
Egerváry Research Group
on Combinatorial Optimization

Technical reportS

TR-2018-02. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

The complexity of cake cutting
with unequal shares

Ágnes Cseh and Tamás Fleiner

February 2018

EGRES Technical Report No. 2018-02 1

The complexity of cake cutting with unequal shares

Ágnes Cseh? and Tamás Fleiner??

Abstract

Abstract. An unceasing problem of our prevailing society is the fair division
of goods. The problem of fair cake cutting focuses on dividing a heterogeneous
and divisible resource, the cake, among n players who value pieces according to
their own measure function. The goal is to assign each player a not necessarily
connected part of the cake that the player evaluates at least as much as her
proportional share.

In this paper, we investigate the problem of proportional division with un-
equal shares, where each player is entitled to receive a predetermined portion
of the cake. Our main contribution is threefold. First we present a protocol
for integer demands that delivers a proportional solution in less queries than all
known algorithms. Then we show that our protocol is the fastest possible by
giving an asymptotically matching lower bound. Finally, we turn to irrational
demands and solve the proportional cake cutting problem by reducing it to the
same problem with integer demands only. All results remain valid in a highly
general cake cutting model, which can be of independent interest.

1 Introduction
In cake cutting problems, the cake symbolizes a heterogeneous and divisible resource
that shall be distributed among n players. Each player has her own measure function,
which determines the value of any part of the cake for her. The aim of fair cake cutting
is to allocate each player a piece that is worth at least as much as her proportional
share, evaluated with her measure function Steinhaus [1948]. The measure functions
are not known to the protocol.

The efficiency of a fair division protocol is measured by the number of queries.
In the standard Robertson-Webb model Robertson and Webb [1998], two kinds of
queries are allowed. The first one is the cut query, in which a player is asked to mark
the cake at a distance from a given starting point so that the piece between these two

?Hungarian Academy of Sciences, Tóth Kálmán u. 4., H-1097, Budapest, Hungary email:
cseh.agnes@krtk.mta.hu. Supported by OTKA grant K108383, the Hungarian Academy of Sci-
ences under its Momentum Programme (LP2016-3/2016) and its János Bolyai Research Fellowship.

??Budapest University of Technology and Economics, Magyar tudósok körútja 2, H-1117, Bu-
dapest, Hungary and MTA-ELTE Egerváry Research Group. email: fleiner@cs.bme.hu. Sup-
ported by the MTA-ELTE Egerváry Research group and OTKA grant K108383.

February 2018

1.1 Related work 2

is worth a given value to her. The second one is the eval query, in which a player is
asked to evaluate a given piece according to her measure function.

If shares are meant to be equal for all players, then the proportional share is defined
as 1

n
of the whole cake. In the unequal shares version of the problem (also called cake

cutting with entitlements), proportional share is defined as a player-specific demand,
summing up to the value of the cake over all players. The scope of this paper is to
determine the query complexity of proportional cake cutting in the case of unequal
shares. Robertson and Webb [1998] write in their seminal book “Nothing approaching
general theory of optimal number of cuts for unequal shares division has been given
to date. This problem may prove to be very difficult.” We now settle the issue for the
number of queries, which in the meanwhile became the standard measure of efficiency
instead of the number of physical cuts.

1.1 Related work
Equal shares Possibly the most famous cake cutting protocol belongs to the class
of Divide and Conquer algorithms. Cut and Choose is a 2-player equal-shares proto-
col that guarantees proportional shares. It already appeared in the Old Testament,
where Abraham divided the Canaan to two equally valuable parts and his brother
Lot chose the one he valued more for himself. The first n-player variant of this al-
gorithm is attributed to Banach and Knaster Steinhaus [1948] and it requires O (n2)
queries. Other methods include the continuous (but discretizable) Dubins-Spanier
protocol Dubins and Spanier [1961] and the Even-Paz protocol Even and Paz [1984].
The latter show that their method requires O (n log n) queries at most. The com-
plexity of proportional cake cutting in higher dimensions has been studied in several
papers Barbanel et al. [2009], Beck [1987], Brams et al. [2008], Hill [1983], Iyer and
Huhns [2009], Segal-Halevi et al. [2017], in which cuts are tailored to fit the shape
of the cake. Generalizations of fair division concepts to measurable sets in arbitrary
dimensions are studied in Berliant et al. [1992], Dall’Aglio [2001].
Unequal shares The problem of proportional cake cutting with unequal shares is

first mentioned by Steinhaus [1948]. Motivated by dividing a leftover cake, Robertson
and Webb [1998] define the problem formally and offer a range of solutions for two
players. More precisely, they list cloning players Brams et al. [2011], using Ramsey
partitions McAvaney et al. [1992] and most importantly, the Cut Near-Halves proto-
col Robertson and Webb [1998]. The last method computes a fair solution for 2 players
with integer demands d1 and d2 in 2dlog2(d1 +d2)e queries. Robertson and Webb also
show how any 2-player protocol can be generalized to n players in a recursive manner.
Irrational demands The case of irrational demands in the unequal shares case is

interesting from the theoretical point of view, but beyond this, solving it might be
necessary, because other protocols might generate instances with irrational demands.
For example, in the maximum-efficient envy-free allocation problem with two players
and piecewise linear measure functions, any optimal solution must be specified using
irrational numbers, as Cohler et al. [2011] show. Barbanel [1996] studied the case of
cutting the cake in an irrational ratio between n players and presented an algorithm
that constructs a proportional division. Shishido and Zeng [1999] solve the same

EGRES Technical Report No. 2018-02

1.2 Our contribution 3

problem with the objective of minimizing the number of resulting pieces. They claim
their protocol to be simpler than that of Barbanel [1996].
Lower bounds The drive towards establishing lower bounds on the complexity of

cake cutting protocols is coeval to the cake cutting literature itself Steinhaus [1948].
Even and Paz [1984] conjectured that their protocol is the best possible, while Robert-
son and Webb explicitly write that “they would place their money against finding a
substantial improvement on the n log2 n bound” for proportional cake cutting with
equal shares. After circa 20 years of no breakthrough in the topic, Magdon-Ismail
et al. [2003] showed that any protocol must make Ω(n log2 n) comparisons – but this
was no bound on the number of queries. Essentially simultaneously, Woeginger and
Sgall [2007] came up with the lower bound Ω(n log2 n) on the number of queries for the
case where contiguous pieces are allocated to each player. Not much later, this condi-
tion was dropped by Edmonds and Pruhs [2011] who completed the query complexity
analysis of proportional cake cutting with equal shares by presenting a lower bound of
Ω(n log2 n). Brams et al. [2011] study the minimum number of actual cuts in the case
of unequal shares and prove that n− 1 cuts might not suffice – in other words, they
show that there is no proportional allocation with contiguous pieces. However, no
lower bound on the number of queries has been known in the case of unequal shares.

1.2 Our contribution
We provide formal definitions in Section 2 and present the query analysis of the fastest
known protocol for the n-player proportional cake cutting problem with demands D in
total in Section 3. Then, in Section 4 we focus on our protocol for the problem, which is
our main contribution in this paper. The idea is that we recursively render the players
in two batches so that these batches can simulate two players who aim to cut the cake
into two approximately equal halves. Our protocol requires only 2 (n− 1) · dlog2 De
queries, with this being the fastest procedure that derives a proportional division for
the n-player cake cutting problem with unequal shares. Moreover, our protocol also
works on a highly general cake (introduced in Section 5), extending the traditional
notion of the cake to any finite dimension.

We complement our positive result by showing a lower bound of Ω (n · log2 D) on
the query complexity of the problem in Section 6. Our proof generalizes, but does not
rely on the lower bound proof given by Edmonds and Pruhs [2011] for the problem of
proportional division with equal shares. Moreover, our lower bound remains valid in
the generalized cake cutting and query model, allowing a considerably more powerful
notion of a query even on the usual cake.

In Section 7 we turn to irrational demands and solve the proportional cake cutting
problem by reducing it to the same problem with integer demands only. By doing so,
we provide a novel and simple approach to the problem. Moreover, our method works
in the generalized query model as well.

EGRES Technical Report No. 2018-02

Section 2. Preliminaries 4

2 Preliminaries
We begin with formally defining our input. Our setting includes a set of players of
cardinality n, denoted by {P1, P2, . . . , Pn}, and a heterogeneous and divisible good,
which we refer to as the cake and project to the unit interval [0, 1]. Each player Pi has a
non-negative, absolutely continuous measure function µi that is defined on Lebesgue-
measurable sets. We remark that absolute continuity implies that every zero-measure
set has value 0 according to µi as well. In particular, µi((a, b)) = µi([a, b]) for any
interval [a, b] ⊆ [0, 1]. Besides measure functions, each player Pi has a demand di ∈
Z+, representing that Pi is entitled to receive di/

n∑
j=1

dj ∈]0, 1[part of the whole cake.
The value of the whole cake is identical for all players, in particular it is the sum of
all demands:

∀1 ≤ i ≤ n µi([0, 1]) = D =
n∑
j=1

dj.

We remark that an equivalent formulation is also used sometimes, where the demands
are rational numbers that sum up to 1, the value of the full cake. Such an input can
be transformed into the above form simply by multiplying all demands by the least
common denominator of all demands. As opposed to this, if demands are allowed
to be irrational numbers, then no ratio-preserving transformation might be able to
transform them to integers. That is why the case of irrational demands is treated
separately.

The cake [0, 1] will be partitioned into subintervals in the form [x, y), 0 ≤ x ≤ y ≤ 1.
A finite union of such subintervals forms a piece Xi allocated to player Pi. We would
like to stress that a piece is not necessarily connected.

Definition 1. A set {Xi}1≤i≤n of pieces is a division of the cake [0, 1] if ⋃
1≤i≤n

Xi =

[0, 1] and Xi ∩ Xj = ∅ for all i 6= j. We call division {Xi}1≤i≤n proportional if
µi(Xi) ≥ di for all 1 ≤ i ≤ n.

In words, proportionality means that each player receives a piece with which her
demand is satisfied. We do not consider Pareto optimality or alternative fairness
notions such as envy-freeness in this paper.

We now turn to defining the measure of efficiency in cake cutting. We assume that
1 ≤ i ≤ n, x, y ∈ [0, 1] and 0 ≤ α ≤ 1. Oddly enough, the Robertson-Webb query
model was not formalized explicitly by Robertson and Webb first, but by Woeginger
and Sgall [2007], who attribute it to the earlier two. In their query model, a protocol
can ask agents the following two types of queries.

• Cut query (Pi, α) returns the leftmost point x so that µi([0, x]) = α. In this
operation x becomes a so-called cut point.

• Eval query (Pi, x) returns µi([0, x]). Here x must be a cut point.

Notice that this definition implies that choosing sides, sorting marks or calculating
any other parameter than the value of a piece are not counted as queries and thus
they do not influence the efficiency of a protocol.

EGRES Technical Report No. 2018-02

Section 2. Preliminaries 5

Definition 2. The number of queries in a protocol is the number of eval and cut
queries until termination. We denote the number of queries for a n-player algorithm
with total demand D by T (n,D).

The query definition of Woeginger and Sgall is the strictest of the type Robertson-
Webb. We now outline three options to extend the notion of a query, all of which
have been used in earlier papers Edmonds and Pruhs [2011], Even and Paz [1984],
Robertson and Webb [1998], Woeginger and Sgall [2007].

1. The query definition of Edmonds and Pruhs. There is a slightly different
and stronger formalization of the core idea, given by Edmonds and Pruhs [2011]
and also used by Procaccia [2013, 2015]. The crucial difference is that they allow
both cut and eval queries to start from an arbitrary point in the cake.

• Cut query (Pi, x, α) returns the leftmost point y so that µi([x, y]) = α or
an error message if no such y exists.
• Eval query (Pi, x, y) returns µi([x, y]).

These queries can be simulated as trivial concatenations of the queries defined by
Woeginger and Sgall. To pin down the starting point x of a cut query (Pi, x, α)
we introduce the cut point x with the help of a dummy player’s Lebesgue-
measure, ask Pi to evaluate the piece [0, x] and then we cut query with value
α′ = α + µi([0, x]). Similarly, to generate an eval query (Pi, x, y) one only
needs to artificially generate the two cut points x and y and then ask two eval
queries of the Woeginger-Sgall model, (Pi, x) and (Pi, y). We remark that such
a concatenation of Woeginger-Sgall queries reveals more information than the
single query in the model of Edmonds and Pruhs.

2. Proportional cut query. The term proportional cut query stands for gener-
alized cut queries of the sort “Pi cuts the piece [x, y] in ratio a : b”, where a, b
are integers. As Woeginger and Sgall also note it, two eval queries and one cut
query with ratio α = a

a+b · µi([x, y]) are sufficient to execute such an operation
if x, y are cut points, otherwise five queries suffice. Notice that the eval queries
are only used by Pi when she calculates α, and their output does not need to
be revealed to any other player or even to the protocol.

3. Reindexing. When working with recursive algorithms it is especially useful to
be able to reindex a piece [x, y] so that it represents the interval [0, 1] for Pi.
Any further cut and eval query on [x, y] can also be substituted by at most five
queries on the whole cake. Similarly as above, there is no need to reveal the
result of the necessary eval queries addressed to a player.

These workarounds ensure that protocols require asymptotically the same number
of queries in both model formulations, even if reindexing and proportional queries are
allowed. We opted for utilizing all three extensions of the Woeginger-Sgall query model
in our upper bound proofs, because the least restrictive model allows the clearest
proofs. As of regarding our lower bound proof, it holds even if we allow a highly general
query model including all of the above extensions, which we define in Section 5.2.

EGRES Technical Report No. 2018-02

Section 3. Known protocols 6

3 Known protocols
To provide a base for comparison, we sketch the known protocols for proportional
cake cutting with unequal shares and bound their query complexity.

The most naive approach to the case of unequal shares is the cloning technique,
where each player Pi with demand di is substituted by di players with unit demands.
In this way a D-player equal shares cake cutting problem is generated, which can be
solved in O(D log2 D) queries Even and Paz [1984].

As Robertson and Webb [1998] point out, any 2-player protocol can be generalized
to an n-player protocol. They list two 2-player protocols, Cut Near-Halves and their
Ramsey Partition Algorithm and also remark that for 2 players, Cut Near-Halves is
always at least as efficient as Ramsey Partition Algorithm. Therefore, we restrict
ourselves to analyzing the complexity of the generalized Cut Near-Halves protocol.

Cut Near-Halves is a simple procedure, in which the cake of value D is repeatedly
cut in approximately half by players P1 and P2 with demands d1 ≤ d2 as follows. P1
cuts the cake into two near-halves, more precisely, in ratio bD2 c : dD2 e. Then, P2 picks
a piece that she values at least as much as P1. This piece is awarded to P2 and her
claim is reduced accordingly, by the respective near-half value of the cake. In the next
round, the same is repeated on the remaining part of the cake, and so on, until d1
or d2 is reduced to zero. Notice that the cutter is always the player with the lesser
current demand, and thus it might change from round to round.

The recursive n-player protocol of Robertson and Webb runs as follows. We assume
that k− 1 < n players, P1, P2, . . . , Pk−1, have already divided the whole cake of value
D = d1 + d2 + . . . + dn. The next player Pk then challenges each of the first k − 1
players separately to redistribute the piece already assigned to them. In these rounds,
Pk claims dk

d1+d2+...+dk−1
part of each piece. This generates k − 1 rounds of the Cut

Near-Halves protocol, each with 2 players. Notice that this protocol tends to assign
a highly fractured piece of cake to every player.

The following theorem summarizes the results known about the complexity of the
2-player and n-player versions of the Cut Near-Halves protocol.

Theorem 3.1 (Robertson and Webb [1998]). The 2-player Cut Near-Halves protocol
with demands d1, d2 requires T (2) = 2dlog2(d1 + d2)e queries at most. The recursive
n-player version is finite.

Here we give an estimate for the number of queries of the recursive protocol.

Theorem 3.2. The number of queries in the recursive n-player Cut Near-Halves
protocol is at most

T (n,D) =
n−1∑
i=1

[
2i ·

⌈
log2

(i+1∑
j=1

dj

)⌉]
≤ n(n− 1) · dlogDe.

Proof. The first round consists of players P1 and P2 sharing the cake using 2dlog2 (d1 + d2)e
queries. The second round then has two 2-player runs, each of them requiring 2dlog2 (d1 + d2 + d3)e

EGRES Technical Report No. 2018-02

Section 4. Our protocol 7

queries. In general, the ith round terminates after i · 2dlog2

(
i+1∑
j=1

dj

)
e queries at most.

The number of rounds is n− 1. Now we add up the total number of queries.

n−1∑
i=1

[
2i ·

⌈
log2

(i+1∑
j=1

dj

)⌉]
≤

n−1∑
i=1

[
2i ·

⌈
log2

(n∑
j=1

dj

)⌉]
=

n−1∑
i=1

[
2i ·

⌈
log2 D

⌉]
= n(n− 1) · dlogDe

The following example proves that the calculated bound can indeed be reached
asymptotically in instances with an arbitrary number of players.

Example 1. The estimation for the query number is asymptotically sharp if
⌈
log2

(
i+1∑
j=1

dj

)⌉
=⌈

log2 D
⌉
holds for at least a fixed portion of all 1 ≤ i ≤ n − 1, say, for the third of

them. This is easy to reach if n is a sufficiently large power of 2 and all but one
players have demand 1, while there is another player with demand 2. Notice that this
holds for every order for the agents. If one sticks to a decreasing order of demand
when indexing the players, then not only asymptotic, but also strict equality can be
achieved by setting d1 much larger than all other demands.

4 Our protocol
In this section, we present a simple and elegant protocol that beats all three above
mentioned protocols in query number. Our main idea is that we recursively render
the players in two batches so that these batches can simulate two players who aim to
cut the cake into two approximately equal halves. For now we work with the standard
cake and query model defined in Section 2. Later, in Section 5.3 we will show how our
protocol can be extended to a more general cake. We remind the reader that cutting
near-halves means to cut in ratio bD2 c : dD2 e.

To ease the notation we assume that the players are indexed so that when they
mark the near-half of the cake, the marks appear in an increasing order from 1 to n.
In the subsequent rounds, we reindex the players to keep this property intact. Based
on these marks, we choose “the middle player”, this being the player whose demand
reaches the near-half of the cake when summing up the demands in the order of marks.
This player cuts the cake and each player is ordered to the piece her mark falls to.
The middle player is cloned if necessary so that she can play on both pieces. The
protocol is then repeated on both generated subinstances, with adjusted demands.
In the subproblem, the players’ demands are according to the ratios listed in the
pseudocode.

EGRES Technical Report No. 2018-02

Section 4. Our protocol 8

Proportional division with unequal shares

Each player marks the near-half of the cake X.
Sort the players according to their marks.
Calculate the smallest index j such that bD2 c ≤

∑j
i=1 di =: a.

Cut the cake in two along Pj’s mark.
Define two instances of the same problem and solve them recursively.

1. Players P1, P2, . . . , Pj share piece X1 on the left. Demands are set
to d1, d2 . . . , dj−1, dj − a + bD2 c, while measure functions are set to
µi · bD2 c/µi(X1), for all 1 ≤ i ≤ j.

2. Players Pj, Pj+1, . . . , Pn share piece X2 = X \X1 on the right. De-
mands are set to a−bD2 c, dj+1, dj+2, . . . , dn, while measure functions
are set to µi · dD2 e/µi(X2), for all j ≤ i ≤ n.

Example 2. We present our protocol on an example with n = 3. Every step of the
protocol is depicted in Figure 1. Let d1 = 1, d2 = 3, d3 = 1. Since D = 5 is odd, all
players mark the near-half of the cake in ratio 2:3. The cake is then cut at P2’s mark,
since d1 < bD2 c, but d1 +d2 ≥ bD2 c. The first subinstance will consist of players P1 and
P2, both with demand 1, whereas the second subinstance will have the second copy of
player P2 alongside P3 with demands 2 and 1, respectively. In the first instance, both
players mark half of the cake and the one who marked it closer to 0 will receive the
leftmost piece, while the other player is allocated the remaining piece. The players in
the second instance mark the cake in ratio 1 : 2. Suppose that the player demanding
more marks it closer to 0. The leftmost piece is then allocated to her and the same
two players share the remaining piece in ratio 1 : 1. The player with the mark on the
left will be allocated the piece on the left, while the other players takes the remainder
of the piece. These rounds require 3 + 2 + 2 + 2 = 9 proportional cut queries and no
eval query.

Theorem 4.1. Our “Protocol for proportional division with unequal shares” termi-
nates with a proportional division.

Proof. We provide detailed calculations for the first subinstance only, because analo-
gous calculations can easily be obtained for the second subinstance. First we have to
ensure that the subinstance is generated in such a manner that all players evaluate
the full cake X1 of the first subinstance equally and to the sum of all their demands.
In the case of the first subinstance, the sum of demands is ∑j

i=1 di − a+ bD2 c = bD2 c.
This will be the measure of the cake X1 for all players. To achieve this, µ1, µ2, . . . , µj
need to be adjusted. Each µi will become in this subinstance

µi1 = µi ·
bD2 c
µi(X1) .

EGRES Technical Report No. 2018-02

Section 4. Our protocol 9

0 1P3P2P1
2:3

1 1 12

0 10 1P1 P2 P2 P3
1:21:1

1 1

P1 P2 P2 0 1P2P3
1:1

P1 P2 P2 P3 P2

Figure 1: The steps performed by our algorithm on Example 2. The colored intervals
are the pieces already allocated to a player.

If Pi, 1 ≤ i < j receives a piece of worth di, then in the original instance, it is of worth

di ·
µi(X1)
bD2 c

≥ di,

because µi(X1) ≥ µj(X1) = bD2 c, due to the cutting rule in our protocol. With this we
have shown that every player appearing only in the first subintance is guaranteed to
gain her proportional share. An analogous proof works for players Pj+1, Pj+2, . . . , Pn.
The last step is to show that Pj collects her proportional share from the two subin-
stances.

The only player whose measure function certainly need not be adjusted is Pj. It
is because µj(X1) = bD2 c, thus µj1 = µj ·

bD
2 c

µj(X1) = µj. Therefore, if Pj receives her
proportional share dj − a + bD2 c and a − bD2 c in the two subinstances, then in the
original instance her piece is worth dj at least.

Having shown its correctness, we now present our estimation for the number of
queries our protocol needs.

Theorem 4.2. For any 2 ≤ n and n < D, the number of queries in our n-player
protocol on a cake of total value D is T (n,D) ≤ 2(n− 1) · dlog2 De.

Proof. If n = 2, then our algorithm simulates the Cut Near-Halves algorithm—
except that it uses cut queries exclusively—and according to Theorem 3.1 it requires
2dlog2 De queries at most. This matches the formula stated in Theorem 4.2. From
this we prove by induction. For n > 2, the following recursion formula corresponds to
our rules.

T (n,D) = n+ max
1≤i≤n

{
T (i, bD2 c) + T (n− i+ 1, dD2 e)

}

EGRES Technical Report No. 2018-02

Section 4. Our protocol 10

We now substitute our formula into the right side of this expression.

n+ max
1≤i≤n

{
T (i, bD2 c) + T (n− i+ 1, dD2 e)

}
=

n+ max
1≤i≤n

{
2(i− 1)dlog2 b

D

2 ce+ 2(n− i)dlog2 d
D

2 ee
}
≤ (∗)

n+ max
1≤i≤n

{2(i− 1)(dlog2 De − 1) + 2(n− i)(dlog2 De − 1)} =

n+ 2(n− 1)(dlog2 De − 1) =
−n+ 2 + 2(n− 1)dlog2 De ≤

2(n− 1) · dlog2 De = T (n,D)

The inequality marked by (∗) is trivially correct if D is even. For odd D, we rely on
the fact that log2 D cannot be an integer.

dlog2 b
D

2 ce ≤ dlog2 d
D

2 ee = dlog2
D + 1

2 e = dlog2 (D + 1)−log2 2e = dlog2 (D + 1)e−1 = dlog2 De−1

With a query number of O(n log2 D), our protocol is more efficient than all known
protocols. We will now point out a further essential difference in fairness when com-
paring to the so far fastest known protocol, the generalized Cut Near-Halves. Our
protocol treats players equally, while the generalized Cut Near-Halves does not. Equal
treatment of players is a clear advantage if one considers the perception of fairness
from the point of view of a player.

Remark 1. In the “Protocol for proportional division with unequal shares”

• each player answers the exact same queries as the other players in the same
round and same subinstance;

• players have equal chance to receive a piece that is worth strictly more than their
proportional share.

Proof. In any subinstance, our protocol asks each player to answer the same pro-
portional cut query, namely cutting the current cake to near-halves. Eval queries in
these proportional queries are only utilized as technical workarounds to determine the
value of the piece that plays the cake in the current subinstance. Their result is never
revealed to any other player or even the protocol itself. The only outcome of the
proportional cut query is a mark at the near-half of the current cake. The protocol
does not allocate distinguished roles to players and gives them an equal chance to
derive a larger share than their demand, because cake will be cut at the mark of the
player whose demand happens to reach bD2 c when the demands are summed up in
order of the marks on the cake.

EGRES Technical Report No. 2018-02

Section 5. Generalizations 11

The generalized Cut Near-Halves protocol fails to satisfy both of the above points.
It addresses both eval and cut queries to players and treats players differently based
on which type of query they got. In the 2-player version of Cut Near-Halves, only one
player marks the cake and the other player uses an eval query to choose a side. This
enables the second player to have a chance for a piece strictly better than half of the
cake, while the first player is only entitled for her exact proportional share and has
no chance to receive more than that. Besides this, the player who is asked to evaluate
a piece might easily speculate that she was offered the piece because the other player
cut it off the cake.

However, the remark is true for the Even-Paz protocol for proportional division with
equal shares, which can be utilized in our problem through the cloning technique. As
mentioned in Section 3, it needs O(D log2 D) proportional cut queries. The more
efficient generalized Cut Near-Halves protocol only needs O(n2 log2 D) queries, but
it treats players differently. Our protocol adheres to the equal treatment of players
principle and beats both protocols in efficiency.

5 Generalizations
In this section we introduce a far generalization of cake cutting, where the cake is
a measurable set in arbitrary finite dimension and cuts are defined by a monotone
function. At the end of the section we prove that even in the generalized setting,
O(n log2 D) queries suffice to construct a proportional division.

5.1 A general cake definition
Our players remain {P1, P2, . . . , Pn} with demands di ∈ Z+, but the cake is now a
Lebesgue-measurable subset X of Rk such that 0 < λ(X) < ∞. Each player Pi has
a non-negative, absolutely continuous measure function µi defined on the Lebesgue-
measurable subsets of X. An important consequence of this property is that for every
Z ⊆ X, µi(Z) = 0 if and only if λ(Z) = 0. The value of the whole cake is identical
for all players, in particular it is the sum of all demands:

∀1 ≤ i ≤ n µi(X) = D =
n∑
j=1

dj.

A measurable subset Y of the cake X is called a piece. The volume of a piece Y is
the value λ(Y) taken by the Lebesgue-measure on Y . The cake X will be partitioned
into pieces X1, . . . , Xn.

Definition 3. A set {Xi}1≤i≤n of pieces is a division of X if ⋃
1≤i≤n

Xi = X and

Xi∩Xj = ∅ holds for all i 6= j. We call division {Xi}1≤i≤n proportional if µi(Xi) ≥ di
holds for all 1 ≤ i ≤ n.

We will show in Section 5.3 that a proportional division always exists.

EGRES Technical Report No. 2018-02

5.2 A stronger query definition 12

5.2 A stronger query definition
The more general cake clearly requires a more powerful query notion. Cut and eval
queries are defined on an arbitrary piece (i.e. measurable subset) I ⊆ X. Beyond this,
each cut query specifies a value α ∈ R+ and a monotone mapping f : [0, λ(I)] → 2I
(representing a moving knife) such that f(x) ⊆ f(y) and λ(f(x)) = x holds for every
0 ≤ x ≤ y ≤ λ(I).

• Eval query (Pi, I) returns µi(I).

• Cut query (Pi, I, f, α) returns an x ≤ λ(I) with µi(f(x)) = α or an error message
if such an x does not exist.

As queries involve an arbitrary measurable subset I of X, our generalized queries
automatically cover the generalization of the previously discussed Edmonds-Pruhs
queries, proportional queries and reindexing. If we restrict our attention to the usual
unit interval cake [0, 1], generalized queries open up a number of new possibilities for
a query, as Example 3 shows.

Example 3. On the unit interval cake the following rules qualify as generalized
queries.

• Evaluate an arbitrary measurable set.

• Cut a piece of value α surrounding a point x so that x is the midpoint of the cut
piece.

• For disjoint finite sets A and B, cut a piece Z of value α such that Z contains
the ε-neighborhood of A and avoids the ε-neighborhood of B for a maximum ε.

• Determine x such that the union of intervals [0, x], [1
n
, 1
n

+ x], . . . , [n−1
n
, n−1

n
+ x]

is of value α.

The new notions also allow us to define cuts on a cake in higher dimensions.

Example 4. Defined on the generalized cake X ⊆ Rk, the following rules qualify as
generalized queries.

• Evaluate an arbitrary measurable set.

• Cut a piece of value α of piece I so that the cut is parallel to a given hyperplane.

• Multiple cut queries on the same piece I ⊂ R2: one player always cuts I along
a horizontal line, the other player cuts the same piece along a vertical line.

EGRES Technical Report No. 2018-02

5.3 The existence of a proportional division 13

5.3 The existence of a proportional division
Our algorithm “Proportional division with unequal shares” in Section 4 extends to the
above described general setting and hence proves that a proportional division always
exists.

Theorem 5.1. For any 2 ≤ n and n < D, the number of generalized queries in our n-
player protocol on the generalized cake of total value D is T (n,D) ≤ 2(n−1)·dlog2 De.

Proof. The proof of Theorem 3.1 carries over without essential changes, thus we only
discuss the differences here. First we observe that proportional queries in ratio a :
b can still be substituted by a constant number of eval and cut queries. In the
generalized model, proportional query (Pi, I, f, a, b) returns x ≤ λ(I) such that b ·
µi(f(x)) = a · µi(I \ f(x)). Similarly as before, Pi first measures I by a single eval
query and then uses the cut query (Pi, I, f, α) with α = a

a+b · µi(I). In the first round
of our generalized algorithm, all players are asked to cut the cake X in near-halves
using the same f function. Then Pj is calculated, just as in the simpler version and
we cut X into the two near-halves according to Pj’s f -cut and clone Pj if necessary.
Due to the monotonicity of f , this sorts each player to a piece she values at least as
much as the full demand on all players sorted to that piece. Subsequent rounds are
played in the same manner.

The query number for n = 2 follows from the fact that each of the two players are
asked a proportional cut query in every round until recursively halving dD2 e reaches
1, which means dlog2 De queries in total. The recursion formula remains intact in the
generalized model, and thus the query number T (n,D) = 2(n− 1)dlog2 De too.

6 The lower bound
In this section, we prove our lower bound on the number of queries any deterministic
protocol needs to make when solving the proportional cake cutting problem with
unequal shares. This result is valid in two relevant settings: 1. on the [0, 1) cake
with Robertson-Webb or with generalized queries, 2. on the general cake and queries
introduced in Section 5.

The lower bound proof is presented in two steps. In Section 6.1 we define a single-
player cake-cutting problem where the goal is to identify a piece of small volume and
positive value for the sole player. For this problem, we design an adversary strategy
and specify the minimum volume of the identified piece as a function of the number
of queries asked. In Section 6.2 we turn to the problem of proportional cake cutting
with unequal shares. We show that in order to allocate each player a piece of positive
value, at least Ω(n logD) queries must be addressed to the players—otherwise the
allocated pieces overlap.

6.1 The single-player problem
We define our single-player problem on a generalized cake of value D, a player P and
her unknown measure function µ. The aim is to identify a piece of positive value

EGRES Technical Report No. 2018-02

6.1 The single-player problem 14

0 1A1 A2 A3
cut

0 1 3 crumbles

0 1 eval

0 1 6 crumbles

Figure 2: The crumble partition after two queries in Example 5. We marked each of
the 6 crumbles by a different color in the bottom picture.

according to µ by asking queries from P . The answers to these queries come from
an adversary strategy we design. We would like to point out that the single-player
thin-rich game of Edmonds and Pruhs [2011] defined on the unit interval cake has
a different goal. There, the player needs to receive a piece that has value not less
than 1 and width at most 2. Moreover, their proof is restricted to instances with
n = 2 · 3`, ` ∈ Z+, whereas ours is valid for any n ∈ Z+.

In our single-player problem, a set of queries reveals information on the value of
some pieces of the cake. Each generalized eval query (P, I) partitions the cake into
two pieces; I and X \ I. An executed cut query (P, I, f, α) with output x partitions
the cake into three; f(x), I \ f(x) and X \ I. To each step of a protocol we define the
currently smallest building blocks of the cake, which we call crumbles. Two points
of X belong to the same crumble if and only if they are in the same partition in
all queries asked so far. At start, the only crumble is the cake itself and every new
query can break an existing crumble into more crumbles. More precisely, q queries
can generate 3q crumbles at most. Crumbles at any stage of the protocol partition
the entire cake. The exact value of a crumble is not necessarily known to the protocol
and no real subset of a crumble can have a revealed value. As a matter of fact, the
exact same information are known about the value of any subset of a crumble.

Example 5. In Figure 2 we illustrate an example for crumbles on the unit interval
cake after two queries. The upper picture depicts a cut query defined on the green
set I. It generates a piece of value α so that it contains the ε-neighborhood of points
A1, A2, A3 for maximum ε. This piece is marked red in the figure and it is a crumble.
The second crumble at this point is the remainder of I (marked in green only), while
the third crumble is the set of points in black. These three crumbles are illustrated in
the second picture. The second query evaluates the blue piece in the third picture. It
cuts the existing crumbles into 6 crumbles in total, as depicted in the bottom picture.

We now proceed to construct an adversary strategy that bounds the volume of any
crumble C with µ(C) > 0. Our adversary can actually reveal more information than
asked; we allow her to disclose the value of each crumble in the cake. When a query is

EGRES Technical Report No. 2018-02

6.1 The single-player problem 15

asked, the answer is determined based on the parameters of the query and the current
set of crumbles, which we denote by C. Together with the answer to the query, the
adversary also specifies the new set of crumbles Cnew together with µ(Cnew) for each
Cnew ∈ Cnew. In the next query, this Cnewwill serve as the current set of crumbles C.
The adversary answers the queries in accordance to the following rules, which are also
stated in a pseudocode below.

• eval query (C, I)
This query changes the structure of the crumble set C in such a way that each
crumble C ∈ C is split into exactly two new crumbles C ∩ I and C \ I, both of
which might be empty (lines 1-2). If the part inside the crumble is at least as
large as the other part, then the adversary assigns the full vale of C to C ∩ I
(lines 3-5). Otherwise, the outer part C \ I will get the entire value (lines 6-8).
The answer to the eval query is the total value of new crumbles that lie in I
(line 11).

• cut query (C, I, f, α)
Each cut query is executed in two rounds. In the first round (lines 12-22) we
define new crumbles C \I (line 13) and intermediate crumbles C∩I (line 14) for
all crumbles C ∈ C. If λ(C ∩ I) ≥ 2/3 ·λ(C) then C ∩ I inherits the entire value
of C (lines 15-17), otherwise C \ I carries all the value of C (lines 18-20). The
new crumbles are set aside until the next query arrives, while the intermediate
crumbles will be the crumbles of the second round (lines 23-45).
If the total value of these intermediate crumbles is less than α, then an error
message is returned indicating that I is not large enough to be cut off a piece of
value α (lines 23-24). Otherwise, for each intermediate crumble Cint

i we define
the value xi for which f(xi) halves Cint

i in volume (lines 26-28). We then reorder
the indices of intermediate crumbles according to these xi values (line 29). Now
we find the index k for which ∑k−1

i=1 µ(Cint
i) < α ≤ ∑k

i=1 µ(Cint
i).

The set of new crumbles will now be completed by adding sets {Cint
i ∩ f(xk)}

and {Cint
i \ f(xk)} to it (lines 31-32). The value of these new crumbles is speci-

fied depending on the index i of Cint
i . If i < k, then the crumble in f(xk) inherits

the full value of the intermediate crumble (lines 34-36). If i > k, then the crum-
ble outside of f(xk) inherits the value of the intermediate crumble (lines 37-39).
Finally, for i = k, the crumble inside f(xk) receives all of α that has not been
assigned to new crumbles inside f(xk) with a smaller index (line 41). After this,
the crumble outside of f(xk) gets the remainder of µ(Cint

k) (line 42). At last,
the algorithm returns x = xk (line 44).

EGRES Technical Report No. 2018-02

6.1 The single-player problem 16

Algorithm 1: Adversary strategy
Eval query (C, I)

1 for ∀C ∈ C do
2 Cnew ← Cnew ∪ {C ∩ I} ∪

{C \ I}
3 if λ(C ∩ I) ≥ 1

2λ(C) then
4 µ(C ∩ I)← µ(C)
5 µ(C \ I)← 0
6 else
7 µ(C ∩ I)← 0
8 µ(C \ I)← µ(C)
9 end

10 end
11 return ∑Cnew∈Cnew,Cnew⊆I µ(Cnew)

Cut query (C, I, f, α)
12 for ∀C ∈ C do
13 Cnew ← Cnew ∪ {C \ I}
14 Cint ← Cint ∪ {C ∩ I}
15 if λ(C ∩ I) ≥ 2

3λ(C) then
16 µ(C ∩ I)← µ(C)
17 µ(C \ I)← 0
18 else
19 µ(C ∩ I)← 0
20 µ(C \ I)← µ(C)
21 end
22 end
23 if ∑Cint∈Cint µ(Cint) < α then
24 return error
25 else
26 for ∀Cint

i ∈ Cint do
27 find xi ∈ R so that λ(Cint∩f(xi)) =

1
2λ(Cint

i)
28 end
29 reorder [i] in Cint

i so that x1 ≤ x2 ≤ . . .

30 find k ∈ Z so that ∑k−1
i=1 µ(Cint

i) < α ≤∑k
i=1 µ(Cint

i)
31 for ∀Cint

i ∈ Cint do
32 Cnew ← Cnew ∪ {Cint

i ∩ f(xk)} ∪
{Cint

i \ f(xk)}
33 end
34 if i < k then
35 µ(Cint

i ∩ f(xk))← µ(Cint
i)

36 µ(Cint
i \ f(xk))← 0

37 else if i > k then
38 µ(Cint

i ∩ f(xk))← 0
39 µ(Cint

i \ f(xk))← µ(Cint
i)

40 else
41 µ(Cint

k ∩f(xk))← α−∑k−1
i=1 µ(Cint

i)
42 µ(Cint

k \ f(xk)) ← µ(Cint
k) +∑k−1

i=1 µ(Cint
i)− α

43 end
44 return xk
45 end

Once all queries have been answered according to the above rules, the player is
allocated a piece Z ⊆ X. The adversary specifies µ(Z) as the total value of those
crumbles that are subsets of Z.

EGRES Technical Report No. 2018-02

6.2 The n-player problem 17

Having described and demonstrated our adversary strategy, we now turn to proving
our key lemma on the volume of pieces that carry a positive value.

Lemma 6.1. After q queries in the single-player problem, the volume of any piece
with positive value is at least D

3q .

Proof. Due to the last rule of the adversary strategy, the volume of any piece with
positive value is bounded from below by the volume of any crumble with positive
value. We will now argue that eval and cut queries assign positive value to crumbles
whose volume is at least a third of the volume of the previous crumble.

At the very beginning of the protocol, for q = 0, the only crumble is X itself, with
volume D

30 . Eval queries assign positive value to crumbles that are at least as large as
half of the previous crumble they belonged to prior to the query. If a new crumble
with positive value was created in the first round of a cut query, then its volume was
at least one third of a previous crumble (lines 13 and 20). Otherwise, the new crumble
with positive value was an intermediate crumble Cint

i in the second round. The first
round of our algorithm assigns positive value to an intermediate crumble only if it was
at least two-thirds of the old crumble in the input of the cut query (lines 14-15). This
round will now cut Cint

i into two new crumbles (line 32). If i 6= k, then the larger of
these will inherit the value of the intermediate crumble (lines 35 and 39). Otherwise,
if i = k, then Cint

i is cut into exact halves (lines 41-42). All in all, new crumbles
that are assigned a positive value in the second round are of volume at least half of
two-thirds of the volume of the original crumble in the input of the query.

6.2 The n-player problem
We now place our single-player problem into the framework of the original problem.
The instance we construct has c1n players whose demand sums up to c2n, where c1 and
c2 are arbitrary constants between 0 and 1. We call these players humble, because their
total demand is modest compared to the number of them. The remaining (1 − c1)n
players share a piece of worth D − c2n. These players are greedy, because their total
demand is large. The simplest such instance is where n − 1 humble players have
demand 1, and the only greedy player has demand D − (n− 1). We fix the measure
function of every greedy player to be the Lebesgue-measure. This enforces humble
players to share a piece of volume c2D among themselves. Lemma 6.1 guarantees that
after qi queries addressed to Pi, the volume of any piece carrying positive value for Pi
is at least D

3qi
. We now sum up the volume of the pieces allocated to humble players

in any proportional division.
c1n∑
i=1

D

3qi
≤ c2n

We divide both sides by c1nD.

1
c1n

c1n∑
i=1

3−qi ≤ c2

c1D

EGRES Technical Report No. 2018-02

Section 7. Irrational demands 18

For the left side of this inequality, we use the well known inequality for the arithmetic
and geometric means of non-negative numbers.

c1n
√

3−
∑c1n

i1
qi ≤ c2

c1D

Taking the logarithm of both sides leads to the following.

1
c1n

− c1n∑
i1

qi

 ≤ log3
c2

c1
− log3 D

With this, we have arrived to a lower bound on the number of queries.
c1n∑
i1

qi ≥ c1n
(

log3 D + log3
c1

c2

)
∼ Ω(n log3 D)

This proves that one needs Ω(n log3 D) queries to derive a proportional division
for the humble players in the instance. Moreover, if c1 and c2 are known, a more
accurate bound can be determined using our formula c1n (log3 D − log3 c2 + log3 c1).
This suggests that the problem becomes harder to solve if the c1n humble players
vastly outnumber the greedy players. In the c1n = n − 1 case we mentioned earlier,
the query number is at least (n− 1) log3 D.

We can now conclude our theorem on the lower bound.

Theorem 6.2. To construct a proportional division in an n-player unequal shares
cake cutting problem with demands summing up to D one needs Ω(n logD) queries.

7 Irrational demands
In this section we consider the case when some demands are irrational numbers. Apart
from this, our setting is exactly the same as before. Even though two direct proto-
cols have been presented for the problem of proportional cake cutting with irrational
demands Barbanel [1996], Shishido and Zeng [1999], we feel that our protocol sheds
new light to the topic. The reason for this is that instead of designing a new protocol
for the problem, we simply reduce it to proportional cake cutting with rational (or,
equivalently, integer) shares. Moreover, our method works on our generalized cake
and query model.

Let us choose an arbitrary piece A ⊆ X such that µi(A) > 0 for all players Pi.
If the players share A and X \ A in two separate instances, both in their original
ratio d1 : d2 : . . . : dn, then the two proportional divisions will give a proportional
d1 : d2 : . . . : dn division of X itself. Assume now that µi(A) < µj(A) for some players
Pi and Pj, and some piece A ⊆ X. When generating the two subinstances on A and
X \ A, we reduce di on A to 0 and increase it in return on X \ A and and swap
the roles for dj, increasing it on A and decreasing it on X \ A. The first generated
instance thus has n − 1 players with irrational demands, while the second instance
has n players with irrational demands. We will show in Lemma 7.2 that if we set

EGRES Technical Report No. 2018-02

Section 7. Irrational demands 19

the right new demands in these instances, the two proportional divisions deliver a
proportional division of X. The key point we prove in Lemma 7.3, which states that
the demands in the second subinstance sum up to slightly below all players’ evaluation
of X \A. Redistributing the slack as extra demand among players gives us the chance
to round the demands up to rational numbers in the second subinstance and keep
proportionality in the original instance. Iteratively breaking up the instances into an
instance with fewer players and an instance with rational demands leads to a set of
instances with rational demands only.

We now describe our protocol in detail. Without loss of generality we can assume
that d1 ≤ d2 ≤ . . . ≤ dn. As a first step, P1 answers the cut query with x = d1 and
I = X. We denote the piece in f(d1) by A and ask all players to evaluate A. Let
Pj be one of the players whose evaluation is the highest. Notice that µj(A) ≥ d1,
because µ1(A) = d1. We distinguish two cases from here.

1. If µj(A) = d1, then µi(A) ≤ d1 for all players. We allocate A to P1 and continue
with an instance I1 with n− 1 players having the same demands as before. The
measure functions need to be normalized to D−d1

D−µi(A) · µi for all i 6= 1 so that all
players of I1 evaluate X \ A to D − d1.

2. Otherwise, µj(A) = d1 + ε, where ε > 0. We generate instances I2a and I2b.

(a) In the first instance I2a, the cake is A, P1’s demand is 0, Pj’s demand is
dj + d1, while all other players keep their original di demand. In order
to make all players evaluate the full cake to the sum of their demands D,
measure functions are modified to D

µi(A) · µi.

(b) In the second instance I2b, the cake is X \ A, P1’s demand is d1 + d2
1

D−d1
,

Pj’s demand is dj − d1(d1+ε)
D−(d1+ε) , while the original di demands are kept for all

other players. In order to make all players evaluate the full cake to D, we
set D

D−µi(A) · µi.

Proportional division with irrational demands

P1 marks d1 → A. All players evaluate A. Pj has the highest evaluation.

If µj(A) = d1, then allocate A to P1
and continue with n− 1 players on I1.

Otherwise µj(A) = d1 + ε. De-
fine two instances I2a and I2b. While
I2a has n − 1 players, demands in I2b
sum up to below D and thus can be
rationalized.

I1 I2a I2b
cake X \ A A X \ A
d1 0 0 d1 + d2

1
D−d1

dj dj dj + d1 dj − d1(d1+ε)
D−(d1+ε)

di di di di
µi

D−d1
D−µi(A)µi

D
µi(A)µi

D
D−µi(A)µi

EGRES Technical Report No. 2018-02

Section 7. Irrational demands 20

Lemma 7.1. A proportional division in I1 extends to a proportional division in the
original problem once P1’s allocated piece A is added to it.

Proof. Clearly P1 is satisfied with A, since µ1(A) = d1. In any proportional division
in I1, every player Pi, i 6= 1 is guaranteed to receive a piece that is worth at least
D−µi(A)
D−d1

· di ≥ di for her in the original instance.

Lemma 7.2. If each player receives her demanded share in I2a and I2b, then the
union of these pieces gives a proportional division in the original problem.

Proof. We calculate the share of each player for the case when each player receives a
piece satisfying her demand in I2a and I2b.

• d1: 0 + (d1 + d2
1

D−d1
) · D−d1

D
= d1

• dj: (dj + d1) · d1+ε
D

+ (dj − d1·(d1+ε)
D−(d1+ε)) ·

D−(d1+ε)
D

= dj

• di, i /∈ {1, j}: di · d1+ε
D

+ di · D−(d1+ε)
D

= di

Lemma 7.3. By slightly increasing all demands, I2b can be transformed into an in-
stance of proportional cake cutting with rational demands.

Proof. The key observation here is that there is a slack in the demands, meaning that
demands in I2b sum up to strictly below D, which is the evaluation of all players of
the full cake X \ A. The sum of the demands is the following.

d1 + d2
1

D − d1
+ dj −

d1 · (d1 + ε)
D − (d1 + ε) +

∑
i/∈{1,j}

di =
n∑
i=1

di + d2
1

D − d1
− d1 · (d1 + ε)
D − (d1 + ε) < D

The inequality above follows from the fact that d2
1

D−d1
< d1(d1+ε)

D−(d1+ε) for all ε > 0.
The slack can be distributed as extra demand among all players so that all demands

are rational. An implementation of this could be that we round up the irrational
demands at a sufficiently late digit.

Theorem 7.4. Any instance of the proportional cake cutting problem with n players
and irrational demands can be transformed into at most n−1 proportional cake cutting
problems with rational demands and thus can be solved using a finite number of queries.

Proof. We prove this theorem by induction. For n = 2, we need to show that the
problem with irrational demands can be reduced to at most one proportional cake
cutting problem with rational demands. For two players, our protocol proceeds as
follows. First P1 marks a piece X that is worth d1 for her. Now we ask P2 to
evaluate X. If µ2(A) ≤ d1, then P1 is allocated X and P2 is satisfied with I \ X,
because µ2(I \ X) ≥ d2. Otherwise, if µ2(X) = d1 + ε for some ε > 0, then P2 is
allocated X and the two players share I \X with demands d1 + d2

1
d2

and d2 − d1(d1+ε)
d2−ε .

EGRES Technical Report No. 2018-02

References 21

These demands ensure a proportional share to both players, as we show in Lemma 7.2.
Moreover, applying Lemma 7.3 to two players proves that they sum up to strictly
below d1 + d2 and thus can be rounded up to rational numbers, which gives us the
single 2-player problem that must be solved in order to derive a proportional division
for the original problem.

Assume now that an n−1-player proportional cake cutting problem with irrational
demands can be solved by transforming it into n− 2 proportional cake cutting prob-
lems with rational demands. If we are given an n-player proportional cake cutting
problem with irrational demands, our “Proportional division with irrational demands”
protocol transforms it into either I1 or to a problem with two instances, I2a and I2b.
Solving either of those problems will lead to a proportional division in the original
n-player problem, as Lemmas 7.1 and 7.2 show. The first instance is an n− 1 player
proportional cake cutting problem with irrational demands, which can be solved via
n− 2 proportional cake cutting problems with rational demands by our assumption.
The same is true for I2a. As of I2b, Lemma 7.3 proves that its demands can be
rounded up to rational numbers. Even in the worst case, when our protocol gener-
ates I2a and I2b in every recursive step, it ends up constructing n− 1 instances with
rational demands.

We would like to emphasize that even though we have transformed any proportional
cake cutting problem with irrational demands into a set of problems with rational
demands, we did not show any upper bound on its query complexity. When the
problems with rational demands are created, D might grow arbitrarily large, which
hugely affects the query number.

References
J. B. Barbanel. Game-theoretic algorithms for fair and strongly fair cake division with
entitlements. In Colloquium Mathematicae, volume 69, pages 59–73, 1996.

J. B. Barbanel, S. J. Brams, and W. Stromquist. Cutting a pie is not a piece of cake.
The American Mathematical Monthly, 116(6):496–514, 2009.

A. Beck. Constructing a fair border. The American Mathematical Monthly, 94(2):
157–162, 1987.

M. Berliant, W. Thomson, and K. Dunz. On the fair division of a heterogeneous
commodity. Journal of Mathematical Economics, 21(3):201–216, 1992.

S. J. Brams, M. A. Jones, and C. Klamler. Proportional pie-cutting. International
Journal of Game Theory, 36(3):353–367, 2008.

S. J. Brams, M. A. Jones, and C. Klamler. Divide-and-conquer: A proportional,
minimal-envy cake-cutting algorithm. SIAM review, 53(2):291–307, 2011.

Y. J. Cohler, J. K. Lai, D. C. Parkes, and A. D. Procaccia. Optimal envy-free cake
cutting. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

EGRES Technical Report No. 2018-02

References 22

M. Dall’Aglio. The dubins–spanier optimization problem in fair division theory. Jour-
nal of Computational and Applied Mathematics, 130(1):17–40, 2001.

L. E. Dubins and E. H. Spanier. How to cut a cake fairly. The American Mathematical
Monthly, 68(1):1–17, 1961.

J. Edmonds and K. Pruhs. Cake cutting really is not a piece of cake. ACM Transac-
tions on Algorithms (TALG), 7(4):51, 2011.

S. Even and A. Paz. A note on cake cutting. Discrete Applied Mathematics, 7(3):
285–296, 1984.

T. P. Hill. Determining a fair border. The American Mathematical Monthly, 90(7):
438–442, 1983.

K. Iyer and M. N. Huhns. A procedure for the allocation of two-dimensional resources
in a multiagent system. International Journal of Cooperative Information Systems,
18(03n04):381–422, 2009.

M. Magdon-Ismail, C. Busch, and M. S. Krishnamoorthy. Cake-cutting is not a
piece of cake. In STACS 2003: 20th Annual Symposium on Theoretical Aspects of
Computer Science, pages 596–607. Springer Berlin, Heidelberg, 2003.

K. McAvaney, J. Robertson, and W. Webb. Ramsey partitions of integers and pair
divisions. Combinatorica, 12(2):193–201, 1992.

A. D. Procaccia. Cake cutting: not just child’s play. Communications of the ACM,
56(7):78–87, 2013.

A. D. Procaccia. Cake cutting algorithms. In Handbook of Computational Social
Choice, chapter 13. Citeseer, 2015.

J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you can. Natick: AK
Peters, 1998.

E. Segal-Halevi, S. Nitzan, A. Hassidim, and Y. Aumann. Fair and square: Cake-
cutting in two dimensions. Journal of Mathematical Economics, 70:1–28, 2017.

H. Shishido and D.-Z. Zeng. Mark-choose-cut algorithms for fair and strongly fair
division. Group Decision and Negotiation, 8(2):125–137, 1999.

H. Steinhaus. The problem of fair division. Econometrica, 16:101–104, 1948.

G. J. Woeginger and J. Sgall. On the complexity of cake cutting. Discrete Optimiza-
tion, 4(2):213–220, 2007.

EGRES Technical Report No. 2018-02

	Introduction
	Related work
	Our contribution

	Preliminaries
	Known protocols
	Our protocol
	Generalizations
	A general cake definition
	A stronger query definition
	The existence of a proportional division

	The lower bound
	The single-player problem
	The n-player problem

	Irrational demands

