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Minimal representation of elementary Horn
functions

Kristóf Bérczi∗, Endre Boros†, Ond°ej �epek‡, Petr Ku£era�, and
Kazuhisa Makino¶

Abstract

Horn functions form a computationally tractable subclass of Boolean func-

tions and appear in many di�erent areas of computer science and mathematics

as a general tool to describe implications and dependencies. The problem of

�nding a minimum representation of a Horn function is interesting both from

a theoretical and a practical viewpoint. We give approximation algorithms for

the problem in a special class of Horn functions.

1 Introduction

Let V denote a set of variables. Members of V are called positive while their
negations are called negative literals. Throughout the paper, the number of vari-
ables is denoted by n. A Boolean function is a mapping f : {0, 1}V → {0, 1}. The
characteristic vector of a set Z is denoted by χZ , that is, χZ(v) = 1 if v ∈ Z and
0 otherwise. We say that a set Z ⊆ V is a true point of f if f(χZ) = 1, and a
false point otherwise. For short, we will also use the terms true set and false set,
respectively. The sets of true and false sets of f are denoted by Tf and Ff .
Any Boolean function f can be represented by a conjunctive normal form

(CNF). A CNF Φ = (V, C) is a conjunction of its clauses in C, where each clause is
a disjunction of literals. The number of literals in a clause C is denoted by |C|. A
clause is Horn if at most one of its literals is positive, and is pure Horn (or de�nite
Horn) if it contains exactly one positive literal. The CNF function Φ is pure Horn
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Section 1. Introduction 2

if all of its clauses are pure Horn, and a Boolean function f is called pure Horn if it
has a pure Horn CNF representation.
For a subset ∅ 6= B ⊆ V and v ∈ V \ B we write B → v to denote the pure Horn

clause C = v ∨
∨

u∈B u. Here B and v are called the body and head of the clause,
respectively. That is, a pure Horn CNF can be associated with a directed hypergraph
where every clause B → v is considered to be a directed hyperedge oriented from
B to v. Hence we will refer to clauses and variables also as hyperedges and nodes,
respectively. The sets of bodies and heads appearing in a CNF representation Φ is
denoted by BΦ and HΦ, respectively. We will also use the notation B → H to denote∧

v∈H B → v. By grouping the clauses with the same body appearing in a pure CNF

Φ we get Φ =
∧t

i=1Bi → Hi where t = |BΦ|.
For any pure Horn function h the set of its true sets, Th, is closed under taking

intersection and contains V . This implies that for any non-empty set Z ⊆ V there
exists a unique smallest true set containing Z. This set is called the forward chaining

closure of Z and is denoted by Fh(Z). If Φ is a pure Horn CNF representation of
h, then the forward chaining closure can be obtained by the following procedure. Set
F 0

Φ(Z) := Z. In a general step, if F i
Φ(Z) is a true set then Fh(Z) = F i

Φ(Z). Otherwise,
let A ⊆ V denote the set of all variables v for which there exists a clause B → v of
Φ with B ⊆ F i

Φ(Z) and v /∈ F i
Φ(Z), and set F i+1

Φ := F i
Φ(Z) ∪ A. The result of the

process does not depend on the particular choice of the representation Φ, but only on
the underlying function h.
We call a pure Horn function h elementary if Fh(B) = V for every inclusionwise

minimal false set B ∈ Fh. Note that such a function has a unique irredundant
representation Φ, and BΦ is a Sperner family containing exactly the inclusionwise
minimal false sets. Vice versa, an arbitrary Sperner family B ⊆ 2V \ {V } can be
associated with the irredundant pure Horn CNF

Φ =
∧
B∈B

B → (V \B),

which in turn represents an elementary pure Horn function, denoted by hB.
Given a Sperner family B ⊆ 2V \{V }, we can associate with it a directed tournament

DB by de�ning V (DB) = B, E(DB) = B × B. We refer to DB as the body graph of
B. If F ⊆ E(DB) forms a strongly connected subgraph of DB, then

ΦF =
∧

(B,B′)∈F

B → (B′ \B)

is a representation of hB.
For a pure Horn CNF Φ = (V, C) and a Sperner family B ⊆ 2V \ {V }, the body

graph of Φ with respect to B is a directed graph DΦ
B where V (DΦ

B ) = B and there
is a directed edge (B,B′) in E(DΦ

B ) if and only if (B → v) ∈ C for each v ∈ B′ \ B.
When B is clear from the context, we simply call this directed graph the body graph
of Φ.
Assume now that Φ = (V, C) is a pure Horn CNF of form Φ =

∧t
i=1Bi → Hi where

Bi 6= Bj for i 6= j. The size of the formula can be measured in di�erent ways:
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• number of bodies, denoted by |Φ|B := |BΦ| = t,

• number of edges, denoted by |Φ|E := |C| =
∑t

i=1 |Hi|,

• number of bodies and edges, denoted by |Φ|BE := |BΦ|+|C| =
∑t

i=1(|Hi|+1),

• body area, denoted by |Φ|BA :=
∑t

i=1 |Bi|,

• total area, denoted by |Φ|A :=
∑t

i=1(|Bi|+ |Hi|),

• number of literals, denoted by |Φ|L :=
∑

C∈C |C| =
∑t

i=1

(
(|Bi|+ 1) · |Hi|

)
.

The Horn minimization problem is to �nd a representation that is equivalent to a
given Horn formula and has minimum size with respect to | · |∗ where ∗ denotes one of
the aforementioned functions. Such a representation can be used to reduce the size of
the knowledge base in a propositional expert system, thus improving the performance
of the system.

Previous work. Unfortunately, it is NP-hard to �nd an optimal representation for
almost all of these size functions (see [1]). The sole exception is the case of body
minimal representations, for which polynomial time algorithms were independently
discovered [1, 7, 9]. In [3], Boros et al. provided a min-max result on the minimum
number of bodies appearing in the representation of a Horn function, thus giving an
explanation why this case is so di�erent from the others in terms of tractability.
In contrast, edge minimal representations are not only hard to �nd but even

hard to approximate. Bhattacharya et al. [2] showed that the edge minimal rep-

resentation problem is inapproximable within a factor 2O(log(1−ε)(n) assuming NP (
DTIME(npolylog(n)), while Boros and Gruber showed that it is inapproximable within

a factor 2O(log1−o(1)n) assuming P ( NP , where n denotes the number of variables.

Contribution. The present work aims at giving approximation algorithms for the
Horn minimization problem in the special class of elementary Horn functions. As
mentioned earlier, the body minimal representation problem is well studied and can
be solved in polynomial time. Hence we concentrate on the remaining size de�nitions.

2 Preliminaries

The problem that we consider is the following: we are given a Sperner family
B ⊆ 2V \ {V }, and the aim is to �nd a minimum pure Horn CNF representation of
hB. Recall that the size of the ground set is denoted by |V | = n, while |B| = m. The
size of an optimal solution with respect to measure function | · |∗ is denoted by
OPT∗(B).
We may assume w.l.o.g. that

⋃
B∈B B = V , since if there is a node v ∈ V \

⋃
B∈B B

not covered by any of the bodies, then in any minimal representation of hB there must
be a clause with head v and body in B, and actually one such clause su�ces. We may
also assume that

⋂
B∈B B = ∅, since if there exists a node v ∈ V which is contained

in all members of B then we can reduce the problem by simply deleting it.
We start with easy lower bounds on the size of an optimal solution.
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Lemma 2.1. OPT∗(B) ≥ max{m,n} for ∗ ∈ {E,BE,A, L}.

Proof. Observe that all measure functions are lower bounded by | · |E except | · |B and
| · |BA, hence it su�ces to prove the statement for ∗ = E.
If we start the forward chaining from a body B ∈ B, we have to reach all the other

nodes as the function is elementary. This means that, in any representation, there
must be at least one hyperedge with body B for every B ∈ B, implying OPTE(B) ≥ m.
On the other hand, every node v ∈ V has to be reachable by forward chaining from

every B ∈ B. By the assumption that no node is contained in all members of B,
every representation must contain at least one hyperedge with head node v, implying
OPTE(B) ≥ n.

The following two lemmas play a key role in our approximation algorithms.

Lemma 2.2. There exists a | · |∗-minimal representation that only uses bodies from

B.

Proof. Take a | · |∗-minimal representation Φ for which |BΦ \B| is as small as possible.
If BΦ\B = ∅ then we are done, hence assume that this is not the case. Let B ∈ BΦ\B.
As B is a false set, there must be a body B′ ∈ B s.t. B′ ⊂ B. If we substitute every
edge B → v of Φ by B′ → v, then the | · |∗ size of the representation does not increase
while |BΦ \ B| decreases, contradicting the choice of Φ.

For a body B ∈ B and set S ⊆ V let price∗(B, S) denote the minimum | · |∗-cost
of reaching S from B by forward chaining using only bodies in B, that is,

price∗(B, S) = min
{
|Φ|∗

∣∣ BΦ ⊆ B, FΦ(B) ⊇ S
}
. (1)

For a given CNF Φ, we denote by Φ∗(B, S) the minimum | · |∗-sized sub-CNF of Φ for
which S is reachable from B by forward chaining, that is,

Φ∗(B, S) = arg min
{
|Φ′|∗

∣∣ Φ′ ⊆ Φ, FΦ′(B) ⊇ S
}
. (2)

Lemma 2.3. Let B = B1 ∪ . . .Bq be a partition of B and let Bi ∈ Bi for i = 1, . . . , q.
Then

OPT∗(B) ≥
q∑

i=1

min
B/∈Bi

price∗(Bi, B) (3)

for ∗ ∈ {B,E,BE,BA,A, L}.

Proof. Take a minimal representation Φ with respect to | · |∗ which uses bodies only
from B. Such a representation exists by Lemma 2.2. We claim that the contri-
bution of the edges with bodies in Bi to the total size of the solution is at least
minB/∈Bi price∗(Bi, B) for each i = 1, . . . , q. This would prove the lemma as the Bi's
form a partition of B.
Take an index i ∈ {1, . . . , q} and let B′ be the �rst body (more precisely, one of the

�rst bodies) not contained in Bi that is reached the earliest when starting the forward
chaining from Bi. Every edge that is used to reach B′ from Bi has its body in Bi and
their contribution to the size of the representation is lower bounded by price∗(Bi, B

′),
thus concluding the proof.
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Section 3. Edge minimal representations 5

3 Edge minimal representations

As before, let B ⊆ 2V \ {V } be a Sperner family corresponding to an elementary
pure Horn function. Recall that

⋃
B∈B B = V and

⋂
B∈B B = ∅. Now we are ready to

prove our �rst result.

Theorem 3.1. For elementary pure Horn functions, there exists an e�cient (dlog ne+
1)-approximation algorithm for the edge minimal representation problem.

Proof. The high level idea of the algorithm is as follows. In a �rst phase, we will
construct a CNF so that its body graph with respect to B contains a branching
consisting of a `few' components. We start from the empty formula Φ0 and the empty
digraph F0. In a general step of the algorithm, Φi will denote the CNF constructed
so far and Fi will denote a branching of DΦi

B . Then Φi+1 is determined in such a
way that for each component -which is an arborescence- of Fi, there exists an arc in
E(D

Φi+1

B ) leaving it. This results in a branching Fi+1 having at most half that many
components as Fi.
When the number of components in the branching becomes small enough, we add

all the possible hyperedge leaving the root bodies of the components in a second phase.
This step makes the body graph of the formula strongly connected, which means that
we get a representation of the pure Horn function.
Now we give a detailed description of the algorithm. As mentioned before, Φ0

denotes the empty formula and F0 is the empty digraph on node-set B. Now we show
how to de�ne Φi+1 and Fi+1. As Fi is a branching, it is the node-disjoint collection of
arborescences A1, . . . , Aq (where an arborescence may consist of a single node). The
node-sets of these arborescences de�nes a partition of B into subsets B1 ∪ . . . ∪ Bq
where Bj is the set of bodies corresponding to the node-set of Aj. Now de�ne Bj ∈ Bj
as the body corresponding to the root-node of Aj. For each j = 1, . . . , q, let B′j be a
body attaining the minimum in minB/∈Bj |B\Bj| and set Φi+1 := Φi∧(

∧q
j=1 Bj → B′j).

Claim 3.2. priceE(Bj, B) = |B \Bj|.

Proof. Take a CNF attaining the minimum in (1). As every node in B \Bj is reached
by forward chaining starting from Bj, each such node must be a head of at least one
hyperedge. That is, the CNF contains at least |B \ Bj| hyperedges. However, Bj →
(B \Bj) uses exactly |B \Bj| edges, hence priceE(Bj, B) = |B \Bj| as required.

By Lemma 2.3 and Claim 3.2, the total number of edges added is
∑q

j=1 minB/∈Bj |B\
Bj| =

∑q
j=1 minB/∈Bj priceE(Bj, B) ≤ OPTE(B).

Now there is an arc from Bj to B′j in E(D
Φi+1

B ) for each j = 1, . . . , q. If we add
these arcs to Fi simultaneously, we get a directed graph which is almost a branching,
except that every component contains exactly one directed cycle. We can break these
cycles by deleting a newly added arc in all of them, thus obtaining a branching Fi+1

consisting of at most q/2 arborescences.
After dlog ne extension steps, the number of components of the branching decreases

to at most m/2dlogne ≤ m/n and the �rst phase ends. Let A1, . . . , Aq denote the
arborescences forming the connected components of Fdlogne. As before, the root body
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of Aj is denoted by Bj. Now set Φ = Φdlogne ∧ (
∧q

j=1Bj → (V \ Bj)). This step

ensures that the body graph DΦ
B contains all complete out-stars whose center node is

among the Bj's. These out-stars together with the branching Fdlogne form a strongly-
connected digraph, hence Φ is a representation of the Horn function in question.
By Lemma 2.1, the number of edges added in the second phase is bounded by

m/n · n = m ≤ OPTE(B). Hence the total size of our solution is bounded by
(dlog ne+ 1) ·OPTE(B) as stated.

The approach used in the proof of Theorem 3.1 improves the previously known best
approximation factor for (k + 1)-CNF's [10]. Note that this corresponds to the case
when |B| ≤ k for every B ∈ B.

Theorem 3.3. For elementary pure Horn functions with |B| ≤ k for every B ∈ B,
there exists an e�cient (dlog ke + 2)-approximation algorithm for the edge minimal

representation problem.

Proof. Perform the same steps as in the proof of Theorem 3.1, but now the �rst phase
stops after dlog ke steps. The number of components in the branching thus obtained
is at most m/k. Let A1, . . . , Aq denote the arborescences forming the connected
components of Fdlog ke with root bodies B1 . . . , Bq. Fix an arbitrary body B0 ∈ B
and set Φ = Φdlog ke ∧ (

∧q
j=1 Bj → (B0 \ Bj)) ∧ (B0 → (V \ B0)). This step ensures

that the body graph DΦ
B contains an arc from Bj to B0 for j = 1, . . . , q, and also

arcs from B0 to any other body B. These arcs together with the branching Fdlog ke
form a strongly-connected digraph, hence Φ is a representation of the Horn function
in question.
By Lemma 2.1, the number of edges added in the second phase is bounded by

m/k · k + n = m+ n ≤ OPTE(B) +OPTE(B). Hence the total size of our solution is
bounded by (dlog ke+ 2) ·OPTE(B).

4 Body-and-edge minimal, body area minimal and

total area minimal representations

In this section we discuss minimal representations of elementary pure Horn func-
tions when the size of the representation is measured with respect to | · |BE, | · |BA or
| · |A. Observe that each member of B must appear as a body of an edge in any repre-
sentation, hence the body area of any representation is lower bounded by

∑
B∈B |B|.

In fact, �nding a body area minimal representation is trivial.

Theorem 4.1. For elementary pure Horn functions, a body area minimal represen-

tation can be found in polynomial time.

Proof. The CNF de�ned as Φ =
∧

B∈B B → (V \ B) is a valid representation of the
pure Horn function in question and only uses bodies from B.

Also, the number of bodies in any representation is lower bounded by |B|, which
together with Theorem 3.1 imply the following.
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Theorem 4.2. For elementary pure Horn functions, there exists an e�cient (dlog ne+
1)-approximation algorithm for the body-and-edge minimal representation problem.

Proof. Clearly, | · |BE = | · |B + | · |E. By the observation above, | · |B| ≥ |B|. The
algorithm presented in Theorem 3.1 provides a representation Φ which uses bodies
only from B. That is, |Φ|BE = |Φ|B + |Φ|E ≤ OPTB(B) + (dlog ne+ 1) ·OPTE(B) ≤
(dlog ne+ 1) ·OPTBE(B).

Based on the fact that the body area of any representation is lower bounded by∑
B∈B |B|, the total area minimal representation can be approximated within a con-

stant factor.

Theorem 4.3. For elementary pure Horn functions, there exists an e�cient 2-ap-
proximation algorithm for the total area minimal representation problem.

Proof. Take an arbitrary ordering B1, . . . , Bt of the bodies in B and set Φ =
∧t

i=1Bi →
(Bi+1 \ Bi) where Bt+1 = B1. The size of Φ is |Φ|A =

∑t
i=1(|Bi| + |Bi+1 \ Bi|) ≤ 2 ·∑t

i=1 |Bi| ≤ 2 ·OPTA(B).

5 Literal minimal representations

In this section we give an approximation algorithm for the literal minimal repre-
sentation problem. The main idea of the algorithm is similar to the the proof of
Theorem 3.1. Starting from the empty CNF Φ0, we extend the CNF step-by-step.
Meanwhile, we keep tracking of a branching in its body graph. The �rst phase stops
when the number of components in the branching becomes small enough. Then, in
a second phase, we add all the possible hyperedges leaving the root bodies of these
components, thus making the body graph of the formula strongly connected.
The main challenge is to bound the number of edges that are added in the �rst

phase. In the edge minimal case, Claim 3.2 ensured that the priceE(Bi, B) values
could be computed and so Lemma 2.3 was applicable. However, for literal minimal
representations even determining priceL(Bi, B) is NP-complete. To circumvent this
di�culty, �rst we give a 4-approximation algorithm for determining priceL(Bi, B).

Lemma 5.1. Let B0 ∈ B be a body and S ⊆ V be a set. There exists an e�cient

4-approximation algorithm for determining priceL(B0, S).

Proof. Assume that Φ is a CNF attaining the minimum in (1) which provides the
shortest forward chaining in time. Starting the forward chaining procedure from B0,
let Wi denote the set of nodes reached until time i. That is, B0 = W0 ⊂ W1 ⊂ . . . ⊂
Wt ⊇ S. Choose Bi ∈ B to be the smallest body in Wi for i = 0, . . . , t − 1 and set
Bt := S.

Claim 5.2. Bi 6⊆ Wi−1 for i = 1, . . . , t.

Proof. The bodies in B form a Sperner system, hence B0 is the single body contained
in W0, implying B1 6⊆ W0. Also, S = Bt 6⊆ Wt−1 as otherwise the CNF contains
unnecessary clauses, contradicting its minimality.
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Suppose to the contrary that Bi ⊆ Wi−1 for some 2 ≤ i ≤ t− 1. By the de�nition
of forward chaining, every node v ∈ Wi+1 \Wi is reached through an edge B → v
where B ∩ (Wi \Wi−1) 6= ∅. Now substitute each such edge by Bi → v. As |Bi| ≤ |B|,
the | · |L size of the CNF does not increase. However, the time length of the forward
chaining decreases by at least one, contradicting the choice of Φ.

Claim 5.2 immediately implies that |B0| > |B1| > . . . > |Bt−1|.

Claim 5.3. Wi+1 \Wi ⊆ Bi+1 for i = 0, . . . , t− 1.

Proof. Let i be the smallest index that violates the condition. Take an arbitrary
node v ∈ Wi+1 \Wi. Then v is reached in the (i + 1)th step of the forward chaining
procedure from a body of size at least |Bi|. If we substitute this edge by Bi+1 → v,
the resulting CNF still satis�es FΦ(B0) ⊇ S but has smaller | · |L size by |Bi+1| < |Bi|,
contradicting the minimality of Φ.

By Claim 5.3, Wi+1 \ Wi = Bi+1 \ (
⋃i

j=0Bj). De�ne Φ′ :=
∧t−1

i=0 Bi → (Bi+1 \⋃i
j=0Bj).

Claim 5.4. |Φ′|L = |Φ|L.

Proof. Take an arbitrary node v ∈ Bi+1 \ (
⋃i

j=0Bj) for some i = 0, . . . , t− 1. By the
observation above, v ∈ Wi+1 \Wi. This means that Φ has at least one edge entering
v, say B → v, for which B ⊆ Wi and so |B| ≥ |Bi|. However, Φ′ has exactly one edge
entering v, namely Bi → v. This implies that |Φ′|L ≤ |Φ|L, and equality holds by the
minimality of Φ.

Let ij denote the smallest index for which |Bij | ≤ |B0|/2j and let r − 1 be the
largest value for which Bir−1 exists. Furthermore, set Bir := S. Now de�ne Φ′′ :=∧r−1

j=0 Bij → (Bij+1
\
⋃j

`=0 Bi`).

Claim 5.5. |Φ′′|L ≤ 2|Φ′|L.

Proof. Take an arbitrary node v ∈ Bij+1
\ (
⋃j

`=0Bi`) for some j = 0, . . . , r − 1. Then
both Φ′ and Φ′′ contain a single edge entering v. Namely, v is reached from Bij+1−1

in Φ′ and from Bij in Φ′′. By the de�nition of the sequence i0, i1, . . . , ir−1, we get
|Bij | ≤ 2|Bij+1−1|, concluding the proof of the claim.

Although Φ′′ gives a 2-approximation of Φ, it is still not clear how we could �nd such
a representation. De�ne Φ′′′ :=

∧r−1
j=0 Bij → (Bij+1

\ (Bij ∪ B0)). The only di�erence
between Φ′′ and Φ′′′ is that we add unnecessary edges to the representation. However,
the next claim shows that the size of the formula cannot increase a lot.

Claim 5.6. |Φ′′′|L ≤ 2|Φ′′|L.

Proof. Take an arbitrary node v that appears as the head of an edge in the represen-
tation Φ′′′. Let j be the smallest index for which v ∈ Bij+1

\ (
⋃j

`=0Bi`). Then Φ′′

contains a single edge entering v, namely Bij → v. On the other hand, the edges of
Φ′′′ that enter v form a subset of {Bij → v, . . . , Bir−1 → v}. By the de�nition of the
sequence i0, i1, . . . , ir−1, we get |Bij |+ . . .+ |Bir−1| ≤ 2|Bij |, and the claim follows.
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Section 5. Literal minimal representations 9

By Claims 5.4, 5.5 and 5.6,

|Φ′′′|L ≤ 2|Φ′′|L ≤ 4|Φ′|L = 4|Φ|L.

The reason for considering Φ′′′ instead of Φ is that the body graph of Φ′′′ with respect
to B ∪ {S} is a directed path (more precisely contains a directed path) from B0 to S.
Set the weight of an arc (B,B′) of the body graph of B ∪ {S} to wB0(B,B

′) :=
|B′ \ (B ∪B0)|. A shortest path P from B0 to S corresponds to a CNF

ΦP =
∧

(B,B′)∈P

B → (B′ \ (B ∪B0)). (4)

Note that such a shortest path can be found in polynomial time. Now |ΦP |L ≤ |Φ′′′| ≤
4|Φ|L, so ΦP provides a 4-approximation for priceL(B0, S) as required, �nishing the
proof of the lemma.

Theorem 5.7. For elementary pure Horn functions, there exists an e�cient (8dlog ne+
1)-approximation algorithm for the body area minimal representation problem.

Proof. We use an approach similar to the proof of Theorem 3.1. Starting from an
empty CNF Φ0, we add edges to the formula while we keep tracking of a branching
in the body graph of the formula with respect to B. The �rst phase stops when the
number of components in the branching decreases under a given bound. Then, in a
second phase, we add further edges leaving the root bodies of the branching, thus
making the body graph strongly connected.
In more details, let Φ0 denote the empty formula and F0 be the empty digraph on

node-set B. In a general step, Φi is the CNF constructed so far and Fi is a branching
in the body graph of Φi. As Fi is a branching, it is the node-disjoint collection of
arborescences A1, . . . , Aq (where an arborescence may consist of a single node). The
node-sets of these arborescences de�nes a partition of B into subsets B1 ∪ . . . ∪ Bq
where Bj is the set of bodies corresponding to the node-set of Aj. Now de�ne Bj ∈ Bj
as the body corresponding to the root-node of Aj.
Given an index j, we have seen that determining a body B attaining the minimum

in minB/∈Bj priceL(Bj, B) is di�cult. However, by Lemma 5.1, priceL(Bj, B) can be
approximated within a factor of 4 for each body B /∈ Bi by considering shortest paths
in the body graph, where the weight of an arc (B,B′) is set to wBi

(B,B′) := |B′ \
(B ∪ B0)|. That is, if Pj is a shortest path in the body graph from Bj to outside Bj
with other end node B′j, then ΦPj

de�ned in (4) satis�es

|ΦPj
|L ≤ 4 min

B/∈Bj
priceL(Bj, B).

Take such a path Pj for each j = 1, . . . , q, and set Φi+1 := Φi ∧ (
∧q

j=1 ΦPj
). By the

above observations and Lemma 2.3, the total size of the newly added edges is

q∑
j=1

|ΦPj
|L ≤ 4

q∑
j=1

min
B/∈Bj

priceL(Bj, B) ≤ 4 ·OPTL(B).
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The arcs of the paths appear in E(D
Φi+1

B ). If we add these paths to Fi simultane-
ously, we get a directed graph which may contain cycles, but as every path connected
at least two components of Fi, E(D

Φi+1

B ) contains a branching consisting of at most
q/2 arborescences. We choose such a branching to be Fi+1.
After dlog n2e extension steps, the number of components of the branching decreases

to at most m/2dlogn2e ≤ m/n2 and the �rst phase ends. Let A1, . . . , Aq denote the
arborescences forming the connected components of Fdlogn2e. As before, the root body
of Aj is denoted by Bj. Now set Φ = Φdlogn2e∧(

∧q
j=1Bj → (V \Bj)). This step ensures

that the body graph DΦ
B contains all complete out-stars with center node among the

Bj's. These out-stars together with the branching Fdlogne form a strongly-connected
digraph, hence Φ is a representation of the Horn function in question.
By Lemma 2.1, the number of edges added in the second phase is bounded by

m/n2 · n2 = m ≤ OPTL(B). Hence the total size of our solution is bounded by
(4dlog n2e+ 1) ·OPTL(B) ≤ (8dlog ne+ 1) ·OPTL(B) as stated.

The proof of the following result is analogous to that of Theorem 3.3.

Theorem 5.8. For elementary pure Horn functions with |B| ≤ k for every B ∈ B,
there exists an e�cient (8dlog ke+ 2)-approximation algorithm for the literal minimal

representation problem.

6 Relation to minimum weight strongly connected

subgraphs

Given a strongly connected graph D = (V,E) and non-negative weights w : E →
Z+, we denote by MWSCS(D,w) the problem of �nding a minimum weight subset F ⊆ E
of the arcs such that (V, F ) is also strongly connected. We denote by mwscs(D,w) =
w(F ) the weight of such a minimum weight arc subset. Problem MWSCS is an NP-hard
problem, for which polynomial time approximation algorithms are known. For the
case of uniform weights a 1.61-approximation was given by Khuller et al. [8]. For
general weights a simple 2-approximation is due to Fredericson and Jájá [6]. Note
that in the case of general weights, we can assume that D is a complete directed
tournament.
As it was observed already in Section 1, there is a natural relation of the above

problem to the minimization of an elementary pure Horn function. Let us consider a
Sperner hypergraph B ⊆ 2V \ {V } and the corresponding Horn function

hB =
∧
B∈B

B → (V \B).

The body graph of B was a complete directed tournament DB where V (DB) = B.
De�ne a weight function w on the arcs of this tournament by setting wB(B,B′) =
|B′ \B| for all B,B′ ∈ B, B 6= B′. Then any solution F ⊆ E(GB) = B×B of problem
MWSCS(DB, wB) de�nes a representation of hB:

Φ(F ) =
∧

(B,B′)∈E(GB)

B → (B′ \B).
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It is immediate to see that OPTE(B) ≤ wB(F ) holds. Thus, it is natural to expect
that a polynomial time approximation of problem MWSCS(DB, wB) provides also a good
approximation for OPTE(B). This however turns out to be false.
As before, we use n = |V | to denote the number of variables of the Horn functions

we consider.

Theorem 6.1.

max
B

mwscs(DB, wB)

OPTE(B)
≥ n

12
.

Proof. For the proof, let us recall some basic facts on �nite projective spaces from the
book [5].
The �nite projective space PG(d, q) of dimension d over a �nite �eld GF (q) of order

q (prime power) has n = qd + qd−1 + · · ·+ q + 1 points. Subspaces of dimension k are
isomorphic to PG(k, q) for 0 ≤ k < d, where 0-dimension subspaces are the points
themselves. The number of subspaces of dimension k < d is

Nk(d, q) =
k∏

i=0

qd+1−i − 1

qi+1 − 1
,

and the number of points of such a subspace is qk + qk−1 + · · ·+ q + 1. In particular,
the number of subspaces of dimension d − 1 is Nd−1(d, q) = n. If F and F ′ are two
distinct subspaces of dimension k, then

2k − d ≤ dim(F ∩ F ′) ≤ k − 1.

Furthermore, any k + 1 points belong to at least one subspace of dimension k.
Let us also recall that PG(d, q) has a cyclic automorphism. In other words the

points of PG(d, q) can be identi�ed with the integers of the cyclic group Zn of modulo
n addition such that if F ⊆ Zn is a subspace of dimension k, then F + i = {f + i
mod n | f ∈ F} is also a subspace of dimension k and F and F + i are distinct.
Furthermore, if H ⊆ Zn is a subspace of dimension d− 1 then the family H = {H +
i | i ∈ Zn} contains all subspaces of PG(d, q) of dimension d − 1. In the rest of this
section we use + for the modulo n addition of integers.

Lemma 6.2. For every k = 0, ..., d− 1 there exists a unique subspace of dimension k
that contains {0, 1, ..., k}.

Proof. By the properties we recalled above it follows that there is at least one such
subspace for every 0 ≤ k < d. We prove that there is at most one by induction on
k. For k = 0 this is obvious, since the points are the only subspaces of dimension 0.
Assume next that the claim is already proved for all k′ < k, and consider indirectly two
distinct subspaces F and F ′ of dimension k both of which contains the set {0, 1, ..., k}.
Then F ∩ F ′ and (F − 1) ∩ (F ′ − 1) = (F ∩ F ′) − 1 are two distinct subspaces of
dimension k′ < k and both contain {0, 1, ..., k−1}, contradicting our assumption, and
thus proving our claim.
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Thus, by Lemma 6.2 there exists a unique subspace H ⊆ Zn of dimension d − 1
that contains {0, 1, ..., d− 1}. Let us also introduce the set D = {0, 1, ..., d}.

Lemma 6.3. d 6∈ H.

Proof. Assume to the contrary that d ∈ H. Then the set {0, 1, ..., d− 1} is contained
by both H and H − 1 = H + (n − 2), contradicting Lemma 6.2, since H and H − 1
are distinct subspaces of dimension d− 1.

Let us now de�ne B := H∪{D+ i | i ∈ Zn}, and observe that for any distinct pair
B ∈ H and B′ ∈ B we have |B \B′| ≥ qd−1. Since in any solution F ⊆ B×B we must
have an arc entering B for all B ∈ H, we get

mwscs(DB, wB) ≥ n · qd−1.

On the other hand, we have that

Φ = (D → (Zn \D)) ∧

(∧
i∈Zn

(H + i)→ d+ i

)
∧

(∧
i∈Zn

(D + i)→ d+ 1 + i

)

is a representation of hB and |Φ|E ≤ 3n. Choosing q = 2 and d > 1, we get

mwscs(GB, wB) ≥ n

12
·OPTE(B),

completing the proof of the theorem.
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