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Abstract

We consider discrete decreasing minimization problem on an integral base-poly-
hedron. The problem is to find a lexicographically minimal integral vector in an inte-
gral base-polyhedron, where the components of a vector are arranged in a decreasing
order. This study can be regarded as a discrete counter-part of the work by Fujishige
(1980) on the lexicographically optimal base and the principal partition of a base-
polyhedron in continuous variables.

In contrast to the constructive and algorithmic approach in Part I, Part II offers
structural views from discrete convex analysis (DCA) by making full use of the fun-
damental results on M-convex sets and M-convex functions. The characterization of
decreasing minimality in terms of 1-tightening steps (exchange operations) is derived
from the local condition of global minimality for M-convex functions, known as M-
optimality criterion in DCA. The min-max formulas, including the one for the square-
sum of components, are derived as special cases of the Fenchel-type duality in DCA;
this approach also yields a novel min-max formula that shows a natural link to ma-
jorization. A general result on the Fenchel-type duality in DCA offers a short alterna-
tive proof to the statement that the decreasingly minimal elements of an M-convex set
form a matroidal M-convex set.

A direct characterization is given to the canonical partition, which was constructed
by an iterative procedure in Part I. This reveals the precise relationship between the
canonical partition for the discrete case and the principal partition for the continuous
case. Moreover, this result entails a proximity theorem with a tight bound, which leads
to a continuous relaxation algorithm for finding a decreasingly minimal element of
an M-convex set. Thus the relationship between the continuous and discrete cases is
completely clarified.
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Section 1. Introduction 2

1 Introduction
We continue to consider discrete decreasing minimization on an integral base-polyhedron
studied in Part I. The problem is to find a lexicographically minimal (dec-min) integral
vector in an integral base-polyhedron, where the components of a vector are arranged in
a decreasing order (see Section 1.1 for precise description of the problem). While our
present study deals with the discrete case, the continuous case was investigated by Fujishige
[10] around 1980 under the name of lexicographically optimal bases of a base-polyhedron,
as a generalization of lexicographically optimal maximal flows considered by Megiddo
[27]. Our study can be regarded as a discrete counter-part of the work by Fujishige [10],
[11, Section 9] on the lexicographically optimal base and the principal partition of a base-
polyhedron.

In Part I of this paper, we have shown the following:

• A characterization of decreasing minimality by 1-tightening steps (exchange opera-
tions),

• A (dual) characterization of decreasing minimality by the canonical chain,

• The structure of the dec-min elements as a matroidal M-convex set,

• A characterization of a dec-min element as a minimizer of square-sum of compo-
nents,

• A min-max formula for the square-sum of components,

• A strongly polynomial algorithm for finding a dec-min element and the canonical
chain,

• Applications.

In contrast to the constructive and algorithmic approach in Part I, Part II offers structural
views from discrete convex analysis (DCA) as well as from majorization. The concept of
majorization ordering offers a useful general framework to discuss decreasing minimality.
The relevance of DCA to decreasing minimization is not surprising, since an M-convex
set is nothing but the set of integral points of an integral base-polyhedron and a separable
convex function on an M-convex set is an M-convex function. In particular, the square-sum
of components of a vector in an M-convex set is an M-convex function.

In Section 2 the basic facts about majorization are described. In Section 3 we derive the
characterization of decreasing minimality in terms of 1-tightening steps (exchange opera-
tions) from the local characterization of global minimality for M-convex functions, known
as M-optimality criterion in DCA. In Section 4, the min-max formulas, including the one
for the square-sum of components, are derived as special cases of the Fenchel-type dual-
ity in DCA; this approach also yields a novel min-max formula that shows a natural link
to majorization. In Section 5 we use a general result on the Fenchel-type duality in DCA
for a short alternative proof to the statement that the decreasingly minimal elements of an
M-convex set form a matroidal M-convex set. The relationship between the continuous and
discrete cases is clarified in Section 6. We reveal the precise relation between the canoni-
cal partition and the principal partition by establishing an alternative direct characterization
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1.1 Definition and notation 3

of the canonical partition, which was constructed by an iterative procedure in Part I. The
obtained result provides a proximity theorem with a tight bound, which leads to a con-
tinuous relaxation algorithm for finding a decreasingly minimal element of an M-convex
set. In Appendix A we show an additional property of a dec-min element that it minimizes
non-separable symmetric convex functions. In Appendix B we offer a brief survey of early
papers and books related to decreasing minimization on base-polyhedra.

1.1 Definition and notation
We review some definitions and notations introduced in Part I [8].

Decreasing minimality
For a vector x, let x↓ denote the vector obtained from x by rearranging its components in
a decreasing order. For example, x↓ = (5, 5, 4, 2, 1) when x = (2, 5, 5, 1, 4). We call two
vectors x and y (of same dimension) value-equivalent if x↓ = y↓. For example, (2, 5, 5, 1, 4)
and (1, 4, 5, 2, 5) are value-equivalent while the vectors (3, 5, 5, 3, 4) and (3, 4, 5, 4, 4) are
not.

A vector x is decreasingly smaller than vector y, in notation x <dec y, if x↓ is lexico-
graphically smaller than y↓ in the sense that they are not value-equivalent and x↓( j) < y↓( j)
for the smallest subscript j for which x↓( j) and y↓( j) differ. For example, x = (2, 5, 5, 1, 4)
is decreasingly smaller than y = (1, 5, 5, 5, 1) since x↓ = (5, 5, 4, 2, 1) is lexicographically
smaller than y↓ = (5, 5, 5, 1, 1).

A vector x is decreasingly smaller than or equal to vector y, in notation x ≤dec y, if
they are either value-equivalent or x <dec y. For a set Q of vectors, x ∈ Q is decreasingly
minimal (dec-min, for short) if x ≤dec y for every y ∈ Q. Note that the dec-min elements
of Q are value-equivalent. Therefore an element m of Q is dec-min if its largest component
is as small as possible, within this, its second largest component (with the same or smaller
value than the largest one) is as small as possible, and so on. An element x of Q is said to
be a max-minimized element (a max-minimizer, for short) if its largest component is as
small as possible.

In an analogous way, for a vector x, we let x↑ denote the vector obtained from x by
rearranging its components in an increasing order. A vector y is increasingly larger than
vector x, in notation y >inc x, if they are not value-equivalent and y↑( j) > x↑( j) holds for the
smallest subscript j for which y↑( j) and x↑( j) differ. We write y ≥inc x if either y >inc x or x
and y are value-equivalent. Furthermore, we call an element m of Q increasingly maximal
(inc-max for short) if its smallest component is as large as possible over the elements of Q,
within this its second smallest component is as large as possible, and so on.

The decreasing minimization problem is to find a dec-min element of a given set Q
of vectors. When the set Q consists of integral vectors, we speak of discrete decreasing
minimization. In Parts I and II of this paper, we deal with the case where the set Q is an
M-convex set, i.e., the set of integral members of an integral base-polyhedron. In Part III,
the set Q will be the intersection of two M-convex sets, or more generally, the set of integral
members of an integral submodular flow polyhedron.
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Section 2. Connection to majorization 4

Base polyhedra
Throughout the paper, S denotes a finite non-empty ground-set. For a vector m ∈ RS (or
function m : S → R) and a subset X ⊆ S , we use the notation m̃(X) =

∑
[m(v) : v ∈ X]. The

characteristic (or incidence) vector of a subset Z ⊆ S is denoted by χZ, that is, χZ(v) = 1
if v ∈ Z and χZ(v) = 0 otherwise. For a polyhedron B, notation

....

B (pronounced: dotted B)
means the set of integral members (elements, vectors, points) of B.

Let b be a set-function for which b(X) = +∞ is allowed but b(X) = −∞ not. The
submodular inequality for subsets X,Y ⊆ S is defined by

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

We say that b is submodular if the submodular inequality holds for every pair of subsets
X,Y ⊆ S with finite b-values. A set-function p is supermodular if −p is submodular. A
(possibly unbounded) base-polyhedron B in RS is defined by

B = B(b) = {x ∈ RS : x̃(S ) = b(S ), x̃(Z) ≤ b(Z) for every Z ⊂ S }.
A non-empty base-polyhedron B can also be defined by a supermodular function p for
which p(∅) = 0 and p(S ) is finite as follows:

B = B′(p) = {x ∈ RS : x̃(S ) = p(S ), x̃(Z) ≥ p(Z) for every Z ⊂ S }.

We call the set
....

B of integral elements of an integral base-polyhedron B an M-convex
set. Originally, this basic notion of discrete convex analysis is defined as a set of integral
points in RS satisfying certain exchange axioms, and it is known that the two properties are
equivalent ([32],Theorem 4.15).

Discrete convex functions
For a function ϕ : Z→ R∪ {+∞} the effective domain of ϕ is denoted as domϕ = {k ∈ Z :
ϕ(k) < +∞}. A function ϕ : Z→ R ∪ {+∞} is called discrete convex (or simply convex) if
ϕ(k−1)+ϕ(k+1) ≥ 2ϕ(k) for all k ∈ domϕ, and strictly convex if ϕ(k−1)+ϕ(k+1) > 2ϕ(k)
for all k ∈ domϕ.

A function Φ : ZS → R ∪ {+∞} of the form

Φ(x) =
∑

[ϕs(x(s)) : s ∈ S ]

is called a separable (discrete) convex function if, for each s ∈ S , ϕs : Z → R ∪ {+∞} is
a discrete convex function. We call Φ a symmetric separable convex function if ϕs does
not depend on s, that is, if ϕs = ϕ for all s ∈ S for some discrete convex function ϕ. We call
Φ a symmetric separable strictly convex function if ϕ is strictly convex.

2 Connection to majorization
Majorization ordering (or dominance ordering) is a well-established notion studied in di-
verse contexts including statistics and economics, as described in Arnold–Sarabia [3] and
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2.1 Majorization ordering 5

Marshall–Olkin–Arnold [25]. In this section we describe the relevant results known in the
literature of majorization, and indicate a close relationship to decreasing minimality inves-
tigated in our series of papers.

We have dual objectives in this section. First, we intend to reinforce the connection
between majorization and combinatorial optimization. It is also hoped that this will lead to
future applications of our results in areas like statistics and economics, in addition to those
areas related to graphs, networks, and matroids mentioned in the introduction of Part I
[8]. In economics, for example, egalitarian allocation for indivisible goods can possibly be
formulated and analyzed by means of discrete decreasing minimization.

Second, we point out substantial technical connections between majorization and our re-
sults in Part I. We argue that some of our results can be derived from the combination of the
classical results about majorization and the results of Groenevelt [14] for the minimization
of separable convex functions over the integer points in an integral base-polyhedron. We
also point out that some of the standard characterizations of least majorization are asso-
ciated with min-max duality relations in the case where the underlying set is the integer
points of an integral base-polyhedron or the intersection of two integral base-polyhedra.

2.1 Majorization ordering
We review standard results known in the literature of majorization in a way suitable for our
discussion.

Recall that x↓ denotes the vector obtained from a vector x ∈ Rn by rearranging its com-
ponents in a decreasing order. Let x denote the vector whose j-th component x( j) is equal
to the sum of the first j components of x↓. A vector x is said to be majorized by another
vector y, in notation x ≺ y, if x ≤ y and x(n) = y(n). It is easy to see [25, p.13] that

x ≺ y ⇐⇒ −x ≺ −y. (1)

Majorization is discussed more often for real vectors, but here we are primarily interested
in integer vectors.

As an immediate adaptation of the standard results [25, 1.A.3 in p.14], the following
proposition gives equivalent conditions for majorization for integer vectors. A T -transform
(also called a Robin Hood operation) means a linear transformation of the form T = (1 −
λ)I+λQ, where 0 ≤ λ ≤ 1 and Q is a permutation matrix that interchanges just two elements
(transposition). In other words, a T -transform is a mapping of the form x 7→ x + λ̂(χs − χt)
with 0 ≤ λ̂ ≤ x(t) − x(s). It is noteworthy that this operation with λ̂ = 1 corresponds to the
basis exchange in an integral base-polyhedron.

Proposition 2.1. The following conditions are equivalent for x, y ∈ Zn :
(i) x ≺ y (x is majorized by y), that is,

k∑

i=1

x↓(i) ≤
k∑

i=1

y↓(i) (k = 1, . . . , n − 1),
n∑

i=1

x↓(i) =

n∑

i=1

y↓(i).

(ii) x = yP for some doubly stochastic matrix P, where x and y are regarded as row
vectors.
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2.2 Majorization and decreasing-minimality 6

(iii) x can be derived from y by successive applications of a finite number of T-transforms.

(iv)
n∑

i=1

ϕ(x(i)) ≤
n∑

i=1

ϕ(y(i)) for all discrete convex functions ϕ : Z→ R.

(v)
n∑

i=1

x(i) =

n∑

i=1

y(i) and
n∑

i=1

(x(i) − a)+ ≤
n∑

i=1

(y(i) − a)+ for all a ∈ Z. where (z)+ =

max(z, 0) for any z ∈ Z. •
Let D be an arbitrary subset of Zn. An element x of D is said to be least majorized in

D if x is majorized by all y ∈ D. A least majorized element may not exist in general, as the
following example shows.

Example 2.1. Let D = {(2, 0, 0, 0), (1,−1, 1, 1)}. For x = (2, 0, 0, 0) and y = (1,−1, 1, 1)
we have x↓ = (2, 0, 0, 0) and y↓ = (1, 1, 1,−1). Therefore, x = (2, 0, 0, 0) is increasingly
maximal in D and y = (1,−1, 1, 1) is decreasingly minimal in D. However, there exists no
least majorized element in D, since x = (2, 2, 2, 2) and y = (1, 2, 3, 2), for which neither
x ≤ y nor y ≤ x holds. We note that D here arises from the intersection of two integral
base-polyhedra (see Section 3.3 of Part I [8]). •
Remark 2.1. In discussing the existence and properties of a least majorized element, we are
primarily concerned with a subset D of Zn whose elements have a constant component-sum.
If the component-sum is not constant on D, we need to introduce a more general notion
[35]. A vector x is said to be weakly submajorized by another vector y if x ≤ y, with the
standard notation x ≺w y. An element x of D is said to be least weakly submajorized in
D if x is weakly submajorized by all y ∈ D. The distinction of “weakly submajorized” and
“majorized” is not necessary for a base-polyhedron or the intersection of base-polyhedra,
whereas we have to distinguish these concepts for a g-polymatroid and a submodular flow
polyhedron. •
Remark 2.2. The characterization of a least majorized element in (iv) in Proposition 2.1
can be associated with a min-max duality relation, which is given by (33) in Section 4.2
when the underlying set D is an M-convex set (= the integer points of an integral base-
polyhedron), and by (53) in Section 4.8 when D is the intersection of two M-convex sets.
For an M-convex set, the min-max formula associated with (v) in Proposition 2.1 is given
in Theorem 4.6 in Section 4.6. •

2.2 Majorization and decreasing-minimality
Majorization and decreasing-minimality are closely related, as is explicit in Tamir [35].

Proposition 2.2. If x ≺ y, then x ≤dec y and x ≥inc y.

Proof. Suppose that x ≺ y. If x = y, then x↓ = y↓, and hence x and y are value-equivalent. If
x < y, then there exists an index k with 1 ≤ k ≤ n such that x↓(i) = y↓(i) for i = 1, . . . , k − 1
and x↓(k) < y↓(k). This shows that x is decreasingly smaller than y. In either case, we have
x ≤dec y. Since x ≺ y, we have −x ≺ −y by (1). By the above argument applied to (−x,−y),
we obtain −x ≤dec −y, which is equivalent to x ≥inc y. �
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2.3 Majorization in integral base-polyhedra 7

Remark 2.3. The converse of Proposition 2.2 is not true. That is, x ≺ y does not follow
from x ≤dec y and x ≥inc y. For instance, for x = (2, 2,−2,−2) and y = (3, 0, 0,−3) we
have x ≤dec y and x ≥inc y, but x ⊀ y. •
Proposition 2.3. Let D be an arbitrary subset of Zn and assume that D admits a least
majorized element. For any x ∈ D the following three conditions are equivalent.

(A) x is least majorized in D.

(B) x is decreasingly minimal in D.

(C) x is increasingly maximal in D.

Proof. (A)→(B) By Proposition 2.2, a least majorized element is decreasingly minimal.
(B)→(A) Take a least majorized element y, which exists by the assumption. By definition

we have y ≤ x. Since x ≤dec y, we have either x↓ = y↓ or there exists an index k with
1 ≤ k ≤ n such that x↓(i) = y↓(i) for i = 1, . . . , k − 1 and x↓(k) < y↓(k). In the latter case
we have x(k) < y(k), which contradicts y ≤ x. Therefore we have x↓ = y↓, which implies
that x is a least majorized element.

(A)↔(C) For any y ∈ D, we have

x ≺ y ⇐⇒ −x ≺ −y ⇐⇒ −x ≤dec −y ⇐⇒ x ≥inc y

by (1) and (A)↔(B) for (−x,−y). �

2.3 Majorization in integral base-polyhedra
In this section we consider majorization ordering for integer points in an integral base-
polyhedron. In discrete convex analysis, the set of the integer points of an integral base-
polyhedron is called an M-convex set.

The following fundamental fact has long been recognized by experts, though it was dif-
ficult for the present authors to identify its origin in the literature (see Remark 2.5).

THEOREM 2.4. The set of the integer points of an integral base-polyhedron admits a least
majorized element. •

This fact can be regarded as a corollary of the following fundamental result of Groenevelt
[14], which is already mentioned in Section 6 of Part I [8].

Proposition 2.5 (Groenevelt [14]; cf. [11, Theorem 8.1]). Let B be an integral base-
polyhedron,

....

B be the set of its integral elements, and Φ(x) =
∑

[ϕs(x(s)) : s ∈ S ] for
x ∈ ZS , where ϕs : Z→ R ∪ {+∞} is a discrete convex function for each s ∈ S . An element
m of

....

B is a minimizer of Φ(x) if and only if ϕs(m(s) + 1) +ϕt(m(t)− 1) ≥ ϕs(m(s)) +ϕt(m(t))
whenever m + χs − χt ∈

....

B. •
Theorem 2.4 can be derived from the combination of Proposition 2.5 with Proposition

2.1. Let m ∈ ....

B be a minimizer of the square-sum
∑

[x(s)2 : s ∈ S ] over
....

B; note that such m
exists. Then, by Proposition 2.5 (only-if part), we have (m(s) + 1)2 + (m(t) − 1)2 ≥ m(s)2 +

m(t)2 whenever m+χs−χt ∈
....

B. Here the inequality (m(s)+1)2+(m(t)−1)2 ≥ m(s)2+m(t)2 is
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Section 3. Convex minimization and decreasing minimality 8

equivalent to m(s)−m(t)+1 ≥ 0, which implies ϕ(m(s)+1)+ϕ(m(t)−1) ≥ ϕ(m(s))+ϕ(m(t))
for any discrete convex function ϕ : Z → R. Therefore, by Proposition 2.5 (if part), m is a
minimizer of any symmetric separable convex function

∑
[ϕ(x(s)) : s ∈ S ] over

....

B. By the
equivalence of (i) and (iv) in Proposition 2.1, this element m is a least majorized element of
....

B.
The combination of Theorem 2.4 and Proposition 2.3 implies the following.

THEOREM 2.6. Let B be an integral base-polyhedron and
....

B be the set of its integral
elements. An element m of

....

B is decreasingly minimal if and only if m is least majorized in
....

B. •
Remark 2.4. In Theorem 3.5 of Part I [8] we have shown, without using the terminology
of majorization, that any dec-min element of

....

B is a least majorized element of
....

B. Since a
dec-min element always exists, this theorem also implies Theorem 2.4. •
Remark 2.5. A variant of majorization concept, “weak submajorization” (cf., Remark 2.1),
is investigated for integral g-polymatroids by Tamir [35] and for jump systems by Ando
[2]. These results are a direct extension of Theorem 2.4. Therefore, we may safely say that
Theorem 2.4 with the above proof was known to experts before 1995. •

3 Convex minimization and decreasing minimality
In this section we shed the light of discrete convex analysis on the following results obtained
in Part I [8]. More specifically, we derive these results from the optimality criterion for M-
convex functions, which is described in Theorem 3.6 in Section 3.2.

THEOREM 3.1 ([8, Theorem 3.3, (A) & (C1)]). An element m of
....

B is a dec-min element
of

....

B if and only if there is no 1-tightening step for m. •
Proposition 3.2 ([8, Proposition 6.1]). Let Φ(x) =

∑
[ϕ(x(s)) : s ∈ S ] be a symmetric

separable convex function with ϕ : Z→ R. Each dec-min element of
....

B is a minimizer of Φ.
•
THEOREM 3.3 ([8, Theorem 6.2]). Let Φ(x) =

∑
[ϕ(x(s)) : s ∈ S ] be a symmetric

separable strictly convex function with ϕ : Z → R. An element m of
....

B is a minimizer of Φ

if and only if m is a dec-min element of
....

B. •
It should be clear in the above that

....

B denotes an M-convex set (the set of integral points
of an integral base-polyhedron), and a 1-tightening step for m ∈ ....

B means the operation of
replacing m to m + χs − χt for some s, t ∈ S such that m(t) ≥ m(s) + 2 and m + χs − χt ∈

....

B.

3.1 Convex formulation of decreasing minimality
As already mentioned at the end of Section 6.1 of Part I [8], a dec-min element can be
characterized as a minimizer of ‘rapidly’ increasing convex function. This characterization
enables us to make use of DCA for the analysis of decreasing minimality.
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3.1 Convex formulation of decreasing minimality 9

We say that ϕ : Z→ R is rapidly increasing if

· · · � ϕ(k − 1) � ϕ(k) � ϕ(k + 1) � · · · , (2)

from which the strict convexity of ϕ follows. We can formulate a quantitative version of
this notion as

ϕ(k + 1) ≥ (n + 1) ϕ(k) > 0 (k ∈ Z), (3)

where n = |S |. For example, ϕ(k) = (n + 1)k (k ∈ Z) satisfies this condition. As is easily
expected, x <dec y is equivalent to Φ(x) < Φ(y).

Proposition 3.4. Assume rapid increase (3). A vector x ∈ ZS is decreasingly-smaller than
a vector y ∈ ZS if and only if Φ(x) < Φ(y).

Proof. (The proof is straightforward and easy.) For x ∈ ZS and k ∈ Z, let Θ(x, k) denote
the number of elements s of S with x(s) = k, i.e., Θ(x, k) = |{s ∈ S : x(s) = k}|. Then we
have

Φ(x) =
∑

k

Θ(x, k)ϕ(k). (4)

Obviously, Φ(x) = Φ(y) if and only if x is value-equivalent to y.
Suppose that x is not value-equivalent to y, and let k̂ be the largest k with Θ(x, k) ,

Θ(y, k). By definition, x is decreasingly-smaller than y if and only if Θ(x, k̂) < Θ(y, k̂). On
the other hand, we have

Φ(x) − Φ(y) =
∑

k

(Θ(x, k) − Θ(y, k))ϕ(k)

= (Θ(x, k̂) − Θ(y, k̂))ϕ(k̂) +
∑

k<k̂

(Θ(x, k) − Θ(y, k))ϕ(k),

where

0 ≤
∑

k<k̂

Θ(x, k)ϕ(k) ≤ ϕ(k̂ − 1)
∑

k<k̂

Θ(x, k) ≤ nϕ(k̂ − 1) ≤ n
n + 1

ϕ(k̂)

and similarly for y. Therefore we have |∑k<k̂(Θ(x, k) − Θ(y, k))ϕ(k)| ≤ n
n+1ϕ(k̂), and hence

(Θ(x, k̂) − Θ(y, k̂) − n
n + 1

)ϕ(k̂) ≤ Φ(x) − Φ(y) ≤ (Θ(x, k̂) − Θ(y, k̂) +
n

n + 1
)ϕ(k̂).

This shows that Φ(x) < Φ(y) if and only if Θ(x, k̂) < Θ(y, k̂). �

By Proposition 3.4 above, the problem of finding a dec-min element can be recast into
a convex minimization problem. It is emphasized that for this equivalence, the underlying
set may be any subset of ZS (not necessarily an M-convex set).

Proposition 3.5. Assume rapid increase (3) and let D be an arbitrary subset of ZS . An
element m of D is decreasingly-minimal in D if and only if it minimizes Φ(x) =

∑
s∈S ϕ(x(s))

among all members of D. •
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3.2 M-convex function minimization in discrete convex analysis 10

Remark 3.1. The characterization of a decreasingly-minimal elements as a minimizer of a
rapidly increasing convex function in Proposition 3.5 is not particularly new. Similar ideas
are scattered in the literature of related topics such as majorization (Marshall–Olkin–Arnold
[25]) and shifted optimization (Levin–Onn [24]). •
Remark 3.2. The relations of being majorized (≺), weakly submajorized (≺w), and decreasing-
ly-smaller (≤dec) are characterized with reference to different classes of symmetric separable
convex functions as follows (Proposition 2.1, [25, 4.B.2], and Proposition 3.4):

• x ≺ y ⇐⇒
n∑

i=1

ϕ(x(i)) ≤
n∑

i=1

ϕ(y(i)) for all convex ϕ,

• x ≺w y ⇐⇒
n∑

i=1

ϕ(x(i)) ≤
n∑

i=1

ϕ(y(i)) for all increasing (nondecreasing) convex ϕ,

• x ≤dec y ⇐⇒
n∑

i=1

ϕ(x(i)) ≤
n∑

i=1

ϕ(y(i)) for all rapidly increasing convex ϕ. •

3.2 M-convex function minimization in discrete convex analysis
In this section we introduce a fundamental concept in DCA, M-convex functions, along
with a local optimality condition for a minimizer of an M-convex function. Since a sepa-
rable convex function on an M-convex set is an M-convex function (cf. Section 3.3), this
optimality criterion renders alternative proofs of Theorem 3.1, Proposition 3.2, and Theo-
rem 3.3 about the dec-min elements of an M-convex set (cf. Section 3.4).

For a vector z ∈ RS in general, we define the positive and negative supports of z as

supp+(z) = {s ∈ S : z(s) > 0}, supp−(z) = {t ∈ S : z(t) < 0}. (5)

For a function f : ZS → R ∪ {−∞,+∞}, the effective domain is defined as dom f = {x ∈
ZS : −∞ < f (x) < +∞}.

A function f : ZS → R ∪ {+∞} with dom f , ∅ is called M-convex if, for any x, y ∈ ZS

and s ∈ supp+(x − y), there exists some t ∈ supp−(x − y) such that

f (x) + f (y) ≥ f (x − χs + χt) + f (y + χs − χt). (6)

In the above statement we may change “for any x, y ∈ ZS ” to “for any x, y ∈ dom f ” since
if x < dom f or y < dom f , (6) trivially holds with f (x) + f (y) = +∞. It follows from
this definition that dom f consists of the integer points of an integral base-polyhedron (an
M-convex set). A function f is called M-concave if − f is M-convex.

A function f : ZS → R ∪ {+∞} with dom f , ∅ is called M\-convex if, for any x, y ∈ ZS

and s ∈ supp+(x − y), we have (i)

f (x) + f (y) ≥ f (x − χs) + f (y + χs) (7)

or (ii) there exists some t ∈ supp−(x − y) for which (6) holds. It follows from this definition
that the effective domain of an M\-convex function consists of the integer points of an
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3.3 Separable convex function minimization in discrete convex analysis 11

integral g-polymatroid (M\-convex set). An M-convex function is M\-convex. A function f
is called M\-concave if − f is M\-convex.

The following is a local characterization of global minimality for M- or M\-convex func-
tions, called the M-optimality criterion.

THEOREM 3.6 ([32, Theorem 6.26]). Let f : ZS → R ∪ {+∞} be an M\-convex function,
and x∗ ∈ dom f . Then x∗ is a minimizer of f if and only if it is locally minimal in the sense
that

f (x∗) ≤ f (x∗ + χs − χt) for all s, t ∈ S , (8)
f (x∗) ≤ f (x∗ + χs) for all s ∈ S , (9)
f (x∗) ≤ f (x∗ − χt) for all t ∈ S . (10)

If f is M-convex, x∗ is a minimizer of f if and only if (8) holds. •

3.3 Separable convex function minimization in discrete convex analy-
sis

Minimization of a separable convex function over the set of integral points of an integral
base-polyhedron can be treated successfully as a special case of M-convex function mini-
mization presented in Section 3.2.

We consider a function Φ : ZS → R ∪ {+∞} of the form

Φ(x) =
∑

[ϕs(x(s)) : s ∈ S ], (11)

where, for each s ∈ S , the function ϕs : Z → R ∪ {+∞} is discrete convex (i.e., ϕs(k −
1) + ϕs(k + 1) ≥ 2ϕs(k) for all k ∈ domϕs). Such function Φ is called a separable (discrete)
convex function. We call Φ symmetric if ϕs = ϕ for all s ∈ S .

Let
....

B be the set of integral points of an integral base-polyhedron B. The problem we
consider is:

Minimize Φ(x) =
∑

[ϕs(x(s)) : s ∈ S ] subject to x ∈ ....

B. (12)

Using the indicator function δ : ZS → R ∪ {+∞} of
....

B defined as

δ(x) =

{
0 (x ∈ ....

B),
+∞ (otherwise),

(13)

we can rewrite (12) as
Minimize Φ(x) + δ(x). (14)

This problem is amenable to discrete convex analysis, since the separable convex func-
tion Φ is M\-convex, the indicator function δ of an M-convex set is M-convex, and more-
over, the function Φ + δ is M-convex. Indeed it is easy to verify that these functions satisfy
the defining exchange property. In this connection it is noted that the sum of an M-convex
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3.4 DCA-based proofs of the theorems 12

function and an M\-convex function is not necessarily M\-convex, but the sum of an M-
convex function and a separable convex function is always M-convex (cf. Remark 4.1 in
Section 4.1).

An application of the M-optimality criterion (Theorem 3.6) to our function Φ + δ gives
the following important result due to Groenevelt [14], which was shown as Proposition 2.5
and stated again for its relevance here.

Proposition 3.7 (Groenevelt [14]; cf. [11, Theorem 8.1]). Let B be an integral base-
polyhedron and

....

B be the set of its integral elements. An element m of
....

B is a minimizer
of Φ(x) =

∑
[ϕs(x(s)) : s ∈ S ] over

....

B if and only if ϕs(m(s) + 1) + ϕt(m(t) − 1) ≥
ϕs(m(s)) + ϕt(m(t)) whenever m + χs − χt ∈

....

B. •
In the special case of symmetric separable convex functions, with ϕs = ϕ for all s ∈ S ,

we can relate the above condition to the 1-tightening step introduced in Part I [8]. Recall
that a 1-tightening step for m ∈ ....

B means the operation of replacing m to m + χs − χt for
some s, t ∈ S such that m(t) ≥ m(s) + 2 and m + χs − χt ∈

....

B.

Proposition 3.8. For any symmetric separable discrete convex function Φ(x) =
∑

[ϕ(x(s)) :
s ∈ S ] with ϕ : Z→ R ∪ {+∞}, an element m of

....

B is a minimizer of Φ over
....

B if there is no
1-tightening step for m. The converse is also true if ϕ is strictly convex.

Proof. By Proposition 3.7, m is a minimizer of Φ if and only if

ϕ(m(s) + 1) + ϕ(m(t) − 1) ≥ ϕ(m(s)) + ϕ(m(t))

for all s, t ∈ S such that m + χs − χt ∈
....

B. By the convexity of ϕ, we have this inequality
if m(t) ≤ m(s) + 1, and the converse is also true when ϕ is strictly convex. Finally we note
that there is no 1-tightening step for m if and only if m(t) ≤ m(s) + 1 for all s, t ∈ S such
that m + χs − χt ∈

....

B. �

3.4 DCA-based proofs of the theorems
The combination of Proposition 3.8 with Proposition 3.5 provides alternative proofs of
Theorem 3.1, Proposition 3.2, and Theorem 3.3.

Proof of Theorem 3.1: Let Φ be a symmetric separable convex function with rapidly
increasing ϕ. By Proposition 3.5, m is dec-min if and only if m is a minimizer of Φ. On the
other hand, since Φ is strictly convex, Proposition 3.8 shows that m is a minimizer of Φ if
and only if there is no 1-tightening step for m. Therefore, m is a dec-min element of

....

B if
and only if there is no 1-tightening step for m.

Proof of Proposition 3.2 and Theorem 3.3: Let Φ be a symmetric separable convex
function. By Proposition 3.8, m is a minimizer of Φ if there is no 1-tightening step for m;
and the converse is also true for strictly convex Φ. Theorem 3.1, on the other hand, shows
that there is no 1-tightening step for m if and only if m is a dec-min element. Therefore, m
is a minimizer of Φ if m is a dec-min element of

....

B; and the converse is also true for strictly
convex Φ.
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3.5 Extension to generalized polymatroids 13

3.5 Extension to generalized polymatroids
In this section we shed the light of DCA on the result of Tamir [35] about the majorization
ordering in generalized polymatroids (g-polymatroids). This is based on the fact that the set
....

Q of integral points of an integral g-polymatroid Q is an M\-convex set, and accordingly,
the indicator function of

....

Q is an M\-convex function. See Part I [8] for the definition of
g-polymatroids and [32] for more about M\-convexity.

The M-optimality criterion (Theorem 3.6) immediately implies the following generaliza-
tion of Proposition 3.7.

Proposition 3.9. Let Q be an integral g-polymatroid and
....

Q be the set of its integral ele-
ments. An element m of

....

Q is a minimizer of a separable convex function Φ(x) =
∑

[ϕs(x(s)) :
s ∈ S ] over

....

Q if and only if

• ϕs(m(s) + 1) + ϕt(m(t) − 1) ≥ ϕs(m(s)) + ϕt(m(t)) whenever m + χs − χt ∈
....

Q,

• ϕs(m(s) + 1) ≥ ϕs(m(s)) whenever m + χs ∈
....

Q, and

• ϕt(m(t) − 1) ≥ ϕt(m(t)) whenever m − χt ∈
....

Q. •
Proposition 3.8 for a symmetric separable convex function Φ(x) =

∑
[ϕ(x(s)) : s ∈ S ]

can be adapted to g-polymatroids under the additional assumption of monotonicity of ϕ.
Let B denote the set of minimal elements of an integral g-polymatroid Q, and

....

B the set of
integral members of B. As is well known, B is an integral base-polyhedron and

....

B is an
M-convex set.

Proposition 3.10. Let Φ be a symmetric separable convex function represented as Φ(x) =∑
[ϕ(x(s)) : s ∈ S ] with monotone non-decreasing discrete convex ϕ. An element m of

....

Q is
a minimizer of Φ over

....

Q if m belongs to
....

B and m(t) ≤ m(s) + 1 whenever m + χs − χt is in
....

B. The converse is also true if ϕ is strictly convex and strictly monotone increasing. •
On the basis of Proposition 3.10 we can show the existence of a least weakly subma-

jorized element in
....

Q, which is the result of Tamir [35].

4 Min-max formulas
We derive the following formulas, established by constructive methods in Part I [8], from
the Fenchel-type duality in discrete convex analysis. Recall that p is an integer-valued
supermodular function on the ground-set S , B is the base-polyhedron defined by p,

....

B is the
set of integral points of B, and p̂ is the linear extension (Lovász extension)1 of the function
p, i.e., p̂(π) = min{πx : x ∈ ....

B}.
• [8, Theorem 6.3] For the square-sum we have

min{
∑

s∈S
m(s)2 : m ∈ ....

B} = max{ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋ ⌈
π(s)

2

⌉
: π ∈ ZS }. (15)

1See Section 6.2 of Part I [8] for the linear extension p̂.
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4.1 Fenchel-type duality in discrete convex analysis 14

• [8, Theorem 4.1] For the largest component β1 of a max-minimizer of
....

B, we have

β1 = max{
⌈

p(X)
|X|

⌉
: ∅ , X ⊆ S }. (16)

Recall that β1 is equal to the largest component m(s) of any dec-min element m of
....

B.

• [8, Theorem 4.3] For the minimum number r1 of β1-valued components of a β1-
covered member of

....

B, we have

r1 = max{p(X) − (β1 − 1)|X| : X ⊆ S }. (17)

Recall that r1 = |{s ∈ S : m(s) = β1}| for any dec-min element m of
....

B.

Moreover, the following new formula will be established in Section 4.6 also from the
Fenchel-type duality in DCA.

• For each integer a, we have

min{
∑

s∈S
(m(s) − a)+ : m ∈ ....

B} = max{p(X) − a|X| : X ⊆ S }. (18)

This formula (18) for a = β1−1 coincides with the formula (17) for r1. Thus (18) generalizes
(17). It will be shown in Theorem 4.6 that an element of

....

B is decreasingly minimal if and
only if it is a minimizer of the left-hand side of (18) universally for all a ∈ Z. Recall
that we have encountered the expression

∑
[(x(s) − a)+ : s ∈ S ] in Proposition 2.1 about

majorization.

4.1 Fenchel-type duality in discrete convex analysis
In this section we describe an important result in DCA, the Fenchel-type duality theorem,
which we use to derive the min-max formulas related to dec-min elements. The Fenchel-
type duality theorem in DCA originates in Murota [30] and is formulated for integer-valued
functions in [31, 32].

For any integer-valued functions f : ZS → Z∪ {+∞} and h : ZS → Z∪ {−∞}, we define
their (convex and concave) conjugate functions by

f •(π) = sup{〈π, x〉 − f (x) : x ∈ ZS } (π ∈ ZS ), (19)
h◦(π) = inf{〈π, x〉 − h(x) : x ∈ ZS } (π ∈ ZS ), (20)

where 〈π, x〉 means the (standard) inner product of vectors π and x. Since the functions
are integer-valued, the supremum in (19) is attained if it is finite-valued. Similarly for the
infimum in (20). Accordingly, we henceforth write “max” and “min” in place of “sup” in
(19) and “inf” in (20), respectively.

The Fenchel-type duality is concerned with the relationship between the minimum of
f (x) − h(x) over x ∈ ZS and the maximum of h◦(π) − f •(π) over π ∈ ZS . It is known as the
weak duality that the minimum of f − h is larger than or equal to the maximum of h◦ − f •.
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4.1 Fenchel-type duality in discrete convex analysis 15

Therefore, if dom f ∩ dom h , ∅ and dom f • ∩ dom h◦ , ∅, both min{ f (x) − h(x) : x ∈ ZS }
and max{h◦(π) − f •(π) : π ∈ ZS } are finite integers and the minimum and the maximum
are attained by some x and π since the functions are integer-valued. If dom f ∩ dom h = ∅,
we say understand (by convention) that the minimum of f − h is equal to +∞ and write
“inf{ f (x)−h(x) : x ∈ ZS } = +∞.” Similarly, if dom f •∩dom h◦ = ∅, we write “sup{h◦(π)−
f •(π) : π ∈ ZS } = −∞.”

The following theorem shows the strong duality under the assumption that either (i)
dom f ∩ dom h , ∅, that is, there exists x for which both f (x) and h(x) are finite (primal
feasibility) or (ii) dom f • ∩ dom h◦ , ∅, that is, there exists π for which both f •(π) and
h◦(π) are finite (dual feasibility).

THEOREM 4.1 (Fenchel-type duality theorem [31, 32]). Let f : ZS → Z ∪ {+∞} be an
integer-valued M\-convex function and h : ZS → Z∪{−∞} be an integer-valued M\-concave
function such that dom f ∩ dom h , ∅ or dom f • ∩ dom h◦ , ∅. Then we have

inf{ f (x) − h(x) : x ∈ ZS } = sup{h◦(π) − f •(π) : π ∈ ZS }. (21)

This common value is finite if and only if dom f ∩ dom h , ∅ and dom f •∩ dom h◦ , ∅, and
then the infimum and the supremum are attained. •

To emphasize that the infimum and the supremum are attained in the finite-valued case,
we henceforth express (21) as

min{ f (x) − h(x) : x ∈ ZS } = max{h◦(π) − f •(π) : π ∈ ZS }. (22)

It is noted, however, that we do not exclude the possibility of the unbounded case where
both sides are equal to −∞ or +∞.

The conjugate of an M\-convex function is endowed with another kind of discrete con-
vexity, called L\-convexity. A function g : ZS → R ∪ {+∞} with dom g , ∅ is called
L\-convex if it satisfies the inequality

g(π) + g(τ) ≥ g
(⌈
π + τ

2

⌉)
+ g

(⌊
π + τ

2

⌋)
(π, τ ∈ ZS ), (23)

where, for z ∈ R in general, dze denotes the smallest integer not smaller than z (rounding-up
to the nearest integer) and bzc the largest integer not larger than z (rounding-down to the
nearest integer), and this operation is extended to a vector by componentwise applications.
We refer to (23) as discrete midpoint convexity. A function g is called L\-concave if −g is
L\-convex.

The following is a local characterization of global maximality for L\-concave functions,
called the L-optimality criterion (concave version).

THEOREM 4.2 ([32, Theorem 7.14]). Let g : ZS → R∪ {−∞} be an L\-concave function,
and π∗ ∈ dom g. Then π∗ is a maximizer of g if and only if it is locally maximal in the sense
that

g(π∗) ≥ g(π∗ − χY) for all Y ⊆ S , (24)
g(π∗) ≥ g(π∗ + χY) for all Y ⊆ S . (25)

•
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4.2 Min-max formula for separable convex functions on a base-polyhedron 16

The reader is referred to [32, Chapter 7] for more properties of L\-convex functions and
[32, Chapter 8] for the conjugacy between M\-convexity and L\-convexity. In particular,
[32, Figure 8.1] offers the whole picture of conjugacy relationship.

Remark 4.1. In Theorem 4.1 the functions f (x) and −h(x) are both M\-convex, but the
function f (x) − h(x) to be minimized on the left-hand side of (21) is not necessarily M\-
convex, since the sum of M\-convex functions may not be M\-convex. To see this, consider
two M-convex sets

....

B1 and
....

B2 associated with integral base-polyhedra B1 and B2, respec-
tively, and for i = 1, 2, let fi be the indicator function of

....

Bi (i.e., fi(x) = 0 if x ∈ ....

Bi, and
fi(x) = +∞ if x ∈ ZS \ ....Bi). The function f1 + f2 is the indicator function of the set of integer
points in the intersection B1 ∩ B2, which is not a base-polyhedron in general. This argu-
ment also shows that the left-hand side of (21) is a nonlinear generalization of the weighted
polymatroid intersection problem; see [32, Section 8.2.3] for details. •
Remark 4.2. Functions h◦(π) and f •(π) in Theorem 4.1 are L\-concave and L\-convex,
respectively. Since the sum of L\-concave functions is L\-concave, the function h◦(π)− f •(π)
to be maximized on the right-hand side of (21) is an L\-concave function. In contrast, the
function f (x) − h(x) to be minimized on the left-hand side of (21) is not an M\-convex
function, as explained in Remark 4.1 above. In this sense, the left-hand side (minimization)
and the right-hand side (maximization) are not symmetric. •

4.2 Min-max formula for separable convex functions on a base-poly-
hedron

We consider the problem of minimizing Φ(x) + δ(x), where

Φ(x) =
∑

[ϕs(x(s)) : s ∈ S ] (26)

is an integer-valued separable convex function defined by integer-valued discrete convex
functions ϕs : Z→ Z ∪ {+∞} and δ is the indicator function of

....

B defined in (13).
In Section 3.3 we have regarded the function Φ + δ as an M-convex function and applied

the M-optimality criterion to derive some results obtained in Part I [8]. In contrast, we are
now going to apply the Fenchel-type duality theorem to the minimization of the function
Φ + δ = Φ − (−δ). In so doing we can separate the constraint term δ(x) for the base-
polyhedron from the objective function Φ(x).

With the choice of f = Φ and h = −δ in the min-max relation (22), the left-hand side
of (22) represents minimization of Φ over the M-convex set

....

B. We denote the conjugate
function of ϕs by ψs, which is a function ψs : Z→ Z ∪ {+∞} defined by

ψs(`) = max{k` − ϕs(k) : k ∈ Z} (` ∈ Z). (27)

Then the conjugate function of f is given by

f •(π) =
∑

[ψs(π(s)) : s ∈ S ] (π ∈ ZS ). (28)

On the other hand, the conjugate function h◦ of h is given by

h◦(π) = min{〈π, x〉 + δ(x) : x ∈ ZS } = min{〈π, x〉 : x ∈ ....

B} = p̂(π) (π ∈ ZS ), (29)
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where p̂ is the linear extension (Lovász extension)2 of the supermodular function p describ-
ing B.

Substituting (28) and (29) into (22) we obtain (30) below.

THEOREM 4.3. Assume that either (i) there exists x ∈ ....

B such that ϕs(x(s)) < +∞ for all
s ∈ S (primal feasibility) or (ii) there exists π ∈ ZS such that p̂(π) > −∞ and ψs(π(s)) < +∞
for all s ∈ S (dual feasibility). Then we have the min-max relation:

min{
∑

s∈S
ϕs(x(s)) : x ∈ ....

B} = max{ p̂(π) −
∑

s∈S
ψs(π(s)) : π ∈ ZS }. (30)

The unbounded case with both sides being equal to −∞ or +∞ is also a possibility. •
Since p̂(π) is an L\-concave function and

∑
[ψs(π(s)) : s ∈ S ] is an L\-convex function,

the function g(π) := p̂(π) − ∑
[ψs(π(s)) : s ∈ S ] to be maximized on the right-hand side

of (30) is an L\-concave function (cf. Remark 4.2). We state this as a proposition for later
references.

Proposition 4.4. The function g(π) = p̂(π) −∑
[ψs(π(s)) : s ∈ S ] is L\-concave. •

In applications of (30) with concrete functions ϕs, it is often the case that the conju-
gate functions ψs can be computed to explicit forms. This is illustrated in the following
examples.

Example 4.1. Let B be an integral base-polyhedron and c ∈ ZS be an integer vector. We
consider the minimum `1-distance from an integer point m in B to the given point c. As a
special case of the min-max formula (30) we can obtain the following min-max relation:

min{
∑

s∈S
|m(s) − c(s)| : m ∈ ....

B}

= max{p(X) − b(Y) − c̃(X) + c̃(Y) : X,Y ⊆ S ; X ∩ Y = ∅}, (31)

where p and b are the supermodular and submodular functions associated with B, and
c̃(X) =

∑{c(s) : s ∈ X} for X ⊆ S . To derive (31) from (30), we choose ϕs(k) = |k − c(s)|,
for which the left-hand side of (30) coincides with that of (31). The conjugate functions
can be computed as

ψs(`) = max{k` − |k − c(s)| : k ∈ Z} =

{
c(s)` (` = −1, 0,+1),
+∞ (otherwise),

and the right-hand side of (30) reads

max{ p̂(π) −
∑

s∈S
c(s)π(s) : π(s) ∈ {−1, 0,+1} (s ∈ S )}.

On representing π = χX − χY with disjoint subsets X and Y , we obtain p̂(π) = p(X) − b(Y)
and

∑
s∈S c(s)π(s) = c̃(X) − c̃(Y). Thus the right-hand side of (30) coincides with that of

(31). •
2See Section 6.2 of Part I [8] for the linear extension p̂.
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Example 4.2. Let B be an integral base-polyhedron and c, d ∈ ZS be integer vectors with
c ≤ d. We consider the minimum `1-distance from an integer point m in B to the interval
(box) specified by c and d. The distance is represented as

∑
[Ds(m(s)) : s ∈ S ] with

Ds(k) = min{|k − z| : c(s) ≤ z ≤ d(s)} = max(c(s) − k, 0, k − d(s)).

As a special case of the min-max formula (30) we can obtain the following min-max rela-
tion:

min{
∑

[Ds(m(s)) : s ∈ S ] : m ∈ ....

B}
= max{p(X) − b(Y) − d̃(X) + c̃(Y) : X,Y ⊆ S ; X ∩ Y = ∅}, (32)

where p and b are the supermodular and submodular functions associated with B. To derive
(32) from (30), we choose ϕs(k) = Ds(k), for which the left-hand side of (30) coincides with
that of (32). The conjugate functions can be computed as

ψs(`) = max{k` − Ds(k) : k ∈ Z} =



−c(s) (` = −1),
0 (` = 0),
d(s) (` = +1),
+∞ (otherwise),

and the right-hand side of (30) reads

max{ p̂(π) −
∑

s:π(s)=+1

d(s) +
∑

s:π(s)=−1

c(s) : π(s) ∈ {−1, 0,+1} (s ∈ S )}.

On representing π = χX − χY with disjoint subsets X and Y , we obtain

p̂(π) = p(X) − b(Y),
∑

s:π(s)=+1

d(s) = d̃(X),
∑

s:π(s)=−1

c(s) = c̃(Y).

Thus the right-hand side of (30) coincides with that of (32). •
When specialized to a symmetric function Φ, the min-max formula (30) is simplified to

min{
∑

s∈S
ϕ(x(s)) : x ∈ ....

B} = max{ p̂(π) −
∑

s∈S
ψ(π(s)) : π ∈ ZS }, (33)

where ϕ : Z → Z ∪ {+∞} is any integer-valued discrete convex function and ψ : Z →
Z ∪ {+∞} is the conjugate of ϕ defined as ψ(`) = max{k` − ϕ(k) : k ∈ Z} for ` ∈ Z. With
appropriate choices of ϕ in (33) we derive the formulas (15), (16), and (17) in Sections 4.3,
4.4, and 4.5, respectively.

4.3 DCA-based proof of the min-max formula for square-sum mini-
mization

The min-max formula (15) for the square-sum can be derived immediately from our duality
formula (33). For ϕ(k) = k2, the conjugate function ψ(`) for ` ∈ Z is given explicitly as

ψ(`) = max{k` − k2 : k ∈ Z} = max{k` − k2 : k ∈ {b`/2c , d`/2e}} =

⌊
`

2

⌋
·
⌈
`

2

⌉
. (34)

The substitution of (34) into (33) yields (15). Note that the primal feasibility is satisfied
since ϕ(k) is finite for all k.
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Remark 4.3. We can also formulate a min-max formula for a nonsymmetric quadratic
function

∑
s∈S c(s)m(s)2, where c(s) is a positive integer for each s ∈ S . For ϕ(k) = ck2 with

a positive integer c, the conjugate function ψ(`) is given as

ψ(`) = max{k` − ck2 : k ∈ Z} = max{k` − ck2 : k ∈ {b`/2cc , d`/2ce} }
= max

( ⌊
`

2c

⌋ (
` − c

⌊
`

2c

⌋)
,

⌈
`

2c

⌉ (
` − c

⌈
`

2c

⌉) )
. (35)

Therefore, the min-max formula reads:

min{
∑

s∈S
c(s)m(s)2 : m ∈ ....

B}

= max{ p̂(π) −
∑

s∈S
max

(⌊
π(s)
2c(s)

⌋ (
π(s) − c(s)

⌊
π(s)
2c(s)

⌋)
,

⌈
π(s)
2c(s)

⌉ (
π(s) − c(s)

⌈
π(s)
2c(s)

⌉))
: π ∈ ZS }.

•

4.4 DCA-based proof of the formula for β1

The formula (16) for the largest component β1 of a max-minimizer of
....

B can also be derived
from our duality formula (33). With a nonnegative integer α as a parameter, we choose

ϕ(k) =

{
0 (k ≤ α),
+∞ (k ≥ α + 1)

in (33). By the definition of β1, the left-hand side of (33) is equal to zero if α ≥ β1, and
equal to +∞ if α ≤ β1 − 1. Hence β1 is equal to the minimum of α for which the left-hand
side is equal to zero.

The conjugate function ψ of ϕ is given by

ψ(`) = max{k` : k ≤ α} =



+∞ (` ≤ −1),
0 (` = 0),
α` (` ≥ 1).

(36)

Both p̂(π) and ψ(`) are positively homogeneous (i.e., p̂(λπ) = λ p̂(π) and ψ(λ`) = λψ(`) for
nonnegative integers λ). This implies, in particular, that the maximization problem on the
right-hand side of (33) is feasible for all α and hence the identity (33) holds, which reads
either 0 = 0 or +∞ = +∞. Since β1 is the minimum of α for which the left-hand side is
equal to 0, we can say that β1 is the minimum of α for which the right-hand side is equal to
0.

Finally, we consider the condition that ensures π∗ = 0 to be a maximizer of the function
g(π) := p̂(π) − ∑

s∈S ψ(π(s)). By the L\-concavity of this function we can make use of
Theorem 4.2 (L-optimality criterion). The first condition (24) in Theorem 4.2 is satisfied
trivially by (36), whereas the second condition (25) reads g(π∗ + χY) = p(X) − α|X| ≤ 0.
Therefore, the right-hand side of (33) is equal to zero if and only if max{p(X) − α|X| : X ⊆
S } = 0, from which follows the formula (16).
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Figure 1: Mutually conjugate discrete convex functions φ and ψ in (4.22) and (4.23)
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Figure 1: Mutually conjugate discrete convex functions φ and ψ ((4.22), (4.23), (4.29), (4.30))
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Figure 1: Mutually conjugate discrete convex functions φ and ψ ((4.22), (4.23), (4.30), (4.31))
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Figure 1: Mutually conjugate discrete convex functions φ and ψ ((3.35), (3.36), (3.43), (3.44))

whose graph is given by the right of Fig. 1 with a = 1. In considering the maximum of g(π) := p̂(π) −∑
s∈S ψ(π(s)) over π ∈ ZS , we may restrict π to {0, 1}-vectors, as shown in Lemma 3.13 below. Since

p̂(χX) = p(X) and
∑

s∈S ψ(χX(s)) = (β1 − 1)|X|, the RHS of (3.32) is equal to max{p(X) − (β1 − 1)|X| :
X ⊆ S }. Thus the formula (3.23) is derived.

Lemma 3.13. There exists a {0, 1}-vector π that attains the maximum of g(π) over π ∈ ZS .

Proof. Note first that g is an L♮-concave function, and define a = β1 − 1. Let A ⊆ S be a maximizer
of p(X) − a|X| over all subsets of S , and π∗ = χA. Then g(π∗) = p(A) − a|A|. We will show that the
conditions (3.12) and (3.13) in the L-optimality criterion (Theorem 3.3) are satisfied.

Proof of (3.12): We may assume Y ⊆ A, since, otherwise, π∗ −χY < dom g by (3.36). If Y ⊆ A, we
have π∗ − χY = χA\Y = χZ , where Z = A \ Y . Hence, g(π∗ − χY ) = g(χZ) = p(Z)− a|Z| ≤ p(A)− a|A| =
g(π∗).

Proof of (3.13): Since

(π∗ + χY )(s) = (χA + χY )(s) =


2 (s ∈ A ∩ Y),
1 (s ∈ (A ∪ Y) \ (A ∩ Y)),
0 (s ∈ S \ (A ∪ Y)),

the definition of g and ψ shows

g(π∗ + χY ) = p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a|(A ∪ Y) \ (A ∩ Y)|
= p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a(|A ∪ Y | − |A ∩ Y |)
= p̂(χA + χY ) − β1|A ∩ Y | − a|A ∪ Y |. (3.37)

By the definition of p̂ we have

p̂(χA + χY ) = 2p(A ∩ Y) + [p(A ∪ Y) − p(A ∩ Y)] = p(A ∩ Y) + p(A ∪ Y), (3.38)

where

p(A ∩ Y) ≤ β1|A ∩ Y |, (3.39)

p(A ∪ Y) ≤ (
p(A) − a|A|) + a|A ∪ Y |. (3.40)

It should be clear that (3.39) holds since (β1, β1, . . . , β1) belongs to the supermodular polyhedra defined
by p, and (3.40) holds since A is a maximizer of p(X) − a|X|. It follows from (3.37), (3.38), (3.39),
and (3.40) that

g(π∗ + χY ) ≤ p(A) − a|A| = g(π∗),

proving (3.13). □
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Figure 2: Mutually conjugate discrete convex functions φ and ψ ((4.22), (4.23), (4.30), (4.31))

whose graph is given by the right of Fig. 2 with a = 1. In considering the maximum of g(π) := p̂(π) −∑
s∈S ψ(π(s)) over π ∈ ZS , we may restrict π to {0, 1}-vectors, as shown in Lemma 4.5 below. Since

p̂(χX) = p(X) and
∑

s∈S ψ(χX(s)) = (β1 − 1)|X|, the RHS of (4.19) is equal to max{p(X) − (β1 − 1)|X| :
X ⊆ S }. Thus the formula (4.3) is derived.

Lemma 4.5. There exists a {0, 1}-vector π that attains the maximum of g(π) over π ∈ ZS .

Proof. Note first that g is an L♮-concave function, and define a = β1 − 1. Let A ⊆ S be a maximizer
of p(X) − a|X| over all subsets of S , and π∗ = χA. Then g(π∗) = p(A) − a|A|. We will show that the
conditions (4.10) and (4.11) in the L-optimality criterion (Theorem 4.2) are satisfied.

Proof of (4.10): We may assume Y ⊆ A, since, otherwise, π∗ −χY < dom g by (4.23). If Y ⊆ A, we
have π∗ − χY = χA\Y = χZ , where Z = A \ Y . Hence, g(π∗ − χY ) = g(χZ) = p(Z)− a|Z| ≤ p(A)− a|A| =
g(π∗).

Proof of (4.11): Since

(π∗ + χY )(s) = (χA + χY )(s) =


2 (s ∈ A ∩ Y),
1 (s ∈ (A ∪ Y) \ (A ∩ Y)),
0 (s ∈ S \ (A ∪ Y)),

the definition of g and ψ shows

g(π∗ + χY ) = p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a|(A ∪ Y) \ (A ∩ Y)|
= p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a(|A ∪ Y | − |A ∩ Y |)
= p̂(χA + χY ) − β1|A ∩ Y | − a|A ∪ Y |. (4.24)

By the definition of p̂ we have

p̂(χA + χY ) = 2p(A ∩ Y) + [p(A ∪ Y) − p(A ∩ Y)] = p(A ∩ Y) + p(A ∪ Y), (4.25)
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Figure 2: Mutually conjugate discrete convex functions φ and ψ ((4.22), (4.23), (4.29), (4.30))

whose graph is given by the right of Fig. 2, where a = β1 − 1. In considering the maximum of g(π) :=
p̂(π)−∑s∈S ψ(π(s)) over π ∈ ZS , we may restrict π to {0, 1}-vectors, as shown in Lemma 4.5 below. For
π = χX with X ⊆ S , we have p̂(π) = p̂(χX) = p(X) and

∑
s∈S ψ(π(s)) =

∑
s∈S ψ(χX(s)) =

∑
s∈X ψ(1) =

(β1 − 1)|X|, and therefore, the right-hand side of (4.19) is equal to max{p(X) − (β1 − 1)|X| : X ⊆ S }.
Thus the formula (4.3) is derived.

Lemma 4.5. There exists a {0, 1}-vector π that attains the maximum of g(π) over π ∈ ZS .

Proof. Note first that g is an L♮-concave function. Let A ⊆ S be a maximizer of p(X) − (β1 − 1)|X|
over all subsets of S , and π∗ = χA. Then g(π∗) = p(A) − (β1 − 1)|A|. We will show that the conditions
(4.10) and (4.11) in the L-optimality criterion (Theorem 4.2) are satisfied.

Proof of (4.10): g(π∗) ≥ g(π∗ − χY ). We may assume Y ⊆ A, since, otherwise, π∗ − χY < dom g by
(4.23). If Y ⊆ A, we have π∗ − χY = χA\Y = χZ , where Z = A \ Y . Hence,

g(π∗ − χY ) = g(χZ) = p(Z) − (β1 − 1)|Z| ≤ p(A) − (β1 − 1)|A| = g(π∗).

Proof of (4.11): g(π∗) ≥ g(π∗ + χY ). Since

(π∗ + χY )(s) = (χA + χY )(s) =



2 (s ∈ A ∩ Y),
1 (s ∈ (A ∪ Y) \ (A ∩ Y)),
0 (s ∈ S \ (A ∪ Y)),

the definition of g and ψ shows

g(π∗ + χY ) = p̂(χA + χY ) − (2β1 − 1)|A ∩ Y | − (β1 − 1)|(A ∪ Y) \ (A ∩ Y)|
= p̂(χA + χY ) − (2β1 − 1)|A ∩ Y | − (β1 − 1)(|A ∪ Y | − |A ∩ Y |)
= p̂(χA + χY ) − β1|A ∩ Y | − (β1 − 1)|A ∪ Y |. (4.24)
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Figure 2: Mutually conjugate discrete convex functions φ and ψ in (4.22) and (4.23)

whose graph is given by the right of Fig. 2, where a = β1 − 1. In considering the maximum of g(π) :=
p̂(π)−∑s∈S ψ(π(s)) over π ∈ ZS , we may restrict π to {0, 1}-vectors, as shown in Lemma 4.5 below. For
π = χX with X ⊆ S , we have p̂(π) = p̂(χX) = p(X) and

∑
s∈S ψ(π(s)) =

∑
s∈S ψ(χX(s)) =

∑
s∈X ψ(1) =

(β1 − 1)|X|, and therefore, the right-hand side of (4.19) is equal to max{p(X) − (β1 − 1)|X| : X ⊆ S }.
Thus the formula (4.3) is derived.

Lemma 4.5. There exists a {0, 1}-vector π that attains the maximum of g(π) over π ∈ ZS .

Proof. Note first that g is an L♮-concave function, and define a = β1 − 1. Let A ⊆ S be a maximizer
of p(X) − a|X| over all subsets of S , and π∗ = χA. Then g(π∗) = p(A) − a|A|. We will show that the
conditions (4.10) and (4.11) in the L-optimality criterion (Theorem 4.2) are satisfied.

Proof of (4.10): g(π∗) ≥ g(π∗ − χY ). We may assume Y ⊆ A, since, otherwise, π∗ − χY < dom g by
(4.23). If Y ⊆ A, we have π∗ − χY = χA\Y = χZ , where Z = A \ Y . Hence,

g(π∗ − χY ) = g(χZ) = p(Z) − a|Z| ≤ p(A) − a|A| = g(π∗).

Proof of (4.11): g(π∗) ≥ g(π∗ + χY ). Since

(π∗ + χY )(s) = (χA + χY )(s) =



2 (s ∈ A ∩ Y),
1 (s ∈ (A ∪ Y) \ (A ∩ Y)),
0 (s ∈ S \ (A ∪ Y)),

the definitions of g and ψ show

g(π∗ + χY ) = p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a|(A ∪ Y) \ (A ∩ Y)|
= p̂(χA + χY ) − (β1 + a)|A ∩ Y | − a(|A ∪ Y | − |A ∩ Y |)
= p̂(χA + χY ) − β1|A ∩ Y | − a|A ∪ Y |. (4.24)
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Figure 1: Mutually conjugate discrete convex functions ϕ and ψ in (37) and (38)

4.5 DCA-based proof of the formula for r1

The formula (17) for the minimum number r1 of β1-valued components of a β1-covered
member of

....

B can also be derived from our duality formula (33). We choose

ϕ(k) =



0 (k ≤ β1 − 1),
1 (k = β1),
+∞ (k ≥ β1 + 1),

(37)

whose graph is given by the left of Fig. 1, where a = β1 − 1. By the definitions of β1 and r1,
the minimum in (33) is equal to r1. In particular, the primal problem is feasible, and hence
the identity (33) holds.

The conjugate function ψ of ϕ is given by

ψ(`) = max (max{k` : k ≤ β1 − 1}, β1` − 1)

=



+∞ (` ≤ −1),
0 (` = 0),
β1` − 1 (` ≥ 1),

(38)

whose graph is given by the right of Fig. 1, where a = β1 − 1. In considering the maxi-
mum of g(π) := p̂(π) − ∑

s∈S ψ(π(s)) over π ∈ ZS , we may restrict π to {0, 1}-vectors, as
shown in Lemma 4.5 below. For π = χX with X ⊆ S , we have p̂(π) = p̂(χX) = p(X) and∑

s∈S ψ(π(s)) =
∑

s∈S ψ(χX(s)) =
∑

s∈X ψ(1) = (β1 − 1)|X|, and therefore, the right-hand side
of (33) is equal to max{p(X) − (β1 − 1)|X| : X ⊆ S }. Thus the formula (17) is derived.

Lemma 4.5. There exists a {0, 1}-vector π that attains the maximum of g(π) over π ∈ ZS .

Proof. Note first that g is an L\-concave function, and define a = β1 − 1. Let A ⊆ S be a
maximizer of p(X) − a|X| over all subsets of S , and π∗ = χA. Then g(π∗) = p(A) − a|A|. We
will show that the conditions (24) and (25) in the L-optimality criterion (Theorem 4.2) are
satisfied.

Proof of (24): g(π∗) ≥ g(π∗ − χY). We may assume Y ⊆ A, since, otherwise, π∗ − χY <
dom g by (38). If Y ⊆ A, we have π∗ − χY = χA\Y = χZ, where Z = A \ Y . Hence,

g(π∗ − χY) = g(χZ) = p(Z) − a|Z| ≤ p(A) − a|A| = g(π∗).
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Proof of (25): g(π∗) ≥ g(π∗ + χY). Since

(π∗ + χY)(s) = (χA + χY)(s) =



2 (s ∈ A ∩ Y),
1 (s ∈ (A ∪ Y) \ (A ∩ Y)),
0 (s ∈ S \ (A ∪ Y)),

the definitions of g and ψ show

g(π∗ + χY) = p̂(χA + χY) − (β1 + a)|A ∩ Y | − a|(A ∪ Y) \ (A ∩ Y)|
= p̂(χA + χY) − (β1 + a)|A ∩ Y | − a(|A ∪ Y | − |A ∩ Y |)
= p̂(χA + χY) − β1|A ∩ Y | − a|A ∪ Y |. (39)

By the definition of p̂ we have

p̂(χA + χY) = 2p(A ∩ Y) + [p(A ∪ Y) − p(A ∩ Y)] = p(A ∩ Y) + p(A ∪ Y), (40)

where

p(A ∩ Y) ≤ β1|A ∩ Y |, (41)
p(A ∪ Y) ≤ (

p(A) − a|A|) + a|A ∪ Y |. (42)

It should be clear that (41) holds since (β1, β1, . . . , β1) belongs to the supermodular poly-
hedra defined by p, and (42) holds since A is a maximizer of p(X) − a|X|. It follows from
(39)–(42) that

g(π∗ + χY) ≤ p(A) − a|A| = g(π∗),

proving (25). �

4.6 Another min-max formula
In this section we establish another min-max formula, which is announced in (18) at the
beginning of Section 4.

THEOREM 4.6. Let B be the base-polyhedron described by an integer-valued supermod-
ular function p, and

....

B be the set of the integral elements of B. For each integer a, we have
the min-max relation

min{
∑

s∈S
(m(s) − a)+ : m ∈ ....

B} = max{p(X) − a|X| : X ⊆ S }. (43)

Moreover, an element of
....

B is a dec-min element of
....

B if and only if it is a minimizer on the
left-hand side for every a ∈ Z.

Proof. In our duality formula (33) we choose

ϕ(k) = (k − a)+ =

{
0 (k ≤ a),
k − a (k ≥ a + 1). (44)
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The left-hand side of (33) coincides with the left-hand side of (43). Proposition 3.2 shows
that any dec-min element of

....

B is a minimizer in (43) for every a ∈ Z. The converse is also
true, since

∑
[(x(s) − a)+ : s ∈ S ] =

∑
[(y(s) − a)+ : s ∈ S ] for every a ∈ Z implies x↓ = y↓.

The conjugate function ψ of ϕ is given by

ψ(`) = max (max{k` : k ≤ a}, max{k` − (k − a) : k ≥ a + 1})

=



0 (` = 0),
a (` = 1),
+∞ (` < {0, 1}).

(45)

Therefore, we may restrict π to {0, 1}-vectors in considering the maximum of g(π) := p̂(π)−∑
s∈S ψ(π(s)) over π ∈ ZS . For π = χX with X ⊆ S , we have p̂(π) = p̂(χX) = p(X) and∑
s∈S ψ(π(s)) =

∑
s∈S ψ(χX(s)) =

∑
s∈X ψ(1) = a|X|, and therefore, the right-hand side of (33)

is equal to max{p(X) − a|X| : X ⊆ S }. Thus the formula (43) is derived. �

The established formula (43) generalizes the formula (17) for r1. Indeed, the formula
(43) for a = β1 − 1 coincides with the formula (17), since

∑
s∈S (m(s) − a)+ =

∑
s∈S (m(s) −

(β1 − 1))+ = |{s ∈ S : m(s) = β1}| = r1 for any dec-min element m of
....

B.
For i = 1, 2, . . ., define3 r̂i by r̂i = |{s ∈ S : m(s) = β1 − i + 1}| with a dec-min element m

of
....

B. Note that r̂1 = r1 and r̂i does not depend on the choice of m. Since

∑
[(m(s) − (β1 − i))+ : s ∈ S ] =

i∑

j=1

(i − j + 1)r̂ j (i = 1, 2, . . .),

the formula (43) implies

i∑

j=1

(i − j + 1)r̂ j = max{p(X) − (β1 − i)|X| : X ⊆ S } (i = 1, 2, . . .). (46)

This formula gives a recurrence formula for r̂1, r̂2, r̂3, . . . as

r̂1 = max{p(X) − (β1 − 1)|X| : X ⊆ S },
r̂2 = max{p(X) − (β1 − 2)|X| : X ⊆ S } − 2r̂1,

r̂3 = max{p(X) − (β1 − 3)|X| : X ⊆ S } − 3r̂1 − 2r̂2,

· · · · · · · · ·

4.7 Min-max formula for separable convex functions on a g-polymatroid
Min-max formulas for base-polyhedra can also be adapted to g-polymatroids. Let Q denote
an integral g-polymatroid, and

....

Q be the set of the integral points of Q, where
....

Q is an M\-
convex set.

3In Section 5.2 of Part I [8], we have introduced notation ri for the number of elements s of S − Ci with
m(s) = βi, i.e., ri = |{s ∈ S −Ci : m(s) = βi}|. For i ≥ 2, the number ri is (generally) not equal to r̂i here.
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The min-max formula (30) for a separable convex function can be adapted to a g-poly-
matroid as follows:

min{
∑

[ϕs(x(s)) : s ∈ S ] : x ∈ ....

Q} = max{µQ
min(π) −

∑
[ψs(π(s)) : s ∈ S ] : π ∈ ZS }, (47)

where µQ
min(π) = min{πx : x ∈ Q}, and µQ

min(π) can be expressed as a certain “linear exten-
sion” of the pair (p, b) describing Q, though we do not enter into the details here.

As a special case of the above, the min-max formula for the square-sum is given as

min{
∑

[m(s)2 : s ∈ S ] : m ∈ ....

Q} = max{µQ
min(π) −

∑

s∈S

⌊
π(s)

2

⌋ ⌈
π(s)

2

⌉
: π ∈ ZS }. (48)

It is noted, however, the square-sum minimizers are not directly related to dec-min elements
of

....

Q unless Q is contained in the nonnegative orthant.

4.8 Min-max formula for separable convex functions on the intersec-
tion of base-polyhedra

The duality formula for separable discrete convex functions on a single integral base-
polyhedron, given in Theorem 4.3, admits an extension to separable discrete convex func-
tions on the intersection of two integral base-polyhedra. In Part III [9] this extension serves
as a basis of the study of decreasing-minimality in the intersection of two integral base-
polyhedra.

Let B1 and B2 be two integral base-polyhedra, and p1 and p2 be the associated (integer-
valued) supermodular functions. For i = 1, 2, the set of integer points of Bi is denoted as
....

Bi, and the linear extension of pi as p̂i, i.e., p̂i(π) = min{πx : x ∈ ....

Bi} for π ∈ ZS .
Theorem 4.7 below gives a duality formula for separable discrete convex functions on

the intersection of two integral base-polyhedra (=the intersection of two M-convex sets).
For each s ∈ S , let ϕs : Z → Z ∪ {+∞} be an integer-valued discrete convex function. As
before we denote the conjugate function of ϕs by ψs : Z → Z ∪ {+∞}, which is defined by
(27).

THEOREM 4.7. Assume that either (i) there exists x ∈ ....

B1 ∩
....

B2 such that ϕs(x(s)) < +∞
for all s ∈ S (primal feasibility) or (ii) there exists π1, π2 ∈ ZS such that p̂1(π1) > −∞,
p̂2(π2) > −∞, and ψs(π1(s) + π2(s)) < +∞ for all s ∈ S (dual feasibility). Then we have the
min-max relation:4

min{
∑

s∈S
ϕs(x(s)) : x ∈ ....

B1 ∩
....

B2}

= max{ p̂1(π1) + p̂2(π2) −
∑

s∈S
ψs(π1(s) + π2(s)) : π1, π2 ∈ ZS }. (49)

Proof. We denote the indicator functions of
....

B1 and
....

B2 by δ1 and δ2, respectively, and con-
tinue to use the notation Φ(x) =

∑
[ϕs(x(s)) : s ∈ S ] introduced in (26).

4The unbounded case with both sides of (49) being equal to −∞ or +∞ is also a possibility.
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In the Fenchel-type duality

min{ f (x) − h(x) : x ∈ ZS } = max{h◦(π) − f •(π) : π ∈ ZS } (50)

in (22), we choose f = δ2 + Φ and h = −δ1. Since f − h = Φ + δ1 + δ2, the left-hand side of
(50) coincides with the left-hand side of (49).

The conjugate function f • can be computed as follows. For π ∈ ZS we define a function
ϕπs : Z → Z ∪ {+∞} by ϕπs(k) = ϕs(k) − π(s)k for k ∈ Z. Then the conjugate function ψπs of
this function is given as

ψπs(`) = max{k` − ϕπs(k) : k ∈ Z}
= max{k(` + π(s)) − ϕs(k) : k ∈ Z}
= ψs(` + π(s)) (` ∈ Z).

Using this expression and the min-max formula (30) for B2 and ϕπs , we obtain

f •(π) = max{〈π, x〉 − δ2(x) −
∑

s∈S
ϕs(x(s)) : x ∈ ZS }

= −min{δ2(x) +
∑

s∈S
ϕπs(x(s)) : x ∈ ZS }

= −max{ p̂2(π′) −
∑

s∈S
ψπs(π′(s)) : π′ ∈ ZS }

= −max{ p̂2(π′) −
∑

s∈S
ψs(π(s) + π′(s)) : π′ ∈ ZS } (π ∈ ZS ). (51)

On the other hand, the conjugate function h◦ of h = −δ1 is equal to p̂1 by (29), i.e.,

h◦(π) = p̂1(π) (π ∈ ZS ). (52)

The substitution of (51) and (52) into h◦− f • shows that the right-hand side of (50) coincides
with the right-hand side of (49). �

When specialized to a symmetric function, the min-max formula (49) is simplified to

min{
∑

s∈S
ϕ(x(s)) : x ∈ ....

B1 ∩
....

B2}

= max{ p̂1(π1) + p̂2(π2) −
∑

s∈S
ψ(π1(s) + π2(s)) : π1, π2 ∈ ZS }, (53)

where ϕ : Z → Z ∪ {+∞} is any integer-valued discrete convex function and ψ : Z →
Z ∪ {+∞} is the conjugate of ϕ defined as ψ(`) = max{k` − ϕ(k) : k ∈ Z} for ` ∈ Z. The
identity (53) will play a key role in the study of discrete decreasing minimization on the
intersection of two base-polyhedra, just as (33) did for a single base-polyhedron.

As an example of (53) we mention a min-max identity for the minimum square-sum of
components on the intersection of two integral base-polyhedra, which is an extension of
(15) for a single integral base-polyhedron.
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Proposition 4.8.

min{
∑

s∈S
m(s)2 : m ∈ ....

B1 ∩
....

B2}

= max{ p̂1(π1) + p̂2(π2) −
∑

s∈S

⌊
π1(s) + π2(s)

2

⌋
·
⌈
π1(s) + π2(s)

2

⌉
: π1, π2 ∈ ZS }. (54)

Proof. This is a special case of (53) with ϕ(k) = k2 and ψ(`) = b`/2c · d`/2e (cf., (34)). �

If
....

B1 ∩
....

B2 , ∅, both sides of (54) are finite-valued, and the minimum and the maximum
are attained. If

....

B1 ∩
....

B2 = ∅, the left-hand side of (54) is equal to +∞ by convention and the
right-hand side is unbounded above (hence equal to +∞). Note also that

....

B1 ∩
....

B2 , ∅ if and
only if B1 ∩ B2 , ∅.
Remark 4.4. We can also formulate a min-max formula for a nonsymmetric quadratic
function

∑
s∈S c(s)m(s)2, where c(s) is a positive integer for each s ∈ S (cf. Remark 4.3).

On recalling the conjugate function in (35), we obtain the min-max formula

min{
∑

s∈S
c(s)m(s)2 : m ∈ ....

B1 ∩
....

B2}

= max{ p̂1(π1) + p̂2(π2)

−
∑

s∈S
max

(⌊
π(s)
2c(s)

⌋ (
π(s) − c(s)

⌊
π(s)
2c(s)

⌋)
,

⌈
π(s)
2c(s)

⌉ (
π(s) − c(s)

⌈
π(s)
2c(s)

⌉))
:

π = π1 + π2, π1, π2 ∈ ZS }.
•

5 Structure of optimal solutions to square-sum minimiza-
tion

In this section we offer the DCA view on the structure of optimal solutions of the min-max
formula:

min{
∑

[m(s)2 : s ∈ S ] : m ∈ ....

B} = max{ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋ ⌈
π(s)

2

⌉
: π ∈ ZS }, (55)

to which a DCA-based proof has been given in Section 4.3.
Concerning the optimal solutions to (55) the following results were obtained in Part I [8].

Recall that β1 > β2 > · · · > βq denotes the essential value-sequence, C1 ⊂ C2 ⊂ · · · ⊂ Cq is
the canonical chain, {S 1, S 2, . . . , S q} is the canonical partition, π∗ and ∆∗ are integral vectors
defined by

π∗(s) = 2βi − 1, ∆∗(s) = βi − 1 (s ∈ S i; i = 1, 2, . . . , q),

and M∗ denotes the direct sum of matroids M1,M2, . . . ,Mq constructed in Section 5.2 of
Part I [8].
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Proposition 5.1 ([8, Corollary 6.11]). The set Π of dual optimal integral vectors π in (55)
is an L\-convex set. The unique smallest element of Π is π∗. •
THEOREM 5.2 ([8, Theorem 6.9]). An integral vector π is a dual optimal solution in (55)
if and only if the following three conditions hold for each i = 1, 2, . . . , q :

π(s) = 2βi − 1 for every s ∈ S i − Fi, (56)
2βi − 1 ≤ π(s) ≤ 2βi + 1 for every s ∈ Fi, (57)
π(s) − π(t) ≥ 0 whenever s, t ∈ Fi and (s, t) ∈ Ai, (58)

where Fi is the largest member of Fi = {X ⊆ S i : βi|X| = p(Ci−1 ∪ X) − p(Ci−1)} and Ai is
the set of pairs (s, t) such that s, t ∈ Fi and there is no set in Fi which contains t and not s.
•
THEOREM 5.3 ([8, Theorem 5.5]). The set of dec-min elements of

....

B is a matroidal M-
convex set.5 More precisely, an element m of

....

B is decreasingly minimal if and only if m can
be obtained in the form m = χL + ∆∗, where L is a basis of the matroid M∗. •

The objective of this section is to shed the light of DCA on these results. It will turn out
that the general results in DCA capture the structural essence of the above statements, but
do not provide the full statements with specific details. We first present a summary of the
relevant results from DCA in Section 5.1.

5.1 General results on the optimal solutions in the Fenchel-type dual-
ity

We summarize the fundamental facts about the optimal solutions in the Fenchel-type min-
max relation

min{ f (x) − h(x) : x ∈ ZS } = max{h◦(π) − f •(π) : π ∈ ZS }, (59)

where f is an integer-valued M\-convex function and h is an integer-valued M\-concave
function. We assume that the common value in (59) is finite and denote the set of the
minimizers by P and the set of the maximizers byD.

The (convex/concave) integral subdifferentials of f and h at x ∈ ZS are the sets of vectors
defined as:

∂ f (x) = {π ∈ ZS : f (y) − f (x) ≥ 〈π, y − x〉 (∀y ∈ ZS )},
∂h(x) = {π ∈ ZS : h(y) − h(x) ≤ 〈π, y − x〉 (∀y ∈ ZS )},

where ∂ f (x) is defined for x ∈ dom f and ∂h(x) for x ∈ dom h. Similarly, the (con-
vex/concave) integral subdifferentials of f • and h◦ at π ∈ ZS are defined as

∂ f •(π) = {x ∈ ZS : f •(τ) − f •(π) ≥ 〈τ − π, x〉 (∀τ ∈ ZS )},
∂h◦(π) = {x ∈ ZS : h◦(τ) − h◦(π) ≤ 〈τ − π, x〉 (∀τ ∈ ZS )},

5In Part I, we have defined a matroidal M-convex set as the set of integral elements of a translated matroid
base-polyhedron. In other words, a matroidal M-convex set is an M-convex set in which the `∞-distance of
any two distinct members is equal to one.
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5.1 General results on the optimal solutions in the Fenchel-type duality 27

where ∂ f •(π) is defined for π ∈ dom f • and ∂h◦(π) for π ∈ dom h◦.
The following representations of the sets of optimal solutions are immediate conse-

quences of Theorem 4.1; we include the proof for completeness.

Proposition 5.4.
(1) Assume x ∈ dom f ∩ dom h and π ∈ dom f • ∩ dom h◦. We have x ∈ P and π ∈ D if

and only if π ∈ ∂ f (x) ∩ ∂h(x), or equivalently, x ∈ ∂ f •(π) ∩ ∂h◦(π).
(2) For any x̂ ∈ P, we haveD = ∂ f (x̂) ∩ ∂h(x̂).
(3) For any π̂ ∈ D, we have P = ∂ f •(π̂) ∩ ∂h◦(π̂).

Proof. (1) By the definition of the conjugate functions in (19) and (20) we have

f (x) + f •(π) ≥ 〈π, x〉, (60)
h(x) + h◦(π) ≤ 〈π, x〉 (61)

for any x and π, from which follows the weak duality:

f (x) − h(x) ≥ h◦(π) − f •(π). (62)

The equality holds in (62) if and only if the two inequalities in (60) and (61) are satisfied
in equalities. We have equality in (60) if and only if π ∈ ∂ f (x), or equivalently, x ∈ ∂ f •(π)
by the biconjugacy f •• = f (cf. [32, Theorem 8.12]). Similarly, we have equality in (61) if
and only if π ∈ ∂h(x), or equivalently, x ∈ ∂h◦(π).

(2) and (3) follow immediately from (1). �

It is emphasized that in the representation of P, each of ∂ f •(π̂) and ∂h◦(π̂) depends on
the choice of π̂, but their intersection is uniquely determined and equal to P. Similarly,
in the representation of D, each of ∂ f (x̂) and ∂h(x̂) depends on the choice of x̂, but their
intersection is uniquely determined and equal toD.

The subdifferential of an M\-convex function f admits a more concrete representation
as a consequence of the M-optimality criterion (Theorem 3.6), which gives a local char-
acterization of global minimality for M\-convex functions. Namely, for x ∈ dom f , we
have

∂ f (x) = {π ∈ ZS : f (y) − f (x) ≥ 〈π, y − x〉 (∀y ∈ ZS )}
= {π ∈ ZS : x ∈ arg min( f (y) − 〈π, y〉)}
= {π ∈ ZS : f (x) − 〈π, x〉 ≤ f (x + χs − χt) − 〈π, x + χs − χt〉 (∀s, t ∈ S ),

f (x) − 〈π, x〉 ≤ f (x + χs) − 〈π, x + χs〉 (∀s ∈ S ),
f (x) − 〈π, x〉 ≤ f (x − χt) − 〈π, x − χt〉 (∀t ∈ S )}

= {π ∈ ZS : π(s) − π(t) ≤ f (x + χs − χt) − f (x) (∀s, t ∈ S ),
f (x) − f (x − χs) ≤ π(s) ≤ f (x + χs) − f (x) (∀s ∈ S )}. (63)

This expression shows that ∂ f (x) is an L\-convex set. Similarly,

∂h(x) = {π ∈ ZS : π(s) − π(t) ≥ h(x + χs − χt) − h(x) (∀s, t ∈ S ),
h(x) − h(x − χs) ≥ π(s) ≥ h(x + χs) − h(x) (∀s ∈ S )}, (64)
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which is also an L\-convex set.
On the other hand, the conjugate function f • is an L\-convex function, and by Theo-

rem 4.2 (L-optimality criterion), the subdifferential of f • is given as

∂ f •(π) = {x ∈ ZS : f •(τ) − f •(π) ≥ 〈τ − π, x〉 (∀τ ∈ ZS )}
= {x ∈ ZS : π ∈ arg min( f •(τ) − 〈τ, x〉)}
= {x ∈ ZS : f •(π) − 〈π, x〉 ≤ f •(π + χY) − 〈π + χY , x〉 (∀Y ⊆ S ),

f •(π) − 〈π, x〉 ≤ f •(π − χY) − 〈π − χY , x〉 (∀Y ⊆ S )}
= {x ∈ ZS : f •(π) − f •(π − χY) ≤

∑

s∈Y
x(s) ≤ f •(π + χY) − f •(π) (∀Y ⊆ S )}.(65)

By L\-convexity, f •(π+χY)− f •(π) is submodular in Y and f •(π)− f •(π−χY) is supermodular
in Y , and moreover, they are paramodular in the sense of [7, Section 14.1] (or a strong pair).
Therefore, the set ∂ f •(π) is an M\-convex set (the set of integer points in an integral g-
polymatroid). Similarly,

∂h◦(π) = {x ∈ ZS : h◦(π) − h◦(π − χY) ≥
∑

s∈Y
x(s) ≥ h◦(π + χY) − h◦(π) (∀Y ⊆ S )}(66)

is an M\-convex set.
The reader is referred to [32, Chapter 8] for the conjugacy between M\-convexity and L\-

convexity. In particular, [32, Figure 8.1] shows the whole picture of conjugacy relationship.

5.2 Structure of dual optimal solutions to square-sum minimization
The min-max formula (55) for the square-sum minimization is a special case of the Fenchel-
type duality (59) with

f (x) =
∑

[ϕ(x(s)) : s ∈ S ], h(x) = −δ(x),

f •(π) =
∑

[ψ(π(s)) : s ∈ S ], h◦(π) = p̂(π),

where ϕ(k) = k2 and ψ(`) = b`/2c · d`/2e for k, ` ∈ Z. Accordingly, we can apply the
general results (Proposition 5.4, in particular) summarized in Section 5.1 for the analysis
of the optimal solutions in the min-max formula (55). In this section we consider the dual
solutions, whereas the primal solutions are treated in Section 5.3.

The function g(π) = p̂(π) −∑
[ψ(π(s)) : s ∈ S ] to be maximized in (55) is L\-concave by

Proposition 4.4, and the maximizers of an L\-concave function form an L\-convex set [32,
Theorem 7.17]. Therefore, the set Π of dual optimal solutions is an L\-convex set, which
is the first statement of Proposition 5.1. The L\-convexity of Π implies that there exists
a unique smallest element of Π. The second statement of Proposition 5.1 shows that this
smallest element is given by π∗, but this fact is not easily shown by general arguments from
discrete convex analysis.

Next we consider Theorem 5.2, which gives a representation of Π. According to the
general result stated in Proposition 5.4 (2), we can obtain another representation of Π of the
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form Π = ∂ f (x̂)∩∂h(x̂) by choosing any dec-min element x̂ of
....

B, which is a primal optimal
solution for (55). In the following we compare the two representations of Π.

The subdifferential ∂ f (x) at x ∈ ZS can be computed as

∂ f (x) = {π ∈ ZS : 2x(s) − 1 ≤ π(s) ≤ 2x(s) + 1 (s ∈ S )}. (67)

This follows from the expression (63), in which f (x) =
∑

[ϕ(x(s)) : s ∈ S ], ϕ(k+1)−ϕ(k) =

(k + 1)2 − k2 = 2k + 1, and ϕ(k) − ϕ(k − 1) = k2 − (k − 1)2 = 2k − 1. For h(x) = −δ(x), on
the other hand, we observe from the definition of the subdifferential that π belongs to ∂h(x)
if and only if x is a minimum π-weight base. Then Proposition 5.4 (2) gives the following
representation of Π.

Proposition 5.5. Let m be any dec-min element of
....

B. The set Π of dual optimal solutions
to (55) is represented as Π = I(m) ∩W(m), where

I(m) = {π ∈ ZS : 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1 for all s ∈ S },
W(m) = {π ∈ ZS : m is a minimum π-weight element of

....

B}.•
Roughly speaking, I(m) corresponds to the first two conditions (56) and (57) in Theo-

rem 5.2 and W(m) to the third condition (58). However, there is an essential difference be-
tween Proposition 5.5 and Theorem 5.2. As already mentioned right after Proposition 5.4,
each of I(m) and W(m) varies with the choice of m, while their intersection is uniquely
determined and equal to Π. In this sense, the description of Π in Proposition 5.5 is not
canonical. Theorem 5.2 is a much stronger statement, giving a canonical description of Π

without reference to a particular primal optimal solution.

Remark 5.1. Proposition 5.5 above is equivalent to Proposition 6.7 of Part I [8], though in
a slightly different form. Recall the optimality criteria there:6

(O1) m(s) ∈ {bπ(s)/2c , dπ(s)/2e} for each s ∈ S ,
(O2) each strict π-top-set is m-tight with respect to p.

The set I(m) corresponds to the first optimality criterion (O1), since 2m(s) − 1 ≤ π(s) ≤
2m(s) + 1 if and only if m(s) ∈ {bπ(s)/2c , dπ(s)/2e}. The equivalence of W(m) to the second
criterion (O2) is a well-known characterization of a minimum weight base. •

5.3 Structure of primal optimal solutions to square-sum minimization
We now turn to the primal (minimization) problem of (55).

Let dm(
....

B) denote the set of the dec-min elements of
....

B. By Theorem 3.3, dm(
....

B) coin-
cides with the set of primal optimal solutions for (55). According to the general result in
Proposition 5.4 (3), a representation of dm(

....

B) in the form of dm(
....

B) = ∂ f •(π̂) ∩ ∂h◦(π̂) is
obtained by choosing any dual optimal solution π̂.

6For a given vector π in RS , we call a non-empty set X ⊆ S a π-top set if π(u) ≥ π(v) holds whenever
u ∈ X and v ∈ S − X. If π(u) > π(v) holds whenever u ∈ X and v ∈ S − X, we speak of a strict π-top set. We
call a subset X ⊆ S m-tight with respect to p if m̃(X) = p(X).

EGRES Technical Report No. 2018-14



Section 6. Comparison of continuous and discrete cases 30

For ψ(`) = b`/2c · d`/2e we have ∂ψ(`) = {b`/2c , d`/2e}. Therefore,

∂ f •(π) = {x ∈ ZS : x(s) ∈ {bπ(s)/2c , dπ(s)/2e} (s ∈ S )}. (68)

Since x ∈ ∂h◦(π) if and only if π ∈ ∂h(x), we have

∂h◦(π) = {x ∈ ZS : x is a minimum π-weight element of
....

B}. (69)

Then Proposition 5.4 (3) gives the following representation of the set of dec-min elements
dm(

....

B).

Proposition 5.6. Let π̂ be any dual optimal solution to (55). The set dm(
....

B) of dec-min
elements of

....

B is represented as dm(
....

B) = T (π̂) ∩ ....

B◦(π̂), where

T (π̂) = {m ∈ ZS : m(s) ∈ {bπ̂(s)/2c , dπ̂(s)/2e} (s ∈ S )},
....

B◦(π̂) = {m ∈ ....

B : x is a minimum π̂-weight element of
....

B}.
Hence dm(

....

B) is a matroidal M-convex set. •
Again, each of T (π̂) and

....

B◦(π̂) varies with the choice of π̂, but their intersection is
uniquely determined and is equal to dm(

....

B). Here,
....

B◦(π̂) is the integral elements of a face of
B, and is an M-convex set. As for T (π̂), note that, for each s ∈ S , the two numbers bπ̂(s)/2c
and dπ̂(s)/2e are the same integer or consecutive integers. Therefore, dm(

....

B) is a matroidal
M-convex set. In other words, there exist a matroid M̂ and a translation vector ∆̂ ∈ ZS such
that

dm(
....

B) = T (π̂) ∩
....

B◦(π̂) = {χL + ∆̂ : L is a basis of M̂}.
In this construction both M̂ and ∆̂ depend on the chosen π̂; in particular, ∆̂ = bπ̂/2c.

Theorem 5.3 is significantly stronger than Proposition 5.6, in that it gives a concrete
description of the matroid M̂ = M∗ by referring to the canonical chain. The translation
vector ∆∗ in Theorem 5.3 corresponds to the choice of π̂ = π∗; note that we indeed have the
relation ∆∗ = bπ∗/2c.

6 Comparison of continuous and discrete cases

While our present study is focused on the discrete case for an M-convex set
....

B, the continu-
ous case for a base-polyhedron B was investigated by Fujishige [10] around 1980 under the
name of lexicographically optimal bases, as a generalization of lexicographically optimal
maximal flows considered by Megiddo [27]. Lexicographically optimal bases are discussed
in detail in [11, Section 9]. Later in game theory Dutta–Ray [5] treated majorization order-
ing in the continuous case under the name of egalitarian allocation; see also Dutta [4]. See
also the survey of related papers in Appendix B.

Section 6.1 offers comparisons of major ingredients in discrete and continuous cases.
These comparisons show that the discrete case is significantly different from the continuous
case, being endowed with a number of intriguing combinatorial structures on top of the
geometric structures known in the continuous case. Section 6.2 is devoted to a review of
the principal partition (adapted to a supermodular function), Section 6.3 gives an alterna-
tive characterization of the canonical partition, and Section 6.4 clarifies their relationship.
Algorithmic implications are discussed in Section 6.5.
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6.1 Summary of comparisons
The continuous case is referred to as Case R and the discrete case as Case Z. We use
notation mR and mZ for the dec-min element in Case R and Case Z, respectively.

Underlying set In Case R we consider a base-polyhedron B described by a real-valued
supermodular function p or a submodular function b. In Case Z we consider the set

....

B of
integral members of an integral base-polyhedron B described by an integer-valued p or b.

Terminology In Case R the terminology of “lexicographically optimal base” (or “lexico-
optimal base”) is used in [10, 11]. A lexico-optimal base is the same as an inc-max element
in our terminology, whereas a dec-min element is called a “co-lexicographically optimal
base” in [11].

Weighting In Case R a weight vector can be introduced to define and analyze lexico-
optimality, while this is not the case with Case Z treated in this paper. In the following
comparisons we always assume that no weighting is introduced in Cases R and Z.

Decreasing minimality and increasing maximality In Case Z decreasing minimality in
....

B is equivalent to increasing maximality. This statement is also true in Case R. That is, an
element of B is dec-min in B if and only if it is inc-max in B. Moreover, a least majorized
element exists in

....

B (in Case Z) and in B (in Case R).

Square-sum minimization In both Cases Z and R, a dec-min element is characterized
as a minimizer of square-sum of the components Φ(x) =

∑
[x(s)2 : s ∈ S ]. In Case R, the

minimizer is unique, and is often referred to as the minimum norm point.

Uniqueness The structures of dec-min elements have a striking difference in Cases R
and Z. In Case R the dec-min element of B is uniquely determined, and is given by the
minimum norm point of B. In Case Z the dec-min elements of

....

B are endowed with the
structure of basis family of a matroid, as formulated in Theorem 5.3.

Proximity Every dec-min element mZ of
....

B is located near the minimum norm point mR
of B, satisfying bmRc ≤ mZ ≤ dmRe (cf., Theorem 6.6). However, not every integer vector
mZ in B satisfying bmRc ≤ mZ ≤ dmRe is a dec-min element of

....

B, which is demonstrated by
the following example.

Example 6.1. Let
....

B be an M-convex set consisting of five vectors7

m1 = (2, 1, 1, 0), m2 = (2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 = (1, 2, 0, 1), m5 = (2, 2, 0, 0)

7
....
B is obtained from {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (1, 1, 0, 0)} (basis family of rank 2

matroid) by a translation with (1, 1, 0, 0).
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and B be its convex hull. The dec-min elements of
....

B are m1, m2, m3, and m4, whereas
m5 = (2, 2, 0, 0) is not a dec-min element. The minimum norm point of the base-polyhedron
B is mR = (3/2, 3/2, 1/2, 1/2), for which bmRc = (1, 1, 0, 0) and dmRe = (2, 2, 1, 1). The
point m5 = (2, 2, 0, 0) satisfies bmRc ≤ m5 ≤ dmRe but it is not a dec-min element. •

Min-max formula In Case Z we have the min-max identity (15):

min{
∑

[m(s)2 : s ∈ S ] : m ∈ ....

B} = max{ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋ ⌈
π(s)

2

⌉
: π ∈ ZS }.

In Case R the corresponding formula is

min{
∑

[m(s)2 : s ∈ S ] : m ∈ B} = max{ p̂(π) −
∑

s∈S

(
π(s)

2

)2

: π ∈ RS }, (70)

which may be regarded as an adaptation of the standard quadratic programming duality
to the case where the feasible region is a base-polyhedron. To the best knowledge of the
authors, the formula (70) has never been shown in the literature.

Principal partition vs canonical partition The canonical partition for Case Z is closely
related to the principal partition for Case R. The principal partition (adapted to a su-
permodular function) is described in Section 6.2 and the following relations are estab-
lished in Sections 6.3 and 6.4. We denote the canonical partition by {S 1, S 2, . . . , S q} and
the principal partition by {Ŝ 1, Ŝ 2, . . . , Ŝ r}. They are constructed from the canonical chain
C1 ⊂ C2 ⊂ · · · ⊂ Cq and the principal chain Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ Ĉr, respectively, as the families
of difference sets: S j = C j − C j−1 for j = 1, 2, . . . , q and Ŝ i = Ĉi − Ĉi−1 for i = 1, 2, . . . , r,
where C0 = Ĉ0 = ∅. We denote the essential values by β1 > β2 > · · · > βq and the critical
values by λ1 > λ2 > · · · > λr.

• An integer β is an essential value for Case Z if and only if there exists a critical value
λ for Case R satisfying β ≥ λ > β − 1. The essential values β1 > β2 > · · · > βq are
obtained from the critical values λ1 > λ2 > · · · > λr as the distinct members of the
rounded-up integers dλ1e ≥ dλ2e ≥ · · · ≥ dλre.

• The canonical partition {S 1, S 2, . . . , S q} is obtained from the principal partition
{Ŝ 1, Ŝ 2, . . . , Ŝ r} as an aggregation; we have S j =

⋃
i∈I( j) Ŝ i, where I( j) = {i : dλie =

β j}.
• The canonical chain {C j} is a subchain of the principal chain {Ĉi}; we have C j = Ĉi

for i = max I( j).

• In Case R, the dec-min element mR of B is uniform on each member Ŝ i of the prin-
cipal partition, i.e., mR(s) = λi if s ∈ Ŝ i, where i = 1, 2, . . . , r (cf., Proposition 6.2).
In Case Z, the dec-min element mZ of

....

B is near-uniform on each member S j of the
canonical partition, i.e., mZ(s) ∈ {β j, β j − 1} if s ∈ S j, where j = 1, 2, . . . , q (cf.,
Theorem 5.1 of Part I [8]).
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Algorithm In Case Z we have developed a strongly polynomial algorithm for finding a
dec-min element of

....

B (Section 7 of Part I [8]). In Case R the decomposition algorithm
of Fujishige [10] finds the minimum norm point mR in strongly polynomial time. Our
proximity result (Theorem 6.6) leads to the following “continuous relaxation” approach.
Let ` = bmRc and u = dmRe and denote the intersection of

....

B with the box (interval) [`, u] by
....

Bu
` . The dec-min element of

....

Bu
` is also a dec-min element of

....

B, since the box [`, u] contains
all dec-min elements of

....

B by Theorem 6.6. Since 0 ≤ u(s) − `(s) ≤ 1 for all s ∈ S ,
....

Bu
`

can be regarded as a matroid translated by `, i.e.,
....

Bu
` = {` + χL : L is a base of M}, where

M is a matroid. Therefore, the dec-min element of
....

Bu
` can be computed as the minimum

weight base of matroid M with respect to the weight vector w defined by w(s) = u(s)2 −
`(s)2 (s ∈ S ). By the greedy algorithm we can find the minimum weight base of M in
strongly polynomial time. Thus the total running time of this algorithm is bounded by
strongly polynomial time. Variants of such continuous relaxation algorithm are given in
Section 6.5. In the literature [11, 14, 18, 23] we can find continuous relaxation algorithms
that are strongly polynomial for special classes of base-polyhedra; see Appendix B for
details.

6.2 Review of the principal partition
As is pointed out by Fujishige [10], the dec-min element in the continuous case is closely
related to the principal partition. The principal partition is a structural theory for submod-
ular functions developed mainly in Japan; Iri [21] is an early survey and Fujishige [12]
provides a comprehensive historical and technical account. In this section we summarize
the results that are relevant to the analysis of the dec-min element in the continuous case.
Originally [10], the results are stated for a real-valued submodular function, and the present
version is a translation for a real-valued supermodular function p : 2S → R ∪ {−∞}.

For any real number λ, let L(λ) denote the family of all maximizers of p(X)− λ|X|. Then
L(λ) is a ring family (lattice), and we denote its smallest member by L(λ). That is, L(λ)
denotes the smallest maximizer of p(X) − λ|X|.

The following is a well-known basic fact. The proof is included for completeness.

Proposition 6.1. Let λ > λ′. If X ∈ L(λ) and Y ∈ L(λ′), then X ⊆ Y. In particular,
L(λ) ⊆ L(λ′).

Proof. Let X ∈ L(λ) and Y ∈ L(λ′). We have

p(X) + p(Y) ≤ p(X ∩ Y) + p(X ∪ Y),
λ|X| + λ′|Y | = λ|X ∩ Y | + λ′|X ∪ Y | + (λ − λ′)|X − Y |

≥ λ|X ∩ Y | + λ′|X ∪ Y |. (71)

It follows from these inequalities that

(p(X) − λ|X|) + (p(Y) − λ′|Y |) ≤ (p(X ∩ Y) − λ|X ∩ Y |) + (p(X ∪ Y) − λ′|X ∪ Y |).
Here the reverse inequality ≥ is also true by X ∈ L(λ) and Y ∈ L(λ′). Therefore, we have
equality in (71), which implies |X − Y | = 0, i.e., X ⊆ Y . �
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There are finitely many numbers λ for which |L(λ)| ≥ 2. We denote such numbers as
λ1 > λ2 > · · · > λr, which are called the critical values. It is easy to see that λ is a critical
value if and only if L(λ) , L(λ − ε) for any ε > 0.

The principal partition {Ŝ 1, Ŝ 2, . . . , Ŝ r} is defined by

Ŝ i = maxL(λi) −minL(λi) (i = 1, 2, . . . , r), (72)

which says that Ŝ i is the difference of the largest and the smallest element of L(λi). Alter-
natively,

Ŝ i = L(λi − ε) − L(λi) (73)

for a sufficiently small ε > 0.
By defining Ĉi = Ŝ 1 ∪ Ŝ 2 ∪ · · · ∪ Ŝ i for i = 1, 2, . . . , r we obtain a chain: Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂

Ĉr, where Ĉ1 , ∅ and Ĉr = S ; we also define Ĉ0 = ∅. Then the chain (∅ =)Ĉ0 ⊂ Ĉ1 ⊂ Ĉ2 ⊂
· · · ⊂ Ĉr (= S ) is a maximal chain of the lattice

⋃
λ∈RL(λ). In this paper we call this chain

the principal chain. By slight abuse of terminology the principal chain sometime means
the chain Ĉ1 ⊂ Ĉ2 ⊂ · · · ⊂ Ĉr (= S ) without Ĉ0 (= ∅).

Let mR ∈ RS be the minimum norm point of B, which is the unique dec-min element of
B. The critical values are exactly those numbers that appear as component values of mR.
Moreover, the vector mR is uniform on each member Ŝ i.

Proposition 6.2 (Fujishige [10]). mR(s) = λi if s ∈ Ŝ i, where i = 1, 2, . . . , r. •

6.3 New characterization of the canonical partition
The canonical partition describes the structure of dec-min elements. In particular, a dec-min
element is near-uniform on each member of the canonical partition.8

In Part I [8], the canonical partition has been defined iteratively using contractions. In
this section we give a non-iterative construction of this canonical partition, which reflects
the underlying structure more directly. This alternative construction enables us to reveal the
precise relation between the discrete and continuous cases in Section 6.4.

We first recall the iterative construction from Section 5 of Part I [8]. Let p : 2S →
Z ∪ {−∞} be an integer-valued supermodular function, and C0 = ∅. For j = 1, 2, . . . , q,
define

β j = max
{⌈

p(X ∪C j−1) − p(C j−1)
|X|

⌉
: ∅ , X ⊆ C j−1

}
, (74)

h j(X) = p(X ∪C j−1) − (β j − 1)|X| − p(C j−1) (X ⊆ C j−1), (75)

S j = smallest subset of C j−1 maximizing h j, (76)
C j = C j−1 ∪ S j, (77)

where C j−1 = S − C j−1 and the index q is determined by the condition that Cq−1 , S and
Cq = S . The subset C j defined by the above recurrence relations admits in fact a direct
characterization as the smallest maximizer of p(X) − (β j − 1)|X|.

8That is, |mZ(s) − mZ(t)| ≤ 1 if {s, t} ⊆ S j for some S j (cf., Theorem 5.1 of Part I [8]).
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Proposition 6.3.
(1) β1 > β2 > · · · > βq.
(2) For each j with 1 ≤ j ≤ q, C j is the smallest maximizer of p(X) − (β j − 1)|X| over all
subsets X of S .

Proof. The monotonicity of the β-values in (1) is already shown in Section 5 of Part I [8],
but the following proof includes an alternative proof of (1) as well. For j = 2, 3, . . . , q we
prove (i) β j−1 > β j and (ii) C j is the smallest maximizer of p(X)− (β j − 1)|X|. First note that
(ii) holds for j = 1 (by definition). Let j ≥ 2.

(i) We prove β j−1 > β j assuming (ii) for j − 1, i.e., under the assumption that C j−1 is
the smallest maximizer of p(X) − (β j−1 − 1)|X|. By (74), β j−1 > β j if and only if β j−1 >⌈ p(X∪C j−1)−p(C j−1)

|X|
⌉

for all X with ∅ , X ⊆ C j−1. Let X be such a subset. We use a simpler
notation C = C j−1. Then

β j−1 >

⌈
p(X ∪C) − p(C)

|X|
⌉

⇐⇒ β j−1 − 1 ≥ p(X ∪C) − p(C)
|X|

⇐⇒ p(X ∪C) − p(C) ≤ (β j−1 − 1)|X|
⇐⇒ p(X ∪C) − (β j−1 − 1)|X ∪C| ≤ p(C) − (β j−1 − 1)|C|.

The last inequality holds by the assumption of (ii) for j − 1. We have thus shown β j−1 > β j.
(ii) We next prove that C j is the smallest maximizer of p(X) − (β j − 1)|X|. For notational

simplicity, we define β = β j−1 − 1, β′ = β j − 1, C = C j−1, and C′ = C j. By definition,
C′ = C ∪ S j is the smallest maximizer of p(X) − β′|X| among all subsets X containing C.
In the following we prove that any maximizer Z of p(X) − β′|X| is a superset of C. By
supermodularity we have p(Z) + p(C) ≤ p(Z ∪C) + p(Z ∩C), which implies

p(Z) − β′|Z| ≤ (
p(Z ∪C) − β′|Z ∪C|) +

(
p(Z ∩C) − p(C) + β′|C − Z|). (78)

For the first term on the right-hand side we have

p(Z ∪C) − β′|Z ∪C| ≤ p(C′) − β′|C′|, (79)

since Z ∪ C ⊇ C and C′ is a maximizer of p(X) − β′|X| among X containing C. For the
second term on the right-hand side of (78) we have

p(Z ∩C) − p(C) + β′|C − Z|
≤ p(Z ∩C) − p(C) + β|C − Z|
= (p(Z ∩C) − β|Z ∩C|) − (p(C) − β|C|) ≤ 0, (80)

since β′ < β by (i) and C is a maximizer of p(X) − β|X|. Combining (78), (79), and (80) we
obtain p(Z)−β′|Z| ≤ p(C′)−β′|C′|. By the choice of Z we have equality here, which occurs
only when β′|C − Z| = β|C − Z|, i.e., Z ⊇ C. Therefore, any maximizer of p(X) − β′|X| is a
superset of C. �
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For any integer β, letL(β) denote the family of all maximizers of p(X)−β|X|, and L(β) be
the smallest element of L(β), where the smallest element exists in L(β) since L(β) is a lat-
tice (ring family). (These notations are consistent with the ones introduced in Section 6.2.)

We consider the family {L(β) : β ∈ Z} of the smallest maximizers of p(X) − β|X| for
all integers β. The canonical chain is contained in this family, since C j = L(β j − 1) ( j =

1, 2, . . . , q) by Proposition 6.3(2).
We now state the key property of the essential value-sequence β1 > β2 > · · · > βq defined

by (74)–(77).

Proposition 6.4. As β is decreased from +∞ to −∞ (or from β1 to βq − 1), the smallest
maximizer L(β) is monotone nondecreasing. We have L(β) , L(β − 1) if and only if β is
equal to an essential value β j. That is,9

∅ = L(β1) ⊂ L(β1 − 1) = · · · = L(β2) ⊂ L(β2 − 1) = · · · = L(βq) ⊂ L(βq − 1) = S . (81)

Proof. By the monotonicity shown in Proposition 6.1, it suffices to prove (i) L(β1) = ∅, (ii)
L(β j−1 − 1) ⊇ L(β j) for j = 2, . . . , q, and (iii) L(β j) , L(β j − 1) for j = 1, 2, . . . , q.

(i) Since β1 = max {dp(X)/|X|e : X , ∅}, we have p(X) − β1|X| ≤ 0 for all X , ∅, whereas
p(X) − β1|X| = 0 for X = ∅. Therefore, L(β1) = ∅.

(ii) Let 2 ≤ j ≤ q. For short we write C = C j−1 and β′ = β j. Define h(Y) = p(Y)−β′|Y | for
any subset Y of S , and let A be the smallest maximizer of h, which means A = L(β′) = L(β j).
For any nonempty subset X of C (= S −C) we have

β′ ≥
⌈

p(X ∪C) − p(C)
|X|

⌉
≥ p(X ∪C) − p(C)

|X| ,

which implies p(X ∪C) − β′|X ∪C| ≤ p(C) − β′|C|. In other words, we have

h(Y) ≤ h(C) for all Y ⊇ C. (82)

By supermodularity of p we have h(A) + h(C) ≤ h(A ∪ C) + h(A ∩ C), whereas h(C) ≥
h(A ∪C) by (82). Therefore, h(A) ≤ h(A ∩C). Since A is the smallest maximizer of h, this
implies that A = A∩C, i.e., A ⊆ C. Finally we recall A = L(β j) and C = C j−1 = L(β j−1−1),
to obtain L(β j) ⊆ L(β j−1 − 1).

(iii) Let 1 ≤ j ≤ q. We continue to write C = C j−1. Take a nonempty subset Z of C for
which

β j = max
{⌈

p(X ∪C) − p(C)
|X|

⌉
: ∅ , X ⊆ C

}
=

⌈
p(Z ∪C) − p(C)

|Z|
⌉
.

Then we have

p(Z ∪C) − p(C)
|Z| > β j − 1,

which implies

p(Z ∪C) − (β j − 1)|Z ∪C| > p(C) − (β j − 1)|C|.
9Recall that “⊂” means “⊆ and ,.”
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This shows that C is not a maximizer of p(Y) − (β j − 1)|Y |, and hence C , L(β j − 1). On
the other hand, we have C = C j−1 = L(β j−1 − 1) and L(β j−1 − 1) = L(β j) by (ii) and the
monotonicity in Proposition 6.1. Therefore, L(β j) , L(β j − 1). �

Proposition 6.4 justifies the following alternative definition of the essential value-sequence,
the canonical chain, and the canonical partition:

Consider the smallest maximizer L(β) of p(X) − β|X| for all integers β. There
are finitely many β for which L(β) , L(β − 1). Denote such integers as β1 >
β2 > · · · > βq and call them the essential value-sequence. Furthermore, define
C j = L(β j) for j = 1, 2, . . . , q to obtain a chain: C1 ⊂ C2 ⊂ · · · ⊂ Cq. Call
this the canonical chain. Finally define a partition {S 1, S 2, . . . , S q} of S by
S j = C j − C j−1 for j = 1, 2, . . . , q, where C0 = ∅, and call this the canonical
partition.

This alternative construction clearly exhibits the parallelism between the canonical par-
tition in Case Z and the principal partition in Case R. In particular, the essential value-
sequence is exactly the discrete counterpart of the critical values. This is discussed in the
next section.

6.4 Canonical partition from the principal partition
The characterization of the canonical partition shown in Section 6.3 enables us to obtain the
canonical partition for Case Z from the principal partition for Case R as follows.

THEOREM 6.5.
(1) An integer β is an essential value if and only if there exists a critical value λ satisfying
β ≥ λ > β − 1.
(2) The essential values β1 > β2 > · · · > βq are obtained from the critical values λ1 > λ2 >
· · · > λr as the distinct members of the rounded-up integers dλ1e ≥ dλ2e ≥ · · · ≥ dλre. Let
I( j) = {i : dλie = β j} for j = 1, 2, . . . , q.
(3) The canonical partition {S 1, S 2, . . . , S q} is obtained from the principal partition
{Ŝ 1, Ŝ 2, . . . , Ŝ r} as an aggregation; it is given as

S j =
⋃

i∈I( j)

Ŝ i ( j = 1, 2, . . . , q). (83)

(4) The canonical chain {C j} is a subchain of the principal chain {Ĉi}; it is given as C j = Ĉi

for i = max I( j). •
In Case R, the dec-min element mR of B is uniform on each member Ŝ i of the principal

partition, i.e., mR(s) = λi if s ∈ Ŝ i, where i = 1, 2, . . . , r (cf., Proposition 6.2). In Case Z,
the dec-min element mZ of

....

B is near-uniform on each member S j of the canonical parti-
tion, i.e., mZ(s) ∈ {β j, β j − 1} if s ∈ S j, where j = 1, 2, . . . , q (cf., Theorem 5.1 of Part I
[8]). Combining these results with Theorem 6.5 above we can obtain a (strong) proximity
theorem for dec-min elements.
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THEOREM 6.6 (Proximity). Let mR be the minimum norm point of B. Then every dec-min
element mZ of

....

B satisfies bmRc ≤ mZ ≤ dmRe.
Proof. For s ∈ S let Ŝ i denote the member of the principal partition containing s, and λi be
the associated critical value. We have mR(s) = λi by Proposition 6.2. Let β j = dλie. This
is an essential value, and the corresponding member S j of the canonical partition contains
the element s by Theorem 6.5. We have mZ(s) ∈ {β j, β j − 1} by Theorem 5.1 of Part I [8].
Therefore, mZ ≤ dmRe.

Next we apply the above argument to −B, which is an integral base-polyhedron. Since
−mR is the minimum norm point of −B and −mZ is a dec-min (=inc-max) element for −....B,
we obtain −mZ ≤ d−mRe, which is equivalent to mZ ≥ bmRc. �

Remark 6.1. Theorem 6.6 implies a weaker statement that

There exists a dec-min element mZ of
....

B satisfying bmRc ≤ mZ ≤ dmRe, (84)

where mR is the minimum norm point of B. This statement (84) should not be confused
with Proposition 6.7 in Section 6.5, which is another proximity statement referring to a
minimizer of the piecewise extension of the quadratic function, not to the minimum norm
point (minimizer of the quadratic function itself). •

The following two examples illustrate Theorem 6.5.

Example 6.2. Let S = {s1, s2} and
....

B = {(0, 3), (1, 2), (2, 1)}, where B is the line segment
connecting (0, 3) abd (2, 1). For

....

B there are two dec-min elements: m(1)
Z = (1, 2) and

m(2)
Z = (2, 1). The minimum norm point (dec-min element) of B is mR = (3/2, 3/2). The

supermodular function p is given by

p(∅) = 0, p({s1}) = 0, p({s2}) = 1, p({s1, s2}) = 3,

and we have

p(X) − λ|X| =



0 (X = ∅),
−λ (X = {s1}),
1 − λ (X = {s2}),
3 − 2λ (X = {s1, s2}).

There is only one critical value λ1 = 3/2 and the associated sublattice is L(λ1) = {∅, S },
where r = 1. The principal partition is a trivial partition {S }. Since dλ1e = 2, we have β1 = 2
with q = 1, and the (only) member S 1 in the canonical partition is given by S 1 = L(β1−1) =

L(1) = S . Accordingly, the canonical chain consists of only one member C1 = S . •
Example 6.3. We consider Example 6.1 again. We have S = {s1, s2, s3, s4} and

....

B consists
of five vectors: m1 = (2, 1, 1, 0), m2 = (2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 = (1, 2, 0, 1), and
m5 = (2, 2, 0, 0), of which the first four members, m1 to m4, are the dec-min elements. The
supermodular function p is given by

p(∅) = 0, p({s1}) = p({s2}) = 1, p({s3}) = p({s4}) = 0,
p({s1, s2}) = 3, p({s3, s4}) = 0,
p({s1, s3}) = p({s2, s3}) = p({s1, s4}) = p({s2, s4}) = 1,
p({s1, s2, s3}) = p({s1, s2, s4}) = 3, p({s1, s3, s4}) = p({s2, s3, s4}) = 2,
p({s1, s2, s3, s4}) = 4.
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We have

max{p(X) − λ|X| : X ⊆ S } = max{0, 1 − λ, 3 − 2λ, 3 − 3λ, 4 − 4λ}.

There are two (r = 2) critical values λ1 = 3/2 and λ2 = 1/2, with the associated sublattices
L(λ1) = {∅, {s1, s2}} and L(λ2) = {{s1, s2}, S }. The principal chain is given by ∅ ⊂ {s1, s2} ⊂
S , and the principal partition is a bipartition with Ŝ 1 = {s1, s2} and Ŝ 2 = {s3, s4}. The
minimum norm point of the base-polyhedron B is given by mR = (3/2, 3/2, 1/2, 1/2) by
Proposition 6.2. Since dλ1e = 2 and dλ2e = 1, we have β1 = 2 and β2 = 1 with q = 2.
The canonical chain consists of two members C1 = L(β1 − 1) = L(1) = {s1, s2} and C2 =

L(β2 − 1) = L(0) = S . Accordingly, the canonical partition is given by S 1 = {s1, s2} and
S 2 = {s3, s4}. •

6.5 Continuous relaxation algorithms
In Section 7 of Part I [8], we have presented a strongly polynomial algorithm for finding
a dec-min element of

....

B as well as for finding the canonical partition. This is based on an
iterative approach to construct a dec-min element along the canonical chain.

By making use of the relation between Case R and Case Z, we can construct continuous
relaxation algorithms, which first compute a real (fractional) vector that is guaranteed to be
close to an integral dec-min element, and then find the integral dec-min element by solving
a linearly weighted matroid optimization problem.

In our continuous relaxation algorithms, we first apply some algorithm for Case R to find
two integer vectors ` and u such that 0 ≤ u − ` ≤ 1 (i.e., 0 ≤ u(s) − `(s) ≤ 1 for all s ∈ S )
and the box [`, u] contains at least one dec-min element of

....

B, i.e.,

` ≤ mZ ≤ u (85)

for some dec-min element mZ of
....

B. We denote the intersection of
....

B and [`, u] by
....

Bu
` . Then

the dec-min element of
....

Bu
` is a dec-min element of

....

B. Since 0 ≤ u − ` ≤ 1,
....

Bu
` can be

regarded as a matroid translated by `, i.e.,
....

Bu
` = {`+χL : L is a base of M} for some matroid

M. Therefore, the dec-min element of
....

Bu
` can be computed as the minimum weight base of

matroid M with respect to the weight vector w defined by w(s) = u(s)2 − `(s)2 (s ∈ S ). By
the greedy algorithm we can find the minimum weight base of M in strongly polynomial
time.

We can conceive two different algorithms for finding vectors ` and u.

(a) Using the minimum norm point

In Theorem 6.6 we have shown that every dec-min element mZ of
....

B satisfies bmRc ≤ mZ ≤
dmRe for the minimum norm point mR of B. Therefore, we can choose ` = bmRc and
u = dmRe in (85). With this choice of (`, u),

....

Bu
` contains all dec-min elements of

....

B. The
decomposition algorithm of Fujishige [10] (see also [11, Section 8.2]) finds the minimum
norm point mR in strongly polynomial time. Therefore, the continuous relaxation algorithm
using the minimum norm point is a strongly polynomial algorithm.
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Example 6.4. We continue with Example 6.3, where
....

B consists of five vectors: m1 =

(2, 1, 1, 0), m2 = (2, 1, 0, 1), m3 = (1, 2, 1, 0), m4 = (1, 2, 0, 1), and m5 = (2, 2, 0, 0).
From the minimum norm point mR = (3/2, 3/2, 1/2, 1/2), we obtain ` = (1, 1, 0, 0) and
u = (2, 2, 1, 1), and hence w = (3, 3, 1, 1). Since w(mi) = 10 for i = 1, . . . , 4 and w(m5) = 12,
the dec-min elements are given by m1 to m4. •

(b) Using the piecewise-linear extension

The algorithm of Groenevelt [14] (see also [11, Section 8.3]) employs a piecewise-linear
extension of the objective function. For the quadratic function ϕ(k) = k2, the piecewise-
linear extension ϕ : R → R is given by: ϕ(t) = (2k − 1)t − k(k − 1) if k − 1 ≤ |t| ≤ k for
k ∈ Z.

The following proximity property is a special case of an observation of Groenevelt [14].

Proposition 6.7 (Groenevelt [14]). For any minimizer mR ∈ RS of the function Φ(x) =∑
s∈S ϕ(x(s)) over B, there exists a minimizer mZ ∈ ZS of Φ(x) =

∑
s∈S x(s)2 over

....

B satisfy-
ing bmRc ≤ mZ ≤ dmRe.
Proof. (We give a proof for completeness, though it is easy and standard.) By the integrality
of B, we can express mR as a convex combination of integral member z1, z2, . . . , zk of B
satisfying bmRc ≤ zi ≤ dmRe (i = 1, 2, . . . , k), where mR =

∑k
i=1 λizi with

∑k
i=1 λi = 1 and

λi > 0 (i = 1, 2, . . . , k). Since Φ is piecewise-linear, we have Φ(mR) =
∑k

i=1 λiΦ(zi), in
which Φ(zi) = Φ(zi) ≥ Φ(mR). Therefore, z1, z2, . . . , zk are the minimizers of Φ on

....

B. We
can take any zi as mZ. �

By Proposition 6.7 we can take ` = bmRc and u = dmRe in (85). In this case, however,
....

Bu
`

may not contain all dec-min elements of
....

B. The complexity of computing mR is not fully
analyzed in the literature [11, 14, 23]. See also Remark 6.1.

Remark 6.2. Minimization of a separable convex function on a base-polyhedron has been
investigated in the literature of resource allocation under the name of “resource alloca-
tion problems under submodular constraints” (Hochbaum [18], Ibaraki–Katoh [20], Katoh–
Ibaraki [22], Katoh–Shioura–Ibaraki [23]). The continuous relaxation approach for the case
of discrete variables is considered, e.g., by Hochbaum [16] and Hochbaum–Hong [19]. A
more recent paper by Moriguchi–Shioura–Tsuchimura [29] discusses this approach in a
more general context of M-convex function minimization in discrete convex analysis. It
is known ([19, 29], [23, Theorem 23]) that a convex quadratic function

∑
aix2

i in discrete
variables can be minimized over an integral base-polyhedron in strongly polynomial time
if the base-polyhedron has a special structure like “Nested”, “Tree,” or “Network” in the
notation of [23]. •

A Non-separable symmetric convex minimization
For any symmetric strictly convex function Φ (not necessarily separable), the integral dec-
min elements of an integral base-polyhedron are characterized as the minimizers of Φ. We
establish this characterization in this appendix.

EGRES Technical Report No. 2018-14



Section A. Non-separable symmetric convex minimization 41

Let S = {1, 2, . . . , n} and Φ : ZS → R ∪ {+∞}. We say that function Φ is symmetric if

Φ(x(1), x(2), . . . , x(n)) = Φ(x(σ(1)), x(σ(2)), . . . , x(σ(n))) (86)

for all permutations σ of (1, 2, . . . , n), and strictly convex if

tΦ(x) + (1 − t)Φ(y) > Φ(tx + (1 − t)y) (87)

whenever x, y ∈ dom Φ, 0 < t < 1, and tx + (1 − t)y is an integral vector.
We consider minimizing Φ over

....

B, the set of integral points of an integral base-polyhedron
B. It is noted that the strict convexity (87) does not imply the uniqueness of minimizers.
For example, the square sum Φ(x) =

∑
s∈S x(s)2 is strictly convex, but its minimizers on

....

B = {x ∈ ZS :
∑

s∈S x(s) = 1} are given by χs for all s ∈ S .

THEOREM A.1. Let
....

B be the set of integral points of an integral base-polyhedron, Φ be
a symmetric strictly convex function, and x ∈ ....

B.
(1) Φ has a minimizer on

....

B.
(2) x is a dec-min element of

....

B if and only if it is a minimizer of Φ on
....

B.

Proof. We first assume that
....

B is bounded. In this case the existence of a minimizer in (1)
is obvious.

(2) “minimizer of Φ⇒ dec-min”: Let x be a minimizer of Φ. To prove that x is dec-min,
it suffices, by Theorem 3.1, to show

x(t) ≥ x(s) + 2 =⇒ x + χs − χt <
....

B (88)

for all s, t ∈ S . Assume, indirectly, that x(t) ≥ x(s) + 2 and z := x + χs − χt ∈
....

B for some
s, t ∈ S . Let α = x(t) − x(s), where α ≥ 2. Define y = x + α(χs − χt), and note that y is
obtained from x by interchanging the components at s and t, and therefore, Φ(x) = Φ(y) by
symmetry (86). We have y ∈ dom Φ. However, we may or may not have y ∈ ....

B.
We now consider the strict convexity (87). For t = 1 − 1/α we have

tx + (1 − t)y =

(
1 − 1

α

)
x +

1
α

(x + α(χs − χt)) = x + χs − χt = z ∈ ZS .

Therefore, Φ(x) = tΦ(x) + (1 − t)Φ(y) > Φ(z), a contradiction to x being a minimizer of Φ

on
....

B.
(2) “dec-min⇒ minimizer of Φ”: Let x be a dec-min element of

....

B. Let y be a minimizer
of Φ, which is dec-min by the above argument. Then x↓ = y↓. It follows from this and
symmetry (86) that Φ(x) = Φ(x↓) = Φ(y↓) = Φ(y). Therefore, x is also a minimizer of Φ.

Next we consider the case of unbounded
....

B. Let k0 be an integer such that {z ∈ ZS :
‖z‖∞ ≤ k0} contains all dec-min elements of

....

B. For k ≥ k0 we denote the intersection of
....

B
and {z ∈ ZS : ‖z‖∞ ≤ k} by

....

Bk. Obviously,
....

B and
....

Bk have the same dec-min elements. By
the argument for the bounded case, the dec-min elements of

....

Bk are exactly the minimizers
of Φ over

....

Bk. Since this is true for all k ≥ k0, these dec-min elements are exactly the
minimizers of Φ over

....

B. �
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We now consider (non-strict) convex function Φ, which, by definition, satisfies

tΦ(x) + (1 − t)Φ(y) ≥ Φ(tx + (1 − t)y) (89)

whenever x, y ∈ dom Φ, 0 < t < 1, and tx+(1−t)y is an integral vector. As easily imagined,
a dec-min element is a minimizer of such function.

Corollary A.2. Let
....

B be the set of integral points of an integral base-polyhedron, and Φ be
a symmetric convex function. Then a dec-min element of

....

B is a minimizer of Φ on
....

B.

Proof. For a > 0 define Φa(x) = Φ(x) + a
∑

s∈S x(s)2, which is symmetric strictly convex.
Let y be a dec-min element of

....

B. By Theorem A.1, y is a minimizer of Φa for any a > 0. If
y is not a minimizer of Φ, there exists z ∈ ....

B with Φ(y) > Φ(z). We can take a sufficiently
small a > 0 for which a

∣∣∣∑s∈S y(s)2 −∑
s∈S z(s)2

∣∣∣ < Φ(y)−Φ(z). Then Φa(y) > Φa(z), which
is a contradiction to y being a minimizer of Φa. Therefore, y must be a minimizer of Φ. �

The following examples show the application of Corollary A.2.

Example A.1 (max-component). The function Φ(x) = max{x(1), . . . , x(n)} is a symmetric
convex function. Therefore, a dec-min element of

....

B is a max-minimizer of
....

B. •
Example A.2 (min-component). The function Φ(x) = −min{x(1), . . . , x(n)} is a symmetric
convex function. Therefore, a dec-min element of

....

B is a min-maximizer of
....

B. •
Example A.3 (range). The function Φ(x) = max{x(1), . . . , x(n)}−min{x(1), . . . , x(n)} repre-
senting the range of the components of a vector is a symmetric convex function. Therefore,
a dec-min element of

....

B minimizes the range of the components of a vector in
....

B •
Example A.4 (k largest component sum). For an integer k with 1 ≤ k ≤ n, the function
Φ(x) representing the sum of the k largest components of a vector x is a symmetric convex
function. Using the notations introduced in Section 2.1, we can express Φ(x) = x(k) =∑k

i=1 x↓(i). By Corollary A.2, a dec-min element of
....

B is a minimizer of this function, which
is given already in Theorem 3.5 of Part I [8]. This fact means that every dec-min element
of

....

B is a least majorized element of
....

B, which is stated already in Theorem 2.6. •
Example A.5 (2-separable convex). For a, b, c ≥ 0, the function defined by

Φ(x) = a
n∑

i=1

|x(i)| + b
∑

i, j

|x(i) − x( j)| + c
∑

i, j

|x(i) + x( j)|

is a symmetric convex function. More generally, a symmetric 2-separable convex function

Φ(x) =

n∑

i=1

ϕ0(x(i)) +
∑

i, j

ϕ−(|x(i) − x( j)|) +
∑

i, j

ϕ+(x(i) + x( j)),

where ϕ0, ϕ−, ϕ+ : Z → R are discrete convex functions, satisfies (86) and (89). By Corol-
lary A.2, a dec-min element of

....

B is a minimizer of such functions over
....

B. The minimization
of 2-separable convex functions is investigated in depth by Hochbaum and others [1, 17, 18]
using network flow techniques. 2-separable diff-convex functions appear in the convex dual
of the minimum cost network flow problem [1, 17, 18, 32]. •
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Remark A.1. Theorem A.1 is a discrete counterpart of a result of Maruyama [26] for the
continuous case. Our proof is an adaptation of the proof of [34, Corollary 13]. •
Remark A.2. Since non-separable symmetric convex functions are not necessarily M\-
convex, we cannot use the Fenchel-type duality theorem to obtain a min-max formula for
the minimization of non-separable symmetric convex functions. •
Remark A.3. In connection to Examples A.1, A.2, and A.3 it is worth noting that more
general nonlinear optimization problems in discrete variables are considered by Fujishige,
Katoh, and Ichimori [13]; see also [11, Sections 10.2 and 11.2]. For each i let hi : Z→ R be
a monotone nondecreasing function on Z such that limt→+∞ hi(t) = +∞ and limt→−∞ hi(t) =

−∞. Let g : R2 → R be a function such that g(u, v) is monotone nondecreasing in u and
monotone nonincreasing in v. Weakly polynomial algorithms are given for the following
problems:

Maximize min
1≤i≤n

hi(x(i)) subject to x ∈ ....

B; (90)

Minimize max
1≤i≤n

hi(x(i)) subject to x ∈ ....

B; (91)

Minimize g( max
1≤i≤n

hi(x(i)), min
1≤i≤n

hi(x(i)) ) subject to x ∈ ....

B. (92)

Note that the objective functions of these problems are not symmetric convex in general.
Examples A.1, A.2, and A.3, respectively, are special cases of the above problems with
hi(t) = t and g(u, v) = u − v. •

B Survey of early papers
This appendix offers a brief survey of earlier papers and books that deal with topics closely
related to decreasing minimization on base-polyhdera. To be specific, we mention the fol-
lowing: Veinott [36] (1971), Megiddo [27] (1974), Fujishige [10] (1980), Groenevelt [14]
(1985, 1991), Federgruen–Groenevelt [6] (1986), Ibaraki–Katoh [20] (1988), Dutta–Ray
[5] (1989), Fujishige [11] (1991, 2005), Hochbaum [16] (1994), and Tamir [35] (1995).

Similar notions and terms are scattered in the literature such as “egalitarian,” “lexico-
graphically optimal,” “least majorized,” “least weakly submajorized,” “decreasingly min-
imal (dec-min),” and “increasingly maximal (inc-max).” Unfortunately, these notions are
discussed often independently in different context, without proper mutual recognition. The
term “least majorized” is used in Veinott [36] and “Least weakly submajorized” is used
in Tamir [35]. These terms are not used in Marshall–Olkin–Arnold [25]. Dutta–Ray [5]
uses “egalitarian” and does not use “majorization.” The term “lexicographically optimal”
in Veinott [36], Megiddo [27, 28], and Fujishige [10, 11] means “increasingly maximal
(inc-max).”

Three notions “dec-min”, “inc-max”, and “least majorized” are different in general. Gen-
erally, “least majorized” implies “dec-min” and “inc-max”, but the converse is not true (see
Section 2.2). In base-polyhedron (in R and Z), however, the three notions coincide (see
Section 2.3).
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Another important aspect in majorization is minimization of symmetric separable convex
functions. An element is least majorized if and only if it simultaneously minimizes all
symmetric separable convex functions (see Proposition 2.1). Therefore, if a least majorized
is known to exist, then it can be computed as a minimizer of the square-sum.

Veinott (1971) [36]

This paper deals with a network flow problem. The ground set is a star of arcs, i.e., the
set of arcs incident to a single node. This amounts to considering a special case of a base-
polyhedron. The main result is the unique existence of a least majorized element in Case
R.

The computational aspect is also discussed. The problem is reduced to separable quadratic
network flow problem. Then the paper describes an algorithm for nonlinear convex cost
minimum flow problem. It also defines the dual problem using the conjugate function.
Complexity of the algorithm is not discussed.

Case Z is also treated. Theorem 2 (1) shows the existence of an integral element that
simultaneously minimizes all symmetric separable convex functions. The proof is based
on rounding argument (continuous relaxation). That is, for a discrete convex function in
integers, its piecewise-linear extension is considered and the integrality theorem is used
to derive the existence of an integral minimizer. Thus the existence of a least majorized
element is shown for the network flow in Case Z.

Megiddo (1974) [27]

This paper deals with a network flow problem. The ground set is the set of multi-terminals.
This is more general than a star considered in Veinott [36], but the difference not really
essential. The paper defines the notions of “sink-optimality” and “source-optimality,” which
are increasing-maximality for vectors on the sink and source terminals, respectively. This
paper considers Case R only. The main result is the characterization an inc-max element
using a chain of cuts in the network (Theorem 4.6). Computational aspect is discussed in
the companion paper [28], which gives an algorithm of complexity O(n5).

Fujishige (1980) [10]

This is the first paper that deals with base-polyhedra, beyond network flows. It considers
Case R only. The lexicographically optimality with respect to a weight vector is defined.
The lexicographically optimal base with respect to a uniform weight coincides with the
inc-max element of the base-polyhedron. The relation to weighted square-sum minimiza-
tion is investigated in detail and the minimum norm point is highlighted. The principal
partition for base-polyhedra is introduced, as a generalization of the known construction
for matroids. The principal partition determines the lexico-optimal base. The proposed
decomposition algorithm finds the lexico-optimal base as well as the principal partition in
strongly polynomial time. While this paper covers various aspects of the lexico-optimal
base, the majorization viewpoint is missing. In particular, it is not stated that the minimum
norm point is actually a minimizer of all symmetric separable convex functions.
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Groenevelt (1985, 1991) [14]

The technical report appeared in 1985, and the journal version in 1991. Already the techni-
cal report was influential, cited by [11, 1st ed.], [16], and [20].

The main concern of this paper is separable convex minimization (not restricted to sym-
metric separable convex functions) on base-polyhedra. Both continuous variables (Case R)
and discrete variables (Case Z) are treated. In particular, this is the first paper that addressed
minimization of separable convex functions in discrete variables. One of the results says
that, in any integral base-polyhedron, there exists an integral element that is a (simultane-
ous) minimizer of all symmetric separable convex functions. This paper does not discuss
implications of this result to inc-maximality, dec-minimality, or majorization, though the
result does imply the existence of a least majorized element by virtue of the well-known
fact (Proposition 2.1) about majorization.

The paper presents two kinds of algorithms, the marginal allocation algorithm (of in-
cremental type) and the decomposition algorithm (DA). Concerning complexity, the au-
thor argues that the algorithms are polynomial if the base-polyhedron are of some special
types (tree-structured polymatroids, generalized symmetric polymatroids, network poly-
matroids). We quote the following statements from [14, p.234, journal version], where E
denotes the ground set of a base-polyhedron and N is the associated submodular function,
which is integer-valued in Case Z:

The total complexity of DA is thus O(|E|(τ1 + τ2)), where τ1 = the number of
operations needed to solve a single constraint problem, and τ2 = the number
of operations needed to perform one pass through Steps 2 and 3. It is well-
known that in the discrete case τ1 = O(|E| log(N(E)/|E|)) (see Frederickson
and Johnson (1982)), and in the continuous case τ1 = O(|E| log |E| + χ), where
χ is the time needed to solve a certain type of non-linear equation (see Zipkin,
1980).

This paper was written in 1985 and at that time, no strongly polynomial algorithm for
submodular function minimization was known; the strongly polynomial algorithm (using
the ellipsoid method) first appeared in 1993 [15, 2nd edition].

Federgruen–Groenevelt (1986) [6]

This paper deals with base-polyhedra in Case Z. Main concern of this paper is to offer
a general framework in which a greedy procedure called the marginal allocation algorithm
(MAA) works. The concept of concave order is introduced as a class of admissible objective
functions for which the greedy procedure works. The main result (Corollary 1 in Sec.3)
states, roughly, that the MAA gives an optimal solution for every weakly concave order on
polymatroids.

Ibaraki–Katoh (1988) [20]

This is the first comprehensive book for algorithmic aspects of the resource allocation prob-
lem and its extensions. Chapter 9, entitled “Resource allocation problems under submodu-
lar constrains” presents the fundamental and up-to-date results at that time, including those
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by Fujishige [10], Groenevelt [14], and Federgruen–Groenevelt [6]. In particular, Theo-
rem 9.2.2 [20, p.156] states that the decomposition algorithm runs in polynomial time in
|E| and log M, where E is the ground set, r is the submodular function for the submodular
constraint, and M is an upper bound on r(E).

The contents of Chapter 9 are updated in a handbook chapter by Ibaraki–Katoh [22] in
1998. Its revised version by Katoh–Shioura–Ibaraki [23] in 2013 incorporates the views
from discrete convex analysis.

Dutta–Ray (1989) [5]

This paper deals with base-polyhedra in the context of game theory. Recall that the core of
a convex game is nothing but the base-polyhedron. Naturally this paper deals exclusively
with Case R. According to Tamir [35], this is the first paper proving the existence of a least
majorized element in a base-polyhedron. Technically speaking, this result could be obtained
from a simple combination of the results of Groenevelt [14] (which was written in 1985
and published in 1991) and a well-known fact “least majorized element ⇔ simultaneous
minimizer of all symmetric separable convex functions” (see Proposition 2.1). However,
Dutta–Ray [5] and Groenevelt [14] are unaware of each other; see Table 1 at the end of
Appendix. We also note that Fujishige [10] deals with quadratic functions only, and hence
the results of [10] do not entail the existence of a least majorized element.

Fujishige (1st ed., 1991; 2nd ed. 2005) [11]

This book offers a comprehensive exposition of the results of Fujishige [10] about the
lexico-optimal (inc-max) element of a base-polyhedron in Case R. For Case Z, however,
there is an explicit statement at the beginning of Section 9 that the argument is not applica-
ble to Case Z.

For separable convex minimization, both Cases R and Z are treated. In particular, the
results of Groenevelt [14] are described in a manner consistent with the other part of this
book. It is stated that the decomposition algorithm works for Cases R and Z, but complexity
analysis is explicit only for Case R. It is shown that the decomposition algorithm is strong
polynomial for Case R, but no explicit statement for Case Z is found.

As a natural consequence of the fact that lexico-optimal bases in Case Z are not con-
sidered in this book, no connection is made between separable convex minimization and
lexico-optimality (inc-max, dec-min). Majorization concept is not treated, either, though a
reference to Dutta–Ray [5] is added in the second edition (Section 9.2).

Hochbaum (1994) [16]

This paper shows that there exist no strongly polynomial time algorithms to solve the re-
source allocation problem with a separable convex cost function. Subsequently, Hochbaum
and her coworkers made significant contributions to resource allocation problems in discrete
variables, dealing with important special cases and showing improved complexity bounds
for the special cases (e.g., Hochbaum–Hong [19]). The survey paper by Hochbaum [18] is
informative and useful.
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Tamir (1995) [35]

This paper deals with g-polymatroids in Case R and Case Z. The relationship between
majorization and decreasing-minimality is discussed explicitly.

The main result is the existence of a least weakly submajorized element in a g-polymatroid.
The following sentences concerning Case R in pages 585–585 are informative:

Fujishige (1980) extends the results of Megiddo to a general polymatroid and
presents an algorithm to find a lexicographically optimal base of the polyma-
troid with respect to an arbitrary positive weight vector d. This weighted model
is closely related to the concept of d-majorization introduced by Veinott (1971).
Neither Megiddo nor Fujishige relate their results on lexicographically optimal
bases to the stronger concept of majorization. (From Proposition 2.1 we note
that if an arbitrary set has a least majorized element it is clearly lexicographi-
cally optimal. However, every convex and compact set S has a unique lexico-
graphically maximum element, but might not have a least majorized element.)
The fact that a polymatroid has a least majorized base is shown by Dutta and
Ray (1989). They consider the core of a convex game as defined by Shapley
(1971), which corresponds to a polymatroid. (Strictly speaking the former is
defined as a contra-polymatroid; see next section.) We will extend and unify
the above results by proving that a bounded generalized polymatroid contains
both least submajorized and least supermajorized elements.

For the complexity of finding the unique minimizer x∗ ∈ Rn of the square-sum over a
g-polymatroid (Case R), the following statement can be found in page 587:

x∗ can be found in strongly polynomial time by modifying the procedure in
Fujishige (1980) and Groenevelt (1991) which is applicable to polymatroids.
The latter procedure can now be implemented to solve any convex separable
quadratic over a polymatroid in a strongly polynomial time since its complexity
is dominated by the efforts to minimize a (strongly) polynomial number of
submodular functions.

There is no statement about complexity in Case Z.
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Table 1: Referencing relations between papers

Vei Meg Fuj Gro F-G I-K D-R Fuj Hoc Tam
[36] [27] [10] [14] [6] [20] [5] [11] [16] [35]

Veinott 1971 · – – – – – – – – –
Megiddo 1974 – · – – – – – – – –
Fujishige 1980 – R · – – – – – – –
Groenevelt 1985/91 – R R · R – – – – –
Federgruen–Groenevelt 1986 – R R – · – – – – –
Ibaraki–Katoh 1988 – R R R R · – – – –
Dutta–Ray 1989 – – – – – – · – – –
Fujishige 1991 (1st ed.) – R R R – R R2nd · – –
Hochbaum 1994 – – – R R R – – · –
Tamir 1995 R R R R – – R R – ·

Paper at the left refers to papers marked R in the same row
R2nd means that reference is made in the 2nd edition (2005)
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