implies that there is a 1 -tightening step for m, that is, there exist $s, t \in S$ such that $m(t) \geq m(s)+2$ and $m^{\prime}:=m+\chi_{s}-\chi_{t} \in \dddot{B}$. For $\alpha=m(t)-m(s), \lambda=1-1 / \alpha$, and $z=m+\alpha\left(\chi_{s}-\chi_{t}\right)$, we have (6.8), from which we obtain $\lambda \Phi(m)+(1-\lambda) \Phi(z)>\Phi\left(m^{\prime}\right)$ by strict convexity (6.5), and hence $\Phi(m)>\Phi\left(m^{\prime}\right)$, a contradiction to the assumption that m is a Φ-minimizer.

We obtain the following as corollaries of this theorem.
Corollary 6.3. Let B be an integral base-polyhedron and Φ a symmetric separable convex function. Then each dec-min element of \dddot{B} is a minimizer of Φ over \dddot{B}, and the converse is also true if, in addition, Φ is strictly convex.

Corollary 6.4. For an M-convex set \dddot{B}, an element m of \dddot{B} is a square-sum minimizer if and only if m is a dec-min element of \overparen{B}.

A dec-min element is also characterized as a difference-sum minimizer.
Theorem 6.5. For an M-convex set \dddot{B}, an element m of \dddot{B} is a difference-sum minimizer if and only if m is a dec-min element of \bar{B}.

Proof. By Proposition 6.1 every dec-min element is a difference-sum minimizer. To show the converse, suppose indirectly that there is difference-sum minimizer m that is not dec\min in \vec{B}. Property (A) in Theorem 3.3 implies that there is a 1-tightening step for m, that is, there exist $s, t \in S$ such that $m(t) \geq m(s)+2$ and $m^{\prime}:=m+\chi_{s}-\chi_{t} \in \dddot{B}$. Here we observe that $\left|m^{\prime}(s)-m^{\prime}(t)\right|=|m(s)-m(t)|-2$ and
$\left(\left|m^{\prime}(v)-m^{\prime}(s)\right|+\left|m^{\prime}(v)-m^{\prime}(t)\right|\right)-(|m(v)-m(s)|+|m(v)-m(t)|)=\left\{\begin{aligned}-2 & \text { if } m(s)<m(v)<m(t) \\ 0 & \text { otherwise } .\end{aligned}\right.$
This shows $\Delta\left(m^{\prime}\right) \leq \Delta(m)-2$, a contradiction.
Remark 6.1. We emphasize that there is a fundamental difference between the problems of finding a minimum square-sum element over a base-polyhedron B and over the M-convex set \dddot{B} (the set of integral elements of B). In the first case (investigated by Fujishige [27, [29]), there alway exists a single, unique solution, while in the second case, the squaresum minimizer elements of \dddot{B} have an elegant matroidal structure. Namely, Corollary 6.4 shows that the square-sum minimizers are exactly the dec-min elements of B and hence, by Theorem 5.7, the set of square-sum minimizers of an M-convex set arises from the bases of a matroid by translating their incidence vectors with a vector.

Remark 6.2. Corollary 6.4 says that an element m of an M-convex set B is dec-min precisely if m is a square-sum minimizer. One may feel that it would have been a more natural approach to derive this equivalence by showing that $x \leq_{\text {dec }} y$ holds precisely if $W(x) \leq W(y)$. Perhaps surprisingly, however, this equivalence fails to hold, that is, the square-sum is not order-preserving with respect to the quasi-order $\leq_{\text {dec }}$. To see this, consider the following four vectors in increasing order:

$$
m_{1}=(2,3,3,1)<_{\mathrm{dec}} m_{2}=(3,3,3,0)<_{\mathrm{dec}} m_{3}=(2,2,4,1)<_{\mathrm{dec}} m_{4}=(3,2,4,0) .
$$

Their square-sums admit a different order:

$$
W\left(m_{1}\right)=23, \quad W\left(m_{2}\right)=27, \quad W\left(m_{3}\right)=25, \quad W\left(m_{4}\right)=29
$$

It is worth mentioning that the four vectors $m_{i}(i=1,2,3,4)$ arise from the matroid M_{1} given in Section 3.4. Namely, if B_{1}^{\prime} denotes the base-polyhedron obtained from the basepolyhedron of M_{1} by adding $(2,2,3,0)$, then $\bar{B}_{1}^{\prime}=\left\{m_{1}, m_{2}, m_{3}, m_{4}\right\}$. Among these four elements, m_{1} is the unique dec-min element and the unique square-sum minimizer but the decreasing-order and the square-sum order of the other three elements are different.

We remark that if φ in (6.7) is not only strictly convex but 'rapidly' increasing as well, then $x<_{\text {dec }} y$ can be proved to be equivalent to $\Phi(x)<\Phi(y)$. This intuitive notion of rapid increase will be formalized in Part II [22].

Remark 6.3. For the intersection of two M-convex sets, dec-min elements and square-sum minimizers may not coincide.

Here is an example. Let $\dddot{B}_{1}=\{(3,3,3,0),(2,2,4,1),(2,3,3,1),(3,2,4,0)\}$, which is obtained by adding $(2,2,3,0)$ to the incidence vectors of the four bases of matroid
M_{1} in Section 3.4 Similarly, let $\dddot{B}_{2}=\{(3,3,3,0),(2,2,4,1),(3,2,3,1),(2,3,4,0)\}$, which is obtained by adding the same vector $(2,2,3,0)$ to the incidence vectors of the bases of matroid M_{2} in Section 3.4 Let \dddot{B} denote the intersection of $\dddot{B_{1}}$ and $\dddot{B_{2}}$. Then $\dddot{B}=\{(3,3,3,0),(2,2,4,1)\}$. Here $(3,3,3,0)$ is the unique dec-min element while $(2,2,4,1)$ is the unique square-sum minimizer, demonstrating that the two notions of optima may differ for the intersection of two M-convex sets.

Remark 6.4. An immediate consequence of Corollary 6.3 is that a square-sum minimizer of \dddot{B} minimizes an arbitrary symmetric separable discrete convex function. Note, however, that this consequence immediately follows from a much earlier result by Groenevelt [31] who characterized the elements of \dddot{B} minimizing a (not-necessarily symmetric) discrete convex function Φ defined for $z \in \mathbf{Z}^{S}$ by $\Phi(z):=\sum\left[\varphi_{s}(z(s)): s \in S\right]$ (where φ_{s} is a convex function in one variable for each $s \in S$).

Remark 6.5. For $a, b, c \geq 0$, the function defined by

$$
\Phi(z)=a \sum_{s \in S}|z(s)|+b \sum_{s \neq t}|z(s)-z(t)|+c \sum_{s \neq t}|z(s)+z(t)|
$$

is a symmetric convex function. More generally, a function of the form

$$
\Phi(z)=\sum_{s \in S} \varphi_{1}(z(s))+\sum_{s \neq t} \varphi_{1}(|z(s)-z(t)|)+\sum_{s \neq t} \varphi_{3}(z(s)+z(t)),
$$

where $\varphi_{1}, \varphi_{2}, \varphi_{3}: \mathbf{Z} \rightarrow \mathbf{R}$, are (discrete) convex functions, is a symmetric convex function which is not separable. Such a function is an example of the so-called 2-separable convex functions. By Theorem 6.2, a dec-min element of \dddot{B} is a minimizer of function Φ over \dddot{B}. The minimization of 2 -separable convex functions is investigated in depth by Hochbaum and others [1, 35, 36] using network flow techniques.

Remark 6.6. Theorem 6.2 is a discrete counterpart of a result of Maruyama [47] for the continuous case. See also Nagano [53, Corollary 13]. Symmetric convex function minimization is studied, mainly for the continuous case, in the literature of majorization [3], [46].

Remark 6.7. A min-max formula can be derived for the square-sum and, more generally, for separable convex functions from the Fenchel-type duality theorem in DCA. However, we cannot use the Fenchel-type duality theorem to obtain a min-max formula for nonseparable symmetric convex functions, since non-separable symmetric convex functions are not necessarily M^{\natural}-convex.

6.2 Min-max theorem for integral square-sum

Recall the notation $W(z)=\sum\left[z(s)^{2}: s \in S\right]$ for the square-sum of $z \in \mathbf{Z}^{S}$. Given a polyhedron B, we say that an element $m \in \dddot{B}$ is a square-sum minimizer (over \dddot{B}) or that m is an integral square-sum minimizer of B if $W(m) \leq W(z)$ holds for each $z \in \mathbb{B}$. The main goal of this section is to derive a min-max formula for the minimum integral square-sum
of an element of an M-convex set \ddot{B}, along with a characterization of (integral) square-sum minimizers.

A set-function p on S can be considered as a function defined on $(0,1)$-vectors. It is known that p can be extended in a natural way to every vector π in \mathbf{R}^{S}, as follows. For the sake of this definition, we may assume that the elements of S are indexed in a decreasing order of the components of π, that is, $\pi\left(s_{1}\right) \geq \cdots \geq \pi\left(s_{n}\right)$ (where the order of the components of π with the same value is arbitrary). For $j=1, \ldots, n$, let $I_{j}:=\left\{s_{1}, \ldots, s_{j}\right\}$ and let

$$
\begin{equation*}
\hat{p}(\pi):=p\left(I_{n}\right) \pi\left(s_{n}\right)+\sum_{j=1}^{n-1} p\left(I_{j}\right)\left[\pi\left(s_{j}\right)-\pi\left(s_{j+1}\right)\right] . \tag{6.9}
\end{equation*}
$$

Obviously, $p(Z)=\hat{p}\left(\chi_{z}\right)$. The function \hat{p} is called the linear extension of p.
Remark 6.8. The linear extension was first considered by Edmonds [8] who proved for a polymatroid $P=P(b)$ defined by a monotone, non-decreasing submodular function b that $\max \{\pi x: x \in \dddot{P}\}=\hat{b}(\pi)$ when π is non-negative. The same approach shows for a basepolyhedron $B=B^{\prime}(p)$ defined by a supermodular function p that $\min \{\pi x: x \in B\}=\hat{p}(\pi)$. Another basic result is due to Lovász [45] who proved that p is submodular if and only if \hat{p} is convex. We do not, however, explicitly need these results, and only remark that in the literature the linear extension is often called Lovász extension.

Our approach is as follows. First, we consider an arbitrary set-function p on S (supermodular or not) along with the polyhedron

$$
B=B^{\prime}(p):=\left\{x: x \in \mathbf{R}^{S}, \widetilde{x}(Z) \geq p(Z) \text { for every } Z \subset S \text { and } \widetilde{x}(S)=p(S)\right\}
$$

and develop an easily checkable lower bound for the minimum square-sum over the integral elements of B. If this lower bound is attained by an element m of \dddot{B}, then m is certainly a square-sum minimizer independently of any particular property of p. For general p, the lower bound (not surprisingly) is not always attainable. We shall prove, however, that it is attainable when p is fully supermodular. That is, we will have a min-max theorem for the minimum square-sum over an M -convex set B, or in other words, we will have an easily checkable certificate for an element m of B to be a minimizer of the square-sum.

Remark 6.9. For readers familiar with Kőnig's matching theorem, we mention an analogy for our approach. Consider the well-known problem of finding the minimum number τ of nodes of an arbitrary graph $G=(V, E)$ hitting all the edges. If M is any matching of G, then $|M|$ is a lower bound for τ. This implies that if T is a subset of nodes hitting E and M is a matching of G for which $|T|=|M|$, then T is certainly a minimum cardinality subset of nodes hitting all the edges. That is, M is a certificate for the minimality of T. Obviously, such a certificate does not always exist when G is arbitrary (as demonstrated by a triangle), but Kőnig' classic theorem asserts that a bipartite graph always includes a subset T of nodes hitting E and a matching M for which $|T|=|M|$, or in other words, τ is equal to v, the maximum cardinality of a matching.

We shall need the following two claims.

Claim 6.6. For $m, \pi \in \mathbf{Z}^{S}$, one has

$$
\begin{equation*}
\sum_{s \in S}\left\lfloor\frac{\pi(s)}{2}\right\rfloor \left\lvert\,\left\lceil\frac{\pi(s)}{2}\right\rceil \geq \sum_{s \in S} m(s)[\pi(s)-m(s)] .\right. \tag{6.10}
\end{equation*}
$$

Moreover, equality holds if and only if

$$
\begin{equation*}
m(s) \in\left\{\left\lfloor\frac{\pi(s)}{2}\right\rfloor,\left\lceil\frac{\pi(s)}{2}\right\rceil\right\} \text { for every } s \in S \tag{6.11}
\end{equation*}
$$

Proof. The claim follows by observing that $\left\lfloor\frac{a}{2}\right\rfloor\left\lceil\frac{a}{2}\right\rceil \geq b(a-b)$ holds for any pair of integers a and b, where equality holds precisely if $b \in\left\{\left\lfloor\frac{a}{2}\right\rfloor,\left\lceil\frac{a}{2}\right\rceil\right\}$.

Let p be an arbitrary set-function on S with $p(\emptyset)=0$ and consider an integral element m of the polyhedron $B=B^{\prime}(p)$. Recall that a non-empty subset $X \subseteq S$ was called a strict π-top set if $\pi(u)>\pi(v)$ held whenever $u \in X$ and $v \in S-X$. In what follows, for an $m \in \dddot{B}$, m-tightness of a subset $Z \subseteq S$ means $\widetilde{m}(Z)=p(Z)$.

Claim 6.7. For $m \in \dddot{B}$ and $\pi \in \mathbf{Z}^{S}$, one has

$$
\begin{equation*}
\hat{p}(\pi) \leq \sum_{s \in S} m(s) \pi(s) . \tag{6.12}
\end{equation*}
$$

Moreover, equality holds if and only if each (of the at most n) strict π-top set is m-tight.
Proof. Suppose that the elements of S are indexed in such a way that $\pi\left(s_{1}\right) \geq \pi\left(s_{2}\right) \geq \cdots \geq$ $\pi\left(s_{n}\right)$. For $j=1, \ldots, n$, let $I_{j}:=\left\{s_{1}, \ldots, s_{j}\right\}$. Then

$$
\begin{aligned}
\hat{p}(\pi) & =p\left(I_{n}\right) \pi\left(s_{n}\right)+\sum_{j=1}^{n-1} p\left(I_{j}\right)\left[\pi\left(s_{j}\right)-\pi\left(s_{j+1}\right)\right] \\
& \leq \widetilde{m}\left(I_{n}\right) \pi\left(s_{n}\right)+\sum_{j=1}^{n-1} \widetilde{m}\left(I_{j}\right)\left[\pi\left(s_{j}\right)-\pi\left(s_{j+1}\right)\right] \\
& =\sum_{1 \leq i \leq j \leq n} m\left(s_{i}\right) \pi\left(s_{j}\right)-\sum_{1 \leq i \leq j \leq n-1} m\left(s_{i}\right) \pi\left(s_{j+1}\right) \\
& =\sum_{1 \leq i \leq j \leq n} m\left(s_{i}\right) \pi\left(s_{j}\right)-\sum_{1 \leq i<j^{\prime} \leq n} m\left(s_{i}\right) \pi\left(s_{j^{\prime}}\right) \\
& =\sum_{j=1}^{n} m\left(s_{j}\right) \pi\left(s_{j}\right)
\end{aligned}
$$

from which (6.12) follows. Furthermore, we have equality in (6.12) precisely if $\widetilde{m}\left(I_{j}\right)=$ $p\left(I_{j}\right)$ holds whenever $\pi\left(s_{j}\right)-\pi\left(s_{j+1}\right)>0$. But this latter condition is equivalent to requiring that each strict π-top set is m-tight.

Proposition 6.8. Let p be an arbitrary set-function on S with $p(\emptyset)=0$ and let m be an integral element of the polyhedron $B=B^{\prime}(p)$. Then

$$
\begin{equation*}
\left.\sum_{s \in S} m(s)^{2} \geq \hat{p}(\pi)-\sum_{s \in S}\left\lfloor\frac{\pi(s)}{2}\right\rfloor \right\rvert\,\left\lceil\frac{\pi(s)}{2}\right\rceil \tag{6.13}
\end{equation*}
$$

whenever $\pi \in \mathbf{Z}^{S}$ is an integral vector. Furthermore, equality holds for m and π if and only if the following optimality criteria hold:
(O1) 6.11) holds: $m(s) \in\left\{\left\lfloor\frac{\pi(s)}{2}\right\rfloor,\left\lceil\frac{\pi(s)}{2}\right\rceil\right\}$ for every $s \in S$,
(O2) each strict π-top-set is m-tight with respect to p.
Proof. Let $\pi \in \mathbf{Z}^{S}$. By the two preceding claims,

$$
\begin{equation*}
\sum_{s \in S} m(s)^{2}=\sum_{s \in S} m(s) \pi(s)-\sum_{s \in S} m(s)[\pi(s)-m(s)] \geq \hat{p}(\pi)-\sum_{s \in S}\left\lfloor\frac{\pi(s)}{2}\right\rceil\left\lceil\frac{\pi(s)}{2}\right\rceil, \tag{6.16}
\end{equation*}
$$

from which (6.13) follows.
The claims also immediately imply that we have equality in (6.13) precisely if the optimality criteria (O1) and (O2) hold.

The min-max formula in the next theorem concerning min square-sum over the integral elements of an integral base-polyhedron can be derived from the much more general Fenchel-type duality theorem in DCA (Discrete Convex Analysis), due to Murota (see [51] and also Theorem 8.21, page 222, in the book [52]). The advantage of the present min-max formula is that it does not need the notion of conjugate functions which is an essential part of the general result in [51]. In addition, our proof relies on the characterization of dec-min elements described in Theorem 3.3 and does not need the general tools of DCA.

Theorem 6.9. Let $B=B^{\prime}(p)$ be a base-polyhedron defined by an integer-valued fully supermodular function p. Then

$$
\begin{equation*}
\min \left\{\sum_{s \in S} m(s)^{2}: m \in \dddot{B}\right\}=\max \left\{\hat{p}(\pi)-\sum_{s \in S}\left\lfloor\frac{\pi(s)}{2}\right\rfloor\left\lceil\frac{\pi(s)}{2}\right\rceil: \pi \in \mathbf{Z}^{S}\right\} . \tag{6.17}
\end{equation*}
$$

Proof. By Proposition 6.8, $\mathrm{min} \geq \max$ holds in (6.17) and hence all what we have to prove is that there is an element $m \in \dddot{B}$ and an integral vector $\pi \in \mathbf{Z}^{S}$ meeting the two optimality criteria formulated in Proposition 6.8. Let m be an arbitrary dec-min element of \dddot{B}. By Property (B) of Theorem 3.3, there is a chain ($\emptyset \subset$) $C_{1} \subset C_{2} \subset \cdots \subset C_{\ell}=S$ of m-tight and m-top sets for which the restrictions of m onto the difference sets $S_{i}:=C_{i}-C_{i-1}$ $(i=1, \ldots, \ell)$ are near-uniform in S_{i} (where $\left.C_{0}:=\emptyset\right)$. Note that $\left\{S_{1}, \ldots, S_{\ell}\right\}$ is a partition of S.

For $i=1, \ldots, \ell$, let $\beta_{i}(m):=\max \left\{m(s): s \in S_{i}\right\}$. Define $\pi_{m}: S \rightarrow \mathbf{Z}$ by

$$
\pi_{m}(s):=2 \beta_{i}(m)-1 \text { if } s \in S_{i}(i=1, \ldots, \ell) .
$$

We have

$$
\left\lfloor\pi_{m}(s) / 2\right\rfloor=\beta_{i}(m)-1 \leq m(s) \leq \beta_{i}(m)=\left\lceil\pi_{m}(s) / 2\right\rceil
$$

for every $s \in S_{i}$, and hence Optimality criterion (O1) holds for m and π_{m}.
We claim that each strict π_{m}-top set Z is a member of chain C. Indeed, as π_{m} is uniform in each S_{j}, if Z contains an element of S_{j}, then Z includes the whole S_{j}. Furthermore, since each member of C is an m-top set, we have $\beta_{1}(m) \geq \beta_{2}(m) \geq \cdots \geq \beta_{\ell}(m)$, and hence if Z includes S_{j}, then it includes each S_{i} with $i<j$. Therefore every strict π_{m}-top set is indeed a member of the chain, implying Optimality criterion (O2).

It should be noted that the optimal dual solution π_{m} obtained in the proof of the theorem is actually an odd vector in the sense that each of its component is an odd integer.

Corollary 6.10. There is an odd dual optimizer π in the min-max formula (6.17), that is, the min-max formula in Theorem 6.9 can be re-written as follows:

$$
\begin{equation*}
\min \left\{\sum_{s \in S} m(s)^{2}: m \in \dddot{B}\right\}=\max \left\{\hat{p}(\pi)-\sum_{s \in S} \frac{\pi(s)^{2}-1}{4}: \pi \in \mathbf{Z}^{S}, \pi \text { is odd }\right\} . \tag{6.18}
\end{equation*}
$$

We emphasize that for the proof of Theorem 6.9 and Corollary 6.10 we relied only on Theorem 3.3 and did not need the characterization of the set of dec-min elements of \vec{B} given in Section 5 .

In the proof of Theorem 6.9, we chose an arbitrary dec-min element m of \dddot{B} and an arbitrary chain of m-tight and m-top sets such that m is near-uniform on each difference set. In Section 5, we proved that there is a single canonical chain C^{*} which meets these properties for every dec-min element of \dddot{B}. Therefore the dual optimal π^{*} assigned to C^{*} is also independent of m. Namely, consider the canonical S-partition $\left\{S_{1}, \ldots, S_{q}\right\}$ and the essential value-sequence $\beta_{1}>\cdots>\beta_{q}$. Define π^{*} by

$$
\begin{equation*}
\pi^{*}(s):=2 \beta_{i}-1 \text { if } s \in S_{i}(i=1, \ldots, q) . \tag{6.19}
\end{equation*}
$$

As we pointed out in the proof of Theorem 6.9, this π^{*} is also a dual optimum in 6.17). We shall prove in the next section that π^{*} is actually the unique smallest dual optimum in 6.17).

6.3 The set of optimal duals to integral square-sum minimization

We proved earlier that an element $m \in \dddot{B}$ is a square-sum minimizer precisely if it is a dec-min element. This and Theorem 5.1 imply that the square-sum minimizers of \dddot{B} are the integral members of a base-polyhedron B^{\bullet} obtained by intersecting a particular face of B with a special small box. This means that the integral square-sum minimizers form an M-convex set.

One of the equivalent definitions of an L^{\natural}-convex set L (pronounce L-natural convex) in Discrete Convex Analysis is that L is the set of integer-valued feasible potentials. Formally, $L=\left\{\pi \in \mathbf{Z}^{S}: \pi(v)-\pi(u) \leq g(u v)\right\}$ where g is an integer-valued function on the ordered pairs of elements of S. (By a theorem of Gallai, L is non-empty if and only if there is no dicircuit of negative total g-weight.)

Our next goal is to show that the dual optima in Theorem 6.9 form an L^{\natural}-convex set Π, and we provide a description of Π as the integral solution set of feasible potentials in a box.

Recall that the optimality criteria for a dec-min element m of \dddot{B} and for an integral vector π were given by (O 1) and (O 2) in (6.14)-6.15). These immediately imply the following.

Proposition 6.11. For an integral vector π, the following are equivalent.
(A) π is a dual optimum (that is, π belongs to Π).
(B) There is a dec-min element m of \dddot{B} such that m and π meet the optimality criteria.
(C) For every dec-min m of \dddot{B}, m and π meet the optimality criteria.

Consider the canonical S-partition $\left\{S_{1}, \ldots, S_{q}\right\}$, the essential value-sequence $\beta_{1}>\beta_{2}>$ $\cdots>\beta_{q}$, and the matroids M_{i} on $S_{i}(i=1, \ldots, q)$. We can use the notions and apply the results of Section 4.5 formulated for M_{1} to each $M_{i}(i=1, \ldots, q)$. To follow the pattern of \mathcal{F}_{1} introduced in (4.13), let

$$
\begin{equation*}
\mathcal{F}_{i}:=\left\{X \subseteq S_{i}: \beta_{i}|X|=p_{i}(X)\right\}, \tag{6.20}
\end{equation*}
$$

where p_{i} was defined by $p_{i}(X)=p\left(C_{i-1} \cup X\right)-p\left(C_{i-1}\right)$ for $X \subseteq S_{i}$. Since $\beta_{i}|X| \geq p_{i}(X)$ for every $X \subseteq S_{i}$ and p_{i} is supermodular, \mathcal{F}_{i} is closed under taking intersection and union. Let F_{i} denote the unique largest member of \mathcal{F}_{i}, that is, F_{i} is the union of the members of \mathcal{F}_{i}. Both $F_{i}=\emptyset$ and $F_{i}=S_{i}$ are possible.

Theorem 6.12. For an element $s \in S_{i}(i=1, \ldots, q)$, the following properties are pairwise equivalent.
(A) s is value-fixed.
(B) $m(s)=\beta_{i}$ holds for every dec-min element m of \dddot{B}.
(C) $s \in F_{i}$.
(D) s is a co-loop of M_{i}.

Define a digraph $D_{i}=\left(F_{i}, A_{i}\right)$ on node-set F_{i} in which st is an arc if $s, t \in F_{i}$ and there is no $t \bar{s}$-set in \mathcal{F}_{i}. This implies that no arc of D_{i} enters any member of \mathcal{F}_{i}.

Theorem 6.13. An integral vector $\pi \in \mathbf{Z}^{S}$ is an optimal dual solution to the integral minimum square-sum problem (that is, $\pi \in \Pi$) if and only if the following three conditions hold for each $i=1, \ldots, q$:

$$
\begin{align*}
& \pi(s)=2 \beta_{i}-1 \quad \text { for every } s \in S_{i}-F_{i}, \tag{6.21}\\
& 2 \beta_{i}-1 \leq \pi(s) \leq 2 \beta_{i}+1 \quad \text { for every } s \in F_{i}, \tag{6.22}\\
& \pi(s)-\pi(t) \geq 0 \quad \text { whenever } s, t \in F_{i} \text { and } \text { st } \in A_{i} . \tag{6.23}
\end{align*}
$$

Proof.

Claim 6.14. Optimality criterion (O1) is equivalent to

$$
\begin{equation*}
\text { (O1') } 2 m(s)-1 \leq \pi(s) \leq 2 m(s)+1 \text { for } s \in S \text {. } \tag{6.24}
\end{equation*}
$$

Proof. When $\pi(s)$ is even, we have the following equivalences:

$$
\begin{aligned}
m(s) \in\left\{\left\lfloor\frac{\pi(s)}{2}\right\rfloor,\left\lceil\frac{\pi(s)}{2}\right\rceil\right\} & \Leftrightarrow \pi(s)=2 m(s) \\
& \Leftrightarrow 2 m(s)-1 \leq \pi(s) \leq 2 m(s)+1
\end{aligned}
$$

When $\pi(s)$ is odd, we have the following equivalences:

$$
\begin{aligned}
m(s) \in\left\{\left\lfloor\frac{\pi(s)}{2}\right\rfloor,\left\lceil\frac{\pi(s)}{2}\right\rceil\right\} & \Leftrightarrow \pi(s)-1 \leq 2 m(s) \leq \pi(s)+1 \\
& \Leftrightarrow 2 m(s)-1 \leq \pi(s) \leq 2 m(s)+1
\end{aligned}
$$

Suppose first that $\pi \in \mathbf{Z}^{S}$ is an optimal dual solution. Then the optimality criteria ($\mathrm{O} 1^{\prime}$) and (O2) formulated in (6.24) and (6.15) hold for every dec-min element m of \cdots.

Let s be an element of $S_{i}-F_{i}$. Since s is not value-fixed, there are dec-min elements m and m^{\prime} of \dddot{B} for which $m(s)=\beta_{i}-1$ and $m^{\prime}(s)=\beta_{i}$. By applying (6.24) to m and to m^{\prime}, we obtain that

$$
2 \beta_{i}-1=2 m^{\prime}(s)-1 \leq \pi(s) \leq 2 m(s)+1=2\left(\beta_{i}-1\right)+1=2 \beta_{i}-1,
$$

from which $\pi(s)=2 \beta_{i}-1$ follows, and hence (6.21) holds indeed.
Let s be an element of F_{i}. As s is value-fixed, $m(s)=\beta_{i}$ holds for any dec-min element m of \dddot{B}. We obtain from (6.24) that

$$
2 \beta_{i}-1=2 m(s)-1 \leq \pi(s) \leq 2 m(s)+1=2 \beta_{i}+1
$$

and hence (6.22) holds.
To derive (6.23), suppose indirectly that $s t$ is an arc in A_{i} for which $\pi(t)>\pi(s) \geq 2 \beta_{i}-1$. Let $Z:=\{v \in S: \pi(v) \geq \pi(t)\}$. Then Z is a strict π-top set and hence $C_{i-1} \subseteq Z \subseteq C_{i-1} \cup F_{i}-s$. By Optimality criterion (O2), Z is m-tight with respect to p. Let $X:=Z \cap S_{i}$. Then $X \subseteq F_{i}$ and hence

$$
p(Z)=\widetilde{m}(Z)=\widetilde{m}\left(C_{i-1}\right)+\widetilde{m}(X)=p\left(C_{i-1}\right)+\beta_{i}|X|,
$$

from which

$$
\beta_{i}|X|=p(Z)-p\left(C_{i-1}\right)=p_{i}(X)
$$

that is, X is in \mathcal{F}_{i}, in contradiction with the definition of A_{i} which requires that st enters no member of \mathcal{F}_{i}.

Suppose now that π meets the three properties formulated in Theorem 6.13. Let $m \in \dddot{B}$ be an arbitrary dec-min element. Consider an element s of S_{i}. If $s \in F_{i}$, that is, if s is value-fixed, then $m(s)=\beta_{i}$. By (6.22), we have $2 m(s)-1 \leq \pi(s) \leq 2 m(s)+1$, that is, Optimality criterion ($\mathrm{O1}^{\prime}$) holds. If $s \in S_{i}-F_{i}$, then $\pi(s)=2 \beta_{i}-1$ by (6.21), from which

$$
\left\lfloor\frac{\pi(s)}{2}\right\rfloor=\frac{\pi(s)-1}{2}=\beta_{i}-1 \leq m(s) \leq \beta_{i}=\frac{\pi(s)+1}{2}=\left\lceil\frac{\pi(s)}{2}\right\rceil \text {, }
$$

showing that Optimality criterion ($\mathrm{O1}^{\prime}$) holds.

To prove optimality criterion (O2), let Z be a strict π-top set and let $\mu:=\min \{\pi(v): v \in$ $Z\}$. Let i denote the largest subscript for which $X:=Z \cap S_{i} \neq \emptyset$. Then $\mu \leq 2 \beta_{i}+1 \leq$ $2 \beta_{i-1}-1 \leq \pi(u)$ holds for every $u \in C_{i-1}$, from which $C_{i-1} \subseteq Z$ as Z is a strict π-top set.

If $\mu=2 \beta_{i}-1$, then $S_{i} \subseteq Z$ as Z is a strict π-top set, from which $Z=C_{i}$, implying that Z is an m-tight set in this case. Therefore we suppose $\mu \geq 2 \beta_{i}$, from which $X \subseteq F_{i}$ follows. Now $X \in \mathcal{F}_{i}$, for otherwise there is an arc $s t \in A_{i}\left(s, t \in F_{i}\right)$ entering X, and then $\pi(t) \leq \pi(s)$ holds by Property (6.23); this contradicts the assumption that Z is a strict π-top set. By $X \in \mathcal{F}_{i}$ we have $\beta_{i}|X|=p_{i}(X)$ and hence

$$
\begin{aligned}
\widetilde{m}(Z) & =\widetilde{m}(X)+\widetilde{m}\left(C_{i-1}\right)=\beta_{i}|X|+p\left(C_{i-1}\right) \\
& =p_{i}(X)+p\left(C_{i-1}\right)=p\left(X \cup C_{i-1}\right)-p\left(C_{i-1}\right)+p\left(C_{i-1}\right)=p(Z),
\end{aligned}
$$

that is, Z is indeed m-tight.
In (6.19), we defined a special dual optimal solution π^{*} by $\pi^{*}(s)=2 \beta_{i}-1$ whenever $s \in S_{i}$ $(i=1, \ldots, q)$. Theorem 6.13 and the definition we use for L^{\natural}-convex sets immediately implies the following.

Corollary 6.15. The set Π of optimal dual integral vectors π in the min-max formula 6.17) of Theorem 6.9 is an $\mathrm{L}^{\text {h }}$-convex set. The unique smallest element of Π (that is, the unique smallest dual optimum) is π^{*}.

7 Algorithms

In this section, we consider algorithmic aspects of the problems investigated so far, and show how to compute efficiently a decreasingly minimal element of an M-convex set along with its canonical chain (or S-partition).

Let B be a non-empty integral base-polyhedron. As mentioned earlier, B can be given in the form $B(b)$ where b is a (fully) submodular function or in the form $B^{\prime}(p)$ where p is a (fully) supermodular function. Here b and p are complementary functions (that is, $p(X)=b(S)-b(S-X))$ and hence an algorithm described for one of them can easily be transformed to work on the other. In the present description, we use supermodular functions with the remark that in applications base-polyhedra are often given with b.

There is a one-to-one correspondence between B and p but, as mentioned earlier, for an intersecting or crossing supermodular function $p, B^{\prime}(p)$ is also a (possibly empty) basepolyhedron which is integral if p is integer-valued. As already indicated, for obtaining and proving results for B (or for B), it is much easier to work with a fully supermodular p while in applications base-polyhedra are often arise from -intersecting or crossing (or even weaker)-supermodular functions. Therefore in describing and analysing algorithms, we must consider these weaker functions as well.

One of the most fundamental algorithms of discrete optimization is for minimizing a submodular function, that is, for finding a subset Z of S for which $b(Z)=\min \{b(X): X \subseteq$ $S\}$. There are strongly polynomial algorithms for this problem (for example, Schrijver [58] and Iwata et al. [40] are the first, while Orlin [55] is one of the fastest), and we shall refer to such an algorithm as a submod-minimizer subroutine. The complexity of Orlin's algorithm
[55], for example, is $O\left(n^{6}\right)$ (where $n=|S|$) and the algorithm calls $O\left(n^{5}\right)$ times a routine which evaluates the submodular function in question. (An evaluation routine outputs the value $b(X)$ for any input subset $X \subseteq S$). This complexity bound is definitely attractive from a theoretical point of view but in concrete applications it is always a challenge to develop faster algorithms for the special case. Naturally, submodular function minimization and supermodular function maximization are equivalent.

7.1 The basic algorithm for computing a dec-min element

Our first goal is to describe a natural approach-the basic algorithm-for finding a decreasingly minimal element of an M-convex set B. The basic algorithm is polynomial in $n+|p(S)|$, and hence it is polynomial in n when $|p(S)|$ is small in the sense that it can be bounded by a polynomial of n. This is the case, for example, in an application when we are interested in strongly connected decreasingly minimal (=egalitarian) orientations. In the general case, where typical applications arise by defining p with a 'large' capacity function, a (more complex) strongly polynomial-time algorithm will be described in the next section.

In order to find a dec-min element of an M-convex set \ddot{B}, we assume that a subroutine is available to

$$
\begin{equation*}
\text { compute an integral element of } B \text {. } \tag{7.1}
\end{equation*}
$$

When $B=B^{\prime}(p)$ and p is (fully) supermodular, a variant of Edmonds' polymatroid greedy algorithm finds an integral member of B. (Namely, take any ordering s_{1}, \ldots, s_{n} of S, and define $m\left(s_{1}\right):=p\left(s_{1}\right)$ and, for $i=2, \ldots, n, m\left(s_{i}\right)=p\left(Z_{i}\right)-p\left(Z_{i-1}\right)$ where $Z_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$. Edmonds [8] proved that vector m is indeed in B). This algorithm needs only a subroutine to evaluate $p\left(Z_{i}\right)$ for $i=1, \ldots, n$. If p is intersecting supermodular, then Frank and Tardos [26] described an algorithm which needs n applications of a submod-minimizer routine. For crossing supermodular p, a more complex algorithm is given in [26] which terminates after at most n^{2} applications of a submod-minimizer. Note that the latter problem of finding an integral element of a base-polyhedron $B^{\prime}(p)$ defined by a crossing supermodular function p covers such non-trivial problems as the one of finding a degree-constrained k -edge-connected orientation of an undirected graph, a problem solved first in [13].

Suppose now that an initial integral member m of B is available. The algorithm needs a subroutine to

$$
\begin{equation*}
\text { decide for } m \in \dddot{B} \text { and for } s, t \in S \text { if } m^{\prime}:=m+\chi_{s}-\chi_{t} \text { belongs to } B \text {. } \tag{7.2}
\end{equation*}
$$

Observe that Subroutine (7.2) is certainly available if we can

$$
\begin{equation*}
\text { decide for any } m^{\prime} \in \mathbf{Z}^{S} \text { whether or not } m^{\prime} \text { belongs to } B \text {, } \tag{7.3}
\end{equation*}
$$

though applying this more general subroutine is clearly slower than a direct algorithm to realize (7.2).

Note that $m^{\prime}=m+\chi_{s}-\chi_{t}$ is in B precisely if there is no m-tight $t \bar{s}$-set (with respect to p), and this is true even if B is defined by a crossing supermodular function p. Subroutine (7.2) can be carried out by a single application of a submod-minimizer.

As long as possible, apply the 1 -tightening step (as described in Section 3.2). Recall that a 1-tightening step replaces m by $m^{\prime}:=m+\chi_{s}-\chi_{t}$ where s and t are elements of S for which $m(t) \geq m(s)+2$ and m^{\prime} belongs to \dddot{B}.

By Theorem 3.3, when no more 1-tightening step is available, the current m is a decreasingly minimal member of \dddot{B} and the algorithm terminates. In order to estimate the number of 1-tightening steps, observe that a single 1-tightening step decreases the square-sum of the components. Since the largest square-sum of an arbitrary integral vector z with $\widetilde{z}(S)=p(S)$ is $p(S)^{2}$ and $\widetilde{z}(S)=p(S)$ holds for all members z of \widetilde{B}, we conclude that the number of 1 -tightening steps is at most $p(S)^{2}$. Therefore if $|p(S)|$ is bounded by a polynomial of n, then the basic algorithm to compute a dec-min element of B is strongly polynomial.

At this point, we postpone the description of the algorithm for arbitrary p, and show how the canonical chain can be computed.

7.2 Computing the essential value-sequence, the canonical chain and partition

Let $B=B^{\prime}(p)$ be again an integral base-polyhedron whose unique fully supermodular bounding function is p. In the algorithm, we must be able to compute, for a given (decmin) member m of \dddot{B}, the smallest m-tight set $T_{m}(u)$ containing a given element $u \in S$. Here m-tightness is with respect to p, that is, a set X is m-tight if $\widetilde{m}(X)=p(X)$. It is fundamental, however, to emphasize that $T_{m}(u)$ can be computed even in the case when p is not explicitly available and B is defined by a weaker function, for example, by a crossing supermodular function. Namely, recall from Claim 3.1 that $T_{m}(u)=\left\{s: m+\chi_{s}-\chi_{u} \in B\right\}$ and hence $T_{m}(u)$ is indeed computable by at most n applications of routine (7.2).

Algorithm 7.1. Given a dec-min element m of \dddot{B}, the following procedure computes the canonical chain $C^{*}=\left\{C_{1}, C_{2}, \ldots, C_{q}\right\}$ and the canonical partition $\mathcal{P}^{*}=\left\{S_{1}, S_{2}, \ldots, S_{q}\right\}$ of S along with the essential value-sequence $\beta_{1}>\beta_{2}>\cdots>\beta_{q}$ belonging to B.

1. Let β_{1} denote the largest value of m. Let $C_{1}:=\bigcup\left\{T_{m}(u): m(u)=\beta_{1}\right\}, S_{1}:=C_{1}$, and $i:=2$.
2. In the general step $i \geq 2$, the pairwise disjoint non-empty sets $S_{1}, S_{2}, \ldots, S_{i-1}$ and a chain $C_{1} \subset C_{2} \subset \cdots \subset C_{i-1}$ have already been computed along with the essential values $\beta_{1}>\beta_{2}>\cdots>\beta_{i-1}$. If $C_{i-1}=S$, set $q:=i-1$ and stop. Otherwise, let

$$
\begin{aligned}
& \beta_{i}:=\max \left\{m(s): s \in S-C_{i-1}\right\}, \\
& C_{i}:=\bigcup\left\{T_{m}(u): m(u) \geq \beta_{i}\right\}, \\
& S_{i}:=C_{i}-C_{i-1},
\end{aligned}
$$

and go to the next step for $i:=i+1$.
Corollary 5.4 implies that the sequence $\beta_{1}, \beta_{2}, \ldots, \beta_{q}$ provided by this algorithm is indeed the essential value-sequence belonging to \overleftrightarrow{B}, and similarly the chain $C_{1} \subset C_{2} \subset \cdots \subset C_{q}$ is the canonical chain while the partition $\left\{S_{1}, S_{2}, \ldots, S_{q}\right\}$ is the canonical partition.

We emphasize that the basic algorithm in Section 7.1 for computing a dec-min element m of \vec{B} is polynomial only in $|p(S)|$, meaning that it is polynomial in n only if $|p(S)|$ is small (that is, $|p(S)|$ is bounded by a power of n). On the other hand, Algorithm 7.1 to compute the essential value-sequence and the canonical chain is strongly polynomial for arbitrary p (independently of the magnitude of $|p(S)|$), provided that a dec-min element m of B is already available as well as Oracle (7.2).

Adaptation to the intersection with a box Algorithm 7.1 can be adapted to the case when we have specific upper and lower bounds on the members of $\vec{B}=B^{\prime}(p)$. Let $f: S \rightarrow$ $\mathbf{Z} \cup\{-\infty\}$ and $g: S \rightarrow \mathbf{Z} \cup\{+\infty\}$ be bounding functions with $f \leq g$ and let $T(f, g)$ denote the box defined by f and g. It is a basic fact on integral base-polyhedra that the intersection $B^{\square}:=B \cap T(f, g)$ is also a (possibly empty) integral base-polyhedron. Assume that B^{\square} is non-empty (which is, by a known theorem, equivalent to requiring that $\widetilde{f} \leq \bar{p}$ and $\widetilde{g} \geq p$ when p is fully supermodular. Here \bar{p} denotes the complementary submodular function of p).

Let m be an element of $\ddot{B^{\square}}$. Let $T_{m}(u)$ denote the smallest m-tight set containing u with respect to p, and let $T_{m}^{\square}(u)$ be the smallest m-tight set containing u with respect to p^{\square}.

Claim 7.2.

$$
T_{m}^{\square}(u)= \begin{cases}\{u\} & \text { if } m(u)=f(u), \\ T_{m}(u)-\{v: m(v)=g(v)\} & \text { if } m(u)>f(u) .\end{cases}
$$

Proof. We have $T_{m}^{\square}(u)=\left\{s: m-\chi_{u}+\chi_{s} \in B^{\square}\right\}$. Since $B^{\square}=B \cap T(f, g)$, we have $m-\chi_{u}+\chi_{s} \in B^{\square}$ if and only if (i) $m-\chi_{u}+\chi_{s} \in B$ and (ii) $m-\chi_{u}+\chi_{s} \in T(f, g)$ hold. For $s \neq u$, (i) holds if and only if $s \in T_{m}(u)$, and (ii) holds if and only if $m(u)>f(u)$ and $m(s)<g(s)$. Hence follows the claim.

The claim implies that Algorithm 7.1 can be adapted easily to compute the canonical chain and partition belonging to B^{\square} along with its essential value-sequence.

Our next goal is to describe a strongly polynomial algorithm to compute a dec-min element of B in the general case when no restriction is imposed on the magnitude of $|p(S)|$. To this end, we need an algorithm to maximize $\left[\frac{p(X)}{|X|}\right\rceil$. We describe an algorithm for a more general case but this generality will be needed only in a forthcoming paper [24] dealing with dec-min elements of the intersection of two M-convex sets.

7.3 Maximizing $\left\lceil\frac{p(X)}{b(X)}\right\rceil$ with the Newton-Dinkelbach (ND) algorithm

On a ground-set S with $n \geq 1$ elements, we are given an integer-valued set-function p with $p(\emptyset)=0$. (Here $p(S)$ is finite but $p(X)$ may otherwise be $-\infty$. However, $p(X)$ is never $+\infty$.) Moreover, we are also given a non-negative, finite integer-valued set-function b. Both p and b are integer-valued. Our present goal is to describe a variation of the Newton-Dinkelbach algorithm to compute the maximum $\left\lceil\frac{p(X)}{b(X)}\right\rceil$ over the subsets X of S. An excellent overview by Radzik [56] analyses this method concerning (among others) the special problem of maximizing $\frac{p(X)}{|X|}$ and describes a strongly polynomial algorithm. We present a variation of the ND-algorithm whose specific feature is that it works throughout with integers $\left[\frac{p(X)}{b(X)}\right\rceil$.

This has the advantage that the proof is simpler than the original one working with the fractions $\frac{p(X)}{b(X)}$.

Let M denote the largest value of b. The algorithm works if a subroutine is available to

$$
\begin{equation*}
\text { find a subset of } S \text { maximizing } p(X)-\mu b(X)(X \subseteq S) \text { for any fixed integer } \mu \geq 0 \tag{7.4}
\end{equation*}
$$

This routine will actually be needed only for special values of μ when $\mu=\lceil p(X) / \ell\rceil$ (where $X \subseteq S$ and $1 \leq \ell \leq M$). Note that we do not have to assume that p is supermodular and b is submodular, the only requirement for the ND-algorithm is that Subroutine (7.4) be available. Via a submod-minimizer, this is certainly the case when p happens to be supermodular and b submodular, since then $\mu b-p$ is submodular when $\mu \geq 0$. But (7.4) is also available in the more general case when the function p^{\prime} defined by $p^{\prime}(X):=p(X)-$ $\mu b(X)$ is only crossing supermodular. Indeed, for a given ordered pair of elements $s, t \in S$, the restriction of p^{\prime} on the family of $s \bar{t}$-sets is fully supermodular, and therefore we can apply a submod-minimizer to each of the $n(n-1)$ ordered pairs (s, t) to get the requested maximum of p^{\prime}.

We call a value $\mu \operatorname{good}$ if $\mu b(X) \geq p(X)$ [i.e., $p(X)-\mu b(X) \leq 0$] for every $X \subseteq S$. A value that is not good is called bad. We assume that there is a good μ, which is equivalent to requiring that $p(X) \leq 0$ whenever $b(X)=0$. We also assume that $\mu=0$ is bad.

Our goal is to compute the minimum $\mu_{\min }$ of the good integers. In other words, we want to maximize $\left[\frac{p(X)}{b(X)}\right\rceil$ over the subsets of S with $b(X)>0$.

The algorithm starts with the bad $\mu_{0}:=0$. Let

$$
X_{0} \in \arg \max \left\{p(X)-\mu_{0} b(X): X \subseteq S\right\}
$$

that is, X_{0} is a set maximizing the function $p(X)-\mu_{0} b(X)=p(X)$. Note that the badness of μ_{0} implies that $p\left(X_{0}\right)>0$. Since, by the assumption, there is a good μ, it follows that $\mu b\left(X_{0}\right) \geq p\left(X_{0}\right)$, and hence $b\left(X_{0}\right)>0$.

The procedure determines one by one a series of pairs $\left(\mu_{j}, X_{j}\right)$ for subscripts $j=1,2, \ldots$ where each integer μ_{j} is an (intermediate) tentative candidate for μ while X_{j} is a non-empty subset of S. Suppose that the pair $\left(\mu_{j-1}, X_{j-1}\right)$ has already been determined for a subscript $j \geq 1$. Let μ_{j} be the smallest integer for which $\mu_{j} b\left(X_{j-1}\right) \geq p\left(X_{j-1}\right)$, that is,

$$
\mu_{j}:=\left\lceil\frac{p\left(X_{j-1}\right)}{b\left(X_{j-1}\right)}\right] .
$$

If μ_{j} is bad, that is, if there is a set $X \subseteq S$ with $p(X)-\mu_{j} b(X)>0$, then let

$$
X_{j} \in \arg \max \left\{p(X)-\mu_{j} b(X): X \subseteq S\right\}
$$

that is, X_{j} is a set maximizing the function $p(X)-\mu_{j} b(X)$. (If there are more than one maximizing set, we can take any). Since μ_{j} is bad, $X_{j} \neq \emptyset$ and $p\left(X_{j}\right)-\mu_{j} b\left(X_{j}\right)>0$.

Claim 7.3. If μ_{j} is bad for some subscript $j \geq 0$, then $\mu_{j}<\mu_{j+1}$.
Proof. The badness of μ_{j} means that $p\left(X_{j}\right)-\mu_{j} b\left(X_{j}\right)>0$ from which

$$
\mu_{j+1}=\left\lceil\frac{p\left(X_{j}\right)}{b\left(X_{j}\right)}\right\rceil=\left\lceil\frac{p\left(X_{j}\right)-\mu_{j} b\left(X_{j}\right)}{b\left(X_{j}\right)}\right\rceil+\mu_{j}>\mu_{j} .
$$

Since there is a good μ and the sequence μ_{j} is strictly monotone increasing by Claim 7.3, there will be a first subscript $h \geq 1$ for which μ_{h} is good. The algorithm terminates by outputting this μ_{h} (and in this case X_{h} is not computed or needed anymore).

Theorem 7.4. If h is the first subscript during the run of the algorithm for which μ_{h} is good, then $\mu_{\min }=\mu_{h}$ (that is, μ_{h} is the requested smallest good μ-value) and $h \leq M$, where M denotes the largest value of b.

Proof. Since μ_{h} is good and μ_{h} is the smallest integer for which $\mu_{h} b\left(X_{h-1}\right) \geq p\left(X_{h-1}\right)$, the set X_{h-1} certifies that no good integer μ can exist which is smaller than μ_{h}, that is, $\mu_{\min }=\mu_{h}$.

Proposition 7.5. If μ_{j} is bad for some subscript $j \geq 1$, then $b\left(X_{j}\right)<b\left(X_{j-1}\right)$.
Proof. As $\mu_{j}\left(=\left\lceil\frac{p\left(X_{j-1}\right)}{b\left(X_{j-1}\right)}\right\rceil\right)$ is bad, we obtain that

$$
\begin{aligned}
& p\left(X_{j}\right)-\mu_{j} b\left(X_{j}\right)>0=p\left(X_{j-1}\right)-\frac{p\left(X_{j-1}\right)}{b\left(X_{j-1}\right)} b\left(X_{j-1}\right) \\
& \geq p\left(X_{j-1}\right)-\left\lceil\frac{p\left(X_{j-1}\right)}{b\left(X_{j-1}\right)}\right] b\left(X_{j-1}\right)=p\left(X_{j-1}\right)-\mu_{j} b\left(X_{j-1}\right),
\end{aligned}
$$

from which we get

$$
\text { (A) } p\left(X_{j}\right)-\mu_{j} b\left(X_{j}\right)>p\left(X_{j-1}\right)-\mu_{j} b\left(X_{j-1}\right) .
$$

Since X_{j-1} maximizes $p(X)-\mu_{j-1} b(X)$, it follows that
(B) $p\left(X_{j-1}\right)-\mu_{j-1} b\left(X_{j-1}\right) \geq p\left(X_{j}\right)-\mu_{j-1} b\left(X_{j}\right)$.

By adding up (A) and (B), we obtain

$$
\left(\mu_{j}-\mu_{j-1}\right) b\left(X_{j-1}\right)>\left(\mu_{j}-\mu_{j-1}\right) b\left(X_{j}\right) .
$$

As μ_{j} is bad, so is μ_{j-1}, and hence, by applying Claim 7.3 to $j-1$ in place of j, we obtain that $\mu_{j}>\mu_{j-1}$, from which we arrive at $b\left(X_{j}\right)<b\left(X_{j-1}\right)$, as required.

Proposition 7.5 implies that $M \geq b\left(X_{0}\right)>b\left(X_{1}\right)>\cdots>b\left(X_{h-1}\right)$, from which $1 \leq$ $b\left(X_{h-1}\right) \leq M-(h-1)$, and hence $h \leq M$ follows.

Note that the ND-algorithm is definitely polynomial in the special case when M is bounded by a power of n, since the number of phases is bounded by M. In the special case when $b(X)=|X|, M=n$.

In several applications, the requested general purpose submod-minimizer can be superseded by a direct and more efficient algorithm such as the ones for network flows or for matroid partition.

7.4 Computing a dec-min element in strongly polynomial time

In the present context, we need the ND-algorithm above only in the special case when b is the cardinality function, that is, $b(X)=|X|$ for each $X \subseteq S$. Note that in this special case we have $M=|S|$, and hence the sequence of bad μ_{i} values has at most $|S|$ members by Theorem 7.4

After at most $|S|$ applications of Subroutine (7.4), the ND-algorithm terminates with the smallest integer β_{1} for which \dddot{B} has a β_{1}-covered member m. It is well-known that such an m can easily be computed with a greedy-type algorithm, as follows. Since there is a β_{1}-covered member of B, the vector ($\beta_{1}, \beta_{1}, \ldots, \beta_{1}$) belongs to the so-called supermodular polyhedron $S^{\prime}(p):=\{x: \widetilde{x}(X) \geq p(X)$ for every $X \subseteq S\}$. Consider the elements of S in an arbitrary order $\left\{s_{1}, \ldots, s_{n}\right\}$. Let $m\left(s_{1}\right):=\min \left\{z:\left(z, \beta_{1}, \beta_{1}, \ldots, \beta_{1}\right) \in S^{\prime}(p)\right\}$. In the general step, if the components $m\left(s_{1}\right), \ldots, m\left(s_{i-1}\right)$ have already been determined, let

$$
\begin{equation*}
m\left(s_{i}\right):=\min \left\{z:\left(m\left(s_{1}\right), m\left(s_{2}\right), \ldots, m\left(s_{i-1}\right), z, \beta_{1}, \beta_{1}, \ldots, \beta_{1}\right) \in S^{\prime}(p)\right\} \tag{7.5}
\end{equation*}
$$

This computation can be carried out by n applications of a subroutine for a submodular function minimization. (Note that the previous algorithm to compute a β_{1}-covered integral member of B is nothing but a special case of the algorithm that finds an integral member of a base-polyhedron given by an intersecting submodular function.)

Given a β_{1}-covered integral element of B, our next goal is to obtain a pre-dec-min element of \dddot{B}. To this end, we apply 1 -tightening steps. That is, as long as possible, we pick two elements s and t of S for which $m(t)=\beta_{1}$ and $m(s) \leq \beta_{1}-2$ such that there is no m-tight $t \bar{s}$ set, reduce $m(t)$ by 1 and increase $m(s)$ by 1 . In this way, we obtain another integral element of B for which the largest component continues to be β_{1} (as β_{1} was chosen to be the smallest upper bound) but the number of β_{1}-valued components is strictly smaller. Therefore, after at most $|S|-1$ such 1 -tightening steps, we arrive at a vector for which no 1 -tightening step (with $m(t)=\beta_{1}$ and $m(s) \leq \beta_{1}-2$) is possible anymore, and hence this final vector is a pre-decreasingly minimal element of \ddot{B} by Theorem 4.2 . We use the same letter m to denote this pre-dec-min element.

Recall that $T_{m}(t)$ denoted the unique smallest tight set containing t when p is fully supermodular. But $T_{m}(t)$ can be described without explicitly referring to p since an element $s \in S$ belongs to $T_{m}(t)$ precisely if $m^{\prime}:=m-\chi_{t}+\chi_{s}$ is in B, and this is computable by subroutine (7.2). Therefore we can compute $S_{1}(m)$ (defined in (4.4)). It was proved in Theorem 4.4 that $S_{1}(m)$ is the first member S_{1} of the canonical S-partition associated with \dddot{B}.

The restriction $m_{1}:=m \mid S_{1}$ is a near-uniform member of the restriction of \dddot{B} to S_{1}, and by Theorem 4.6, if m_{1}^{\prime} is a dec-min element of \check{B}_{1}^{\prime}, then (m_{1}, m_{1}^{\prime}) is a dec-min element of \overleftrightarrow{B}, where B_{1}^{\prime} is the base-polyhedron obtained from B by contracting S_{1}. Such a dec-min element m_{1}^{\prime} can be computed by applying iteratively the computation described above for computing m_{1}.

8 Applications

8.1 Background

There are two major sources of applicability of the results in the preceding sections. One of them relies on the fact that the class of integral base-polyhedra is closed under several operations. For example, a face of a base-polyhedron is also a base-polyhedron, and so is the intersection of an integral box with a base-polyhedron B. Also, the sum of integral base-polyhedra B_{1}, \ldots, B_{k} is a base-polyhedron B which has, in addition, the integer decomposition property meaning that any integral element of B can be obtained as the sum of k integral elements by taking one from each B_{i}. This latter property implies that the sum of M-convex sets is M-convex. We also mention the important operation of taking an aggregate of a base-polyhedron, to be introduced below in Section 8.2 .

The other source of applicability is based on the fact that not only fully super- or submodular functions can define base-polyhedra but some weaker functions as well. For example, if p is an integer-valued crossing (in particular, intersecting) supermodular function with finite $p(S)$, then $B=B^{\prime}(p)$ is a (possibly empty) integral base-polyhedron (and B is an Mconvex set). This fact will be exploited in solving dec-min orientation problems when both degree-constraints and edge-connectivity requirements must be fulfilled. In some cases even weaker set-functions can define base-polyhedra. This is why we can solve dec-min problems concerning edge- and node-connectivity augmentations of digraphs.

8.2 Matroids

Levin and Onn [44] solved algorithmically the following problem. Find k bases of a matroid M on a ground-set S such that the sum of their characteristic vectors be decreasingly minimal. Their approach, however, does not seem to work in the following natural extension. Suppose we are given k matroids M_{1}, \ldots, M_{k} on a common ground-set S, and our goal is to find a basis B_{i} of each matroid M_{i} in such a way that the vector $\sum\left[\chi_{B_{i}}: i=1, \ldots, k\right]$ is decreasingly minimal. Let B_{Σ} denote the sum of the base-polyhedra of the k matroids. By a theorem of Edmonds, the integral elements of B_{Σ} are exactly the vectors of form $\sum\left[\chi_{B_{i}}: i=1, \ldots, k\right]$ where B_{i} is a basis of M_{i}. Therefore the problem is to find a dec-min element of \bar{B}_{Σ}. This can be found by the basic algorithm described in Section 7.1. Let us see how the requested subroutines are available in this special case. The algorithm starts with an arbitrary member m of \bar{B}_{Σ} which is obtained by taking a basis B_{i} from each matroid M_{i}, and these bases define $m:=\sum_{i} \chi_{B_{i}}$.

To realize Subroutine (7.2), we mentioned that it suffices to realize Subroutine (7.3), which requires for a given integral vector m^{\prime} with $\widetilde{m}^{\prime}(S)=\sum_{i} r_{i}(S)$ to decide whether m^{\prime} is in $\dddot{B_{\Sigma}}$ or not. But this can simply be done by Edmonds' matroid intersection algorithm. Namely, let S_{1}, \ldots, S_{k} be disjoint copies of S and M_{i}^{\prime} an isomorphic copy of M_{i} on S_{i}. Let N_{1} be the direct sum of matroids M_{i}^{\prime} on ground-set $S^{\prime}:=S_{1} \cup \cdots \cup S_{k}$. Let N_{2} be a partition matroid on S^{\prime} in which a subset Z is a basis if it contains exactly $m^{\prime}(s)$ members of the k copies of s for each $s \in S$. Then m^{\prime} is in \widetilde{B}_{Σ} precisely if N_{1} and N_{2} have a common basis.

In conclusion, with the help of Edmonds' matroid intersection algorithm, Subroutine (7.2) is available, and hence the basic algorithm can be applied. (Actually, the algorithm
can be sped up by looking into the details of the matroid intersection algorithm for N_{1} and N_{2}.)

Another natural problem concerns a single matroid M on a ground-set T. Suppose we are given a partition $\mathcal{P}=\left\{T_{1}, \ldots, T_{n}\right\}$ of T and we consider the intersection vector $(\mid Z \cap$ $T_{1}\left|, \ldots,\left|Z \cap T_{n}\right|\right)$ assigned to a basis Z of M. The problem is to find a basis for which the intersection vector is decreasingly minimal.

To solve this problem, we recall an important construction of base-polyhedra, called the aggregate. Let T be a ground-set and B_{T} an integral base-polyhedron in \mathbf{R}^{T}. Let $\mathcal{P}=$ $\left\{T_{1}, \ldots, T_{n}\right\}$ be a partition of T into non-empty subsets and let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a set whose elements correspond to the members of \mathcal{P}. The aggregate B_{S} of B_{T} is defined as follows.

$$
\begin{equation*}
B_{S}:=\left\{\left(y_{1}, \ldots, y_{n}\right): \text { there is an } x \in B_{T} \text { with } y_{i}=\widetilde{x}\left(T_{i}\right)(i=1, \ldots, n)\right\} . \tag{8.1}
\end{equation*}
$$

A basic theorem concerning base-polyhedra states that B_{S} is a base-polyhedron, moreover, for each integral member $\left(y_{1}, \ldots, y_{n}\right)$ of B_{S}, the vector x in (8.1) can be chosen integervalued. In other words,

$$
\begin{equation*}
\widetilde{B_{S}}:=\left\{\left(y_{1}, \ldots, y_{n}\right): \text { there is an } x \in \widetilde{B_{T}} \text { with } y_{i}=\widetilde{x}\left(T_{i}\right)(i=1, \ldots, n)\right\} . \tag{8.2}
\end{equation*}
$$

We call \ddot{B}_{S} the aggregate of \bar{B}_{T}.
Returning to our matroid problem, let B_{T} denote the base-polyhedron of matroid M. Then the problem is nothing but finding a dec-min element of $\widetilde{B_{S}}$.

We can apply the basic algorithm (concerning M-convex sets) for this special case since the requested subroutines are available through standard matroid algorithms. Namely, Subroutine (7.1) is available since for any basis Z of M, the intersection vector assigned to Z is nothing but an element of $\dddot{B_{S}}$.

To realize Subroutine (7.2), we mentioned that it suffices to realize Subroutine (7.3). Suppose we are given a vector $y \in \mathbf{Z}_{+}^{S}$ (Here y stands for m^{\prime} in (7.3). Suppose that $\widetilde{y}(S)=$ $r(T)$ (where r is the rank-function of matroid M) and that $y\left(s_{i}\right) \leq\left|T_{i}\right|$ for $i=1, \ldots, n$.

Let $G=(S, T ; E)$ denote a bipartite graph where $E=\left\{t s_{i}: t \in T_{i}, i=1, \ldots, n\right\}$. By this definition, the degree of every node in T is 1 and hence the elements of E correspond to the elements of M. Let M_{1} be the matroid on E corresponding to M (on T). Let M_{2} be a partition matroid on E in which a set $F \subseteq E$ is a basis if $d_{F}\left(s_{i}\right)=y\left(s_{i}\right)$. By this construction, the vector y is in \dddot{B}_{S} precisely if the two matroids M_{1} and M_{2} have a common basis. This problem is again tractable by Edmonds' matroid intersection algorithm.

As a special case, we can find a spanning tree of a (connected) directed graph for which its in-degree-vector is decreasingly minimal. Since the family of unions of k disjoint bases of a matroid forms also a matroid, we can also compute k edge-disjoint spanning trees in a digraph whose union has a decreasingly minimal in-degree vector.

Another special case is when we want to find a spanning tree of a connected bipartite graph $G=(S, T ; E)$ whose in-degree vector restricted to S is decreasingly minimal.

8.3 Flows

8.3.1 A base polyhedron associated with net-in-flows

Let $D=(V, A)$ be a digraph endowed with integer-valued bounding functions $f: A \rightarrow$ $\mathbf{Z} \cup\{-\infty\}$ and $g: A \rightarrow \mathbf{Z} \cup\{+\infty\}$ for which $f \leq g$. We call a vector (or function) z on A feasible if $f \leq z \leq g$. The net-in-flow Ψ_{z} of z is a vector on V and defined by $\Psi_{z}(v)=\varrho_{z}(v)-\delta_{z}(v)$, where $\varrho_{z}(v):=\sum[z(u v): u v \in A]$ and $\delta_{z}(v):=\sum[z(v u): u v \in A]$. If m is the net-in-flow of a vector z, then we also say that z is an m-flow.

A variation of Hoffman's classic theorem on feasible circulations [38] is as follows.
Lemma 8.1. An integral vector $m: V \rightarrow \mathbf{Z}$ is the net-in-flow of an integral feasible vector (or in other words, there is an integer-valued feasible m-flow) if and only if $\widetilde{m}(V)=0$ and

$$
\begin{equation*}
\varrho_{f}(Z)-\delta_{g}(Z) \leq \widetilde{m}(Z) \text { holds whenever } Z \subseteq V \text {, } \tag{8.3}
\end{equation*}
$$

where $\varrho_{f}(Z):=\sum[f(a): a \in A$ and a enters $Z]$ and $\delta_{g}(Z):=\sum[g(a): a \in A$ and a leaves $Z]$.

Define a set-function $p_{f g}$ on V by

$$
p_{f g}(Z):=\varrho_{f}(Z)-\delta_{g}(Z)
$$

Then $p_{f g}$ is (fully) supermodular (see, e.g. Proposition 1.2.3 in [17]). Consider the basepolyhedron $B_{f g}:=B^{\prime}\left(p_{f g}\right)$ and the M-convex set $\ldots \bar{B}_{f g}$. By Lemma 8.1 the M-convex set $\overline{B_{f g}}$ consists exactly of the net-in-flow integral vectors m.

By the algorithm described in Section 7, we can compute a decreasingly minimal element of $\vec{B}_{f g}$ in strongly polynomial time. By relying on a strongly polynomial push-relabel algorithm, we can check whether or not (8.3) holds. If it does not, then the push-relabel algorithm can compute a set most violating (8.3) (that is, a maximizer of $\varrho_{f}(Z)-\delta_{g}(Z)-\widetilde{m}(Z)$) while if (8.3) does hold, then the push-relabel algorithm computes an integral valued feasible m-flow. Therefore the requested oracles in the general algorithm for computing a dec-min element are available through a network flow algorithm, and we do not have to rely on a general-purpose submodular function minimizing oracle.

For the sake of an application of this algorithm to capacitated dec-min orientations in Section 9.2 , we remark that the algorithm can also be used to compute a dec-min element of the M-convex set obtained from $\widetilde{B_{f g}}$ by translating it with a given integral vector.

8.3.2 Discrete version of Megiddo's flow problem

Megiddo [48], [49] considered the following problem. Let $D=(V, A)$ be a digraph endowed with a non-negative capacity function $g: A \rightarrow \mathbf{R}+$. Let S and T be two disjoint non-empty subsets of V. Megiddo described an algorithm to compute a feasible flow from S to T with maximum flow amount M for which the net-in-flow vector restricted on S is (in our terms) increasingly maximal. Here a feasible flow is a vector x on A for which $\Psi_{x}(v) \leq 0$ for $v \in S, \Psi_{x}(v) \geq 0$ for $v \in T$, and $\Psi_{x}(v)=0$ for $v \in V-(S \cup T)$. The flow amount x is $\Sigma\left[\Psi_{x}(t): t \in T\right]$.

We emphasize that Megiddo solved the continuous (fractional) case and did not consider the corresponding discrete (or integer-valued) flow problem. To our knowledge, this natural optimization problem has not been investigated so far.

To provide a solution, suppose that g is integer-valued. Let $f \equiv 0$ and consider the net-in-flow vectors belonging to feasible vectors. These form a base-polyhedron B_{1} in \mathbf{R}^{V}. Let B_{2} denote the base polyhedron obtained from B_{1} by intersecting it with the box defined by $z(v) \leq 0$ for $v \in S, z(v) \geq 0$ for $v \in T$ and $z(v)=0$ for $v \in V-(S \cup T)$.

The restriction of B_{2} to S is a g-polymatroid Q in \mathbf{R}^{S}. And finally, we can consider the face of Q defined by $\widetilde{z}(S)=-M$. This is a base-polyhedron B_{3} in \mathbf{R}^{S}, and the discrete version of Megiddo's flow problem is equivalent to finding an inc-max element of B_{3}. (Recall that an element of an M-convex set is dec-min precisely if it is inc-max.)

It can be shown that in this case again the general submodular function minimizing subroutine used in the algorithm to find a dec-min element of an M-convex set can be replaced by a max-flow min-cut algorithm.

In Part III [23] we solve a more general discrete dec-min problem, in which we are to find an integral feasible flow that is dec-min on an arbitrarily specified edge set.

8.4 Further applications

8.4.1 Root-vectors of arborescences

A graph-example comes from packing arborescences. Let $D=(V, A)$ be a digraph and $k>0$ an integer. We say that a non-negative integral vector $m: V \rightarrow \mathbf{Z}_{+}$is a root-vector if there are k edge-disjoint spanning arborescences such that each node $v \in V$ is the root of $m(v)$ arborescences. Edmonds [9] classic result on disjoint arborescences implies that m is a root-vector if and only if $\widetilde{m}(V)=k$ and $\widetilde{m}(X) \geq k-\varrho(X)$ holds for every subset X with $\emptyset \subset X \subset V$. Define set-function p by $p(X):=k-\varrho(X)$ if $\emptyset \subset X \subseteq V$ and $p(\emptyset):=0$. Then p is intersecting supermodular, so $B^{\prime}(p)$ is an integral base-polyhedron. The intersection B of $B^{\prime}(p)$ with the non-negative orthant is also a base-polyhedron, and the theorem of Edmonds is equivalent to stating that a vector m is a root-vector if and only if m is in B.

Therefore the general results on base-polyhedra can be specialized to obtain k disjoint spanning arborescences whose root-vector is decreasingly minimal.

8.4.2 Connectivity augmentations

Let $D=(V, A)$ be a directed graph and $k>0$ an integer. We are interested in finding a so-called augmenting digraph $H=(V, F)$ of γ arcs for which $D+H$ is k-edge-connected or k-node-connected. In both cases, the in-degree vectors of the augmenting digraphs are the integral elements of an integral base-polyhedron [16], [19]. Obviously, the in-degree vectors of the augmented digraphs are the integral elements of an integral base-polyhedron.

Again, our results on general base-polyhedra can be specialized to find an augmenting digraph whose in-degree vector is decreasingly minimal.

9 Orientations of graphs

Let $G=(V, E)$ be an undirected graph. For $X \subseteq V$, let $i_{G}(X)$ denote the number of edges induced by X while $e_{G}(X)$ is the number of edges with at least one end-node in X. Then i_{G} is supermodular, e_{G} is submodular, and they are complementary functions, that is, $i_{G}(X)=$ $e_{G}(V)-e_{G}(V-X)$. Let $B_{G}:=B\left(e_{G}\right)=B^{\prime}\left(i_{G}\right)$ denote the base-polyhedron defined by e_{G} or i_{G}.

We say that a function $m: V \rightarrow \mathbf{Z}$ is the in-degree vector of an orientation D of G if $\varrho_{D}(v)=m(v)$ for each node $v \in V$. An in-degree vector m obviously meets the equality $\widetilde{m}(V)=|E|$. The following basic result, sometimes called the Orientation lemma, is due to Hakimi [32].

Lemma 9.1 (Orientation lemma). Let $G=(V, E)$ be an undirected graph and $m: V \rightarrow \mathbf{Z}$ an integral vector for which $\widetilde{m}(V)=|E|$. Then G has an orientation with in-degree vector m if and only if

$$
\begin{equation*}
\widetilde{m}(X) \leq e_{G}(X) \text { for every subset } X \subseteq V, \tag{9.1}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\widetilde{m}(X) \geq i_{G}(X) \text { for every subset } X \subseteq V \text {. } \tag{9.2}
\end{equation*}
$$

This immediately implies the following claim.
Claim 9.2. The in-degree vectors of orientations of G are precisely the integral elements of base-polyhedron $B_{G}\left(=B\left(e_{G}\right)=B^{\prime}\left(i_{G}\right)\right)$, that is, the set of in-degree vectors of orientations of G is the M-convex set \vec{B}_{G}.

The proof of Lemma 9.1 is algorithmic (see, e.g., Theorem 2.3.2 of [17]) and the orientation corresponding to a given m can be constructed easily.

9.1 Decreasingly minimal orientations

Due to Claim 9.2 , we can apply the earlier results on dec-min elements to the special basepolyhedron B_{G}. Recall that Borradaile et al. [6] called an orientation of G egalitarian if its in-degree vector is decreasingly minimal but we prefer the term dec-min orientation since an orientation with an increasingly maximal in-degree vector also has an intuitive egalitarian feeling. Such an orientation is called inc-max. For example, Theorem 3.3 immediately implies the following.

Corollary 9.3. An orientation of G is dec-min if and only if it is inc-max.
Note that the term dec-min orientation is asymmetric in the sense that it refers to indegree vectors. One could also aspire for finding an orientation whose out-degree vector is decreasingly minimal. But this problem is clearly equivalent to the in-degree version and hence in the present work we do not consider out-degree vectors, with a single exception in Section 9.5

By Theorem 3.3, an element m of \dddot{B}_{G} is decreasingly minimal if and only if there is no 1 -tightening step for m. What is the meaning of a 1 -tightening step in terms of orientations?

Claim 9.4. Let D be an orientation of G with in-degree vector m. Let t and s be nodes of G. The vector $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is in B_{G} if and only if D admits a dipath from s to t.

Proof. $m^{\prime} \in B_{G}$ holds precisely if there is no $t \bar{s}$-set X which is tight with respect to i_{G}, that is, $\widetilde{m}(X)=i_{G}(X)$. Since $\varrho(Y)+i_{G}(Y)=\sum[\varrho(v): v \in Y]=\widetilde{m}(Y)$ holds for any set $Y \subseteq V$, the tightness of X is equivalent to requiring that $\varrho(X)=0$. Therefore $m^{\prime} \in B_{G}$ if and only if $\varrho(Y)>0$ holds for every $t \bar{s}$-set Y, which is equivalent to the existence of a dipath of D from s to t.

Recall that a 1-tightening step at a member m of B_{G} consists of replacing m by m^{\prime} provided that $m(s) \geq m(t)+2$ and $m^{\prime} \in B_{G}$. By Claim 9.4, a 1 -tightening step at a given orientation of G corresponds to reorienting an arbitrary dipath from a node s to node t for which $\varrho(s) \geq \varrho(t)+2$. Therefore Theorem 3.3 immediately implies the following basic theorem of Borradaile et al. [6].

Theorem 9.5 (Borradaile et al. [6]). An orientation D of a graph $G=(V, E)$ is decreasingly minimal if and only if no dipath exists from a node s to a node t for which $\varrho(t) \geq \varrho(s)+2$.

Note that this theorem also implies Corollary 9.3. It immediately gives rise to an algorithm for finding a dec-min orientation. Namely, we start with an arbitrary orientation of G. We call a dipath feasible if $\varrho(t) \geq \varrho(s)+2$ holds for its starting node s and end-node t. The algorithm consists of reversing feasible dipaths as long as possible. Since the sum of the squares of in-degrees always drops when a feasible dipath is reversed, and originally this sum is at most $|E|^{2}$, the dipath-reversing procedure terminates after at most $|E|^{2}$ reversals. By Theorem 9.5, when no more feasible dipath exists, the current orientation is dec-min. The basic algorithm concerning general base-polyhedra in Section 7.1 is nothing but an extension of the algorithm of Borradaile et al.

It should be noted that they suggested to choose at every step the current feasible dipath in such a way that the in-degree of its end-node t is as high as possible, and they proved that the algorithm in this case terminates after at most $|E \| V|$ dipath reversals.

Note that we obtained Corollary 9.3 as a special case of a result on M-convex sets but it is also a direct consequence of Theorem 9.5 .

9.2 Capacitated orientation

Consider the following capacitated version of the basic dec-min orientation problem of Borradaile et al. [6]. Suppose that a positive integer $\ell(e)$ is assigned to each edge e of G. Denote by G^{+}the graph arising from G by replacing each edge e of G with $\ell(e)$ parallel edges. Our goal is to find a dec-min orientation of G^{+}. In this case, an orientation of G^{+}is described by telling that, among the $\ell(e)$ parallel edges connecting the end-nodes u and v of e how many are oriented toward v (implying that the rest of the $\ell(e)$ edges are oriented toward u). In principle, this problem can be solved by applying the algorithm described above to G^{+}, and this algorithm is satisfactory when ℓ is small in the sense that its largest value can be bounded by a power of $|E|$. The difficulty in the general case is that the algorithm will be polynomial only in the number of edges of G^{+}, that is, in $\widetilde{\ell}(E)$, and hence this algorithm is not polynomial in $|E|$.

We show how the algorithm in Section 8.3.1 can be used to solve the decreasingly minimal orientation problem in the capacitated case in strongly polynomial time. To this end, let $D=(V, A)$ be an arbitrary orientation of G serving as a reference orientation. Define a capacity function g on A by $g(\vec{e}):=\ell(e)$, where \vec{e} denotes the arc of D obtained by orienting e.

We associate an orientation of G^{+}with an integral vector $z: A \rightarrow \mathbf{Z}_{+}$with $z \leq g$ as follows. For an arc $u v$ of D, orient $z(u v)$ parallel copies of $e=u v \in E$ toward v and $g(u v)-z(u v)$ parallel copies toward u. Then the in-degree of a node v is $m_{z}(v):=\varrho_{z}(v)+$ $\delta_{g-z}(v)=\varrho_{z}(v)-\delta_{z}(v)+\delta_{g}(v)$. Therefore our goal is to find an integral vector z on A for which $0 \leq z \leq g$ and the vector m_{z} on V is dec-min. Consider the set of net-in-flow vectors $\left\{\left(\Psi_{z}(v): v \in V\right): 0 \leq z \leq g\right\}$. In Section 8.3.1, we proved that this is a base-polyhedron B_{1}. Therefore the set of vectors $\left(m_{z}(v): v \in V\right)$ is also a base-polyhedron B arising from B_{1} by translating B_{1} with the vector $\left(\delta_{g}(v): v \in V\right)$.

As remarked at the end of Section 8.3.1 a dec-min element of \dddot{B} can be computed in strongly polynomial time by relying on a push-relabel subroutine for network flows (and not using a general-purpose submodular function minimizer).

9.3 Canonical chain and essential value-sequence for orientations

In Section 7.2 , we described Algorithm 7.1 for an arbitrary M-convex set \dddot{B} that computes, from a given dec-min element m of \dddot{B}, the canonical chain and essential value-sequence belonging to B. That algorithm needed an oracle for computing the smallest m-tight set $T_{m}(u)$ containing u. Here we show how this general algorithm can be turned into a pure graph-algorithm in the special case of dec-min orientations.

To this end, consider the special M-convex set, denoted by \ddot{B}_{G}, consisting of the indegree vectors of the orientations of an undirected graph $G=(V, E)$. By the Orientation lemma, $B_{G}=B^{\prime}\left(i_{G}\right)$ where $i_{G}(X)$ denotes the number of edges induced by X. Recall that i_{G} is a fully supermodular function. For an orientation D of G with in-degree vector m, the smallest m-tight set $T_{m}(t)$ (with respect to i_{G}) containing a node t will be denoted by $T_{D}(t)$.

Claim 9.6. Let D be an arbitrary orientation of G with in-degree vector m. (A) A set $X \subseteq V$ is m-tight (with respect to i_{G}) if and only if $\varrho_{D}(X)=0$. (B) The smallest m-tight set $T_{D}(t)$ containing a node t is the set of nodes from which t is reachable in D.
Proof. We have

$$
\varrho_{D}(X)+i_{G}(X)=\sum\left[\varrho_{D}(v): v \in X\right]=\widetilde{m}(X) \geq i_{G}(X),
$$

from which X is m-tight (that is, $\widetilde{m}(X)=i_{G}(X)$) precisely if $\varrho_{D}(X)=0$, and Part (A) follows. Therefore the smallest m-tight set $T_{D}(t)$ containing t is the smallest set containing t with indegree 0 , and hence $T_{D}(t)$ is indeed the set of nodes from which t is reachable in D, as stated in Part (B).

By Claim 9.6, $T_{D}(t)$ is easily computable, and hence Algorithm 7.1 for general M-convex sets can easily be specialized to graph orientations. By applying Corollary 5.2 to $p:=i_{G}$ and recalling from Claim 9.6 that C_{i} is m-tight, in the present case, precisely if $\varrho_{D}\left(C_{i}\right)=0$, we obtain the following.

Theorem 9.7. An orientation of D of G is dec-min if and only of $\varrho_{D}\left(C_{i}\right)=0$ for each member C_{i} of the canonical chain and $\beta_{i}-1 \leq \varrho_{D}(v) \leq \beta_{i}$ holds for every node $v \in S_{i}$ $(i=1, \ldots, q)$.

We remark that the members of the canonical partition computed by our algorithm for B_{G} is exactly the non-empty members of the so-called density decomposition of G introduced by Borradaile et al. [7].

9.4 Cheapest dec-min orientations

In Section 5.3, we indicated that, given a (linear) cost-function c on the ground-set, there is an algorithm to compute a cheapest dec-min element of an M-convex set. In the special case of dec-min orientations, this means that if c is a cost-function on the node-set of $G=(V, E)$, then we have an algorithm to compute a dec-min orientation of G for which $\sum[c(v) \varrho(v)$: $v \in V]$ is minimum.

But the question remains: what happens if, instead of a cost-function on the node-set, we have a cost-function c on \vec{E}_{2}, where \vec{E}_{2} arises from E by replacing each element $e=u v$ ($=v u$) of E by two oppositely oriented arcs $u v$ and $v u$, and we are interested in finding a cheapest orientation with specified properties? (As an orientation of e consists of replacing e by one of the two arcs $u v$ and $v u$ and the cost of its orientation is, accordingly, $c(u v)$ or $c(v u)$. Therefore we can actually assume that $\min \{c(u v), c(v u)\}=0$.)

It is important to remark that the minimum cost in-degree constrained orientation problem itself (where the in-degree vector of the orientation meets specified upper and lower bound constraints, and decreasing minimality does not play any role) can be reduced with a standard technique to a minimum cost feasible flow problem in a digraph with small integral capacities. This latter problem is tractable in strongly polynomial time via the classic mincost flow algorithm of Ford and Fulkerson (that is, we do not need the more sophisticated min-cost flow algorithm of Tardos, which is strongly polynomial for an arbitrary capacity). Actually, we shall need a version of this minimum cost orientation problem when some of the edges are already oriented, and this slight extension is also tractable by network flows.

Theorem 9.7 implies that the problem of finding a cheapest dec-min orientation is equivalent to finding a cheapest in-degree constrained orientation by orienting edges connecting C_{i} and $V-C_{i}$ toward $V-C_{i}(i=1, \ldots, q)$. Here the in-degree constraints are given by $\beta_{i}-1 \leq \varrho_{D}(v) \leq \beta_{i}$ for $v \in S_{i}(i=1, \ldots, q)$.

Note that Harada et al. [33] provided a direct algorithm for the minimum cost version of the so-called semi-matching problem, which problem includes the minimum cost dec-min orientation problem. For this link, see Section 10.4 .

9.5 Orientation with dec-min in-degree vector and dec-min out-degree vector

We mentioned that dec-min and inc-max orientations always concern in-degree vectors. As an example to demonstrate the advantage of the general base-polyhedral view, we outline here one exception when in-degree vectors and out-degree vectors play a symmetric role. The problem is to characterize undirected graphs admitting an orientation which is both
dec-min with respect to its in-degree vector and dec-min with respect to its out-degree vector.

For the present purposes, we let d_{G} denote the degree vector of G, that is, $d_{G}(v)$ is the number of edges incident to $v \in V$. (This notation differs from the standard set-function meaning of d_{G}.)

Let $B_{\text {in }}$ denote the convex hull of the in-degree vectors of orientations of G, and $B_{\text {out }}$ the convex hull of out-degree vectors of orientations of G. (Earlier $B_{\text {in }}$ was denoted by B_{G} but now we have to deal with both out-degrees and in-degrees.) As before, $\ddot{B}_{\text {in }}$ is the set of indegree vectors of orientations of G, and $\overline{B_{\text {out }}}$ is the set of out-degree vectors of orientations of G. Let $B_{\text {in }}^{\bullet}$ denote the set of dec-min in-degree vectors of orientations of G, and $B_{\text {out }}^{\circ}$ the set of dec-min out-degree vectors of orientations of G. By Theorem 5.7 both $B_{\text {in }}^{\circ}$ and $B_{\text {out }}^{\circ}$ are matroidal M-convex sets.

Note that the negative of a (matroidal) M-convex set is also a (matroidal) M-convex set, and the translation of a (matroidal) M-convex set by an integral vector is also a (matroidal) M-convex set. Therefore $d_{G}-\widetilde{B}_{\text {out }}^{\circ}$ is a matroidal M-convex set. Clearly, a vector $m_{\text {in }}$ is the in-degree vector of an orientation D of G precisely if $d_{G}-m_{\text {in }}$ is the out-degree vector of D.

We are interested in finding an orientation whose in-degree vector is dec-min and whose out-degree vector is dec-min. This is equivalent to finding a member $m_{\text {in }}$ of $\breve{B}_{\text {in }}^{\bullet}$ for which the vector $m_{\text {out }}:=d_{G}-m_{\text {in }}$ is in the matroidal M-convex set $B_{\text {out }}^{\circ}$. But this latter is equivalent to requiring that m_{in} is in the M -convex set $d_{G}-B_{\text {out }}^{\circ}$. That is, the problem is equivalent to finding an element of the intersection of the matroidal M-convex sets B_{in}° and $d_{G}-B_{\mathrm{out}}^{\circ}$. This latter problem can be solved by Edmonds matroid intersection algorithm [10].

10 In-degree constrained orientations of graphs

In this section we first describe an algorithm to find a dec-min in-degree constrained orientation. Second, we develop a complete description of the set of dec-min in-degree constrained orientations, which gives rise to an algorithm to compute a cheapest dec-min in-degree constrained orientation.

10.1 Computing a dec-min in-degree constrained orientation

Let $f: V \rightarrow \mathbf{Z} \cup\{-\infty\}$ be a lower bound function and $g: V \rightarrow \mathbf{Z} \cup\{+\infty\}$ an upper bound function for which $f \leq g$. We are interested in in-degree constrained orientations D of G, by which we mean that $f(v) \leq \varrho_{D}(v) \leq g(v)$ for every $v \in V$. Such an orientation is called (f, g)-bounded, and we assume that G has such an orientation. (By a well-known orientation theorem, such an orientation exists if and only if $i_{G} \leq \widetilde{g}$ and $\widetilde{f} \leq e_{G}$.

As before, let \bar{B}_{G} denote the M-convex set of the in-degree vectors of orientations of G, and let $\widetilde{B}_{G}^{\square}$ denote the intersection of $\dddot{B_{G}}$ with the integral box $T(f, g)$. That is, $\widetilde{B}_{G}^{\square}$ is the set of in-degree vectors of (f, g)-bounded orientations of G. Let D be an (f, g)-bounded orientation of G with in-degree vector m. We denote the smallest tight set containing a
node t by $T_{D}^{\square}(t)\left(=T_{m}^{\square}(t)\right)$. By applying Claim 7.2 to $\widetilde{B}_{G}^{\square}$, we obtain that

$$
T_{D}^{\square}(t)= \begin{cases}\{t\} & \text { if } \varrho_{D}(t)=f(t), \tag{10.1}\\ T_{D}(t)-\left\{s: \varrho_{D}(s)=g(s)\right\} & \text { if } \varrho_{D}(t)>f(t),\end{cases}
$$

implying that, in case $\varrho_{D}(t)>f(t)$, the set $T_{D}^{\square}(t)$ consists of those nodes s from which t is reachable and for which $\varrho_{D}(s)<g(s)$.

Formula (10.1) implies for distinct nodes s and t that the vector $m^{\prime}:=m+\chi_{s}-\chi_{t}$ belongs to \dddot{B}_{G}^{\square} precisely if there is an $s t$-dipath (i.e. a dipath from s to t) for which $\varrho_{D}(s)<g(s)$ and $\varrho_{D}(t)>f(t)$. We call such a dipath P of D reversible. Note that the dipath P^{\prime} of D^{\prime} obtained by reorienting P is reversible in D^{\prime}.

If P is a reversible $s t$-dipath of D for which $\varrho_{D}(t) \geq \varrho_{D}(s)+2$, then the orientation D^{\prime} is decreasingly smaller than D. We call such a dipath improving. Therefore, reorienting an improving $s t$-dipath corresponds to a 1 -tightening step. Hence Theorem 3.3 implies the following extension of Theorem 9.5 .

Theorem 10.1. An (f, g)-bounded orientation D of G is dec-min if and only if there is no improving dipath, that is, a dipath from a node s to a node t for which $\varrho_{D}(t) \geq \varrho_{D}(s)+2$, $\varrho_{D}(s)<g(s)$, and $\varrho_{D}(t)>f(t)$.

In Section 7.1 we have presented an algorithm that computes a dec-min element of an arbitrary M-convex set. By specializing it to $\breve{B_{G}^{\square}}$, we conclude that in order to construct a dec-min (f, g)-bounded orientation of G, one can start with an arbitrary (f, g)-bounded orientation, and then reorient (currently) improving dipaths one by one, as long as such a dipath exists. As we pointed out after Theorem 9.5 , after at most $|E|^{2}$ improving dipath reorientations, the algorithm terminates with a dec-min (f, g)-bounded orientation of G.

Canonical chain and essential value-sequence for (f, g)-bounded orientations In Section 7.2, we indicated that Algorithm 7.1 can immediately be applied to compute the canonical chain, the canonical partition, and the essential value-sequence belonging to the intersection $\dddot{B^{\square}}$ of an arbitrary M-convex set \dddot{B} with an integral box $T(f, g)$.

This algorithm needs only the original subroutine to compute $T_{m}(u)$ since, by Claim 7.2, $T_{m}^{\square}(u)$ is easily computable from $T_{m}(u)$. As we indicated above, in the special case of orientations, the corresponding sets $T_{D}(t)$ and $T_{D}^{\square}(t)$ are immediately computable from D. Therefore this extended algorithm can be used in the special case when we are interested in dec-min (f, g)-bounded orientations of $G=(V, E)$. The algorithm starts with a dec-min (f, g)-bounded orientation D of G and outputs the canonical chain $C^{\square}=\left\{C_{1}^{\square}, \ldots, C_{q}^{\square}\right\}$, the canonical partition $\mathcal{P}^{\square}=\left\{S_{1}^{\square}, \ldots, S_{q}^{\square}\right\}$, and the essential value-sequence $\beta_{1}^{\square}>\cdots>\beta_{q}^{\square}$. In view of Corollary 5.2 we also define bounding functions f^{*} and g^{*} as

$$
\begin{array}{rrl}
f^{*}(v):=\beta_{i}^{\square}-1 \text { if } v \in S_{i} & (i=1, \ldots, q), \\
g^{*}(v):=\beta_{i}^{\square} & \text { if } v \in S_{i} & (i=1, \ldots, q) .
\end{array}
$$

We say that the small box

$$
\begin{equation*}
T^{*}:=T\left(f^{*}, g^{*}\right) \tag{10.2}
\end{equation*}
$$

belongs to $\dddot{B_{G}^{\square}}$. Clearly, $f \leq f^{*}$ and $g^{*} \leq g$, and hence $T\left(f^{*}, g^{*}\right) \subseteq T(f, g)$. In Section 10.2 below we assume that these data are available.

Remark 10.1. A special case of in-degree constrained orientations is when we have a prescribed subset T of V and a non-negative function $m_{T}: T \rightarrow \mathbf{Z}_{+}$serving as an in-degree specification on T, and we are interested in orientations of G for which $\varrho(v)=m_{T}(v)$ holds for every $t \in T$. We call such an orientation T-specified. This notion will have applications in Section 10.4 .

10.2 Cheapest dec-min in-degree constrained orientations

We are given a cost-function c on the possible orientations of the edges of G and our goal is to find a cheapest dec-min (f, g)-bounded orientation of G. This will be done with the help of a purely graphical description of the set of all dec-min (f, g)-bounded orientations, which is given in Theorem 10.3 .

As a preparation, we derive the following claim as an immediate consequence of our structural result (Theorem 5.7). Let m be a dec-min element of an M-convex set \dddot{B}. Suppose that $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is in B (that is, $s \in T_{m}(t)$). Since m is dec-min, $m(t) \leq m(s)+1$. If $m(t)=m(s)+1$, then m^{\prime} and m are value-equivalent and hence m^{\prime} is also a dec-min element of \dddot{B}. We say that m^{\prime} is obtained from m by an elementary step.

Claim 10.2. Any dec-min element of \dddot{B} can be obtained from a given dec-min element m by a sequence of at most $|S|$ elementary steps.

Proof. By Theorem 5.7, the set of dec-min elements of \dddot{B} is a matroidal M-convex set in the sense that it can be obtained from a matroid M^{*} by translating the incidence vectors of the bases of M^{*} by the same integral vector Δ^{*}. A simple property of matroids is that any basis can be obtained from a given basis through a sequence of at most $|S|$ bases such that each member of the series can be obtained from the preceding one by taking out one element and adding a new one. The corresponding change in the translated vector is exactly an elementary step.

For a subset $E_{0} \subseteq E$ and for an orientation A_{0} of E_{0}, we say that an orientation D of G is A_{0}-extending if every element e of E_{0} is oriented in D in the same direction as in A_{0}.

Theorem 10.3. Let $G=(V, E)$ be an undirected graph admitting an (f, g)-bounded orientation. Let B_{G}^{\square} denote the M-convex set consisting of the in-degree vectors of (f, g)-bounded orientations of G, and let T^{*} be the small box, belonging to \bar{B}_{G}^{\square}, as defined in (10.2). There are a subset E_{0} of E and an orientation A_{0} of E_{0} such that an (f, g)-bounded orientation D of G is a dec-min (f, g)-bounded orientation if and only if D is an orientation of G extending A_{0} and the in-degree vector of D belongs to T^{*}.

Proof. Let D be a dec-min (f, g)-bounded orientation of G, and let m denote its in-degree vector. Consider the canonical chain $C^{\square}=\left\{C_{1}^{\square}, \ldots, C_{q}^{\square}\right\}$, the canonical partition $\mathcal{P}^{\square}=$ $\left\{S_{1}^{\square}, \ldots, S_{q}^{\square}\right\}$, and the essential value-sequence $\beta_{1}^{\square}>\cdots>\beta_{q}^{\square}$ belonging to \bar{B}_{G}^{\square}.

For $i \in\{1, \ldots, q\}$, define

$$
F_{i}:=\left\{v: v \in S_{i}^{\square}, f(v)=\beta_{i}^{\square}\right\} .
$$

Since $f(v) \leq m(v) \leq \beta_{i}^{\square}$ holds for every element v of $S_{i}^{\text {口 }}$, we obtain that $f(v)=m(v)=\beta_{i}^{\text {口 }}$ for $v \in F_{i}$. Note that F_{i} does not depend on D.

Claim 10.4. For every $h=1, \ldots, i$, there is no dipath P from a node $s \in V-C_{i}^{\square}$ with $m(s)<g(s)$ to a node $t \in S_{h}^{\square}$ with $\beta_{h}^{\square}>f(t)$.

Proof. Suppose indirectly that there is such a dipath P. If $m(t)=\beta_{h}^{\square}$, then P would be an improving dipath which is impossible since D is dec-min (f, g)-bounded. Therefore $m(t)=\beta_{h}^{\square}-1$. But a property of the canonical partition is that there is an element t^{\prime} of $S_{h}^{\square}-F_{h}$ for which $m\left(t^{\prime}\right)=\beta_{h}^{\square}$ and $t \in T_{D}^{\square}\left(t^{\prime}\right)$. This means that t^{\prime} is reachable from t in D, and therefore there is a dipath from s to t^{\prime} in D which is improving, a contradiction again.

We are going to define a chain \mathcal{Z} of subsets $Z_{1} \supseteq Z_{2} \supseteq \cdots \supseteq Z_{q}(=\emptyset)$ of V with the help of D, and will show that this chain actually does not depend on D. Let

$$
\begin{equation*}
Z_{i}:=\left\{t: t \text { is reachable in } D \text { from a node } s \in V-C_{i}^{\square} \text { with } \varrho_{D}(s)<g(s)\right\} . \tag{10.3}
\end{equation*}
$$

Note that $Z_{i-1} \supseteq Z_{i}$ follows from the definition, where equality holds precisely if $\varrho_{D}(s)=$ $g(s)$ for each $s \in S_{i}$.

Lemma 10.5. Every dec-min (f, g)-bounded orientation defines the same family \mathcal{Z}.
Proof. By Claim 10.2, it suffices to prove that a single elementary step does not change \mathcal{Z}. An elementary step in B_{G}^{\square} corresponds to the reorientation of an $s t$-dipath P in D where $s, t \in S_{h}^{\square}-F_{h}, m(t)=\beta_{h}^{\square}$ and $m(s)=\beta_{h}^{\square}-1$ hold for some $h \in\{1, \ldots, q\}$. We will show for $i \in\{1, \ldots, q\}$ that the reorientation of P does not change Z_{i}.

If $h \leq i$, then Claim 10.4 implies that $Z_{i} \cap S_{h}^{\square} \subseteq F_{h}$. Since $\delta_{D}\left(Z_{i}\right)=0$, the dipath P is disjoint from Z_{i}, implying that reorienting P does not affect Z_{i}.

Suppose now that $h \geq i+1$. Since reorienting P results in a dec-min (f, g)-bounded orientation D^{\prime}, we get that $m(s)+1 \leq g(s)$ and hence $s \in Z_{i}-C_{i}^{\square}$. Since $\delta_{D}\left(Z_{i}\right)=0$, we obtain that $t \in Z_{i}-C_{i}^{\square}$. Since $\varrho_{D^{\prime}}(t)=\varrho_{D}(t)-1<g(t)$ and the set of nodes reachable from s in D is equal to the set of nodes reachable from t in D^{\prime}, it follows that the reorientation of P does not change Z_{i}.

Let E_{0} consist of those edges of G which connect Z_{i} with $V-Z_{i}$ for some $i=1, \ldots, q$. Let A_{0} denote the orientation of E_{0} obtained by orienting each edge connecting Z_{i} and $V-Z_{i}$ toward Z_{i}.

Lemma 10.6. The subset $E_{0} \subseteq E$ and its orientation A_{0} meet the requirements in the theorem.

Proof. Consider first an arbitrary dec-min (f, g)-bounded orientation D of G. Then $\delta_{D}\left(Z_{i}\right)=$ 0 and hence D extends A_{0}. Moreover, by a basic property of the canonical chain, the indegree vector of D belongs to T^{*}.

Conversely, let D be an orientation of G extending A_{0} whose in-degree vector belongs to T^{*}, that is,

$$
f^{*}(v) \leq \varrho_{D}(v) \leq g^{*}(v) \text { for every } v \in V
$$

Then D is clearly (f, g)-bounded.
Claim 10.7. There is no improving dipath in D.
Proof. Suppose, indirectly, that P is an improving $s t$-dipath, that is, a dipath from s to t such that $\varrho_{D}(t) \geq \varrho_{D}(s)+2, \varrho_{D}(t)>f(t)$, and $\varrho_{D}(s)<g(s)$. Suppose that t is in $S_{i}^{\text {口 }}$ for some $i \in\{1, \ldots, q\}$. If s is in S_{k}^{\square} for some $k \in\{1, \ldots, q\}$, then

$$
\beta_{k}^{\square}-1 \leq \varrho_{D}(s) \leq \varrho_{D}(t)-2 \leq \beta_{i}^{\square}-2,
$$

that is, $\beta_{k}^{\square}<\beta_{i}^{\square}$, and hence $k>i$, implying that s is in $V-C_{i}^{\square}$. This and $\varrho_{D}(s)<g(s)$ imply that s is in Z_{i}. Furthermore, $\beta_{i}^{\square} \geq \varrho_{D}(t)>f(t)$ implies that t is not in F_{i}, and since $S_{i}^{\square} \cap Z_{i} \subseteq F_{i}$, we obtain that t is not in Z_{i}. On the other hand, we must have $t \in Z_{i}$, since there is a dipath from $s \in V-C_{i}^{\square}$ to t and $\varrho_{D}(s)<g(s)$. This is a contradiction.

By proving Claim 10.7, we have shown Lemma 10.6. Thus the proof of the theorem is completed.

Algorithm for computing a cheapest dec-min (f, g)-bounded orientation First we compute a dec-min (f, g)-bounded orientation D of G with the help of the algorithm outlined in Section 10.1. Second, by applying the algorithm described in the same section, we compute the canonical chain and partition belonging to $\widetilde{B}_{G}^{\square}$ along with the essential valuesequence. Once these data are available, the sets $Z_{i}(i=1, \ldots, q)$ defined in (10.3) are easily computable. Lemma 10.5 ensures that these sets Z_{i} do not depend on the starting dec-min (f, g)-bounded orientation D. Let E_{0} be the union of the set of edges connecting some Z_{i} with $V-Z_{i}$, and define the orientation A_{0} of E_{0} by orienting each edge between Z_{i} and $V-Z_{i}$ toward Z_{i}.

Theorem 10.3 implies that, once E_{0} and its orientation A_{0} are available, the problem of computing a cheapest dec-min (f, g)-bounded orientation of G reduces to finding cheapest in-degree constrained (namely, $\left(f^{*}, g^{*}\right)$-bounded) orientation of a mixed graph. We indicated already in Section 9.4 that such a problem is easily sovable by the strongly polynomial min-cost flow algorithm of Ford and Fulkerson in a digraph with identically 1 capacities.
Remark 10.2. In Section 9.2 we have considered the capacitated dec-min orientation problem in the basic case where no in-degree constraints are imposed. With the technique presented there, we can cope with the capacitated, min-cost, in-degree constrained variants as well. Furthermore, the algorithms above can easily be extended, with a slight modification, to the case when one is interested in orientations of mixed graphs.

10.3 Dec-min (f, g)-bounded orientations minimizing the in-degree of T

One may consider (f, g)-bounded orientations of G when the additional requirement is imposed that the in-degree of a specified subset T of nodes be as small as possible. We shall
show that these orientations of G can be described as $\left(f^{\prime}, g^{\prime}\right)$-bounded orientations of a mixed graph arising from G by orienting the edges between a certain subset X_{T} of nodes and its complement $V-X_{T}$ toward $V-X_{T}$.

It is more comfortable, however, to show the analogous statement for a general M-convex set $\overline{B^{\prime}}(p) \subseteq \mathbf{Z}^{V}$ defined by a (fully) supermodular function p for which $\bar{B}^{\square}:=\dddot{B^{\prime}}(p) \cap T(f, g)$ is non-empty. (Here, instead of the usual S, we use V to denote the ground-set of the general M-convex set. We are back at the special case of graph orientations when $p=i_{G}$.) We assume that each of p, f, and g is finite-valued.

Let p^{\square} denote the unique (fully) supermodular function defining B^{\square}. This function can be expressed with the help of p, f, and g, as follows (see, for example, Theorem 14.3.9 in [17]):

$$
\begin{equation*}
p^{\square}(Y)=\max \{p(X)+\widetilde{f}(Y-X)-\widetilde{g}(X-Y): X \subseteq V\} \quad(Y \subseteq V) . \tag{10.4}
\end{equation*}
$$

As B^{\square} is defined by the supermodular function p^{\square} (that is, $B^{\square}=B^{\prime}\left(p^{\square}\right)$), we have

$$
\begin{equation*}
\min \left\{\widetilde{m}(T): m \in \bar{B}^{\square}\right\}=p^{\square}(T) . \tag{10.5}
\end{equation*}
$$

This implies that the set of elements of B^{\square} minimizing $\widetilde{m}(T)$ is itself an M-convex set. Namely, it is the set of integral elements of the base-polyhedron arising from B^{\square} by taking its face defined by $\left\{m \in B^{\square}: \widetilde{m}(T)=p^{\square}(T)\right\}$. The next theorem shows how this M-convex set can be described in terms of f, g, and p, without referring to p^{\square}.

Theorem 10.8. There is a box $T\left(f^{\prime}, g^{\prime}\right) \subseteq T(f, g)$ and a subset $X_{T} \subseteq V$ such that an element $m \in \dddot{B^{\square}}$ minimizes $\widetilde{m}(T)$ if and only if $\widetilde{m}\left(X_{T}\right)=p\left(X_{T}\right)$ and $m \in \dddot{B} \cap T\left(f^{\prime}, g^{\prime}\right)$.

Proof. Let X_{T} be a set maximizing the right-hand side of (10.4).
Claim 10.9. An element $m \in B^{\square}$ is a minimizer of the left-hand side of (10.5) if and only if the following three optimality criteria hold:

$$
\begin{array}{ll}
\widetilde{m}\left(X_{T}\right)=p\left(X_{T}\right), \\
v \in T-X_{T} & \text { implies } \\
v \in X_{T}-T & \text { implies } \\
m(v)=f(v),
\end{array}
$$

Proof. For any $m \in \widetilde{B}^{\square}$ and $X \subseteq V$, we have $\widetilde{m}(T)=\widetilde{m}(X)+\widetilde{m}(T-X)-\widetilde{m}(X-T) \geq p(X)+$ $\widetilde{f}(T-X)-\widetilde{g}(X-T)$. Here we have equality if and only if $\widetilde{m}(X)=p(X), \widetilde{m}(T-X)=\widetilde{f}(T-X)$, and $\widetilde{m}(X-T)=\widetilde{g}(X-T)$, implying the claim.

Define f^{\prime} and g^{\prime} as follows:

$$
\begin{align*}
f^{\prime}(v) & :=\left\{\begin{array}{lll}
g(v) & \text { if } \quad v \in X_{T}-T, \\
f(v) & \text { if } & v \in V-\left(X_{T}-T\right),
\end{array}\right. \tag{10.6}\\
g^{\prime}(v) & :=\left\{\begin{array}{lll}
f(v) & \text { if } & v \in T-X_{T}, \\
g(v) & \text { if } & v \in V-\left(T-X_{T}\right) .
\end{array}\right. \tag{10.7}
\end{align*}
$$

The claim implies that $T\left(f^{\prime}, g^{\prime}\right)$ and X_{T} meet the requirement of the theorem.

As the set of elements of \widetilde{B}^{\square} minimizing $\widetilde{m}(T)$ is itself an M-convex set, all the algorithms developed earlier can be applied once we are able to compute set X_{T} occurring in Theorem 10.8 (By definitions (10.6) and (10.7), X_{T} immediately determines f^{\prime} and g^{\prime}).

The following straightforward algorithm computes an element $m \in \bar{B}^{\square}$ minimizing the left-hand side of (10.5) and a subset X_{T} maximizing the right-hand side of (10.4). Start with an arbitrary element $m \in B^{\square}$. By an improving step we mean the change of m to $m^{\prime}:=m+\chi_{s}-\chi_{t}$ for some elements $s \in V-T, t \in T$ for which $m(s)<g(s), m(t)>f(t)$, and $s \in T_{m}(t)$, where $T_{m}(t)$ is the smallest m-tight set (with respect to p) containing t. Clearly, $m^{\prime} \in B^{\square}$, and $\widetilde{m}^{\prime}(T)=\widetilde{m}(T)-1$. The algorithm applies improving steps as long as possible. When no more improving step exists, the set $X_{T}:=\cup\left(T_{m}(t): t \in T, m(t)>f(t)\right)$ meets the three optimality criteria. The algorithm is polynomial if $|p(X)|$ is bounded by a polynomial of $|V|$.

By applying Theorem 10.8 to the special case of $p=i_{G}$, we obtain the following.
Corollary 10.10. Let $G=(V, E)$ be a graph admitting an (f, g)-bounded orientation. There is a box $T\left(f^{\prime}, g^{\prime}\right) \subseteq T(f, g)$ and a subset $X_{T} \subseteq V$ such that an (f, g)-bounded orientation of G minimizes the in-degree of T if and only if D is an $\left(f^{\prime}, g^{\prime}\right)$-bounded orientation for which $\varrho_{D}\left(X_{T}\right)=0$.

In this case, the algorithm above to compute X_{T} starts with an (f, g)-bounded orientation D of G, whose in-degree vector is denoted by m. As long as there is an $s t$-dipath P with $s \in V-T, t \in T, m(s)<g(s)$, and $m(t)>f(t)$, reorient P. When no such a dipath exists anymore, the set X_{T} of nodes from which a node $t \in T$ with $m(t)>f(t)$ is reachable in D, along with the bounding functions f^{\prime} and g^{\prime} defined in (10.6) and in (10.7), meet the requirement in the corollary.

Minimum cost version It follows that, in order to compute a minimum cost dec-min (f, g)-bounded orientation for which the in-degree of T is minimum, we can apply the algorithm described in Section 10.2 for the mixed graph obtained from G by orienting each edge between X_{T} and $V-X_{T}$ toward $V-X_{T}$.

Remark 10.3. Instead of a single subset T of V, we may consider a chain \mathcal{T} of subsets $T_{1} \subset T_{2} \subset \cdots \subset T_{h}$ of V. Then \mathcal{T} defines a face $B_{\text {face }}^{\mathrm{\square}}$ of the base-polyhedron B^{\square}. Namely, an element m of B^{\square} belongs to $B_{\text {face }}^{\square}$ precisely if $\widetilde{m}\left(T_{i}\right)=p^{\square}\left(T_{i}\right)$ for each $i \in\{1, \ldots, h\}$. This implies that the integral elements of $B_{\text {face }}^{\square}$ simultaneously minimize $\widetilde{m}\left(T_{i}\right)$ for each $i \in\{1, \ldots, h\}$ (over the elements of B^{\square}). Therefore, we can consider (f, g)-bounded orientations of G with the additional requirement that each of the in-degrees of $T_{1}, T_{2}, \ldots, T_{h}$ is (simultaneously) minimum. Corollary 10.10 can be extended to this case, implying that we have an algorithm to compute a minimum cost dec-min (f, g)-bounded orientation of G that simultaneously minimizes the in-degree of each member of the chain $\left\{T_{1}, T_{2}, \ldots, T_{h}\right\}$.

10.4 Application in resource allocation: semi-matchings

We proved for a general M-convex set \ddot{B} (Corollary 6.4 and Theorem 6.5) that for an element m of \dddot{B} the following properties are equivalent: (A) m is dec-min, (B) the squaresum of the components is minimum, (C) the difference-sum of the components of m is
minimum. Therefore the corresponding equivalences hold in the special case of in-degree constrained (in particular, T-specified) orientations of undirected graphs.

As an application of this equivalence, we show first how a result of Harvey et al. [34] concerning a resource allocation problem (mentioned already in Section 1.1.2) follows immediately. They introduced the notion of a semi-matching of a simple bipartite graph $G=(S, T ; E)$ as a subset F of edges for which $d_{F}(t)=1$ holds for every node $t \in T$, and solved the problem of finding a semi-matching F for which $\sum\left[d_{F}(s)\left(d_{F}(s)+1\right): s \in S\right]$ is minimum. The problem was motivated by practical applications in the area of resource allocation in computer science. Note that

$$
\begin{aligned}
& \sum\left[d_{F}(s)\left(d_{F}(s)+1\right): s \in S\right]=\sum\left[d_{F}(s)^{2}: s \in S\right]+\sum\left[d_{F}(s): s \in S\right] \\
& =\sum\left[d_{F}(s)^{2}: s \in S\right]+|F|=\sum\left[d_{F}(s)^{2}: s \in S\right]+|T|,
\end{aligned}
$$

and therefore the problem of Harvey et al. is equivalent to finding a semi-matching F of G that minimizes the square-sum of degrees in S.

By orienting each edge in F toward S and each edge in $E-F$ toward T, a semi-matching can be identified with the set of arcs directed toward S in an orientation of $G=(S, T ; E)$ in which the out-degree of every node $t \in T$ is 1 (that is, $\left.\varrho(t)=d_{G}(t)-1\right)$, and $d_{F}(s)=\varrho(s)$ for each $s \in S$. Since $\varrho(t)$ for $t \in T$ is the same in these orientations, it follows that the total sum of $\varrho(v)^{2}$ over $S \cup T$ is minimized precisely if $\Sigma\left[\varrho(s)^{2}: s \in S\right]=\sum\left[d_{F}(s)^{2}: s \in S\right]$ is minimized. Therefore the semi-matching problem of Harvey et al. is nothing but a special dec-min T-specified orientation problem. Note that not only semi-matching problems can be managed with graph orientations, but conversely, an orientation of a graph $G=(V, E)$ can also be interpreted as a semi-matching of the bipartite graph obtained from G by subdividing each edge by a new node. This implies, for example, that the algorithm of Harvey et al. to compute a semi-matching minimizing $\sum\left[d_{F}(v)^{2}: v \in S\right]$ is able to compute an orientation of a graph G for which $\sum\left[\varrho(v)^{2}: v \in S\right]$ is minimum. Furthermore, an orientation of a hypergraph means that we assign an element of each hyper-edge Z to Z as its head. In this sense, semi-matchings of bipartite graphs and orientations of hypergraphs are exactly the same. Several graph orientation results have been extended to hypergraph orientation, for an overview, see, e.g. [17].

Bokal et al. [5] extended the results to subgraphs of G meeting a more general degreespecification on T when, rather than the identically 1 function, one imposes an arbitrary degree-specification m_{T} on T satisfying $0 \leq m_{T}(t) \leq d_{G}(t)(t \in T)$. The same orientation approach applies in this more general setting. We may call a subset F of edges an m_{T}-semimatching if $d_{F}(t)=m_{T}(t)$ for each $t \in T$. The extended resource allocation problem is to find an m_{T}-semi-matching F that minimizes $\sum\left[d_{F}(s)^{2}: s \in S\right]$. This is equivalent to finding a T-specified orientation of G for which the square-sum of the in-degrees is minimum and the in-degree specification in $t \in T$ is $m_{T}^{\prime}(t):=d_{G}(t)-m_{T}(t)$. Therefore this extended resource allocation problem is equivalent to finding a dec-min T-specified orientation of G.

The same orientation approach, when applied to in-degree constrained orientations, allows us to extend the m_{T}-semi-matching problem when we have upper and lower bounds imposed on the nodes in S. This may be a natural requirement in practical applications where the elements of S correspond to available resources (e.g. computers), the elements of T correspond to users, and we are interested in a fair (= dec-min = square-sum min-
imizer) distribution ($=m_{T}$-semi-matchings) of the resources when the load (or burden) of each resource is requested to meet a specified upper and/or lower bound. Note that in the resource allocation framework, the degree $d_{F}(s)$ of node $s \in S$ may be interpreted as the burden of s, and hence a difference-sum minimizer semi-matching minimizes the total sum of burden-differences.

Katrenič and Semanišin [43] investigated the problem of finding a dec-min 'maximum (f, g)-semi-matching' problem where there is a lower-bound function f_{T} on T and an upper bound function g_{S} on S (in the present notation) and one is interested in maximum cardinality subgraphs of G meeting these bounds. They describe an algorithm to compute a dec-min subgraph of this type. With the help of the orientation model discussed in Section 10.3 (where, besides the in-degree bounds on the nodes, the in-degree of a specified subset T was requested to be minimum), we have a strongly polynomial algorithm for an extension of the model of [43] when there may be upper and lower bounds on both S and T. Actually, even the minimum cost version of this problem was solved in Section 10.3 .

In another variation, we also have degree bounds $\left(f_{S}, g_{S}\right)$ on S and $\left(f_{T}, g_{T}\right)$ on T, but we impose an arbitrary positive integer γ for the cardinality of F. We consider degreeconstrained subgraphs ($S, T ; F$) of G for which $|F|=\gamma$, and want to find such a subgraph for which $\sum\left[d_{F}(s)^{2}: s \in S\right]$ is minimum. (Notice the asymmetric role of S and T.) This is equivalent to finding an in-degree constrained orientation D of G for which $\varrho_{D}(S)=\gamma$ and $\sum\left[\varrho_{D}(s)^{2}: s \in S\right]$ is minimum. Here the corresponding in-degree bound (f, g) on S is the given $\left(f_{S}, g_{S}\right)$ while (f, g) on T is defined for $t \in T$ by

$$
f(t):=d_{G}(t)-g_{T}(t) \quad \text { and } \quad g(t):=d_{G}(t)-f_{T}(t) .
$$

Let B denote the base-polyhedron spanned by the in-degree vectors of the degree-constrained orientations of G. Then the restriction of B to S is a g-polymatroid Q. By intersecting Q with the hyperplane $\{x: \widetilde{x}(S)=\gamma\}$, we obtain an integral base-polyhedron B_{S} in \mathbf{R}^{S}, and then the elements of \dddot{B}_{S} are exactly the in-degree vectors of the requested orientations restricted to S. That is, the elements of $\widetilde{B_{S}}$ are the restriction of the degree-vectors of the requested subgraphs of G to S. Since B_{S} is a base-polyhedron, a dec-min element of $\check{B_{S}}$ will be a solution to our minimum degree-square sum problem.

We briefly indicate that a capacitated version of the semi-matching problem can also be formulated as a dec-min in-degree constrained and capacitated orientation problem (cf., Section 9.2 and Remark 10.2). Let $G=(S, T ; E)$ be again a bipartite graph, γ a positive integer, and f_{V} and g_{V} integer-valued bounding functions on $V:=S \cup T$ for which $f_{V} \leq g_{V}$. In addition, an integer-valued capacity function g_{E} is also given on the edge-set E, and we are interested in finding a non-negative integral vector $z: E \rightarrow \mathbf{Z}_{+}$for which $\widetilde{z}(E)=\gamma$, $z \leq g_{E}$ and $f_{V}(v) \leq d_{z}(v) \leq g_{V}(v)$ for every $v \in V$. (Here $d_{z}(v):=\sum[z(u v): u v \in E]$.) We call such a vector feasible. The problem is to find a feasible vector z whose degree vector restricted to S (that is, the vector $\left(d_{z}(s): s \in S\right)$ is decreasingly minimal.

By replacing each edge e with $g_{E}(e)$ parallel edges, it follows from the uncapacitated case above that the vectors $\left\{\left(d_{z}(s): s \in S\right): z\right.$ is a feasible integral vector $\}$ form an M-convex set. In this case, however, the basic algorithm is not necessarily polynomial since the values of g_{E} may be large. Therefore we need the general strongly polynomial algorithm described in

Section 7.4. In this case the general Subroutine (7.4) can be realized via max-flow min-cut computations.

Minimum cost dec-min semi-matchings Harada et al. [33] developed an algorithm to solve the minimum cost version of the original semi-matching problem of Harvey et al. [34]. As the dec-min in-degree bounded orientation problem covers all the extensions of semimatching problems mentioned above, the minimum cost version of these extensions can also be solved with the strongly polynomial algorithms developed in Section 10.2 for minimum cost dec-min in-degree bounded orientations.

We close this section with some historical remarks. The problem of Harvey et al. is closely related to earlier investigations in the context of minimizing a separable convex function over (integral elements of) a base-polyhedron. For example, Federgruen and Groenevelt [11] provided a polynomial time algorithm in 1986. Hochbaum and Hong [37] in 1995 developed a strongly polynomial algorithm; their proof, however, included a technical gap, which was fixed by Moriguchi, Shioura, and Tsuchimura [50] in 2011. For an early book on resource allocation, see the one by Ibaraki and Katoh [39] while three more recent surveys are due to Katoh and Ibaraki [41] from 1998, to Hochbaum [36] from 2007, and to Katoh, Shioura, and Ibaraki [42] from 2013. Algorithmic aspects of minimum degree square-sum problems for general graphs were discussed by Apollonio and Sebő [2].

11 Orientations of graphs with edge-connectivity requirements

In this section, we investigate various edge-connectivity requirements for the orientations of G. The main motivation behind these investigations is a conjecture of Borradaile et al. [6] on decreasingly minimal strongly connected orientations. Our goal is to prove their conjecture in a more general form.

11.1 Strongly connected orientations

Suppose that G is 2-edge-connected, implying that it has a strong orientation by a theorem of Robbins [57]. We are interested in dec-min strong orientations, meaning that the indegree vector is decreasingly minimal over the strong orientations of G. This problem of Borradaile et al. was motivated by a practical application concerning optimal interval routing schemes.

Analogously to Theorem 9.5, they described a natural way to improve a strong orientation D to another one whose in-degree vector is decreasingly smaller. Suppose that there are two nodes s and t for which $\varrho(t) \geq \varrho(s)+2$ and there are two edge-disjoint dipaths from s to t in D. Then reorienting an arbitrary $s t$-dipath of D results in another strongly connected orientation of D which is clearly decreasingly smaller than D. Borradaile et al. conjectured the truth of the converse (and this conjecture was the starting point of our investigations). The next theorem states that the conjecture is true.

Theorem 11.1. A strongly connected orientation D of $G=(V, E)$ is decreasingly minimal if and only if there are no two arc-disjoint st-dipaths in D for nodes s and t with $\varrho(t) \geq \varrho(s)+2$.

Proof. Suppose first that there are nodes s and t with $\varrho(t) \geq \varrho(s)+2$ such that there are two arc-disjoint $s t$-dipaths of D. Let P be any $s t$-dipath in D and let D^{\prime} denote the digraph arising from D by reorienting P. Then D^{\prime} is strongly connected, since if it had a node-set Z ($\emptyset \subset Z \subset V$) with no entering arcs, then Z must be a $t \bar{s}$-set and P enters Z exactly once. But then $0=\varrho_{D^{\prime}}(Z)=\varrho_{D}(Z)-1 \geq 2-1=1$, a contradiction. Therefore D^{\prime} is indeed strongly connected and its in-degree vector is decreasingly smaller than that of D.

To see the non-trivial part, define a set-function p_{1} as follows:

$$
p_{1}(X):= \begin{cases}0 & \text { if } X=\emptyset, \tag{11.1}\\ |E| & \text { if } X=V, \\ i_{G}(X)+1 & \text { if } \emptyset \subset X \subset V .\end{cases}
$$

Then p_{1} is crossing supermodular and hence $B_{1}:=B^{\prime}\left(p_{1}\right)$ is a base-polyhedron.
Claim 11.2. An integral vector m is the in-degree vector of a strong orientation of G if and only if m is in B_{1}.

Proof. If m is the in-degree vector of a strong orientation of G, then $\widetilde{m}(V)=|E|=p_{1}(V)$, $\widetilde{m}(\emptyset)=0=p_{1}(\emptyset)$, and

$$
\widetilde{m}(Z)=\sum[\varrho(v): v \in Z]=\varrho(Z)+i_{G}(Z) \geq 1+i_{G}(Z)=p_{1}(Z)
$$

for $\emptyset \subset Z \subset V$, that is, $m \in \dddot{B_{1}}$.
Conversely, let $m \in \dddot{B_{1}}$. Then $m \in B_{G}$ and hence by Claim 9.2, G has an orientation D with in-degree vector m. We claim that D is strongly connected. Indeed,

$$
\varrho(Z)=\sum[\varrho(v): v \in Z]-i_{G}(Z)=\widetilde{m}(Z)-i_{G}(Z) \geq p_{1}(Z)-i_{G}(Z)=1
$$

whenever $\emptyset \subset Z \subset V$.
Claim 11.3. Let D be a strong orientation of G with in-degree vector m. Let t and s be nodes of G. The vector $m^{\prime}:=m+\chi_{s}-\chi_{t}$ is in B_{1} if and only if D admits two arc-disjoint dipaths from sto t.

Proof. $m^{\prime} \in B_{1}$ holds precisely if there is no $t \bar{s}$-set X which is m-tight with respect to p_{1}, that is, $\widetilde{m}(X)=i_{G}(X)+1$. Since $\varrho(Y)+i_{G}(Y)=\sum[\varrho(v): v \in Y]=\widetilde{m}(Y)$ holds for any set $Y \subset V$, the tightness of X (that is, $\left.\widetilde{m}(X)=i_{G}(X)+1\right)$ is equivalent to requiring that $\varrho(X)=1$. Therefore $m^{\prime} \in B_{1}$ if and only if $\varrho(Y)>1$ holds for every $t \bar{s}$-set Y, which is, by Menger's theorem, equivalent to the existence of two arc-disjoint $s t$-dipaths of D.

By Theorem 3.3, m is a dec-min element of B_{1} if and only if there is no 1 -tightening step for m. By Claim 11.3 this is just equivalent to the condition in the theorem that there are no two arc-disjoint $s t$-dipaths in D for nodes s and t for which $\varrho(t) \geq \varrho(s)+2$.

An immediate consequence of Claim 11.2 and Theorem 3.3 is the following.

Corollary 11.4. A strong orientation of G is dec-min if and only if it is inc-max.
We indicated in Section 10.1 how in-degree constrained dec-min orientations can be managed due to the fact that the intersection of an integral base-polyhedron B with an integral box T is an integral base-polyhedron. The same approach works for degree-constrained strong orientations. For example, in this case dec-min and inc-max again coincide and one can formulate the in-degree constrained version of Theorem 11.1. In the next section, we overview more general cases.

11.2 A counter-example for mixed graphs

Although Robbins' theorem on strong orientability of undirected graphs easily extends to mixed graphs, as was pointed out by Boesch and Tindell [4], it is not true anymore that a decreasingly minimal strong orientation of a mixed graph is always increasingly maximal. Actually, one may consider two natural variants.

In the first one, decreasing minimality and increasing maximality concern the total indegree of the directed graph obtained from the initial mixed graph after orienting its undirected edges. Let $V=\{a, b, c, d\}$. Let $E=\{a b, c d\}$ denote the set of undirected edges and let $A=\{a d, a d, a d, d a, d a, b c, b c, c b\}$ denote the set of directed edges of a mixed graph $M=(V, A+E)$. There are two strong orientations of M. In the first one, the orientations of the elements of E are $b a$ and $d c$, in which case the total in-degree vector is (3,1,3,3). In the second one, the orientations of the elements of E are $a b$ and $c d$, in which case the total in-degree vector is $(2,2,2,4)$. Now $(3,1,3,3)$ is dec-min while $(2,2,2,4)$ is inc-max.

In the second variant, we are interested in the in-degree vector of the digraph obtained by orienting the originally undirected part E. For this version the counterexample is as follows. Let $V=\{a, b, c, d, x, y, u, v\}$. Let $E=\{a b, c d, a u, a u, a v, a v, d y, d y, b x, b x\}$ denote the set of undirected edges and let $A=\{a d, d a, b c, c b\}$ denote the set of directed edges of a mixed graph $M=(V, A+E)$. The undirected part of M is denoted by $G=(V, E)$.

In any strong orientation of $M=(V, A+E)$, the orientations of the undirected parallel edge-pairs $\{a u, a u\},\{a v, a v\},\{d y, d y\},\{b x, b x\}$ are oriented oppositely, and hence their contribution to the in-degrees (in the order of $a, b, c, d, u, v, x, y)$ is $(2,1,0,1,1,1,1,1)$.

Therefore there are essentially two distinct strong orientations of M. In the first one, the undirected edges $a b, c d$ are oriented as $b a, d c$, while in the second one the undirected edges $a b, c d$ are oriented as $a b, c d$. Hence the in-degree vector of the first strong orientation corresponding to the orientation of G (in the order of a, b, c, d, u, v, x, y) is ($3,1,1,1,1,1,1,1$). The in-degree vector of second strong orientation corresponding to the orientation of G is $(2,2,0,2,1,1,1,1)$. The first vector is inc-max while the second vector is dec-min.

These examples give rise to the question: what is behind the phenomenon that while dec\min and inc-max coincide for strong orientations of undirected graphs, they differ for strong orientations of mixed graph? The explanation is, as we pointed out earlier, that for an Mconvex set the two notions coincide and the set of in-degree vectors of strong orientations of an undirected graph is an M-convex set, while the corresponding set for a mixed graph is, in general, not an M-convex set. It is actually the intersection of two M-convex sets. In [24], we shall describe an algorithm for computing a dec-min element of the intersection of two M-convex sets.

11.3 Higher edge-connectivity

An analogous approach works in a much more general setting. We say that a digraph covers a set-function h if $\varrho(X) \geq h(X)$ holds for every set $X \subseteq V$. The following result was proved in [13].

Theorem 11.5. Let h be a finite-valued, non-negative crossing supermodular function with $h(\emptyset)=h(V)=0$. A graph $G=(V, E)$ has an orientation covering h if and only if

$$
e_{\mathcal{P}} \geq \sum_{i=1}^{q} h\left(V_{i}\right) \quad \text { and } \quad e_{\mathcal{P}} \geq \sum_{i=1}^{q} h\left(V-V_{i}\right)
$$

hold for every partition $\mathcal{P}=\left\{V_{1}, \ldots, V_{q}\right\}$ of V, where $e_{\mathcal{P}}$ denotes the number of edges connecting distinct parts of \mathcal{P}.

This theorem easily implies the classic orientation result of Nash-Williams [54] stating that a graph G has a k-edge-connected orientation precisely if G is $2 k$-edge-connected. Even more, call a digraph (k, ℓ)-edge-connected ($\ell \leq k$) (with respect to a root-node r_{0}) if $\varrho(X) \geq k$ whenever $\emptyset \subset X \subseteq V-r_{0}$ and $\varrho(X) \geq \ell$ whenever $r_{0} \in X \subset V$. (By Menger's theorem, (k, ℓ)-edge-connectedness is equivalent to requiring that there are k arc-disjoint dipaths from r_{0} to every node and there are ℓ arc-disjoint dipaths from every node to r_{0}.) Then Theorem 11.5 implies:

Theorem 11.6. A graph $G=(V, E)$ has a (k, ℓ)-edge-connected orientation if and only if

$$
e_{\mathcal{P}} \geq k(q-1)+\ell
$$

holds for every q-partite partition \mathcal{P} of V.
Note that an even more general special case of Theorem 11.5 can be formulated to characterize graphs admitting in-degree constrained and (k, ℓ)-edge-connected orientations.

It is important to emphasize that however general Theorem 11.5 is, it does not say anything about strong orientations of mixed graphs. In particular, it does not imply the pretty but easily provable theorem of Boesch and Tindell [4]. The problem of finding decreasingly minimal in-degree constrained k-edge-connected orientation of mixed graphs will be solved in [24].

The next lemma shows why the set of in-degree vectors of orientations of G covering the set-function h appearing in Theorem 11.5 is an M-convex set, ensuring in this way the possibility of applying the results on decreasing minimization over M-convex sets to general graph orientation problems.

Lemma 11.7. An orientation D of G covers h if and only if its in-degree vector m is in the base-polyhedron $B=B^{\prime}(p)$, where $p:=h+i_{G}$ is a crossing supermodular function.

Proof. Suppose first that m is the in-degree vector of a digraph covering h. Then $h(X) \leq$ $\varrho(X)=\widetilde{m}(X)-i_{G}(X)$ for $X \subset V$ and $h(V)=0=\varrho(V)=\widetilde{m}(V)-i_{G}(V)$, that is, m is indeed in B.

Conversely, suppose that $m \in B$. Since h is finite-valued and non-negative, we have $\widetilde{m}(X) \geq p(X) \geq i_{G}(X)$ for $X \subset V$ and $\widetilde{m}(V)=i_{G}(V)$ and hence, by the Orientation lemma,
there is an orientation D of G with in-degree vector m. Moreover, this digraph D covers h since $\varrho_{D}(X)=\widetilde{m}(X)-i_{G}(X) \geq p(X)-i_{G}(X)=h(X)$ holds for $X \subset V$.

By Lemma 11.7, Theorem 3.3 can be applied again to the general orientation problem covering a non-negative and crossing supermodular set-function h in the same way as it was applied in the special case of strong orientation above, but we formulate the result only for the special case of in-degree constrained and k-edge-connected orientations.

Theorem 11.8. Let $G=(V, E)$ be an undirected graph endowed with a lower bound function $f: V \rightarrow \mathbf{Z}$ and an upper bound function $g: V \rightarrow \mathbf{Z}$ with $f \leq g$. A k-edge-connected and in-degree constrained orientation D of G is decreasingly minimal if and only if there are no two nodes s and t for which $\varrho(t) \geq \varrho(s)+2, \varrho(t)>f(t), \varrho(s)<g(s)$, and there are $k+1$ arc-disjoint st-dipaths.

The theorem can be extended even further to in-degree constrained and (k, ℓ)-edgeconnected orientations ($\ell \leq k$).

An extension We say that a digraph $D=(V, A)$ is k-edge-connected in a specified subset S of nodes if there are k-arc-disjoint dipaths in D from any node of S to any other node of S.

By relying on Lemma 11.7, one can derive the following.
Theorem 11.9. Let $G=(V, E)$ be an undirected graph with a specified subset S of V. Let m_{0} be an in-degree specification on $V-S$. The set of in-degree vectors of those orientations of G which are k-edge-connected in S and in-degree specified in $V-S$ is an M-convex set.

By this theorem, we can determine a decreasingly minimal orientation among those which are k-edge-connected in S and in-degree specified in $V-S$. Even additional indegree constraints can be imposed on the elements of S.

Hypergraph orientation Let $H=(V, \mathcal{E})$ be a hypergraph for which we assume that each hyperedge has at least 2 nodes. Orienting a hyperedge Z means that we designate an element z of Z as its head-node. A hyperedge Z with a designated head-node $z \in Z$ is a directed hyperedge denoted by (Z, z). Orienting a hypergraph means the operation of orienting each of its hyperedges. We say that a directed hyperedge (Z, z) enters a subset X of nodes if $z \in X$ and $Z-X \neq \emptyset$. A directed hypergraph is called k-edge-connected if the in-degree of every non-empty proper subset of nodes is at least k.

The following result was proved in [21] (see, also Theorem 2.22 in the survey paper [20]).

Theorem 11.10. The set of in-degree vectors of k-edge-connected and in-degree constrained orientations of a hypergraph forms an M-convex set.

Therefore we can apply the general results obtained for decreasing minimization over base-polyhedra.

References

[1] Ahuja, R. K., Hochbaum, D. S., Orlin, J. B.: A cut-based algorithm for the nonlinear dual of the minimum cost network flow problem. Algorithmica 39, 189-208 (2004).
[2] Apollonio, N., Sebő, A.: Minconvex factors of prescribed size in graphs. SIAM Journal on Discrete Mathematics 23, 1297-1310 (2009)
[3] Arnold, B.C., Sarabia, J.M.: Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics, Springer International Publishing, Cham (2018), (1st edn., 1987)
[4] Boesch, F., Tindell, R.: Robbins's theorem for mixed multigraphs. American Mathematical Monthly 87, 716-719 (1980)
[5] Bokal, D., Brešar, B., Jerebic, J.: A generalization of Hungarian method and Hall's theorem with applications in wireless sensor networks. Discrete Applied Mathematics 160, 460-470 (2012)
[6] Borradaile, G., Iglesias, J., Migler, T., Ochoa, A., Wilfong, G., Zhang, L.: Egalitarian graph orientations. Journal of Graph Algorithms and Applications 21, 687-708 (2017)
[7] Borradaile, G., Migler, T., Wilfong, G.: Density decompositions of networks. In: Cornelius, S., Coronges, K., Gonçalves, B., Sinatra, R., Vespignani, A. (eds.) Complex Networks IX. CompleNet 2018, pp. 15-26. Springer, Cham (2018)
[8] Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69-87. Gordon and Breach, New York (1970)
[9] Edmonds, J.: Edge-disjoint branchings. In: Rustin, B. (ed.) Combinatorial Algorithms, pp. 91-96. Academic Press, New York (1973)
[10] Edmonds, J.: Matroid intersection. Annals of Discrete Mathematics 14, 39-49 (1979)
[11] Federgruen, A., Groenevelt, H.: The greedy procedure for resource allocation problems: necessary and sufficient conditions for optimality. Operations Research 34, 909-918 (1986)
[12] Ford, L. R., Jr., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)
[13] Frank, A.: On the orientation of graphs. Journal of Combinatorial Theory, Ser. B 28, 251-261 (1980)
[14] Frank, A.: An algorithm for submodular functions on graphs. Annals of Discrete Mathematics 16, 97-120 (1982)
[15] Frank, A.: Generalized polymatroids. In: Hajnal, A., Lovász, L., Sós, V.T. (eds.) Finite and Infinite Sets (Colloquia Mathematica Societatis János Bolyai 37), pp. 285294. North-Holland, Amsterdam (1984)
[16] Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5, 22-53 (1992)
[17] Frank, A.: Connections in Combinatorial Optimization. Oxford University Press, Oxford (2011)
[18] Frank, A., Gyárfás, A.: How to orient the edges of a graph. In: Combinatorics (Colloquia Mathematica Societatis János Bolyai 18), pp. 353-364. North-Holland, Amsterdam (1978)
[19] Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory, Ser. B 65, 73-110 (1995)
[20] Frank, A., Király, T.: A survey on covering supermodular functions. In: Cook, W., Lovász, L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 87126. Springer, Berlin (2009)
[21] Frank, A., Király, T., Király, Z.: On the orientation of graphs and hypergraphs. Discrete Applied Mathematics 131, 385-400 (2003)
[22] Frank, A., Murota, K.: Discrete decreasing minimization, Part II: Views from discrete convex analysis, arXiv: 1808.08477 (August 2018)
[23] Frank, A., Murota, K.: Discrete decreasing minimization, Part III: Network flows, arXiv: 1907.02673 (July 2019)
[24] Frank, A., Murota, K.: Discrete decreasing minimization, Part IV: Submodular flows and the intersection of two base-polyhedra, in preparation
[25] Frank, A., Murota, K.: Discrete decreasing minimization, Part V: Weighted cases, in preparation
[26] Frank, A., Tardos, É.: Generalized polymatroids and submodular flows. Mathematical Programming 42, 489-563 (1988)
[27] Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a weight vector. Mathematics of Operations Research 5, 186-196 (1980)
[28] Fujishige, S.: Structure of polyhedra determined by submodular functions on crossing families. Mathematical Programming 29, 125-141 (1984)
[29] Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics 58, Elsevier, Amsterdam (2005)
[30] Ghodsi, A., Zaharia, M., Shenker, S., Stoica, I.: Choosy: Max-min fair sharing for datacenter jobs with constraints. In: EuroSys '13 Proceedings of the 8th ACM European Conference on Computer Systems, pp. 365-378, ACM New York, NY (2013)
[31] Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid feasible region. European Journal of Operational Research 54, 227-236 (1991)
[32] Hakimi, S.L.: On the degrees of the vertices of a directed graph. Journal of The Franklin Institute 279, 290-308 (1965)
[33] Harada, Y., Ono, H., Sadakane, K., Yamashita, M.: Optimal balanced semimatchings for weighted bipartite graphs. IPSJ Digital Courier 3, 693-702 (2007)
[34] Harvey, N.J.A., Ladner, R.E., Lovász, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms 59, 53-78 (2006)
[35] Hochbaum, D.S.: Solving integer programs over monotone inequalities in three variables: A framework for half integrality and good approximations. European Journal of Operational Research 140, 291-321 (2002)
[36] Hochbaum, D.S.: Complexity and algorithms for nonlinear optimization problems. Annals of Operations Research 153, 257-296 (2007)
[37] Hochbaum, D.S., Hong, S.-P.: About strongly polynomial time algorithms for quadratic optimization over submodular constraints. Mathematical Programming 69, 269-309 (1995)
[38] Hoffman, A.J.: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Bellman, R., Hall, M., Jr. (eds.) Combinatorial Analysis (Proceedings of the Symposia of Applied Mathematics 10) pp. 113-127. American Mathematical Society, Providence, Rhode Island (1960)
[39] Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. MIT Press, Boston (1988)
[40] Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. Journal of the ACM 48, 761-777 (2001)
[41] Katoh, N., Ibaraki, T.: Resource allocation problems. In: Du, D.-Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, Vol.2, pp. 159-260. Kluwer Academic Publishers, Boston (1998)
[42] Katoh, N., Shioura, A., Ibaraki, T.: Resource allocation problems. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, 2nd ed., Vol. 5, pp. 2897-2988, Springer, Berlin (2013)
[43] Katrenič, J., Semanišin, G.: Maximum semi-matching problem in bipartite graphs. Discussiones Mathematicae, Graph Theory 33, 559-569 (2013)
[44] Levin, A., Onn, S.: Shifted matroid optimization. Operations Research Letters 44, 535-539 (2016)
[45] Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming-The State of the Art, pp. 235-257. Springer, Berlin (1983)
[46] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applications, 2nd edn. Springer, New York (2011), (1st edn., 1979)
[47] Maruyama, F.: A unified study on problems in information theory via polymatroids. Graduation Thesis, University of Tokyo, Japan, 1978. (In Japanese.)
[48] Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Mathematical Programming 7, 97-107 (1974)
[49] Megiddo, N.: A good algorithm for lexicographically optimal flows in multi-terminal networks. Bulletin of the American Mathematical Society 83, 407-409 (1977)
[50] Moriguchi, S., Shioura, A., Tsuchimura, N.: M-convex function minimization by continuous relaxation approach-Proximity theorem and algorithm. SIAM Journal on Optimization 21, 633-668 (2011)
[51] Murota, K.: Discrete convex analysis. Mathematical Programming 83, 313-371 (1998)
[52] Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)
[53] Nagano, K.: On convex minimization over base polytopes. In: Fischetti, M., Williamson, D.P. (eds.): Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4513, pp. 252-266 (2007)
[54] Nash-Williams, C.St.J.A.: On orientations, connectivity and odd vertex pairings in finite graphs. Canadian Journal of Mathematics 12, 555-567 (1960)
[55] Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming, Series A 118, 237-251 (2009)
[56] Radzik, T.: Fractional combinatorial optimization. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, 2nd edn., pp. 13111355. Springer Science+Business Media, New York (2013)
[57] Robbins, H.E.: A theorem on graphs with an application to a problem of traffic control. American Mathematical Monthly 46, 281-283 (1939)
[58] Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory, Series B 80, 346-355 (2000)
[59] Tamir, A.: Least majorized elements and generalized polymatroids. Mathematics of Operations Research 20, 583-589 (1995)

[^0]: *MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány P. s. 1/c, Budapest, Hungary, H-1117. e-mail: frank@cs.elte.hu. The research was partially supported by the National Research, Development and Innovation Fund of Hungary (FK_18) - No. NKFI-128673.
 **Department of Economics and Business Administration, Tokyo Metropolitan University, Tokyo 1920397, Japan, e-mail: murota@tmu.ac.jp. The research was supported by CREST, JST, Grant Number JPMJCR14D2, Japan, and JSPS KAKENHI Grant Number 26280004.

