
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS
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Global Rigidity of Unit Ball Graphs

Dániel Garamvölgyi? and Tibor Jordán??

Abstract

A d-dimensional bar-and-joint framework (G, p), where G is a graph and
p maps the vertices of G to points in Rd, is said to be globally rigid if every
d-dimensional framework (G, q) with the same graph and same edge lengths is
congruent to (G, p). Global rigidity of frameworks and graphs is a well-studied
area of rigidity theory with a number of applications, including the localization
problem of sensor networks.

Motivated by this application we consider the new notion of unit ball global
rigidity, which can be defined similarly, except that (G, p) as well as (G, q) are
required to be unit ball frameworks in the above definition. In a unit ball
framework two vertices are adjacent if and only if their distance is less than a
fixed constant (which corresponds to the sensing radius in a sensor network).

In this paper we initiate a theoretical analysis of this version of global rigid-
ity and prove several structural results. Among others we identify families of
frameworks (and corresponding graphs G) in Rd, for all d ≥ 1, which are unit
ball globally rigid without being globally rigid in the usual sense. These fami-
lies contain minimally rigid graphs, too, which have less edges than any of the
globally rigid graphs on the same number of vertices.

1 Introduction

Consider a set of n points in Rd and fix a subset of the pairwise distances between the
pairs of points. It can happen that the fixed subset uniquely determines all pairwise
distances, that is, all d-dimensional configurations of the point set with these fixed
distances are pairwise congruent. When this happens, we say that the set of points,
together with the pairs of points for which the distance is fixed, is globally rigid. It is
convenient to model this situation by a so-called framework, which consists of a graph
G on n vertices (corresponding to the points) and a map from the vertex set of G to
Rd, which defines the configuration. Two vertices are connected by an edge in G if
and only if the distance between the corresponding points is fixed.
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Section 1. Introduction 2

The uniqueness problem above emerges naturally e.g. in sensor network localization
and in molecular conformation where the goal is to find the locations of a set of n
sensors (resp. atoms) in the plane (resp. in three-space) when only a subset of the
pairwise distances is available. The global rigidity of frameworks is a central and
well-studied notion in rigidity theory. Several results from this field have been used
in and motivated by the above applications. Characterizations of global rigidity as
well as algorithmic methods for finding the unique configuration are both interesting
in this context.

In this paper we shall consider a modified version of global rigidity, motivated by a
specific family of sensor networks: the case when a pair of sensors can communicate
– and compute their distance by sending radio signals – if and only if they are within
a given threshold value r (the sensing radius) from each other. We may assume that
r = 1. In this case the corresponding framework is a unit ball framework (or unit disk
framework, when the network is in R2).

Although not all sensor networks belong to this category, there is a substantial
amount of work dealing with various problems arising in sensor networks where this
unit disk model is applicable. Nevertheless, the localization aspects of this model and
the corresponding question of ”global rigidity within the family of unit ball frame-
works” has rarely been studied before.

In this version uniqueness (with respect to a set of fixed pairwise distances) is meant
only within the family of unit ball frameworks: point configrations in which there is
a pair of points {u, v} which are non-adjacent in G but whose distance is less than 1,
need not be considered. This key observation was used by Oliva et al. [27] to show that
some ”implied” edges can be added to the framework without changing the set of unit
ball frameworks satisfying the fixed distances. With these new edges a trilateration
process may become possible and can be used to localize the network. Kaewprapha
et al. [23] used the observation above to show that all configurations consistent with
the fixed distances can be found more efficiently by taking into account the unit disk
property which is used to substantially reduce the size of the search tree. We are not
aware of other related results.

Our goal is to initiate a theoretical analysis of this version of global rigidity and
to obtain new structural results which may lead to new concepts and methods in the
sensor network localization problem. Among others we identify families of frameworks
(and corresponding graphs G) which are globally rigid within the family of unit ball
frameworks without G having globally rigid realizations in the usual sense. These
families contain minimally rigid graphs, too, which have less edges than any of the
globally rigid graphs on the same number of vertices.

The structure of the paper is as follows. In Section 2 we introduce the basic termi-
nology of rigid and globally rigid frameworks and graphs and list some key results. In
Section 3 we define unit ball graphs and frameworks and provide some preliminary re-
sults, including a complete analyis of our problem in R1. Section 4 contains our main
result: every saturated non-globally rigid unit ball graph has a unit ball globally rigid
generic realization. In Section 5 we study special graphs which are minimally rigid
and saturated non-globally rigid at the same time. These graphs occur in various
other applications, too, and as we shall see, many of them have unit disk realizations.
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Section 2. Rigid and globally rigid graphs and frameworks 3

In Section 6 we describe a different method for identifying unit ball globally rigid
frameworks, based on tensegrity frameworks. We provide a number of open questions
in the concluding Section 7 and suggest further research problems.

2 Rigid and globally rigid graphs and frameworks

A d-dimensional bar-and-joint framework (or simply framework) is a pair (G, p), where
G = (V,E) is a simple graph and p is a map from V to Rd. We may think of the
vertices as universal joints and the edges as rigid (i.e. fixed length) bars connecting
certain pairs of joints. A framework (G, p) is said to be a realization of G in Rd. We say
that two realizations (G, p) and (G, q) of a graph G are equivalent if ||p(u)− p(v)|| =
||q(u)− q(v)|| holds for all pairs u, v with uv ∈ E, and congruent if ||p(u)− p(v)|| =
||q(u)− q(v)|| holds for all pairs u, v with u, v ∈ V . Here || · || denotes the Euclidean
norm in Rd.

A d-dimensional framework (G, p) is globally rigid in Rd if every framework in Rd

which is equivalent to (G, p) is congruent to (G, p). In other words, the edge lengths
uniquely determine all pairwise distances. We shall also consider the following weaker
property of frameworks. We say that (G, p) is rigid in Rd if every continuous motion of
its vertices in Rd which preserves all edge lengths takes the framework to a realization
of G which is congruent to (G, p).

It is NP-hard to test whether a given framework is globally rigid (resp. rigid) in
Rd for all d ≥ 1 (resp. d ≥ 2), see [30], [1]. However, if we exclude “degenerate”
point configurations, these problems may become more tractable. This leads us to
the following notion. We say that (G, p) is generic if the set of the d|V | coordinates
of the vertices is algebraically independent over the rationals.

It is known that both the rigidity and the global rigidity of frameworks in Rd is a
generic property for every fixed dimension d ≥ 1, that is, the rigidity (resp. global
rigidity) of (G, p) depends only on the graph G and not the particular realization p,
if (G, p) is generic, see [3, 12]. Thus we say that the graph G is generically rigid, or
simply rigid (resp. generically globally rigid, or simply globally rigid), in Rd if every
(or equivalently, if some) generic realization of G in Rd is rigid (resp. globally rigid).

The following necessary conditions of global rigidity, due to B. Hendrickson, es-
tablish an important link between rigidity and global rigidity. We say that G is
redundantly rigid in Rd if G− e is rigid in Rd for all edges e of G. A graph G is called
k-connected if G has at least k+1 vertices and G−S is connected for every S ⊂ V (G)
with |S| ≤ k − 1.

Theorem 2.1. [14] Let G be globally rigid in Rd. Then either G is a complete graph
on at most d+ 1 vertices, or G is (d+ 1)-connected and redundantly rigid in Rd.

It is known that the necessary conditions of Theorem 2.1 together are sufficient to
characterize global rigidity in Rd for d = 1, 2. It is a folklore result that G is globally
rigid in R1 if and only if G is isomorphic to a complete graph on at most two vertices,
or G is 2-connected. The two-dimensional result is due to B. Jackson and the second
author.
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(a) (b) (c)

Figure 1: (b) A 0-extension, and (c) a 1-extension of a triangle.

Theorem 2.2. [15] Let G = (V,E) be a graph on at least four vertices. Then G is
globally rigid in R2 if and only if G is 3-connected and redundantly rigid in R2.

There are examples showing that these conditions are not sufficient when d ≥ 3,
see [7, 20]. Finding a good characterization for the family of globally rigid graphs in
Rd for d ≥ 3 is a major open problem.

We recall some key results and definitions concerning rigidity as well. A rigid graph
G = (V,E) is called minimally rigid (or Laman) in Rd if G − e is not rigid for all
e ∈ E. The edge sets of the minimally rigid graphs (in a given dimension) on a vertex
set V correspond to the bases of the so-called rigidity matroid, defined on the edge set
of a complete graph on V , and have the same size. This size is equal to d|V | −

(
d+1
2

)
whenever |V | ≥ d; in particular, it is 2|V | − 3 in R2.

For a subset X ⊆ V we use i(X) to denote the number of edges induced by X.
The 0-extension operation adds a new vertex v to G and two new edges vx, vy for two
distinct vertices x, y ∈ V . The 1-extension operation on edge uw and vertex z adds
a new vertex v, deletes uw, and adds three new edges vu, vw, vz. We say that the
graph G is sparse if

i(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2. (1)

The following characterization of minimally rigid graphs in the plane is due to G.
Laman.

Theorem 2.3. [25] Let G = (V,E) be a graph with |E| = 2|V |−3. Then the following
are equivalent:
(i) G is minimally rigid in R2,
(ii) G is sparse,
(iii) G can be obtained from K2 by a sequence of 0-extensions and 1-extensions.

3 Unit ball graphs

A d-dimensional framework (G, p) is said to be a unit ball framework if for all u, v ∈ V
we have

uv ∈ E ⇐⇒ ‖p(u)− p(v)‖ < 1. (2)

The graph G is a (d-dimensional) unit ball graph if it has a unit ball realization in Rd.
In other words, unit ball graphs are the intersection graphs of open unit balls in Rd.
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(a) (b)

(c) (d)

Figure 2: (a) A UBGR and (c) a non-UBGR realization of a rigid but not globally
rigid graph, with corresponding equivalent but not congruent realizations.

We follow the standard terminology and in R1 and R2 we use the terms unit interval
and unit disk, respectively, in order to emphasize the fixed dimension.

We note that unit ball graphs are often defined as the intersection graphs of closed
unit balls, as opposed to our definition using open balls. However, as it was shown
in [26] for d = 2, the two definitions are equivalent. As we shall see, having strict
inequality in (2) is more convenient in our context.

Deciding whether G is a unit ball graph in Rd is NP-hard for all d ≥ 2 [6, 24].
Surprisingly few structural results are known about unit disk graphs, and unit ball
graphs in general, and most of what is known is related to forbidden subgraphs. For
example, a unit disk graph cannot contain the complete bipartite graphs K1,6 and
K2,3 as induced subgraphs. Other examples can be found in [5].

The idea of investigating global rigidity within the family of unit ball frameworks
leads us to the following definition. We say that a d-dimensional unit ball framework
(G, p) is unit ball globally rigid in Rd if whenever (G, q) is an equivalent unit ball
realization of G in Rd, it is congruent to (G, p). As in the case of global rigidity,
we shall focus on generic unit ball globally rigid realizations in order to capture the
typical behaviour of unit ball graphs. The following remark justifies this by showing
that the generic unit ball realizations of a graph form a dense subset of its unit ball
realizations.

Consider a unit ball realization (G, p) in Rd of a d-dimensional unit ball graph
G. Then there exists an ε′ > 0 such that for all 0 < ε < ε′ the scaled realization
(G, (1 + ε)p) has an open neighbourhood (in the space Rd|V | of realizations) U for
which (G, q) is unit ball for all q ∈ U . Hence G has a generic unit ball realization
arbitrarily close to (G, p).

Unlike global rigidity, unit ball global rigidity is not a generic property in Rd for
d ≥ 2. See Figure 2. Thus we may define two families of unit ball graphs: we say
that a unit ball graph G is unit ball globally rigid (UBGR) in Rd if there exists a
d-dimensional generic unit ball realization of G which is unit ball globally rigid. We
call G strongly unit ball globally rigid (SUBGR) in Rd if every d-dimensional generic
unit ball realization of G is unit ball globally rigid.

A necessary condition of unit ball global rigidity is rigidity.
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3.1 Unit ball global rigidity on the line 6

1

Figure 3: Example of a non-generic realization of C4 that is UBGR but not rigid. In
an equivalent but not congruent realization one of the diagonals must have length less
than 1.

Lemma 3.1. Let (G, p) be a generic unit ball globally rigid unit ball realization of G
in Rd. Then (G, p) is rigid in Rd (and hence G is rigid in Rd).

Proof. Suppose that (G, p) is not rigid and consider a continuous motion which results
in an equivalent but non-congruent realization (G, q). Since (G, p) is generic, ||p(u)−
p(v)|| cannot be an integer for any pair u, v ∈ V (G). Thus ||p(u) − p(v)|| > 1 for
all non-adjacent pairs u, v. This implies that in a small enough range the motion
preserves the unit ball property and takes (G, p) to an equivalent but non-congruent
unit disk realization (G, q′). This means that (G, p) is not unit ball globally rigid, a
contradiction.

Rigidity is no longer necessary if we drop the genericity assumption. Indeed, a
square with unit length diagonals is an example of a non-rigid but unit disk globally
rigid (non-generic) unit disk framework in the plane.

Clearly, if a unit ball graph is globally rigid in Rd (in the usual sense), then it is
strongly unit ball globally rigid as well. Thus we have

GGR ⊆ SUBGR ⊆ UBGR ⊆ GR (3)

within the family of d-dimensional unit ball graphs, for every fixed d ≥ 1. A natural
question is whether the containment relations in (3) are proper - see Section 7 for
further comments on this.

3.1 Unit ball global rigidity on the line

To illustrate our notions we start with a simple result which provides a complete
characterization of (strong) unit ball global rigidity in R1. It turns out that unit ball
global rigidity is a generic property of unit interval graphs.

Theorem 3.2. Let G be a unit interval graph. The following properties are equivalent:
(i) G is connected,
(ii) G is unit ball globally rigid in R1,
(iii) G is strongly unit ball globally rigid in R1.

Proof. We show that (i) implies (iii). The implications (iii)→ (ii)→ (i) are straightfor-
ward. LetG be a unit interval graph and let (G, p) be a generic unit interval realization
of G in R1. If G is complete or 2-connected then (G, p) is globally rigid in R1, and
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3.2 Minimally rigid unit ball graphs 7

thus also strongly unit ball globally rigid in R1. Otherwise every one-dimensional
realization (G, q) of G which is equivalent to (G, p) can be obtained from (G, p) by a
sequence of partial reflections about cut-vertices.1 However, such a partial reflection
on the line destroys the unit interval property of the framework. Hence there is no
equivalent but non-congruent unit interval realization of (G, p). This implies that G
is strongly unit ball globally rigid in R1.

A related observation is that if G is a connected unit interval graph then the so-
called block-cut-vertex tree of G is a path. We omit the proof.

3.2 Minimally rigid unit ball graphs

In this subsection we collect some preliminary observations concerning minimally
rigid unit ball graphs which may be of independent interest, although we shall not
use them in the rest of the paper. We consider minimally rigid graphs (or rather a
certain subfamily of them) in more depth in Section 5.

We start with a simple structural result in the plane.

Lemma 3.3. Let G = (V,E) be a unit disk graph with |V | ≥ 3 and |E| ≥ 2|V | − 3.
Then G contains a triangle.

Proof. Consider a unit disk realization (G, p) of G in R2. This realization can be
considered as a straight line embedding of G in the plane. If there are no edge
crossings and no triangles then it follows from Euler’s formula that |E| ≤ 2|V | − 4, a
contradiction.

Thus we may suppose that G has two edges ab, cd, for which the corresponding
line segments X, Y cross. By the triangle inequality and the unit disk property at
least one of the edges ac, bd (resp. ad, cb) is present in G, showing that G contains a
triangle in this case as well.

As a corollary, we obtain that a minimally rigid unit disk graph in R2 (on at least
three vertices) contains a triangle.

It is easy to see that every rigid subgraph of a minimally rigid graph is minimally
rigid. On the other hand it is known (and, again, easy to see) that Kd+2 is not
minimally rigid in d dimensions. These observations together imply that a minimally
rigid graph cannot contain Kd+2 as a subgraph, a fact that we will use in the following
proof.

Lemma 3.4. For every positive integer d ≥ 1 there exists a constant f(d) such that
the maximum degree of a minimally rigid unit ball graph in Rd is at most f(d). In
particular, f(2) = 11.

Proof. First consider the two-dimensional case. Let (G, p) be a unit disk framework
and for a contradiction suppose that d(v) ≥ 12 for some vertex v. Divide the unit disk
centered at v into six congruent sectors, overlapping at their boundaries, such that

1A fact that can be verified by induction on the number of two-connected blocks.
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3.2 Minimally rigid unit ball graphs 8

some neighbour falls onto the boundary of a sector. Then by the pigeonhole principle
some sector must contain at least 3 points, and the distance of any two points lying
in the same sector (and in the interior of the disk) is less than 1. Thus there is a
triangle in G spanned by some neighbours of v. But then G has K4 as a subgraph,
contradicting the fact that G is minimally rigid.

In the general case we can deduce a maximum degree upper bound as follows.
Consider a unit ball in Rd and a maximal collection of pairwise disjoint balls of radius
1/4 with their centers in the unit ball. Their union is contained in a ball of radius
5/4, so volume considerations show that we can pack at most 5d balls. It is easy to see
that by doubling the radius of each ball in the collection we obtain a family of balls
that cover the unit ball. Hence an argument similar to that of the two-dimensional
case shows that the degree of each vertex is at most d · 5d.

The following lemma can be used to show that every unit ball graph in Rd can be
extended by adding a new vertex of degree d so that the new graph is also unit ball.
This will imply that there exist infinitely many minimally rigid unit ball graphs in
Rd, for all d ≥ 1.

Lemma 3.5. Let S ⊆ Rd be a finite set of points and for v ∈ Rd denote by sv the
number of points in S with distance less than 1 from v (so that sv = |{x ∈ S :
‖x− v‖ < 1}|). Suppose that there exists some point v′ ∈ Rd with sv′ ≥ d. Then there
exists a point v ∈ Rd − S such that sv = d.

Proof. We first concentrate on the case of d = 2. Let I be the union of the pairwise
intersections of unit circles centered at the points of S, i.e. I = {v ∈ R2 : |{x ∈ S :
‖x− v‖ = 1}| ≥ 2}. Choose a point z not contained in S ∪ I such that sz ≥ 2. Such
a point exists, since by the condition on S there is a non-empty open set of points
with sv ≥ 2, and S ∪ I is finite. By the finiteness of the latter set there also exists
a line l going through z which avoids the points in S ∪ I. We claim that l contains
a suitable point. Indeed, sz ≥ 2 and sv = 0 for all sufficiently distant points of l, so
it suffices to show that sv only changes by increments of 1 as we move the point v
along l. To see this, note that sv (as a function of v) only changes value at points
where {x ∈ S : ‖x− v‖ = 1} is nonempty, and since l∩ I = ∅, for such v the set must
contain exactly one element. So sv changes by at most 1 at v, as desired.

In fact, the same proof works in the d-dimensional case for d ≥ 3. The only apparent
problem is that in this case I may be infinite (it is a union of some (d−2)-spheres), so
we need to justify the existence of a suitable point z and line l in a different way. The
former is evident, since S ∪ I has measure zero (under the d-dimensional Lebesgue
measure), while the set of points with sv ≥ d is non-empty and open, so it has positive
measure. While the existence of a line l going through this point and avoiding S ∪ I
is intuitively easy to believe, showing it is somewhat cumbersome. The reader can
verify that the intersection of a (d − 2)-sphere and a hyperplane not containing it is
either empty, or a (d − 3)-sphere. This allows us to proceed by induction on d: find
a hyperplane through z not containing any of the finitely many (d− 2)-spheres in I;
by the induction hyphotesis, a suitable line can be found within this hyperplane.
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Section 4. Saturated non-globally rigid graphs 9

It follows that every unit ball graph can be extended to a larger unit ball graph
by adding a new vertex of degree d. This operation (the d-dimensional version of
0-extension) is known to preserve (minimal) rigidity. Hence we can obtain an infinite
family by using Kd+1 as the base graph, which is minimally rigid and unit ball.

4 Saturated non-globally rigid graphs

In this section we introduce a family of non-globally rigid graphs which are, as we
shall show, unit ball globally rigid nonetheless. We say that a graph G is saturated
non-globally rigid (or SNGR, for short) in Rd if G is not globally rigid in Rd but for
every non-adjacent pair u, v ∈ V (G) the graph G+uv is globally rigid in Rd. Since all
(globally) rigid graphs in Rd on at most d+ 1 vertices are complete, all SNGR graphs
in Rd on at most d+ 1 vertices are isomorphic to Kr − e for some 2 ≤ r ≤ d+ 1.

For larger graphs Hendrickson’s theorem implies the following statement.

Lemma 4.1. Let G be SNGR in Rd on at least d+ 2 vertices. Then G is rigid in Rd.

Lemma 4.2. Let G be SNGR in Rd on at least d+ 2 vertices. Then
(i) if G is not (d+ 1)-connected then G is obtained from two complete graphs of size
at least d+ 1 by gluing them along d vertices,
(ii) if G is minimally rigid in Rd then every rigid proper subgraph of G is isomorphic
to a complete graph of size at most d+ 1.

Proof. (i) Let S be a separating vertex set in G with |S| ≤ d. Theorem 2.1 implies
that G + e is (d + 1)-connected for every edge e = uv, where u, v is a non-adjacent
pair in G. Hence |S| = d must hold, G − S has exactly two connected components,
and for each such component C the subgraph of G on C ∪S is complete. This means
that G is obtained from two complete graphs of size at least d + 1 by gluing along d
vertices. Note that if G is the result of such a gluing then it is SNGR: for any new
edge e the graph G+ e can be obtained from one of the two complete graphs (which
is globally rigid) by iteratively adding vertices of degree at least d + 1 (an operation
that is known to preserve global rigidity).

(ii) Let H be a rigid proper subgraph of G. Since G is minimally rigid, H is an
induced subgraph. Moreover, there is an edge f in G not induced by H. Suppose that
there is a non-adjacent vertex pair u, v in H. Then the edge e = uv is not present in
G. Furthermore, since G is minimally rigid and H is rigid, we have that G+ e− f is
non-rigid. This contradicts the fact that G is SNGR by Theorem 2.1.

In R2 Lemma 4.2(ii) gives an exact description of minimally rigid SNGR graphs.
This family (the so-called special graphs) will be studied in the next section.

There exist (d + 1)-connected SNGR graphs which are not minimally rigid in Rd.
For example, a copy of K3 and a copy of K4 connected by three disjoint edges is
SNGR in R2.

A useful observation is that a graph G is SNGR in Rd if and only if every non-
adjacent vertex pair {u, v} in G satisfies that for every generic realization (G, p) and
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4.1 Unit ball global rigidity of SNGR graphs 10

every equivalent non-congruent realization (G, q) we have ||p(u) − p(v)|| 6= ||q(u) −
q(v)||.

We can say more by using the following recent result of S. Gortler, L. Theran, and
D. Thurston.

Theorem 4.3. [13] Let (G, p) be a generic d-dimensional framework for some d ≥ 2
where G is a globally rigid graph, and let (H, q) be another d-dimensional framework,
with H having the same number of vertices and edges as G. If the (unordered) set of
edge lengths is the same for the two frameworks, then G and H are isomorphic and p
and q are congruent (after relabeling).

Lemma 4.4. Let G = (V,E) be SNGR in Rd and let (G, p) be a generic d-dimensional
realization of G. Let (G, q) be another realization of G which is equivalent, but not
congruent to (G, p). Then for all pairs of non-adjacent vertex pairs {u, v} and {u′, v′}
we have ‖p(u)− p(v)‖ 6= ‖q(u′)− q(v′)‖.

Proof. Since G is SNGR, it is connected and has at least three vertices. Suppose, for
a contradiction, that for some non-adjacent vertex pairs {x, y} and {x′, y′} we have
‖p(x)− p(y)‖
= ‖q(x′)− q(y′)‖. Since G is SNGR, G+xy is globally rigid in Rd. Thus, by applying
Theorem 4.3 to (G+ xy, p) and (G+ x′y′, q) we obtain that G+ xy and G+ x′y′ are
isomorphic and p and q are congruent after relabeling. In other words, if ϕ denotes
this isomorphism, then we have ‖p(u)− p(v)‖ = ‖q(ϕ(u))− q(ϕ(v))‖ for all u, v ∈ V .

It is sufficient to show that ϕ is the identity morphism, that is, ϕ(v) = v for
every vertex v, as this would mean that (G, p) and (G, q) are congruent frameworks,
contradicting the original assumption. Note that, since p is generic and ϕ is a bijection
of V , the distances ‖q(u)− q(v)‖ = ‖p(ϕ−1(u))− p(ϕ−1(v))‖ are different for all pairs
u, v ∈ V . Moreover, since (G, p) and (G, q) are equivalent, for any edge uv ∈ E we
have ‖q(u)− q(v)‖ = ‖p(u)− p(v)‖ = ‖q(ϕ(u))− q(ϕ(v))‖. It follows that {u, v} =
{ϕ(u), ϕ(v)}, that is, ϕ leaves the edges of G in place.

Take now a vertex u with degree at least two and let uv, uw ∈ E be two edges
incident to u. Then

{u} = {u, v} ∩ {u,w} = {ϕ(u), ϕ(v)} ∩ {ϕ(u), ϕ(w)} = {ϕ(u)},

so u = ϕ(u). But G is a connected graph on at least three vertices, so every edge
has an endpoint with degree at least two. This means that ϕ leaves the edges of G
in place, and leaves at least one endpoint of each edge in place, so it must be the
identity.

4.1 Unit ball global rigidity of SNGR graphs

In order to deduce our main result, in this subsection we also need the notions of
infinitesimal motion and infinitesimal rigidity of frameworks. Infinitesimal rigidity,
which is stronger than rigidity, is a well-known concept in rigidity theory. We refer
the reader to e.g. [3, 8, 19] for the definition.
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4.1 Unit ball global rigidity of SNGR graphs 11

The proof of the next theorem is based on the so-called Averaging Lemma2 and is
inspired by the proof of [9, Theorem 13].

Theorem 4.5. Let (G, p) be a unit ball realization of G in Rd that is both infinitesi-
mally rigid and UBGR. Then p has an open neighbourhood Up ⊆ Rd|V | such that for
every unit ball realization p′ ∈ Up, the framework (G, p′) is UBGR.

Proof. For a contradiction suppose that there exists a sequence (pi)i∈N of configura-
tions converging to p, such that for all i ∈ N, (G, pi) is a unit ball framework which
is not UBGR. Then there exists a sequence (qi)i∈N of configurations such that (G, qi)
is unit ball, (G, pi) is equivalent to (G, qi), but pi and qi are not congruent. By ap-
plying a translation to each qi we can assume that for some fixed vertex v0 ∈ V ,
qi(v0) = p(v0) for all i ∈ N. Then the sequence (qi)i∈N is bounded, so compactness
implies that it has a convergent subsequence (qni)i∈N.

Note that (G, lim qni) is a unit ball realization ofG that is equivalent to (G, lim pni) =
(G, p). Since (G, p) is UBGR, this means that the limit is congruent to p. Hence, by
applying a congruence to each qni , we obtain a sequence (rni)i∈N that converges to p.
Since pni is equivalent, but not congruent to rni , the Averaging Lemma implies that
the framework (G, p

ni+rni

2
) is not infinitesimally rigid. But this, combined with the

fact that pni+rni

2
converges to p, is a contradiction, since (G, p) is infinitesimally rigid

and the set of infinitesimally rigid realizations of a graph is open.

We are now ready to verify our main result about unit ball SNGR graphs.

Theorem 4.6. Let G be a unit ball SNGR graph in Rd. Then G is UBGR in Rd,
that is, G has a generic unit ball globally rigid realization in Rd.

Proof. Let (G, p) be a generic UB realization of G. It is well-known that, since
G is rigid, it has only finitely many congruence classes of equivalent realizations.
Furthermore, each congruence class contains a generic realization, see [17, Corollary
3.7]. Let p1, . . . , pk be a maximal set of pairwise non-congruent generic UB realizations
of G. Intuitively, we would like to shrink each realization by the same amount until
only one of them remains a unit ball realization; then it will be UBGR. This can
be made precise as follows. For each 1 ≤ i ≤ k, let αi denote the smallest distance
between non-adjacent vertices in (G, pi). Note that, by Lemma 4.4, αi 6= αj for i 6= j.
Take i such that αi is maximal. We claim that p = 1

αi
pi (that is, pi scaled by 1

αi
) is a

unit ball globally rigid realization of G. Clearly it is a unit ball realization, since the
minimal distance of non-adjacent vertices is exactly one, and the distance of adjacent
vertices remains smaller than one after scaling. Moreover, equivalent realizations of
p correspond to scaled equivalent realizations of pi. It is easy to see that scaling by a
factor of at most one does not create new unit ball realizations, and any of the original
UB realizations (G, pj) with j 6= i will have a pair u, v of non-adjacent vertices with
||pj(u)−pj(v)|| = αj

αi
< 1 after scaling, hence the scaled version will not be a unit ball

2The lemma says that if (G, p) and (G, q) are equivalent realizations of G then p − q is an
infinitesimal motion of the average framework (G, p+q

2 ). Furthermore, if the two frameworks are not
congruent then p− q is a non-trivial infinitesimal motion.
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Section 5. Families of SNGR graphs in the plane 12

realization. This shows that (G, p) is UBGR. Since G is rigid and (G, pi) is a generic
framework, it is infinitesimally rigid. Scaling does not affect infinitesimal rigidity, so
(G, p) is infinitesimally rigid as well. Thus we can apply Theorem 4.5 to obtain a
generic UBGR realization of G.

5 Families of SNGR graphs in the plane

Following [17] we say that a minimally rigid graph G in Rd is special if every rigid
proper subgraph of G is complete. The only special graphs in R1 are K2 and K1,2. In
R2 we have infinitely many special graphs, as it was observed e.g. in [17]. The next
lemma, which is implicit in the aforementioned paper, shows that special graphs are
relevant in our context, too. In the rest of this section we assume that d = 2.

Lemma 5.1. Let G be a minimally rigid graph in R2 on at least four vertices. Then
G is SNGR if and only if G is special.

Proof. Lemma 4.2(ii) implies necessity. To verify sufficiency first consider the case
when G has exactly four vertices. Then G can be obtained from K4 by deleting an
edge, hence G is SNGR. So we may assume that G has at least five vertices. If G−S is
disconnected for some vertex set S with |S| ≤ 2 then either G is non-rigid or there is a
component C of G−S for which the subgraph of G on S∪C is rigid and non-complete,
a contradiction. Thus G is 3-connected.

Furthermore, it follows from Theorem 2.3 and the fact that G is special that for
every edge f of G and every new edge e the graph G+e−f is (minimally) rigid. Thus
G + e is 3-connected and redundantly rigid for every new edge e. Now Theorem 2.2
implies that G is SNGR.

(a) Prism (b) K3,3

Figure 4: Examples of special graphs on 6 vertices.

Our main goal is to construct families of unit disk special graphs. By Lemma 5.1
and Theorem 4.6 these graphs are UBGR, even though they are not globally rigid.
We remark that no inductive construction is known for special graphs, although they
occur in a number of other rigidity related problems, too, see e.g. [17, 18, 28]. Thus
our construction methods may be of interest in other applications, too.
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Section 5. Families of SNGR graphs in the plane 13

In order to build special graphs the extension operations seem useful, due to Theo-
rem 2.3(iii). Note, however, that an extension of a special graph G may not be special.
In fact, if G is not an edge or a triangle, then a 0-extension of G is never special.

Let us say that a pair {u, v} of vertices in a graph G is non-triangular if {u, v} is not
part of any triangle in G (this is trivially true if uv is not an edge of G). The following
lemma characterizes 1-extensions that preserve the property of being special.

Lemma 5.2. Let G be a special graph on at least four vertices, and let u, v, w be three
different vertices of G with uv ∈ E. Let G′ be the 1-extension of G on uv and w.
Then G′ is special if and only if {u,w} and {v, w} are both non-triangular in G.

Proof. Let us denote the new vertex added by the 1-extension by x. To see that the
condition is necessary, note that if {u,w, z} is a triangle in G for some vertex z, then
the graph induced by u,w, z and x in G′ is a proper rigid subgraph. Indeed, it is
either an 1-extension or a 0-extension of the triangle, depending on whether z is equal
to v. The case when {v, w, z} is a triangle in G is analogous.

Next, we show sufficiency. Take a proper subset X ⊂ V (G′) of vertices with |X| > 3.
We need to show that iG′(X) ≤ 2|X|−4. If x /∈ X then we are done, since G is special
and iG′(X) ≤ iG(X), with strict inequality when X = V . Suppose now that x ∈ X.
Notice that iG′(X) ≤ iG(X − x) + 2 ≤ 2(|X| − 1) − 3 + 2 = 2|X| − 3, and the
second inequality is strict unless X − x is a triangle in G. But in that case the first
inequality is strict, since equality could only occur if the triangle spanned uw or vw,
which would contradict the assumption that the vertex pairs {u,w} and {v, w} are
non-triangular.

Corollary 5.3. Every special graph G = (V,E) on at least five vertices has a 1-
extension such that the resulting graph is special.

Proof. It is easy to check that there are no special graphs on five vertices. One can
also check that the only special graphs on six vertices are those that appear in Figure
Figure 4. Both of these graphs have suitable 1-extensions. Thus we may assume that
|V | ≥ 7.

By Lemma 5.2 it is enough to show that there exists an edge uv and a vertex w such
that w is not a neighbour of either u or v. Let u be a vertex of degree three. Such a
vertex exists since the average degree in a minimally rigid graph is less than four and
in a special graph on five or more vertices every vertex has degree at least three. We
claim that there is a neighbour v of u and a non-neighbour w which are suitable. To
see this suppose, for a contradiction, that every neighbour of u is a neighbour of all
the n− 4 non-neighbours of u. Using this assumption and the fact that the minimum
degree is equal to three, we obtain the following inequality for the sum of the vertex
degrees in G:

4|V | − 6 ≥ 3 · (|V | − 3) + (|V | − 3) · 3 = 6|V | − 18.

Thus |V | ≤ 6, a contradiction. This proves the claim and completes the proof of the
lemma.
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x y

Figure 5: G4

Next, we show that there exists an infinite family of unit disk special (and hence
SNGR) graphs in R2. We describe the graphs only informally and refer the reader
to Figures 5, 9 and 10 for examples. Let us call the graph on 6 vertices obtained
by connecting two disjoint triangles by two disjoint edges a block. See Figure 6. For
any n ≥ 3 we define the graph Gn as follows. First, connect n blocks in a row, as in
the aforementioned figure. Then add a grid of n − 1 rows, with the first row formed
by the topmost vertices of the blocks, and with each vertex in a row connected to
two vertices in the preceeding row. Finally, connect the two vertices of the topmost
row. Figure 10 shows that we can also construct Gn+1 from Gn using the extension
operations: three 0-extensions and 1-extensions each to add a new block, then one
0-extension for each row besides the first, and finally a 1-extension on the topmost
edge of Gn and the vertex that was added last. A proof of the next theorem, stating
that these graphs form an infinite family of unit disk special graphs, can be found in
the appendix.

Theorem 5.4. Gn is a unit disk special graph for all n ≥ 4.

We remark that other constructions are known as well; see e.g. Figure 7.

(a) (b)

Figure 6: Adding a new block by (a) first making three 0-extensions (top to bottom),
and then (b) three 1-extensions (bottom to top).
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Section 6. Tensegrities 15

Figure 7: A different example of a unit disk special graph. In fact, this example gives
rise to an infinite family of such graphs as well.

6 Tensegrities

In this section we describe another method of finding and constructing UBGR graphs,
based on tensegrity frameworks.

A tensegrity graph T = (V ;B,C, S) is a graph on vertex set V whose edge set is par-
titioned into three sets B, C, and S, called bars, cables, and struts, respectively. While
bars represent fixed distances, cables and struts impose upper (resp. lower) bounds
on the distances between their end vertices. A d-dimensional tensegrity framework is
a pair (T, p), where T is a tensegrity graph and p is a map from V to Rd.

Let p and q be two realizations of the tensegrity graph T . We say that (T, p)
dominates (T, q) (denoted by (T, q) ≺ (T, p)) if the corresponding bar lengths are the
same and the struts (cables, resp.) in (T, q) are not shorter (resp. longer) than in
(T, p). A d-dimensional tensegrity framework (T, p) is called globally rigid in Rd if for
any other d-dimensional realization (T, q) of T , (T, q) ≺ (T, p) implies that (T, p) is
congruent to (T, q). See [8, 29] for more on globally rigid tensegrities.

Our method is based on the following simple observation.

Theorem 6.1. Let (G, p) be a unit ball framework in Rd with ||p(u)− p(v)|| = 1 for
some pair u, v ∈ V (G) and let (T, p) be the tensegrity framework obtained from the
all-bar tensegrity (G, p) by adding the strut uv. Then (G, p) is unit ball globally rigid
in Rd if (T, p) is globally rigid in Rd.

Proof. Suppose that (G, p) is not unit ball globally rigid in Rd. Then there exists
a unit ball framework (G, q), which is equivalent but not congruent with (G, p). If
||q(u)− q(v)|| ≥ ||p(u)− p(v)|| then (T, p) dominates (T, q). This is impossible since
(T, p) is globally rigid. Thus we must have ||q(u) − q(v)|| < ||p(u) − p(v)|| = 1. But
this implies that (G, q) is not unit ball, a contradiction.

In fact the theorem remains valid even if we have several pairs of vertices at distance
one in (G, p), and hence more struts in (T, p) (just like in the case of the four-cycle
with unit diagonals). However, this cannot happen in a (scaled) generic framework.

With the help of Theorem 6.1 (and Theorem 4.5) we can construct (generic) mini-
mally rigid and unit disk globally rigid frameworks from certain globally rigid tensegri-
ties with a unit disk underlying framework. We illustrate this by the so-called Cauchy
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(a) A Cauchy polygon on 6 vertices.

1

x

y

(b) Theorem 6.1 implies that the above graph, when realized in the plane as a unit disk
framework such that the distance of x and y is 1, is UBGR.

Figure 8

polygons, see Figure 8. These are two-dimensional tensegrity frameworks in which
the vertices and the cables form a convex polygon and the struts are all diagonals
connecting second neighbours. On n vertices we have n − 2 struts in total. Cauchy
polygons are globally and infinitesimally rigid. Let xy be a fixed strut. It is easy to
construct a Cauchy polygon (T, p) for which the underlying graph G of T −xy is unit
disk and xy has length one. It follows that G is UBGR in R2. Note that G is far from
being special.

More examples may be constructible by using the results of [10].

7 Concluding remarks

7.1 Related notions

By definition, a unit ball framework (G, p) is UBGR if every equivalent unit ball
realization of G is congruent to (G, p). In other words, in every equivalent but non-
congruent realization (G, q) there exists a non-adjacent pair u, v with ||q(u)−q(v)|| <
1. This property makes sense for all frameworks, not just for unit ball frameworks, and
may lead to extensions and further questions. We may, for example, study frameworks
(G, p) with the property that in every equivalent but non-congruent realization (G, q)
there exists a non-adjacent pair u, v with ||q(u) − q(v)|| < m, where m is equal to
min{||p(u)− p(v)|| : u, v ∈ V, uv /∈ E}.
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7.2 The chain of containment relations 17

A different question in the same vein is the following. Suppose that (G, p), viewed
as a straight line embedding of G in the plane, has no edge crossings. Can we decide
whether every equivalent realization (G, q) satisfies this property?

7.2 The chain of containment relations

By Theorem 3.2 and the well-known characterizations of rigid and globally rigid graphs
in R1 we can deduce that for d = 1 we have GGR ⊂ SUBGR = UBGR = GR
within the family of unit interval graphs, where the first relation is strict. In higher
dimensions it remains open whether the first and last relations are strict, even for
minimally rigid unit ball graphs. Figure 2 (and its generalizations) show that not
every UBGR graph is SUBGR in Rd, for d ≥ 2.

7.3 SNGR graphs in R3

Maximal planar graphs (or triangulations, for short) are minimally rigid in R3 by a
result of H. Gluck [11]. W. Whiteley showed in [31] that if G is a four-connected
triangulation and u, v is a non-adjacent vertex pair then G+ uv is redundantly rigid.
This implies that four-connected triangulations are special in R3. A recent result of
S. Tanigawa and the second author [21] implies that they are also SNGR in three-
space. Hence every unit ball four-connected triangulation is UBGR in R3. It would
be interesting to find families of unit ball four-connected triangulations in R3.
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Appendix A An infinite family of special graphs

In what follows we prove that the graphs Gn, presented in Section 5, are special in R2

for n ≥ 4. In order to do this we state two lemmas regarding the exact effect of the
extension operations on rigid subgraphs. Lemma A.2 can be seen as a generalization
of Lemma 5.2, and the proof uses essentially the same ideas. Lemma A.1 is the
analogous statement for 0-extensions. We omit the proofs.

Lemma A.1. Let G be a minimally rigid graph and let G′ = G+x be the 0-extension
of G on vertices u and v. Then X ⊆ G′ induces a rigid subgraph of G′ if and only if
one of the following cases holds:

• x /∈ X and X induces a rigid subgraph of G.

• x ∈ X and X − x induces a rigid subgraph of G containing u and v.
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Section A. An infinite family of special graphs 18

• X is an edge incident to x or X = {x}.

Lemma A.2. Let G be a minimally rigid graph and let G′ = G+x be the 1-extension
of G on an edge uv and vertex w. Then X ⊆ G′ induces a rigid subgraph of G′ if and
only if one of the following cases holds:

• x /∈ X and X induces a rigid subgraph of G that does not span uv.

• x ∈ X and X − x induces a rigid subgraph of G that contains u,w or v, w.

• X is an edge incident to x or X = {x}.

x y

v1 v2 v3

Figure 9: G3

Now we have the tools to sketch a proof of Theorem 5.4. The details we leave out
can be easily (and mostly mechanically) checked.

Proposition A.3. a) Gn is a unit disk graph for all n ≥ 3,

b) G3 is minimally rigid and its non-complete, minimally rigid proper subgraphs
are spanned by some of {x, y, v1, v2, v3},

c) Gn is special for all n ≥ 4.

Proof. a, It is not difficult to see that the frameworks shown in the figures (e.g.
Figure 10) are unit disk frameworks with the appropriate choice of vertex positions
(and edge lengths).

b, Figure 11 shows that G3 can be constructed from a minimally rigid graph using
0- and 1-extensions, thus it is minimally rigid. The rest of the claim can be verified
by following the changes in the set of minimally rigid subgraphs throughout this
construction (using Lemma A.1 and Lemma A.2).

c, It is clear by the inductive construction and the fact that G3 is minimally rigid
that Gn is minimally rigid as well for all n ≥ 4. We prove that Gn is special by
induction on n. See Figure 10 for the case n = 5. By using the previous lemmas
and the proposition concerning G3, we may observe that before the 1-extension by x′,
every non-complete, minimally rigid proper subgraph spans the edge xy, and no such
subgraph contains the vertex y′. It follows from Lemma A.2 that the resulting graph
is special. The induction step is analogous to the case n = 4.
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x y

x′ y′

Figure 10: Construction of G5 from G4
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x y

(a)

x y

(b)

x y

(c)

x y

(d)

x y

(e)

Figure 11: The construction of G3 by extensions.
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[20] T. Jordán, C. Király, and S. Tanigawa, Generic global rigidity of body-hinge
frameworks, J. Combinatorial Theory, Ser. B., Vol. 117, 59-76, 2016.

[21] T. Jordán and S. Tanigawa, Global rigidity of triangulations with braces, Egerváry
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