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Minimum Cost Globally Rigid Subgraphs

Tibor Jordán? and András Mihálykó??

Abstract

A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is
a map from V to Rd. The length of an edge of G is equal to the distance between the
points corresponding to its end-vertices. The framework is said to be globally rigid if
its edge lengths uniquely determine all pairwise distances in the framework. A graph
G is called globally rigid in Rd if every generic d-dimensional framework (G, p) is
globally rigid. Global rigidity has applications in wireless sensor network localization,
molecular conformation, formation control, CAD, and elsewhere.
Motivated by these applications we consider the following optimization problem: given
a graph G = (V,E), a non-negative cost function c : E → R+ on the edge set of G, and
a positive integer d. Find a subgraph H = (V,E ′) of G, on the same vertex set, which
is globally rigid in Rd and for which the total cost c(E ′) :=

∑
e∈E′ c(e) of the edges is

as small as possible. This problem is NP-hard for all d ≥ 1, even if c is uniform or
G is complete and c is metric. We focus on the two-dimensional case, where we give
3
2 -approximation (resp. 2-approximation) algorithms for the uniform cost and metric
versions. We also develop a constant factor approximation algorithm for the metric
version of the d-dimensional problem, for every d ≥ 3.

1 Introduction
A d-dimensional framework is a pair (G, p), where G = (V,E) is a graph and p is a map
fromV to Rd . We also call (G, p) a realization of G in Rd . Two realizations (G, p) and (G,q)
are equivalent if | |p(u) − p(v)| | = | |q(u) − q(v)| | holds for all pairs u, v with uv ∈ E , where
| |.| | denotes the Euclidean norm in Rd . The frameworks (G, p) and (G,q) are congruent if
| |p(u) − p(v)| | = | |q(u) − q(v)| | holds for all pairs u, v with u, v ∈ V . This is the same as
saying that (G,q) can be obtained from (G, p) by an isometry of Rd .
We say that (G, p) is globally rigid in Rd if every d-dimensional realization (G,q) of

G which is equivalent to (G, p), is congruent to (G, p). In other words, the framework is
globally rigid if its edge lengths uniquely determine all pairwise distances. This property
makes the notion of global rigidity a fundamental concept in problems where we are given
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1.1 The minimum cost globally rigid subgraph problem 2

partial information on the pairwise distances between pairs of a finite point set and our goal
is to determine the configuration of the points, up to trivial transformations, see Section 1.3
below.

Saxe [27] showed that it is NP-hard to decide if even a 1-dimensional framework is
globally rigid. The analysis and characterization of globally rigid frameworks become more
tractable if we consider generic frameworks, i.e. frameworks (G, p) for which the set of
coordinates of the points p(v), v ∈ V(G), is algebraically independent over the rationals.
Results of Connelly [6] and Gortler, Healy and Thurston [12] imply that the global rigidity
of a generic framework (G, p) in Rd depends only on the graph G, for all d ≥ 1. Hence we
may define a graph G to be globally rigid in Rd if every (or equivalently, if some) generic
realization of G in Rd is globally rigid. The problem of finding a polynomially verifiable
characterization for graphs which are globally rigid in Rd has been solved for d = 1,2, but
is a major open problem when d ≥ 3.

1.1 The minimum cost globally rigid subgraph problem
In this paperwe consider the following algorithmic problem. The input is a graphG = (V,E),
a non-negative cost function c : E → R+ on the edge set of G, and a positive integer d. The
task is to find a subgraph H = (V,E′) of G, on the same vertex set, which is globally rigid
in Rd and for which the total cost c(E′) :=

∑
e∈E ′ c(e) of the edges is as small as possible.

We call this optimization problem the Minimum cost globally rigid spanning subgraph
problem (or MCGRSS, for short). We shall focus on the following special cases of this
problem: (i) if c is uniform, the goal is to find a minimum size globally rigid spanning
subgraph (ii) in the metricMCGRSS problem the input graph G is complete and c satisfies
the triangle inequality.

TheMinimum cost globally rigid spanning subgraph problem (already in the special cases
mentioned above) is NP-hard for all d ≥ 1. The proof of this hardness result is given in
Section 7. Therefore our aim is to design efficient approximation algorithms. We shall first
consider the two-dimensional version of the problem and give a 3

2 -approximation algorithm
for theminimum size globally rigid spanning subgraph problem aswell as a 2-approximation
algorithm for the metric version. We also show how the latter factor can be improved to
1.61 when the costs are defined by Euclidean distances in the plane.

In the second part of the paper we design constant factor approximation algorithms for
the d-dimensional problem in the metric case, for all d ≥ 3.
We can define – and we shall also consider – similar optimization problems by replacing

global rigiditywith redundant rigidity or rigidity (defined in Section 2 below) in the definition
of MCGRSS. These problems are denoted by MCRRSS and MCRSS, respectively. It turns
out that MCRRSS in Rd is also NP-hard for all d ≥ 1. On the other hand, MCRSS is
solvable in polynomial time in R1 and R2. The complexity status of MCRSS is open in Rd

for d ≥ 3.

1.2 Previous work
It is a well-known folklore result in rigidity theory that a graph G is redundantly rigid (resp.
globally rigid) in R1 if and only if it is 2-edge-connected (resp. 2-connected). Thus in the
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1.3 Motivation and applications 3

one-dimensional case of MCRRSS (resp. MCGRSS) we search for a minimum cost 2-edge-
connected (resp. 2-connected) spanning subgraph. These problems, even in the uniform or
metric version, are NP-hard, as they contain the Hamilton cycle problem as a special case.
There are several constant factor approximation algorithms in the literature that deal with
these problems, see e.g. [23]. In light of this connection the MCGRSS problem is a natural
extension of these core problems from graph connectivity.

The only higher dimensional result we are aware of is due to García and Tejel [11]. They
consider the minimum size redundantly rigid augmentation problem in the plane, which
corresponds to MCRRSS in the special case when G is complete and c(e) ∈ {0,1} for
all e ∈ E(G). They show that this problem is NP-hard in general but can be solved in
polynomial time if the graph to be augmented - that is, the graph of the edges of cost zero -
is minimally rigid in R2. The minimum size globally rigid augmentation problem is briefly
mentioned in [9, 18], along with some related results.

1.3 Motivation and applications
One of the applications that inspired our research is the localization problem of two-
and three-dimensional wireless sensor networks. In this problem the goal is to compute
the locations of all sensors, when only a subset of the pairwise distances and locations
is available. The network is localizable (that is, the localization problem has a unique
solution) if and only if the corresponding framework is globally rigid [3]. In this framework
the vertices correspond to the sensors and two vertices are adjacent if and only if the distance
between them is known. Methods and results from rigidity theory have been used to solve a
number of related problems. In particular, the characterization of localizability (assuming
generic locations in the plane) and inductive constructions of localizable networks have
been identified, see e.g. [1, 16]. Similar questions (concerning global rigidity or redundant
rigidity) arise in molecular conformation, where the shape of a molecule is to be determined
based on a subset of inter-atomic distances [30], in formation control [31], and elsewhere.

The minimum cost globally (or redundantly) rigid spanning subgraph problem may
emerge in these applications when one wants to achieve, say, global rigidity by measur-
ing (or recomputing, fixing, etc.) some pairwise distances in an optimal way. For example,
it may happen that (i) certain distances are not computable, or more generally, the cost or
time of computing pairwise distances may be different for different pairs, or preferences may
be given to some pairs, or (ii) the level of noise in the distance data may be different, or (iii)
the total length of the edges is a relevant factor, etc. These properties and parameters may be
encodable in the cost and objective functions and then, assuming that the costs are uniform
or metric, a near optimal solution can be obtained by using the approximation algorithms
designed in this paper.

2 Rigid and globally rigid graphs
In this section we collect the basic definitions and results from rigidity theory that we shall
use. The framework (G, p) is rigid in Rd if there exists an ε > 0 such that, if (G,q) is
equivalent to (G, p) and | |p(v)− q(v)| | < ε for all v ∈ V , then (G,q) is congruent to (G, p). It
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Section 2. Rigid and globally rigid graphs 4

is known that, informally speaking, this is equivalent to saying that every continuous motion
of the vertices of the framework in Rd which preserves all edge-lengths takes the framework
to a congruent realization of G. It is clear that global rigidity implies rigidity.

As for global rigidity, the rigidity of frameworks in Rd is a generic property for all d ≥ 1
[2]. We say that a graphG is rigid inRd if every (or equivalently, if some) generic realization
of G in Rd is rigid. See Figure 1 for examples. A rigid graph G = (V,E) in Rd is called
minimally rigid if G − e is not rigid for all e ∈ E .

Figure 1: Graphs which are (a) not rigid, (b) rigid but not globally rigid, (c) globally rigid
in the plane.

It is known that the edge sets of the minimally rigid graphs on vertex set V correspond
to the bases of the so-called d-dimensional rigidity matroid, defined on the edge set of a
complete graph onV . Hence they have the same number of edges: for example, a minimally
rigid graph in R2 on vertex set V has 2|V | − 3 edges. The problem of finding a polynomially
verifiable characterization for graphs which are rigid in Rd has been solved for d = 1,2, but
is a major open problem for d ≥ 3. We refer the reader to [19, 20] for more details on rigid
and globally rigid frameworks and graphs.

In the plane we have the following key result. Let G = (V,E) be a graph. For a subset
X ⊆ V we use i(X) to denote the number of edges induced by X . We say that G is sparse if

i(X) ≤ 2|X | − 3 for all X ⊆ V with |X | ≥ 2. (1)
The operation 0-extension adds a new vertex v to G and two new edges vx, vy for two distinct
vertices x and y of G. The 1-extension operation on edge uw and vertex z with z < {u,w}
adds a new vertex v, deletes uw, and adds three new edges vu, vw, vz. See Figure 2.

Figure 2: The graphs obtained from K3 (left) by a 0-extension operation (middle) followed
by a 1-extension operation (right).
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The characterization of (minimally) rigid graphs is due to Laman.

Theorem 2.1. [24] Let G = (V,E) be a graph with |E | = 2|V | − 3. Then the following are
equivalent:
(i) G is minimally rigid in R2,
(ii) G is sparse,
(iii) G can be obtained from K2 by a sequence of 0-extensions and 1-extensions.

As far as global rigidity is concerned, Hendrickson found the following necessary condi-
tions for global rigidity in Rd . We call a graph G redundantly rigid in Rd if G − e is rigid
in Rd for all e ∈ E(G). A graph G is said to be k-connected if G − X is connected for all
X ⊂ V(G) with |X | ≤ k − 1.

Theorem 2.2. [13] Let G be a globally rigid graph in Rd on at least d + 2 vertices. Then
G is
(i) (d + 1)-connected, and
(ii) redundantly rigid in Rd .

These conditions together are also sufficient in R1 and R2. The one-dimensional result is
folklore, see [14] for a proof. In the plane we have the following characterization.

Theorem 2.3. [15] Let G = (V,E) be a graph on at least four vertices. Then the following
are equivalent:
(i) G is globally rigid in R2,
(ii) G is 3-connected and redundantly rigid in R2,
(iii) G can be obtained from K4 by a sequence of 1-extensions and edge additions.

We shall also use the following result of Nash-Williams [26]. Note that the graphs in the
next theorem may have multiple edges.

Theorem 2.4. [26] Let G = (V,E) be a graph and let k be a positive integer. Then the
edge set of G can be partitioned into k forests if and only if i(X) ≤ k |X | − k holds for all
non-empty vertex sets X ⊆ V .

2.1 Algorithms
The structural results presented in this section give rise to efficient combinatorial algorithms
for testing whether a given graph G = (V,E) is rigid, redundantly rigid, or globally rigid
in the plane. These algorithms use the fact that the edge sets of the sparse subgraphs of
a graph form the independent sets of the 2-dimensional rigidity matroid and boil down to
the existence of an efficient subroutine for checking whether a graph is sparse or not. The
matroidal property makes it possible to find a minimum cost rigid spanning subgraph of a
rigid graph in R2 with respect to an arbitrary cost function on the edge set, in polynomial
time. Each of these basic problems can be solved in O(|V |3) time or faster, see e.g. [4] for
more details.
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Section 3. Minimum size globally rigid spanning subgraphs 6

3 Minimum size globally rigid spanning subgraphs
In this section we present two simple approximation algorithms for the minimum size
globally (resp. redundantly) rigid spanning subgraph problems. We show that if we delete
edges as long as possible, in a greedy fashion, maintaining the global (or redundant) rigidity
of the graph, then we end up with a close-to-optimal solution.

A graph G = (V,E) is called minimally globally (resp. redundantly) rigid in R2 if it is
globally (resp. redundantly) rigid in R2 but G − e is not globally (resp. redundantly) rigid
in R2 for all e ∈ E .

Theorem 3.1. Suppose that G = (V,E) is minimally globally rigid in R2 with |V | ≥ 4. Then
|E | ≤ 3|V | − 6.

Proof. Consider a sequence of graphs G1,G2, ...,Gt for which G1 = K4, Gt = G, and Gi is
obtained from Gi−1 by an edge addition or 1-extension for all 2 ≤ i ≤ t. Such a sequence
exists by Theorem 2.3. Since G is minimally globally rigid, every edge addition operation
used in this sequence adds an edge which will be split into two edges later by a 1-extension
operation. This leads to a pairing, that is, a bijection between the added edges and a subset
of the 1-extension operations. Each pair increases the number of vertices by one and the
number of edges by three. A 1-extension operation alone increases the number of vertices
by one and the number of edges by two. Thus, since K4 satisfies |E(K4)| = 3|V(K4)| −6, and
the total number of edges added by the operations is not more than three times the number
of added vertices, Gt = G satisfies |E | ≤ 3|V | − 6, as required. �

A globally (or redundantly) rigid graph G in R2 on vertex set V has at least 2|V | − 2 edges
by Theorems 2.2 and 2.1. Since testing global rigidity can be done in polynomial time,
Theorem 3.1 leads to an efficient constant factor approximation algorithm.

Theorem 3.2. There is a polynomial time 3
2 -approximation algorithm for the minimum size

globally rigid spanning subgraph problem in R2.

A similar situation holds for redundant rigidity. Here we use the following result (whose
proof is substantially more complicated than that of Theorem 3.1).

Theorem 3.3. [19] Suppose that G = (V,E) is minimally redundantly rigid in R2 with
|V | ≥ 7. Then |E | ≤ 3|V | − 9.

As a corollary, we obtain:

Theorem 3.4. There is a polynomial time 3
2 -approximation algorithm for the minimum size

redundantly rigid spanning subgraph problem in R2.

4 Structural properties of minimally rigid graphs
In the next two sections we consider the metric versions of the two-dimensional MCRRSS
and MCGRSS problems. Our algorithms will first identify a minimum cost (minimally)
rigid spanning subgraph of the input graph and then extend it to a feasible solution by adding
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4.1 The extreme classes of a Laman graph 7

new edges. In order to keep the total cost of these added edges low we need structural results
on the minimally rigid subgraphs of a minimally rigid graph. We shall rely on some results
of García and Tejel from [11] and also prove a number of new properties. In what follows a
minimally rigid graph in the plane will be called a Laman graph.

4.1 The extreme classes of a Laman graph
Let G = (V,E) be a rigid graph. We say that an edge e ∈ E is redundant in G if G − e is
rigid. Thus G is redundantly rigid if every edge of G is redundant. As we noted above, the
Laman graphs on vertex set V are the bases of the two-dimensional rigidity matroid defined
on the edge set of a complete graph on V . In particular, if G is Laman then G + e has a
unique (matroid) circuit, the fundamental circuit of e with respect to G. From this viewpoint
the next lemma easily follows from some basic properties of matroids.

Lemma 4.1. Let G = (V,E) be a Laman graph and let e = i j be an edge for some i, j ∈ V .
Then
(i) There is a unique fundamental circuit in G+e, denoted byC(i j) orC(e). This circuit con-
tains e. (V(C(e)),E(C(e)) − e) is a Laman subgraph of G, denoted by L(i j) = (V(i j),E(i j))
or simply L(e).
(ii) For every edge e′ ∈ E(i j) the graph (V,E + e − e′) is a Laman graph, in which the
fundamental circuit of e′ is C(i j). Moreover, if e′ < E(i j) then (V,E + e− e′) is not a Laman
graph,
(iii) If G′ is a Laman subgraph of G with {i, j} ⊆ V(G′) then L(i j) is a subgraph of G′. Thus
L(i j) is equal to the intersection of all Laman subgraphs Lh of G with {i, j} ⊆ V(Lh).

In other words E(i j) is equal to the set of edges of G that become redundant in G + e.
We may define L(i j) even if i j ∈ E(G). In this case L(i j) is the single edge i j and C(e) is a
graph consisting of two parallel copies of i j.
For every i, j ∈ V(G) we say that L(i j) is a generated Laman subgraph of G whose

generator is the edge i j. A Laman graph G is called narrow if G = L(i j) for some i, j, that
is, if it can be made redundantly rigid by adding one new edge. See Figure 3. Otherwise
it is said to be wide. We note that the authors in [11] use generated and non-generated,
respectively, instead of narrow and wide. We feel the new terminology makes the statements
and proofs more transparent.
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4.1 The extreme classes of a Laman graph 8

Figure 3: A narrow Laman graph (solid edges). Adding the dotted edge makes it
redundantly rigid.

Given a Laman graph G and a set e1, e2, ..., ek of new edges, let L(e1, e2, ..., ek) be the
subgraph of G consisting of those edges of G that are redundant in G + {e1, e2, ..., ek}.

Lemma 4.2. [11, Lemma 4] Let G be a Laman graph. Then L(e1, e2, ..., ek) = L(e1) ∪
L(e2) ∪ ... ∪ L(ek).

Thus adding a set of new edges e1, e2, ..., ek to a Laman graph G yields a redundantly rigid
graph if and only if the union of the fundamental circuits of the edges ei, 1 ≤ i ≤ k, contains
every edge of G. In a smallest redundantly rigid augmentation of G we may assume that
for every new edge ei the fundamental circuit of ei is a maximal (with respect to inclusion)
generated Laman subgraph, or simply anMGL. A vertex i of G is said to be extreme if there
is a vertex j for which L(i j) is an MGL of G.
Let G = (V,E) be a Laman graph and let X be the set of its extreme vertices. We

say that i, i′ ∈ X are equivalent if there exists a vertex j ∈ X for which L(i j) is an MGL
and L(i j) = L(i′ j). García and Tejel verified that this is an equivalence relation on X ,
assuming that G is wide [11, Lemma 8]. We call the equivalence classes of X defined
by this relation the extreme classes of G. See Figure 4. The extreme vertices satisfy the
following properties:
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4.1 The extreme classes of a Laman graph 9

Figure 4: The extreme classes in a Laman graph. This graph has four extreme classes:
{A1}, {B1}, {C1,C2,C3}, and {D1,D2.D3}. The edges of the MGL subgraph generated by

an edge connecting A1 to some Ci (1 ≤ i ≤ 3) are thick.

Lemma 4.3. [11, Lemma 9] Let G be a wide Laman graph and let i1, i2 be extreme vertices
of G. Then
(i) if i1 and i2 are not equivalent then L(i1i2) is an MGL,
(ii) if i1 and i2 are equivalent then L(i1i2) is not an MGL,
(iii) if L′ is MGL then L′ contains extreme vertices from exactly two extreme classes of G.
If i1, i2 are vertices from these two classes then L′ = L(i1i2).

The next result gives rise to an edge set whose addition makes every edge redundant.

Lemma 4.4. [11, Lemma 10] Let G be a wide Laman graph. Suppose that G has h extreme
classes with representative vertices i1, i2, ..., ih. Then G =

⋃h
r=2 L(i1ir).

Thus G can be made redundantly rigid by adding h − 1 well chosen edges, based on the
extreme classes. A more detailed analysis in [11] shows that in fact the optimum – the size
of a smallest augmenting set – is equal to d h

2 e, and that a set of representative vertices from
the extreme classes as well as an optimal solution can be found in O(n2) time. We shall not
use these facts concerning optimal augmentations but will rely on, and extend, some of the
structural results on extreme classes from [11]. We shall use the following lemmas. The
first one is well-known, see e.g. [15, Lemma 2.3].
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4.2 Extreme classes and separating pairs 10

Lemma 4.5. Let G = (V,E) be a Laman graph and let L1, L2 be Laman subgraphs of G
with at least two vertices in common. Then their union as well as their intersection are also
Laman subgraphs of G.

Lemma 4.6. [11, Lemma 5] Let G be a Laman graph on at least four vertices and let L(i j)
be an MGL subgraph of G. Then for every vertex k , j the subgraphs L(i j) and L( j k) have
at least one edge in common. In particular, L(i j) contains all edges incident with i or j.

A simple corollary is as follows.

Lemma 4.7. [11] Let i, j, k be extreme vertices chosen from three different extreme classes.
Then L(ik) ⊂ L(i j) ∪ L( j k).

Proof. Since L(i j) and L( j k) are MGL subgraphs of G, Lemma 4.6 implies that every edge
incident with j belongs to both. Thus they have at least two vertices in common, which
gives, by Lemma 4.5, that L(i j) ∪ L( j k) is a Laman subgraph of G. As it contains i and j,
we must have L(ik) ⊂ L(i j) ∪ L( j k) by Lemma 4.1(iii). �

4.2 Extreme classes and separating pairs
Since the globally rigid graphs in the plane are 3-connected, a new set of edges whose
addition to a Laman graph makes it globally rigid must eliminate all separating pairs. In
order to handle this condition we next prove new structural results on the relation between
extreme classes and separating pairs. We start with two preliminary lemmas about wide
Laman graphs.

Lemma 4.8. Let i1, i2, .., iq be extreme vertices chosen from q different extreme classes. Then
L(i1iq) ⊂ L(i1i2) ∪ L(i2i3) · · · ∪ L(iq−1iq).

Proof. We apply induction on q. For q = 3 the lemma follows from Lemma 4.7. Now
suppose that q ≥ 4 and the lemma holds up to q − 1. Then L(i1iq) ⊂ L(i1iq−1) ∪ L(iq−1iq) ⊂
L(i1i2) ∪ · · · ∪ L(iq−2iq−1) ∪ L(iq−1iq). �

Lemma 4.9. Let T be a set of extreme vertices of G that contains exactly one vertex from
each extreme class and let F be a set of edges for which (T,F) is connected. Then G + F is
redundantly rigid.

Proof. It follows from Lemma 4.4 that there exists an edge set J for which every edge of
J is induced by T and G + J is redundantly rigid. By Lemma 4.8 and the connectivity of
(T,F) it follows that G + F is redundantly rigid. �

Let G = (V,E) be a 2-connected graph. We say that a pair {u, v} ⊂ V is a separating
pair in G if G − {u, v} is disconnected. If X is the vertex set of a connected component of
G − {u, v}, for some separating pair {u, v}, then X is called a fragment. For a vertex set
Z ⊆ V a vertex w ∈ V − Z is called a neighbour of Z if there is an edge from w to some
vertex of Z . The set of neighbours of Z is denoted by N(Z). Thus N(X) forms a separating
pair for every fragment X . A minimal fragment of G (with respect to inclusion) is an end.
A separating pair {u1, v1} crosses another separating pair {u2, v2} if u1 and v1 belong to
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4.2 Extreme classes and separating pairs 11

different components of G − {u2, v2}. It is not hard to see that if {u1, v1} crosses {u2, v2}
then {u2, v2} crosses {u1, v1}. Hence these pairs are said to be crossing separating pairs.
The next lemma is easy to verify.

Lemma 4.10. Let G be 2-connected and suppose that v is a vertex of some end B of G. If
{u, v} is a separating pair for some vertex u then N(B) and {u, v} are crossing separating
pairs.

Lemma 4.11. [15, Lemmas 2.6(a), 3.5(b)] Let G be a rigid graph on at least three vertices.
Then
(i) G is 2-connected, and
(ii) there are no crossing separating pairs in G.

Given two disjoint vertex sets X,Y ⊆ V in a graph, the number of edges from X to Y is
denoted by d(X,Y ).

Lemma 4.12. Let G = (V,E) be a Laman graph and let X,Y ⊂ V with |X ∩Y | = {u, v} and
d(X − Y,Y − X) = 0. Then
(i) if uv ∈ E and V = X ∪ Y then G[X] and G[Y ] are both Laman,
(ii) if uv < E then at most one of G[X] and G[Y ] is Laman. Furthermore, if V = X ∪Y then
exactly one of G[X] and G[Y ] is Laman.

Proof. First suppose that uv ∈ E and V = X ∪ Y . Then we have 2|V | − 3 = i(X) +
i(Y ) − 1 ≤ 2|X | − 3 + 2|Y | − 3 − 1 = 2|V | − 3. This implies (i). Next suppose that
uv < E . If G[X] and G[Y ] are both Laman then we have 2|X ∪ Y | − 3 ≥ i(X ∪ Y ) =
i(X) + i(Y ) = 2|X | − 3 + 2|Y | − 3 = 2|X ∪Y | − 2, a contradiction. This proves the first part
of (ii). By assuming that V = X ∪ Y and that neither of G[X] or G[Y ] is Laman we have
2|V | − 3 = i(X) + i(Y ) ≤ 2|X | − 4 + 2|Y | − 4 = 2|V | − 4, a contradiction. This completes
(ii). �

For a separating pair {u, v} and a component C of G − {u, v} let C̄ = G[V(C) ∪ {u, v}] be
its closure.

Lemma 4.13. Let G be a Laman graph and {u, v} be a separating pair in G. Let the
components of G − {u, v} be denoted by C1,C2, ...,Ct . Then
(i) if uv ∈ E then C̄i is Laman for all 1 ≤ i ≤ t,
(ii) if uv < E then there is a unique component, say C1, for which C̄1 is Laman,
(iii) if uv < E then L(uv) intersects exactly one component of G − {u, v}.

Proof. First observe that (i) follows by applying Lemma 4.12(i) to the sets X = V(C̄i) and
Y = V − V(Ci). Next we assume uv < E . Then Lemma 4.12(ii) gives that at most one C̄i is
Laman. For a contradiction suppose that no C̄i is Laman. Then 2|V | − 3 = |E | =

∑t
1 i(C̄j) =∑t

1(2|V(C̄j)| − 4) = 2|V | + 4(t − 1) − 4t = 2|V | − 4, a contradiction. Finally, (iii) follows
from (ii), since if C̄1 is Laman then it must contain the unique smallest Laman subgraph
L(uv) containing u, v. �
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4.2 Extreme classes and separating pairs 12

Figure 5: In this graph A1 is an extreme vertex that belongs to a separating pair.

In a Laman graph an extreme vertex may belong to some separating pair, see Figure 5.
The next lemmas will show that it cannot happen to all vertices of an extreme class.

Lemma 4.14. Let G be a Laman graph and let {u, v} be a separating pair in G. Consider
a pair x, y of vertices with x ∈ A, y ∈ B, where A,B are distinct connected components of
G − {u, v}. Then L(uv) ⊆ L(xy) and L(ux) ⊆ L(xy).

Proof. By Lemma 4.1(iii), L(xy) is a (smallest) Laman subgraph that contains x and y.
Since xy < E , L(xy) is 2-connected by Lemma 4.11(i). Thus we have {u, v} ⊆ L(xy).
Hence L(uv) ⊆ L(xy). A similar argument gives L(ux) ⊆ L(xy). �

Lemma 4.15. Suppose that G is a wide Laman graph. Then every extreme class of G
contains at least one vertex which is not part of any separating pair in G.

Proof. Consider an extreme class P of G and fix an extreme vertex u ∈ P. Suppose that
{u, v} is a separating pair for some v ∈ V . Since u is extreme, there exists an MGL L(u j)
for some extreme vertex j. Fix two components A,B of G − {u, v} and a pair of vertices
x ∈ A, y ∈ B.
We claim that j , v. To see this first note, that if uv ∈ E then L(uv) is not an MGL, and

hence j , v follows. Next suppose that uv < E . Then we have L(uv) ⊆ L(xy) by Lemma
4.14. Furthermore, the inclusion must be proper by Lemma 4.13(iii). This shows that that
L(uv) is not an MGL. Hence j , v and the claim follows.
By symmetry we may assume that j < B. Then it follows from Lemma 4.14 that for every

vertex y ∈ B we have L(u j) = L(y j) and hence y is also in P. By taking y to be a vertex of
some end within B the lemma follows from Lemmas 4.10 and 4.11(ii). �

A similar result holds for narrow Laman graphs.
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Section 5. Minimum cost globally rigid spanning subgraphs 13

Lemma 4.16. Let G = (V,E) be a narrow Laman graph. Then there is a pair u, v ∈ V
which is disjoint from all separating pairs and for which G + uv is redundantly rigid.

Proof. Since G is narrow, there is a pair u1, v1 ∈ V for which G + u1v1 is redundantly rigid.
Suppose that {u1,w} is a separating pair for some vertex w ∈ V . By Lemma 4.13(iii) we
must have w , v1. Let A,B be two connected components of G − {u1,w} with v1 ∈ A and
consider a vertex u ∈ B. By Lemma 4.14 we have L(u1v1) ⊆ L(uv1). Since L(u1v1) = G, it
follows that G+uv1 is redundantly rigid. L(xv1) = G. By choosing u to be a vertex of some
end within B, we may assume that u is disjoint from all separating pairs. Now applying
a similar argument to the pair {u, v1} we obtain that there is a pair {u, v} which is disjoint
from all separating pairs and for which L(uv) = G. This completes the proof. �

5 Minimum cost globally rigid spanning subgraphs
In this section we consider the metric MCRRSS and MCGRSS problems in the plane.
To illustrate the main ideas, we start with the minimum cost redundantly rigid subgraph
problem, for which we have a simpler approximation algorithm. Recall that the input of
both problems is a complete graph K = (V,E(K)) on at least four vertices and a metric cost
function c : E(K) → R+.
Algorithm MinCostRedRig2
(i) Compute a minimum cost spanning Laman subgraph G = (V,E) of K .

(ii) If G is a wide Laman graph then find a set S of extreme vertices of G that contains exactly
one vertex from each extreme class and compute a minimum cost spanning tree (S,F) of
K[S], where K[S] is the subgraph of K induced by S. Output (V,E + F).

(iii) If G is a narrow Laman graph then find a new edge e for which G + e is redundantly
rigid. Output (V,E + e).

Theorem 5.1. AlgorithmMinCostRedRig2 is a polynomial time 2-approximation algorithm
for the metric MCRRSS in R2.

Proof. Consider an instance of MCRRSS. If G is wide, the output is a feasible solution
by Lemma 4.9. If G is narrow, the output is feasible by construction. To verify the
approximation ratio consider an optimal solution G∗. Let OPT denote the total cost of the
edges of G∗. Since G∗ is rigid, we have c(E) ≤ OPT . We claim that G∗ contains two
edge-disjoint spanning trees. Indeed, since G∗ is redundantly rigid, there exists a minimally
rigid spanning subgraph H of G∗ − e, for any fixed edge e of G∗: now Theorems 2.1 and 2.4
imply that H + e is the union of two edge-disjoint spanning trees.

Suppose that G is wide and output is obtained in step (ii). Since G∗ contains two edge-
disjoint spanning trees, a minimum cost spanning tree F∗ of K satisfies c(F∗) ≤ OPT

2 .
Furthermore, it is well-known that if c is metric and S ⊆ V(G) then the cost of a minimum
cost spanning tree in K[S] has cost at most 2c(F∗). This follows by doubling the edges of
F∗ to obtain an Eulerian graph J and then shortcutting an Eulerian walk of J to obtain a
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Section 5. Minimum cost globally rigid spanning subgraphs 14

spanning cycle C on S. Since c is metric and C contains a spanning tree of K[S], it follows
that the minimum cost spanning tree on S has cost at most 2c(F∗). Hence if G is wide then
we have c(E + F) ≤ 2OPT , as required.
Next suppose that G is narrow and the output is obtained in step (iii). Let e = uv be

the edge found for which G + e is redundantly rigid. Since G∗ contains two edge-disjoint
uv-paths, there is a uv-path P with c(P) ≤ OPT

2 . By using that c is metric, we obtain
c(e) ≤ c(P) ≤ OPT

2 and hence c(E + e) ≤ 3
2OPT ≤ 2OPT , as claimed.

The polynomial running time of the algorithm follows by noting that a minimum cost
spanning tree or a minimum cost spanning Laman subgraph can be found efficiently by a
greedy algorithm. Moreover, as we remarked earlier, the extreme classes of G can also be
found in polynomial time. �

Next we consider the metric MCGRSS inR2. The following algorithm is a refined version
of Algorithm MinCostRedRig2.

Algorithm MinCostGlobRig2
(i) Compute a minimum cost spanning Laman subgraph G = (V,E) of K .

(ii) If G is a wide Laman graph then find a set S of extreme vertices of G that contains ex-
actly one vertex from each extreme class, so that the vertex belongs to no separating pair ofG.

(iii) If G is a narrow Laman graph then find a pair S = {i, j} of vertices, for which G + i j is
redundantly rigid and i, j belong to no separating pair of G.

(iv) Find a set T of vertices of G that contains exactly one vertex from each end W of G
which is disjoint from S,

(v) Compute a minimum cost spanning tree (R,F) of K[R], where R = S ∪ T . Output
(V,E + F).

The steps of the algorithm are well-defined by Lemmas 4.15 and 4.16. We next show that
the output is a feasible solution.

Lemma 5.2. The output of Algorithm MinCostGlobRig2 is
(i) 3-connected, and
(ii) redundantly rigid.

Proof. First we prove (i). By the choice of the vertices in S (c. f. Lemmas 4.15, 4.16) and
the vertices in T added from the ends (c.f. Lemmas 4.10, 4.11) no vertex in R belongs to a
separating pair of G. Furthermore, for every end (and hence for every fragment) X we must
have X ∩ R , ∅. This implies that adding a tree on R eliminates every separating pair of G
and hence makes it 3-connected.
Next we prove (ii) simultaneously for the two cases, that depend on whether G is wide

or narrow. Let us fix two vertices i, j ∈ S for which every internal vertex of the path
P from i to j in (R,F) is a vertex in T . Let P = i, t1, t2, . . . , tr, j and Li = L(titi+1) for
1 ≤ i ≤ r −1. The key observation, which follows from Lemma 4.14, is that in the sequence
L(it1), L1, L2, . . . Lr−1, L(tr j) each pair of consecutive Laman subgraphs have at least
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5.1 The Euclidean case 15

two vertices in common. By Lemma 4.5 this implies that their union is Laman. Hence
L(i j) ⊆ L(it1) ∪ L(t1t2) ∪ ... ∪ L(tr−1tr) ∪ L(tr j). Then it follows that by adding the edges
of P we make every edge of L(i j) redundant. Therefore, by Lemma 4.9, adding F makes
every edge of G redundant. �

An analysis similar to that of MinCostRedRig2, together with Lemma 5.2 above, gives
our main result in R2.

Theorem 5.3. AlgorithmMinCostGlobRig2 is a polynomial time 2-approximation algorithm
for the metric MCGRSS in R2.

We have a family of instances showing that the approximation ratio of Algorithm Min-
CostRedRig2 (and of MinCostGlobRig2) is not better than 3

2 . Consider a complete graph K
on 2s + 1 vertices, for some integer s ≥ 2. Fix a subset E of vertices of size s and define the
costs of the edges of K so that the edges between vertices in E are of cost 2 while the cost
of every other edge is equal to 1. The algorithm may find, as the minimum cost spanning
Laman subgraph, a graph in which each vertex in E is an extreme vertex of degree two. See
Figure 6 for the case s = 5. The minimum cost tree on these vertices has total cost 2s − 2.
Thus the output has cost 4s − 1 + 2s − 2 = 6s − 3. On the other hand it is not hard to see
that a feasible solution of cost 4s exists.

Figure 6: The solid edges correspond to the spanning Laman subgraph. The dotted edges
form a tree on its extreme vertices.

5.1 The Euclidean case
In the Euclidean version of our problems the vertices correspond to points in R2 and the
cost of an edge is the Euclidean distance of its endpoints. In this version, which may occur
for example in the network localization problem, our algorithm has a better approximation
ratio.

In order to show this, recall that in the Euclidean Steiner Tree Problem we are given a set
S of points in the plane and the goal is to find a tree of minimum total length, which contains
S. The tree may use points not in S. The ratio of the total length of a shortest spanning tree
on S and the total length of a shortest Steiner tree with respect to S is the so called Steiner
ratio. It was proved in [5] that the Steiner ratio is at most 1.22.
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Section 6. Higher dimensions 16

We can use this fact in the analysis of our algorithm and deduce that c(F) ≤ 1.22c(F∗) ≤
0.61OPT , following the notation of Theorem 5.1. Thus the approximation ratio of the
Euclidean version of MinCostRedRig2 (and MinCostGlobRig2) is 1.61.

6 Higher dimensions
In this sectionwe design an approximation algorithm for the d-dimensionalmetricMCGRSS
problem, which works for every d ≥ 2, with an approximation ratio that depends only on d.
The algorithm is rather simple and is based on the idea of graph powers. The k th power

of graph G, denoted by Gk , is the graph on the same vertex set, in which two vertices are
adjacent if and only if their distance in G is at most k. The input of the algorithm is an
integer d ≥ 2, a complete graph K = (V,E(K)) on at least d + 2 vertices and a metric cost
function c : E(K) → R+.

Algorithm MinCostGlobRigGen
(i) Compute a minimum cost spanning tree T of K .
(ii) By shortcutting 2T create a Hamilton cycle C on vertex set V .
(iii) Output Cd .

In step (ii) the graph 2T is obtained from T by replacing every edge of T by two parallel
edges. The shortcutting operation is standard andwe already used in the analysis of Theorem
5.1: we find an Eulerian walk of 2T and by shortcutting repeated vertices we turn it into a
Hamilton cycle.

The fact that the output is a feasible solution follows from the next lemma. Let Cn denote
a cycle on n vertices.

Lemma 6.1. Cd
n is globally rigid in Rd .

Proof. If n ≤ 2d + 1 then Cd
n is complete, and hence globally rigid in Rd . So we may

assume that n ≥ 2d + 2 ≥ d + 2. We shall prove that a spanning subgraph of Cd
n can be

obtained from Kd+2, which is globally rigid, by a sequence of (d-dimensional) 1-extensions.
This operation adds a new vertex v to the graph, deletes an edge uw, and adds d + 1 new
edges incident with v, so that the set of new edges includes vu and vw. It is known that this
operation preserves global rigidity in Rd , see [6].

Label the vertices of Cd
n by v1, ..., vn and start with a Kd+2 on vertex set v1, .., vd+2. In the

first iteration perform a 1-extension which adds vertex vd+3, deletes the edge v1vd+2, and
connects vd+3 to vd+2, vd+1, .., v3 and v1. In the next iteration add vd+4 by a 1-extension on
edge v1vd+3 so that the new vertex is connected to the preceding d vertices and to v1, and so
on. After n − d − 2 iterations all vertices of Cd

n are included and the graph constructed is a
globally rigid spanning subgraph of Cd

n . See Figure 7. This completes the proof. �
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Figure 7: A graph obtained in the process of constructing a globally rigid spanning
subgraph of C3

13 by 1-extensions. The last vertex added up to this point is vi. The dotted
edges have been deleted by the previous 1-extensions.

The analysis of the algorithm will also use the following claim.

Lemma 6.2. Suppose that G = (V,E) is rigid in Rd with |E | = d |V | − d and |V | ≥ d + 1,
for some d ≥ 1. Then the edge set of G can be decomposed into d spanning trees.

Proof. Since |E | = d(|V | − 1), it suffices to show that the edge set of G can be partitioned
into d forests. We shall verify that G satisfies the condition in Theorem 2.4 for k = d.
Before counting edges let us fix a minimally rigid spanning subgraph H of G. It is known
that H has d |V | −

(d+1
2

)
edges and for every vertex set X ⊆ V with |X | ≥ d + 1 we have

iH(X) ≤ d |X | −
(d+1

2
)
. The number of edges of G which do not belong to H is equal to(d+1

2
)
− d.

Let X ⊆ V be a non-empty vertex set. First suppose |X | ≥ d+1. Then, by using the above
bounds, we have iG(X) ≤ iH(X)+

(d+1
2

)
− d ≤ d |X | − d, as required. Next suppose |X | ≤ d.

Then, since G has no parallel edges, we have iG(X) ≤
( |X |

2
)
=
|X |(|X |−1)

2 ≤ d(|X | − 1) =
d |X | − d. This completes the proof. �

We are ready to analyse the algorithm. For simplicity we shall assume that |V | ≥
(d
2
)
.

We remark that if the input graph is smaller, a similar analysis gives the upper bound 2d + 2
for the approximation ratio. Moreover, in this case enumerating all feasible solutions would
also be an option for d fixed.

Theorem 6.3. AlgorithmMinCostGlobRigGen is a polynomial time (d+ 2d
d−1 )-approximation

algorithm for the metric MCGRSS problem in Rd , assuming that the size of the input graph
is at least

(d
2
)
.

Proof. The output is a feasible solution by Lemma 6.1. The polynomial running time is
also clear. It remains to prove the approximation ratio.

Let G∗ = (V,E) be an optimal solution. Since it is globally rigid in Rd , it is also
redundantly rigid in Rd by Theorem 2.2. Thus we have |E | ≥ d |V | −

(d+1
2

)
+1. Furthermore,

G∗ = (V,E) is rigid in Rd−1, too (an observation that follows easily from e.g. by the coning
theorem of [7]). Also, since |V | ≥

(d
2
)
, we have |E | ≥ d |V | −

(d+1
2

)
+ 1 = (d − 1)|V | − (

(d
2
)
+
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6.1 Improving the ratio for d = 3 18

d) + 1 + |V | ≥ (d − 1)|V | − (d − 1). Thus we can apply Lemma 6.2 to G∗ and deduce that it
contains d − 1 pairwise edge-disjoint spanning trees. Hence c(F) ≤ OPT

d−1 .
Therefore c(C) ≤ 2OPT

d−1 . By using the metric property of c, the total cost of the edges
of Cd that connect vertices which are of distance exactly k in C can be bounded by kc(C).
Thus

c(Cd) ≤ (1 + 2 + · · · + d)c(C) =
d(d + 1)

2
c(C)

≤
d(d + 1)

2
2

d − 1
OPT =

d(d + 1)
d − 1

OPT =
(
d +

2d
d − 1

)
OPT,

as claimed. �

Note that the approximation ratio of MinCostGlobRigGen for d = 2 (and for d = 3) is
equal to 6, which is substantially worse than that of algorithm MinCostGlobRig2. In the
next subsection we show how to improve on this ratio in the three-dimensional case by using
a more sophisticated analysis.

6.1 Improving the ratio for d = 3
We start with a technical lemma.

Lemma 6.4. Let K = (V,E) be a complete graph and let c : E → R+ be a metric cost
function. Suppose that G = (V,F) is a 3-connected spanning subgraph of K which contains
no subgraph isomorphic to K6. Then for every p > 0 there is an Np such that if |V | ≥ Np
then there exists a pair {e, f } ⊂ E − F of edges with c(e) + c( f ) ≤ c(G)p.

Proof. First suppose that there is a vertex v with dG(v) ≥ 3 + 4d 1
pe. Let X = NG(v). We

claim that X induces at least 2d 1
pe pairwise disjoint non-edges. Indeed, such a collection

M of non-edges can be obtained in a greedy manner, using the fact that any subset of six
vertices of X induces at least one non-edge. By using the metric property of c we can now
deduce that

c(F) ≥
∑

vu:u∈NG(v)

c(vu) ≥
∑
e∈M

c(e).

Thus the two edges e, f of M with the smallest cost satisfy c(e)+c( f ) ≤ c(G)p, as required.
Next suppose that dG(v) < 3+4d 1

pe for all v ∈ V . Then, assuming |V | >
∑

i=0,...,k(3+4d 1
pe)

i

for some integer k, it follows that there exist two vertices v1, v2 ∈ V for which the length of
a shortest path from v1 to v2 in G is at least k + 1.

Take three internally disjoint chordless paths from v1 to v2. Let P be one of them with
minimum total cost. Then we have c(P) ≤ 1

3 c(G). Furthermore, by taking a path of non-
edges connecting every second vertex along P and using the fact that c is metric we obtain
a set N of at least b k+1

2 c non-edges with c(N) ≤ c(P) ≤ 1
3 c(G). Thus the two edges e, f of

N with the smallest cost satisfy c(e) + c( f ) ≤ 1
3

2
b k+1

2 c
c(G) ≤ 1

3k c(G). Hence by choosing

k ≥ 1
3p and k ≥ 4, we have c(e) + c( f ) ≤ c(G)p, as required. �

The next lemma leads to an improved bound by choosing arbitrary small p < 3
2 .
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Lemma 6.5. Let K = (V,E) be a complete graph and let c : E → R+ be a metric cost
function. Suppose that G = (V,F) is a globally rigid subgraph of K in R3 and let H = (V,T)
be a minimum cost spanning tree. Then for every p > 0 there is an Np such that if |V | ≥ Np
then c(T) ≤ 1

3 (1 + p)c(G).

Proof. We shall use that, sinceG is globally rigid inR3, G is 3-connected and has a spanning
proper subgraph G′ with 3|V | − 6 edges satisfying iG′(X) ≤ 3|X | − 6 for all X ⊆ V with
|X | ≥ 3. Let’s fix p.
First suppose |F | ≥ 3|V | − 3. Then we can add three edges from F to G′ and obtain

a subgraph of G which contains three edge-disjoint spanning trees (by Nash-Williams’
theorem). Hence c(T) ≤ 2

3 c(G).
Next suppose 3|V | − 5 ≤ |F | ≤ 3|V | − 4. Then the sparsity property of G′ implies that G

contains no subgraph isomorphic to K6. Now we may apply Lemma 6.4 to G and deduce
that there is an Np such that if |V | ≥ Np then there exists a pair {e, f } ⊂ E −F of edges with
c(e) + c( f ) ≤ c(G)p. A similar argument gives that G + e + f contains three edge-disjoint
spanning trees, and hence c(T) ≤ 1

3 (1 + p)c(G). �

We can now deduce an upper bound on the approximation ratio of MinCostGlobRigGen
for d = 3, at least for large enough graphs, which can be arbitrarily close to 4.

Theorem 6.6. Let K = (V,E) be a complete graph and let c : E → R+ be a metric cost
function. For every p > 0 there is an Np such that if |V | ≥ Np then the approximation ratio
of MinCostGlobRigGen for d = 3 is at most 21

3 (1 + p)6 = 4(1 + p).

7 Concluding remarks
In this paper we introduced the Minimum cost globally rigid spanning subgraph problem in
Rd and gave polynomial time approximation algorithms for the metric version. It remains
an open problem to find similar results for general cost functions.

For Euclidean costs we obtained a somewhat better approximation ratio. It might be
possible to find a polynomial time approximation scheme, like in the case of the k-connected
spanning subgraph problem, see e.g. [8].

Finally we remark that a long list of similar problems can be obtained by replacing global
rigidity in R2 (or equivalently, 3-connectivity and redundant rigidity) by other types of
connectivity and sparsity requirements. The matroid on the edge set of a graph defined by
the sparsity count of 1 happens to be a specific example of the so-called count matroids.
These matroids can defined in a similar way by replacing i(X) ≤ 2|X | −3 by i(X) ≤ k |X | − l
for some integers k, l with l ≤ 2k, see [10, 29]. One can also define “redundant rigidity”
with respect to these more general counts in a natural way. Partial results, extending the
work in [11], have already been obtained by C. Király [22].

7.1 Hardness results
For completeness we show that the problems considered in this paper are NP-hard. Since
global rigidity is equivalent to 2-connectivity inR1, finding a smallest globally rigid spanning
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subgraph of a graph G on the line is more general than the Hamilton cycle problem. Hence
MCGRSS is NP-hard in R1. By applying a sequence of d − 1 coning operations1 to G, and
assigning cost zero to each of the new edges, we can reduce the problem to the d-dimensional
MCGRSS problem, for any given d, showing that MCGRSS is NP-hard in Rd . A similar
argument shows that MCRRSS is also NP-hard in Rd for all d.

A slightly more involved argument shows that these problems remain NP-hard in the
metric case. Here we give the proof for MCGRSS in R2. Similar arguments can be used to
extend the result to higher dimensions and to prove the hardness of metric MCRRSS in Rd .

Theorem 7.1. It is NP-hard to find a minimum cost globally rigid spanning subgraph in R2

of a given complete graph G = (V,E) with respect to a metric cost function c : E → R.

Proof. We shall reduce the Hamilton cycle problem to our problem. Consider an instance
H = (V,E) of the Hamilton cycle problem. Let G be the cone of H, where the new vertex
is denoted by v, and let K be the complete graph on vertex set V ∪ {v}. We assign costs to
the edges of K as follows.
For every edge e = uv with u, v ∈ V we let c(e) = 1.1 (resp. c(e) = 1.9) if uv ∈ E

(resp. if uv < E). For the remaining edges e of K , which are incident with v, we define
c(e) = 1. We claim that H has a Hamilton cycle if and only if the minimum cost globally
rigid spanning subgraph of K , with respect to c, has total cost 2.1|V |.

Figure 8: The cone graph of a graph.

To see this first suppose that H has a Hamilton cycle C. It is easy to see that the cone
graph of C is globally rigid in R2. The total cost of the cone is 1.1|V | + |V | = 2.1|V |. Next
suppose that there is a globally rigid spanning subgraph F of K with cost at most 2.1|V |.
Since every globally rigid subgraph of K has at least 2|V | edges, the definition of c implies
that F has exactly 2|V | edges and that it contains every edge incident with v.
Thus F is the cone graph of a 2-connected spanning subgraph C of H with |V | edges.

This shows that C is a Hamilton cycle in H. This completes the proof. �
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