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Abstract

We investigate the approximability of the linear 3-cut problem in directed
graphs, which is the simplest unsolved case of the linear k-cut problem. The
input here is a directed graph D = (V,E) with node weights and three specified
terminal nodes s, r, t ∈ V , and the goal is to find a minimum weight subset of
non-terminal nodes whose removal ensures that s cannot reach r and t, and
r cannot reach t. The problem is approximation-equivalent to the problem
of blocking rooted in- and out-arborescences, and it also has applications in
network coding and security.

The approximability of linear 3-cut has been wide open until now: the best
known lower bound under the Unique Games Conjecture (UGC) was 4/3, while
the best known upper bound was 2 using a trivial algorithm. In this work we
completely close this gap: we present a

√
2-approximation algorithm and show

that this factor is tight assuming UGC. Our contributions are twofold: (1) we
analyze a natural two-step deterministic rounding scheme through the lens of
a single-step randomized rounding scheme with non-trivial distributions, and
(2) we construct integrality gap instances that meet the upper bound of

√
2.

Our gap instances can be viewed as a weighted graph sequence converging to a
“graph limit structure”.

1 Introduction

We investigate the complexity of the linear 3-cut problem in directed graphs. In the
node weighted variant, abbreviated (s, r, t)-Node-Lin-3-Cut, the input is a directed

graph D = (V,E) with specified nodes s, r, t ∈ V and node weights w ∈ RV \{r,s,t}
+ , and

the goal is to find a minimum weight node set U ⊆ V \{r, s, t} such that D[V −U ] has
no path from s to t, from s to r and from r to t. The edge-weighted variant, (s, r, t)-
Edge-Lin-3-Cut, has edge weights w ∈ RE

+, and the goal is to find a minimum
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1.1 Motivations 2

weight edge set F ⊆ E such that D−F has no path from s to t, from s to r and from
r to t. These two variants are equivalent by standard transformations.

We emphasize that the unreachability requirements are determined by an ordering
of the terminal nodes s, r, and t, and this is the origin for the terminology linear
3-cut [6]. While it might appear to be a fabricated/secondary cut problem, there
are fundamental motivations to study linear 3-cut, which are described below. Be-
fore explaining the motivations, we note that (s, r, t)-Node-Lin-3-Cut is NP-hard
and has no (4/3− ε)-approximation assuming UGC (by an approximation-preserving
reduction from node 3-way cut1 in undirected graphs), and admits a combinatorial
2-approximation2. It is a special case of directed multicut3, which, for constant k, ad-
mits a trivial k-approximation and does not admit a (k− ε)-approximation assuming
UGC [4].

1.1 Motivations

Blocking arborescences. We recall that an out-r-arborescence (similarly, an in-r-
arborescence) in a directed graph is a minimal subset of arcs such that every node has a
unique path from r (to r) in the subgraph induced by the arcs. The smallest number of
edges/nodes whose removal ensures that the graph has no arborescence holds the key
to understanding reliability in networks. Computing this number is also a special case
of the interdiction problem of covering bases of two matroids [2]. We recall that the
problem of finding a minimum weight subset of edges/nodes whose deletion ensures
that the remaining graph has no out-r-arborescence for a specified node r can be solved
efficiently (by reducing to min u → v cut in directed graphs). The main motivation
behind this work arose from the following closely related problem, abbreviated r-In-
Out-Node-Blocker: the input is a node-weighted directed graph with a specified
terminal node r and the goal is to find a minimum weight set of non-terminal nodes
whose removal ensures that the resulting graph has no out-r-arborescence and no in-r-
arborescence. In this work, we show an approximation-preserving equivalence between
r-InOut-Node-Blocker and (s, r, t)-Node-Lin-3-Cut. This equivalence, in turn,
motivates the need to investigate the latter.

Global Bicut. In the {s, t}-Edge-BiCut problem the input is a directed graph
and two specified nodes s and t, and the goal is to find a smallest subset of edges
whose deletion ensures that s and t cannot reach each other in the resulting graph.

1 In the node k-way cut problem, the input is a node-weighted undirected graph with k terminal
nodes {t1, . . . , tk} and the goal is to find a minimum weight set of non-terminal nodes whose removal
ensures that the terminals cannot reach each other. It has no (2− 2/k− ε)-approximation assuming
UGC [5]. Reduction from node 3-way cut to (s, r, t)-Node-Lin-3-Cut: Bidirect all edges and add
new nodes s, r, t with edges s→ t1, t2 → r → t2, t3 → t.

2Find a minimum s → t cut, delete it. In the resulting graph (i) if r can reach t, then find a
minimum r → t cut and delete it, (ii) else if s can reach r, then find a minimum s → r cut and
delete it.

3The input to Dir-Multicut is an edge-weighted directed graph G = (V,E) with k source-sink
pairs of nodes (s1, t1), (s2, t2), . . . , (sk, tk). The goal is to find a minimum weight subset of edges
E′ ⊆ E such that there is no path from si to ti in G− E′ for every i ∈ {1, . . . , k}.
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1.1 Motivations 3

In the global variant of this problem, abbreviated Edge-BiCut, the input is a di-
rected graph, and the goal is to find a smallest subset of edges whose deletion ensures
that the resulting graph has two distinct nodes s and t that cannot reach each other.
We note that {s, t}-Edge-BiCut and Edge-BiCut are extensions of min {s, t}-
cut and global min cut in undirected graphs to directed graphs respectively. While
{s, t}-Edge-BiCut does not admit an efficient (2−ε)-approximation assuming UGC
[4, 9], Edge-BiCut admits an efficient (2 − 1/448)-approximation [1], thus exhibit-
ing a dichotomy in the approximability between fixed-terminal and global variants.
Intriguingly, determining whether Edge-BiCut is NP-complete is still an open prob-
lem.

The algorithm achieving the (2− 1/448)-approximation for Edge-BiCut given in
[1] uses a 3/2-approximation for a global version of (s, r, t)-Edge-Lin-3-Cut as a
subroutine. Since this global version can be reduced to (s, r, t)-Edge-Lin-3-Cut,
improving the approximability of the latter beyond 3/2 would improve the approx-
imability of Edge-BiCut itself. This suggests that the exact approximability of
(s, r, t)-Edge-Lin-3-Cut merits careful investigation.

Network Security. Interdiction problems have long served as a way to understand
network reliability and to secure networks. The linear 3-cut problem also arose from
one such application. Muthukumaran et al. [10] and Talele et al. [11] formulated the
problem of placing security mediators in a distributed system as a cut problem. They
modeled a distributed system as a directed graph with arcs indicating the direction
of possible communication. The nodes are classified into various levels of integrity
by monitoring how much they are compromised. Security is achieved by blocking
information traveling from low integrity nodes to high integrity nodes. However,
blocking information flow also alters the task that the system is trying to accomplish.
Hence, minimum blocking is needed. This is naturally modeled as a cut problem
involving ordered terminals, a special case of which is the linear k-cut problem. In the
linear k-cut problem (Edge-Lin-k-Cut), the input is a directed graph and k ordered
terminal nodes and the goal is to find a smallest subset of edges whose removal ensures
unreachability from any lower terminal node to any higher terminal node. Erbacher
et al. [6] showed that Edge-Lin-k-Cut admits a fixed parameter algorithm when
parameterized by the size of the optimal solution.

Linear k-cut and Network coding. The information capacity in networks with
delay constraints is closely related to a variant of multicut, namely Skew-Multicut
[3]. In Skew-Multicut, the input consists of a directed graph with two ordered sets
of terminals (s1, . . . , sk−1), (t1, . . . , tk−1) and the goal is to find a smallest subset of
edges whose deletion ensures that si cannot reach tj for every i ≤ j. Skew-Multicut is
equivalent to Edge-Lin-k-Cut4. Chekuri et al. [3] showed that the upper bound on

4Reduction from Skew-(k − 1)-Multicut to Edge-Lin-k-Cut: Add new nodes s′1, . . . , s
′
k and

infinite weight edges s′i → si for i ∈ [1, k − 1], ti−1 → s′i for i ∈ [2, k] and solve the Edge-Lin-k-
Cut instance with terminals (s′1, . . . , s

′
k). Reduction from Edge-Lin-k-Cut to Skew-(k − 1)-Skew-

Multicut: Given a directed graph with terminals (s1, . . . , sk), add new nodes s′1, . . . , s
′
k−1, t

′
1, . . . , t

′
k−1

and infinite weight edges s′i → si for i ∈ [1, k−1], si → t′i−1 for i ∈ [2, k] and solve the Skew-Multicut
problem w.r.t. terminal sets (s′1, . . . , s

′
k−1), (t′1, . . . , t

′
k−1)
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1.2 Results 4

the integrality gap of a natural LP relaxation (Distance LP) for Skew-Multicut gives
an upper bound on the gap between routing and optimal network coding in a delay
constrained graph. Thus, obtaining tight bounds on the integrality gap of the Distance
LP for Skew-Multicut/Edge-Lin-k-Cut is of special significance to network coding.
In particular, it is an intriguing open question to determine whether the integrality
gap of the Distance LP for Edge-Lin-k-Cut is constant for arbitrary k.

There is a straightforward rounding scheme showing an upper bound of dlog2(k)e
on the integrality gap by recursively partitioning the terminal set and cutting all
paths from terminals on the left to terminals on the right based on the LP solution.
A simple reduction from node k-way cut to Edge-Lin-k-Cut, shows a lower bound
of 2(1 − 1/k) on the integrality gap. Chekuri-Madan [4] proved that the hardness
of approximation for Edge-Lin-k-Cut matches the integrality gap of the Distance
LP. However, they do not improve the upper bound of dlog2 ke or the lower bound
of 2(1− 1/k) on the integrality gap. In this work, we improve both these bounds for
k = 3.

1.2 Results

The following is our main result.

Theorem 1.1. There is an efficient
√

2-approximation for (s, r, t)-Node-Lin-3-
Cut. Assuming UGC, the problem has no efficient (

√
2 − ε)-approximation for any

ε > 0.

Both the algorithm and the hardness result are based on a natural distance-based
LP relaxation of the problem. We briefly remark on some of the salient features of
our results.

Approximation. Our main contribution for the upper bound is an analysis exhibit-
ing the tight approximation factor for a natural rounding scheme. A natural rounding
scheme is to take the best of the following two alternatives: (i) first ensure that s and
r cannot reach t by suitably rounding the LP-solution to obtain a node set K1 to
be removed, and then find a minimum s → r directed cut K2 in the graph obtained
after deleting K1, and return K1 ∪K2; (ii) first ensure that s cannot reach r and t by
suitably rounding the LP-solution to obtain a node set K1 to be removed, and then
find a minimum r → t directed cut K2 in the graph obtained after deleting K1, and
return K1 ∪K2. We note that in both alternatives, the first step can be implemented
by standard deterministic ball-cut rounding schemes5 while the second step can be
solved exactly in polynomial time. The main technical challenge lies in analyzing the
approximation factor of such a best of alternatives rounding scheme where the second
step in each alternative depends on the first. We overcome this challenge by showing
that a weaker, single-step randomized ball-cut rounding scheme already achieves the
desired expected value. The distribution underlying our single-step scheme turns out

5Pick θ ∈ (0, 1) and set K1 to be the set of nodes which have incoming (outgoing) arcs to nodes
which are within a distance θ from the terminal(s) of interest. Since there are only finitely many θ
values of interest, the best solution can be obtained in polynomial time.
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to be extremely non-trivial in nature. In the proofs, we derive the distribution with
the goal of obtaining the best approximation factor instead of stating the distribution
upfront and bounding the approximation factor.

Inapproximability. It is known that the inapproximability factor under UGC for
(s, r, t)-Node-Lin-3-Cut is identical to the integrality gap of a natural distance-
based LP [4]. We construct a sequence of instances such that the sequence of inte-
grality gaps of the distance-based LP converges to

√
2. Our gap instances are also

non-trivial and can be viewed as a weighted graph sequence converging to a kind of
“graph limit structure” having irrational weights. While irrational gap instances for
semi-definite programming relaxations of natural combinatorial optimization prob-
lems are known to exist (e.g., the max-cut problem [7, 8]), the authors are unaware
of irrational gap instances for natural LP-relaxations of natural combinatorial opti-
mization problems besides the one studied in this work.

We next turn towards the applications that motivated our study of (s, r, t)-Node-
Lin-3-Cut. We show that the approximability factors of r-InOut-Node-Blocker
and (s, r, t)-Node-Lin-3-Cut coincide by exhibiting a combinatorial reduction be-
tween the two problems.

Theorem 1.2. There exists an efficient α-approximation algorithm for r-InOut-
Node-Blocker if and only if there exists an efficient α-approximation for (s, r, t)-
Node-Lin-3-Cut.

We finally mention that our upper bound on the approximability of (s, r, t)-Node-
-Lin-3-Cut in Theorem 1.1 in turn improves the approximability of Edge-BiCut.
The new approximation factor is (2− (

√
2−1)/(72+58

√
2)) ≈ 1.9973 thus improving

upon the previously known (2−1/448) ≈ 1.9977 [1]. We refrain from including a proof
of this result since it is identical to the one presented in [1] and the improved factor
is obtained by directly plugging in the improved approximation factor for (s, r, t)-
Node-Lin-3-Cut from Theorem 1.1.

Organization. We present the upper bound of Theorem 1.1 in Section 2 and the
integrality gap instances leading to the lower bound of Theorem 1.1 in Section 3. We
show the approximation-preserving equivalence between r-InOut-Node-Blocker
and (s, r, t)-Node-Lin-3-Cut (Theorem 1.2) in Section 4.

2 A
√

2-approximation algorithm for (s, r, t)-Node-

Lin-3-Cut

Let D = (V,E) be an input digraph with specified nodes s, r, t ∈ V , and node weights

w ∈ RV \{s,r,t}
+ . The (s, r, t)-Node-Lin-3-Cut problem asks for a minimum weight

node set U ⊆ V \ {s, r, t} such that D[V − U ] has no path from s to t, from s to r,
and from r to t. The collection of feasible solutions remains the same if we add the
arcs t→ r and r → s to the digraph. In the rest of this section, we assume that these
arcs are present in D.

EGRES Technical Report No. 2017-10
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For a subset U ⊆ V , let us denote w(U) :=
∑

u∈U wu. For nodes u, v ∈ V , let Puv
denote the set of all directed paths from u to v in D. For x ∈ RV

+ and a path P in
D, we define x(P ) :=

∑
v∈V (P ) xv. For u, v ∈ V , let distx(u, v) := min{x(P ) : P ∈

Puv}. A natural LP relaxation of (s, r, t)-Node-Lin-3-Cut is the following, denoted
Distance-LP:

minwTx (Distance-LP)

x ∈ RV
+

distx(s, t), distx(s, r), distx(r, t) ≥ 1

xs = xr = xt = 0.

This LP is solvable in polynomial time, since separation amounts to finding shortest
paths. If x is a feasible solution to Distance-LP, then there is a feasible solution x′

to Distance-LP such that x′v ≤ xv for every v ∈ V and moreover:

if x′v > 0, then distx′(r, v) + distx′(v, r) ≤ 1 + x′v. (1)

To achieve this property, we observe that if xv > 0 and distx(r, v)+distx(v, r) > 1+xv,
then x(P ) > 1 for all P ∈ Pst∪Psr∪Prt that contains v. Indeed, for any such path P ,
there is a subset F of arcs from the set of arcs {t→ r, r → s} such that F ∪ P is the
concatenation of P1 ∈ Prv and P2 ∈ Pvr; therefore, x(P ) = x(P1) + x(P2) − xv > 1.
This means that we can decrease xv until the property is satisfied.

Let x be a feasible solution to Distance-LP that satisfies (1). We present an
algorithm that, given x as input, constructs in polynomial time a feasible solution U
to (s, r, t)-Node-Lin-3-Cut that satisfies w(U) ≤

√
2wTx. The algorithm itself is a

simple and natural deterministic ball-cut scheme, described below. The main novelty
is the proof of the approximation ratio, which is obtained by considering a weaker,
randomized ball-cut algorithm.

For a node u ∈ V and 0 < θ ≤ 1, let

Bout(u, θ) := {v ∈ V : distx(u, v) < θ},
Sout(u, θ) := {v ∈ V : distx(u, v)− xv < θ ≤ distx(u, v)},
Bin(u, θ) := {v ∈ V : distx(v, u) < θ},
Sin(u, θ) := {v ∈ V : distx(v, u)− xv < θ ≤ distx(v, u)}.

One can think of Bout(u, θ) as the open ball of radius θ around u with respect to
distances from u, and Sout(u, θ) can be thought of as the boundary of Bout(u, θ). The
sets Bin(u, θ) and Sin(u, θ) are analogous, but with respect to distances to u. We note
that Sout(u, θ) and Sin(u, θ) cannot contain nodes v with xv = 0.

Claim 2.1. For any θ ∈ (0, 1], there exists θ′ ∈ (0, 1] such that Sout(r, θ′) = Sout(r, θ),
and θ′ = distx(r, v) or θ′ = distx(r, v)− xv for some v ∈ V . A similar statement holds
for Sin(r, θ).

Proof. Let θ′ = min{γ : γ ≥ θ, γ = distx(r, v) or γ = distx(r, v)−xv for some v ∈ V }.
The minimum is chosen from a non-empty set because distx(r, t) = 1. Now it is easy
to verify that Sout(r, θ) = Sout(r, θ′).

EGRES Technical Report No. 2017-10
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As a consequence, there are at most 2n distinct sets of the form Sout(r, θ) (where
θ ∈ (0, 1]). The deterministic ball-cut scheme is based on enumerating these.

Deterministic Ball-Cut Algorithm for (s, r, t)-Node-Lin-3-Cut

Input: feasible solution x to Distance-LP that satisfies (1)
Compute distances distx(r, v) and distx(v, r) for every v ∈ V
U := V \ {r, s, t}
for every v ∈ V do

for every θ ∈ (0, 1] ∩ {distx(r, v), distx(r, v)− xv} do
K1 := Sout(r, θ)
Find minimum weight s→ r cut K2 in D[V \K1]
if w(K1 ∪K2) < w(U) then U := K1 ∪K2

for every θ ∈ (0, 1] ∩ {distx(v, r), distx(v, r)− xv} do
K1 := Sin(r, θ)
Find minimum weight r → t cut in D[V \K1]
if w(K1 ∪K2) < w(U) then U := K1 ∪K2

return U

The algorithm has the running time of O(|V |) max flow computations. The follow-
ing claim implies that the output is a feasible solution to (s, r, t)-Node-Lin-3-Cut.

Claim 2.2. If θ ∈ (0, 1] and K is an s→ r cut in D[V \Sout(r, θ)], then Sout(r, θ)∪K
is a feasible solution to (s, r, t)-Node-Lin-3-Cut. Similarly, if K is an r → t cut in
D[V \ Sin(r, θ)], then Sin(r, θ) ∪K is a feasible solution.

Proof. We prove the first part of the claim, the second part being similar. We observe
that for every u, v ∈ V , every P ∈ Puv, and every two consecutive nodes w and
w′ in the direction of P , we have distx(u,w) ≥ distx(u,w

′) − xw′ and distx(w
′, v) ≥

distx(w, v)− xw.
We now show that every path P ∈ Prt contains a node in Sout(r, θ). Let P ∈ Prt

with the nodes w0 := r, w1, w2, . . . , wk, wk+1 := t appearing in order. If distx(r, wi) < θ
for every i ∈ [k], then distx(r, wk) < θ ≤ 1 and hence, distx(r, t) < 1, a contradiction.
Hence, there exists a node wi such that distx(r, wi) ≥ θ. Pick the node wi with the
smallest index i such that distx(r, wi) ≥ θ. By the observation from the previous
paragraph, we have distx(r, wi)−xwi ≤ distx(r, wi−1) < θ, where the second inequality
is by the choice of the index i. Thus, wi ∈ Sout(r, θ) and hence, the path P contains
a node in Sout(r, θ).

Due to the presence of the edge r → s in the graph and the fact that s, r 6∈ Sout(r, θ),
we also have that every path P ∈ Pst contains a node in Sout(r, θ). Now, let us
consider a path P ∈ Psr without any nodes in Sout(r, θ). Since K is an s→ r cut in
D[V \Sout(r, θ)], P contains a node in K. This means that Sout(r, θ)∪K is a feasible
solution to (s, r, t)-Node-Lin-3-Cut.

EGRES Technical Report No. 2017-10
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The difficulty of analyzing the approximation factor is due to the way the choice
of K2 depends on the choice of K1. We overcome this difficulty by abandoning the
minimum weight cuts K2 in favor of random ball cuts that are easier to analyze. To
do this, we need to define two types of feasible solutions to (s, r, t)-Node-Lin-3-Cut.

For 0 < θ1 ≤ 1 and 0 < θ2 ≤ 1, the vertical T-shaped cut V (θ1, θ2) is defined as

V (θ1, θ2) := Sout(r, θ1) ∪ (Bout(r, θ1) ∩ Sin(r, θ2)),

while the horizontal T-shaped cut H(θ1, θ2) is defined as

H(θ1, θ2) := Sin(r, θ2) ∪ (Bin(r, θ2) ∩ Sout(r, θ1)).

The name “T-shaped cut” comes from the observation that if each node v is repre-
sented in the plane by the square (distx(r, v)−xv, distx(r, v)]×(distx(v, r)−xv, distx(v, r)],
then the cut consists of nodes whose square is intersected by two segments forming a
rotated “T” shape (see Figure 1).

Figure 1: Representation of T -shaped cuts. Left: the square corresponding to node
v. Center: v is in V (θ1, θ2) because one of the blue lines intersects the square. Right:
v is not in H(θ1, θ2) because the red lines do not intersect the square.

Lemma 2.1. The set Bout(r, θ1)∩Sin(r, θ2) is an s→ r cut in D[V \Sout(r, θ1)], and
Bin(r, θ2) ∩ Sout(r, θ1) is an r → t cut in D[V \ Sin(r, θ2)].

Proof. We prove only the first part of the claim, the proof of the second part being
similar. Let us consider a path P ∈ Psr without any nodes in Sout(r, θ1). Let the
nodes in P be w0 := s, w1, w2, . . . , wk, wk+1 := r appearing in order. We will show that
wi ∈ Bout(r, θ1) for every i ∈ {1, . . . , k} by induction on i. For the base case, owing to
the presence of the edge r → s in the graph, we have that distx(r, w0)− xw0 = 0 < θ1
and since w0 6∈ Sout(r, θ1), it follows that distx(r, w0) < θ1. For the induction step, we
have that distx(r, wi+1)−xwi+1

≤ distx(r, wi) < θ1, where the second inequality follows
by induction hypothesis. Now, since wi+1 6∈ Sout(r, θ1), it follows that distx(r, wi+1) <
θ1. Hence, all nodes of P are in Bout(r, θ1).

We now show that at least one of the nodes in P should be in Sin(r, θ2). If
distx(wi, r) < θ2 for every i ∈ [k], then distx(w1, r) < θ2 ≤ 1 and hence, distx(s, r) < 1,
a contradiction. Hence, there exists a node wi such that distx(wi, r) ≥ θ2. Pick the

EGRES Technical Report No. 2017-10
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node wi with the largest index i such that distx(wi, r) ≥ θ2. We have distx(wi, r) −
xwi ≤ distx(wi+1, r) < θ2, where the second inequality is by the choice of the in-
dex i. Thus, wi ∈ Sin(r, θ2) and hence, the path P contains a node in Sin(r, θ2).
Consequently, P contains a node in Bout(r, θ1) ∩ Sin(r, θ2).

Corollary 2.1. Every T-shaped cut is a feasible solution to (s, r, t)-Node-Lin-3-
Cut, and the weight of the cut found by the Deterministic Ball-Cut Algorithm is at
most the minimum weight of a T-shaped cut.

Proof. Feasibility follows directly from Lemma 2.1 and Claim 2.2. For the second
statement, consider V (θ1, θ2) for some θ1, θ2 ∈ (0, 1]. By Claim 2.1, there exists
θ′ ∈ {distx(r, v), distx(r, v) − xv} for some v ∈ V such that Sout(r, θ′) = Sout(r, θ1).
When the algorithm considers v and θ′, it finds a minimum weight s → r cut K2 in
D[V \ Sout(r, θ)]. As Bout(r, θ1) ∩ Sin(r, θ2) is also an s → r cut in D[V \ Sout(r, θ)]
by Lemma 2.1, w(Sout(r, θ′) ∪K2) ≤ w(Sout(r, θ1) ∪ (Bout(r, θ1) ∩ Sin(r, θ2)).

We can bound the approximation factor of Deterministic Ball-Cut Algorithm by
estimating the minimum weight of a T-shaped cut. We show that this gives the desired
factor of

√
2.

Theorem 2.1. There exists a T-shaped cut U such that w(U) ≤
√

2wTx.

To prove Theorem 2.1, we will follow a probabilistic argument. We will exhibit
a distribution over T-shaped cuts for which the expected weight satisfies the bound
mentioned in Theorem 2.1. This distribution turns out to be non-trivial in nature.
Instead of stating this distribution upfront and analyzing its approximation factor, we
will derive the optimal distribution as a natural consequence of the following lemma,
which provides a sufficient condition for achieving a certain approximation factor.

Lemma 2.2. Let ξ : [0, 1]2 → R+ be a function satisfying∫ 1

0

(ξ(a, z) + ξ(b, z)) dz +

∫ 1

a

ξ(z, b) dz +

∫ 1

b

ξ(z, a) dz = 1 ∀a, b ∈ R+, a+ b ≤ 1.

(2)

Let α := 2
∫ 1

0

∫ 1

0
ξ(z1, z2) dz1 dz2. Then, for any instance of (s, r, t)-Node-Lin-3-

Cut, there exists a T-shaped cut U such that

w(U) ≤
(

1

α

)
wTx.

Proof. We define a probability distribution on the set of T-shaped cuts by giving a
weighing function f : {Ver,Hor}×[0, 1]2 → R+. For (θ1, θ2) ∈ [0, 1]2, let f(Ver, θ1, θ2) :=
ξ(θ1, θ2)/α and f(Hor, θ1, θ2) := ξ(θ2, θ1)/α. For a T-shaped cut U , let

Pr(U) :=

∫
(θ1,θ2):V (θ1,θ2)=U

f(Ver, θ1, θ2) dθ1 dθ2 +

∫
(θ1,θ2):H(θ1,θ2)=U

f(Hor, θ1, θ2) dθ1 dθ2.

We mention that a node set U could be both a horizontal and a vertical T-shaped cut
in which case, the probability mass for U comes from both integrals in the above sum.
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Furthermore Pr(·) is a probability distribution supported over the set of T-shaped
cuts because of the definition of α. Let U be a T-shaped cut chosen according to this
distribution.

Claim 2.3. For v ∈ V \ {r, s, t}, probability that v is in the chosen T-shaped cut U
is at most xv/α.

Proof. We may assume that xv 6= 0 since every vertex in a T-shaped cut necessarily
has this property. Let a := distx(r, v) and b := distx(v, r). We recall that a vertical T-
shaped cut V (θ1, θ2) is defined as Sout(r, θ1)∪ (Bout(r, θ1)∩Sin(r, θ2)). Thus, V (θ1, θ2)
contains the node v if and only if either (1) a − xv < θ1 ≤ a, or (2) a < θ1 and
b− xv < θ2 ≤ b. Similarly, a horizontal T-shaped cut H(θ1, θ2) contains the node v if
and only if either (3) b − xv < θ2 ≤ b, or (4) b < θ2 and a − xv < θ1 ≤ a. Therefore
the probability of v being in a random T-shaped cut is at most

P :=
1

α

(∫ 1

z2=0

∫ a

z1=a−xv
ξ(z1, z2) dz1 dz2 +

∫ b

z2=b−xv

∫ 1

z1=a

ξ(z1, z2) dz1 dz2

+

∫ b

z2=b−xv

∫ 1

z1=0

ξ(z2, z1) dz1 dz2 +

∫ 1

z2=b

∫ a

z1=a−xv
ξ(z2, z1) dz1 dz2

)
By change of variables, we have that

P =
1

α

∫ xv

y=0

(∫ 1

z=0

ξ(a− y, z) dz +

∫ 1

z=a

ξ(z, b− xv + y) dz

+

∫ 1

z=0

ξ(b− xv + y, z) dz +

∫ 1

z=b

ξ(z, a− y) dz

)
dy.

For 0 ≤ y ≤ xv, we have a − y ≤ a and b − xv + y ≤ b. By assumption, ξ(z1, z2) is
non-negative in the domain. Therefore, we have∫ xv

y=0

∫ 1

z=a

ξ(z, b− xv + y) dz dy ≤
∫ xv

y=0

∫ 1

z=a−y
ξ(z, b− xv + y) dz dy, and∫ xv

y=0

∫ 1

z=b

ξ(z, a− y) dz dy ≤
∫ xv

y=0

∫ 1

z=b−xv+y
ξ(z, a− y) dz dy.

Hence,

P ≤ 1

α

∫ xv

y=0

(∫ 1

z=0

ξ(a− y, z) dz +

∫ 1

z=a−y
ξ(z, b− xv + y) dz

+

∫ 1

z=0

ξ(b− xv + y, z) dz +

∫ 1

z=b−xv+y
ξ(z, a− y) dz

)
dy

=
1

α

∫ xv

y=0

1 dy =
xv
α
,

where the equality at the beginning of the last row follows from (2), since for 0 ≤ y ≤
xv, we have (a− y) + (b− xv + y) = a+ b− xv = distx(r, v) + distx(v, r)− xv ≤ 1 by
(1), and moreover a − y ≥ a − xv = distx(r, v) − xv ≥ 0 and b − xv + y ≥ b − xv =
distx(v, r)− xv ≥ 0 by the definition of distx(·, ·).
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Since every node v is in the random T-shaped cut with probability at most xv
α

,

expected weight of a random T-shaped cut is at most wT x
α

. Therefore, there is a

T-shaped cut U with w(U) ≤ wT x
α

.

To prove the Theorem 2.1, it is enough by Lemma 2.2 to show the existence of a
function ξ : [0, 1]2 → R+ satisfying (2) for which∫ 1

0

∫ 1

0

ξ(z1, z2) dz1 dz2 =
1

2
√

2
. (3)

It turns out that such a function exists, but its structure is surprisingly complex. We
define two regions where the function ξ will have positive values, see Figure 2.

R1 :=

{
(z1, z2) :

1√
2
< z1, z2 ≤ 1

}
,

R2 :=

{
(z1, z2) :

√
2− 1√

2
≤ z1 ≤

1√
2
, z1 + z2 ≤ 1

}
.

Figure 2: The regions R1 and R2.

Remark. The reason for this restriction on the support of ξ will become apparent
in Section 3, where we present an infinite sequence of node-weighted graphs for which
the integrality gap of Distance-LP converges to

√
2. It can be seen that R1 ∪ R2

consists of the pairs (z1, z2) for which the weight of the vertical T-shaped cut V (z1, z2)
(based on the optimal LP solution x) converges to 1 in the graph sequence. Informally,
the region R1 ∪R2 is the region where the complementary slackness conditions allow
positive density, if we consider the “limit” of the weighted graph sequence defined in
Section 3. However, this is not the usual notion of graph limit, so we do not formalize
this statement as it is not necessary for the proof.

Proof of Theorem 2.1. To prove the theorem, we define a function ξ with the above
properties. The value of ξ is defined to be 0 for (z1, z2) ∈ [0, 1]2 \ (R1∪R2). For every
(z1, z2) ∈ R1, we set ξ(z1, z2) := (

√
2 + 1)/

√
2. In the region R2, the value of ξ(z1, z2)

will depend only on z1. In particular, we will define a function ζ : [
√
2−1√
2
, 1√

2
] → R+,

and define ξ(z1, z2) in the region R2 as

ξ(z1, z2) := ζ(z1).
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Let us examine the properties that must be satisfied by ζ in order for ξ to satisfy (2).

Claim 2.4. Condition (2) is satisfied by ξ if the following hold for ζ:

ζ

(√
2− 1√

2

)
= 0, (4)

(1− y)ζ(y) +

∫ 1−y

y

ζ(z) dz =
1

2
if

√
2− 1√

2
≤ y ≤ 1

2
, (5)

(1− y)ζ(y)−
∫ y

1−y
ζ(z) dz =

1

2
if

1

2
≤ y ≤ 1√

2
. (6)

Proof. We consider several cases based on the values of a and b. Let Γ(a, b) denote

the LHS of (2). By taking y =
√
2−1√
2

in (5) and substituting ζ(
√
2−1√
2

) = 0, we obtain
that ∫ 1√

2

√
2−1√
2

ζ(z) dz =
1

2
. (7)

Case 1(i): Suppose a > 1√
2
. Then b ≤

√
2−1√
2

since a+ b ≤ 1. Now,

Γ(a, b) =

∫ 1

0

ξ(a, z) dz +

∫ 1

0

ξ(b, z) dz +

∫ 1

a

ξ(z, b) dz +

∫ 1

b

ξ(z, a) dz

=

(
1 +

1√
2

)(
1− 1√

2

)
+ 0 + 0 +

(
1 +

1√
2

)(
1− 1√

2

)
= 1.

Case 1(ii): Suppose b > 1√
2
. Proceeding similar to Case 1(i), we obtain Γ(a, b) = 1.

Case 2: Suppose a ≤
√
2−1√
2

and b ≤
√
2−1√
2

. In this case, we have

Γ(a, b) =

∫ 1

0

ξ(a, z) dz +

∫ 1

0

ξ(b, z) dz +

∫ 1

a

ξ(z, b) dz +

∫ 1

b

ξ(z, a) dz

= 0 + 0 + 2

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1.

Case 3(i): Suppose
√
2−1√
2
< a ≤ 1√

2
and b ≤

√
2−1√
2

. Then

Γ(a, b) =

∫ 1

0

ξ(a, z) dz +

∫ 1

0

ξ(b, z) dz +

∫ 1

a

ξ(z, b) dz +

∫ 1

b

ξ(z, a) dz

=

∫ 1−a

0

ζ(a) dz + 0 +

∫ 1√
2

a

ζ(z) dz +

∫ 1−a

√
2−1√
2

ζ(z) dz

= (1− a)ζ(a) +

∫ 1√
2

a

ζ(z) dz +

∫ 1−a

√
2−1√
2

ζ(z) dz. (8)
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If a ≤ 1
2
, then the RHS from (8) can be written as

Γ(a, b) = (1− a)ζ(a) +

∫ 1−a

a

ζ(z) dz +

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1

by (5) and (7). If a > 1
2
, then the RHS from (8) can be written as

Γ(a, b) = (1− a)ζ(a)−
∫ a

1−a
ζ(z) dz +

∫ 1√
2

√
2−1√
2

ζ(z) dz = 1

by (6) and (7).

Case 3(ii): Suppose a ≤
√
2−1√
2

and
√
2−1√
2

< b ≤ 1√
2
. Proceeding similar to Case

3(a), we obtain that Γ(a, b) = 1.

Case 4: Suppose
√
2−1√
2
< a ≤ 1√

2
and

√
2−1√
2
< b ≤ 1√

2
. Moreover, we have a+ b ≤ 1.

Γ(a, b) =

∫ 1

0

ξ(a, z) dz +

∫ 1

0

ξ(b, z) dz +

∫ 1

a

ξ(z, b) dz +

∫ 1

b

ξ(z, a) dz

=

∫ 1−a

0

ζ(a) dz +

∫ 1−b

0

ζ(b) dz +

∫ 1−b

a

ζ(z) dz +

∫ 1−a

b

ζ(z) dz

= (1− a)ζ(a) + (1− b)ζ(b) +

∫ 1−b

a

ζ(z) dz +

∫ 1−a

b

ζ(z) dz.

We will assume that a ≤ b (the other case is similar). If b ≤ 1
2
, then∫ 1−b

a

ζ(z) dz +

∫ 1−a

b

ζ(z) dz =

∫ 1−a

a

ζ(z) dz +

∫ 1−b

b

ζ(z) dz,

and hence Γ(a, b) = 1 follows from (5). If b > 1
2
, then, a ≤ 1− b < 1

2
≤ b and hence,

we have ∫ 1−b

a

ζ(z) dz +

∫ 1−a

b

ζ(z) dz =

∫ 1−a

a

ζ(z) dz −
∫ b

1−b
ζ(z) dz.

Therefore, Γ(a, b) = 1 follows from (5) and (6).

We note that conditions (4)-(6) on ζ are actually necessary for (2) to hold. This
fact is not needed for the proof of Theorem 2.1, but we prove it in Appendix A to
facilitate future investigations on our distribution.

In order to complete the proof of the theorem, we have to find a function ζ :
[
√
2−1√
2
, 1√

2
]→ R+ that satisfies properties (4)-(6). By solving the differential equations

corresponding to (4)-(6), we get that the function satisfying these properties is

ζ(y) :=
2y(2− y)− 1

4y(1− y)2
. (9)

By substituting the function values, it can be verified that
∫ 1

0

∫ 1

0
ξ(z1, z2) dz1 dz2 =

1
2
√
2
. We present the calculations needed for verification in Appendix B.

EGRES Technical Report No. 2017-10



Section 3. Integrality Gap 14

For clarity, we conclude the section by describing the obtained distribution explic-
itly. The probability of choosing a given T-shaped cut U is

Pr(U) :=
√

2

(∫
(θ1,θ2):V (θ1,θ2)=U

ξ(θ1, θ2) dθ1 dθ2 +

∫
(θ1,θ2):H(θ1,θ2)=U

ξ(θ2, θ1) dθ1 dθ2

)
,

where

ξ(θ1, θ2) :=


√
2+1√
2

if 1√
2
< θ1, θ2 ≤ 1,

2θ1(2−θ1)−1
4θ1(1−θ1)2 if

√
2−1√
2
≤ θ1 ≤ 1√

2
and θ1 + θ2 ≤ 1,

0 otherwise.

(10)

3 Integrality Gap

It is known that the inapproximability factor of (s, r, t)-Node-Lin-3-Cut under UGC
coincides with the integrality gap of the Distance-LP [4]. In this section, we present
an integrality gap instance for (s, r, t)-Node-Lin-3-Cut which will in turn show the
inapproximability result in Theorem 1.1.

Theorem 3.1. The integrality gap of the Distance-LP is at least
√

2.

We will construct a sequence of node-weighted graphs for which the integrality gap
converges to

√
2. In most previously known integrality gap instances for distance-

based linear programs for directed multicut-like problems, the node weights were
uniformly set to be one. In contrast, our gap instance assigns varying weights to the
nodes.

3.1 Gap Instance Construction

Let M be a positive integer. We will construct a graph G = (V,E) on (M + 1)2 + 3
nodes with weights on the nodes. For convenience, let us define V ′ := {(i, j) : i, j ∈
{0, 1, . . . ,M}}. Thus, we may view V ′ as the nodes of a (M+1)× (M+1)-grid whose
columns and rows are indexed from 0 to M (we will follow the convention that the
first index denotes the column while the second index denotes the row). The node
set of G is given by V := {s, r, t} ∪ V ′. We now define the weights on the nodes.
The construction involves a parameter α ∈ (0, 1/2) that will be determined later. We
denote the weight of node (i, j) to be wij and define6

wij :=



0 if i+ j > M,
1−α
M

if i+ j < M,
1
2
− (1−α)i

M
if i+ j = M, i < M

(
1− 1

2(1−α)

)
,

α if i+ j = M, M
(

1− 1
2(1−α)

)
≤ i ≤M

(
1

2(1−α)

)
, and

1
2
− (1−α)j

M
if i+ j = M, i > M

(
1

2(1−α)

)
.

6The various boundary conditions in the definition of the node weights will have to use appropri-
ately rounded down and rounded up boundary values. We avoid this technicality in the interests of
simplicity.
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The edge set E consists of undirected and directed edges. The undirected edges consist
of the following: every node (i, j) is adjacent to all nodes in V ′ ∩ {(i− 1, j − 1), (i−
1, j), (i−1, j+1), (i, j−1), (i, j+1), (i+1, j−1), (i+1, j), (i+1, j+1)}. The directed
edges consist of r → s, t → r, s → (i,M) and (i, 0) → r for every i ∈ {0, 1, . . . ,M},
and (M, j)→ t and r → (0, j) for every j ∈ {0, 1 . . . ,M}. See Figure 3.

We will refer to the subgraph of G induced by the vertex-set V ′ as a diagonalized-
grid. The leftmost column, rightmost column, bottommost row, topmost row, and
diagonal refer to {(0, j) : j ∈ {0, 1, . . . ,M}}, {(M, j) : j ∈ {0, 1, . . . ,M}}, {(i, 0) : i ∈
{0, 1, . . . ,M}}, {(i,M) : i ∈ {0, 1, . . . ,M}}, and {(i, j) : i, j ∈ {0, 1, . . . ,M}, i + j =
M} respectively.

Figure 3: The graph corresponding to the integrality gap instance. The black edges
are undirected while the blue edges are directed. The node weights are not shown.

3.2 Proof of Gap

The following lemma bounds the value of an optimal solution to the linear program.

Lemma 3.1. An optimal solution to the Distance-LP for the node-weighted graph
constructed above has weight at most(

1

M

) M∑
i=0

M∑
j=0

wij.
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Proof. It is sufficient to exhibit a feasible solution to the linear program whose ob-
jective value is as specified in the lemma. We will show that x(i,j) := 1/M for every
i, j ∈ {0, 1, . . . ,M}, i+ j ≤M and x(i,j) := 1 for every i, j ∈ {0, 1, . . . ,M}, i+ j > M ,
is a feasible solution to the linear program. We recall that nodes (i, j) with i+ j > M
have weight wij = 0. Let us consider the graph H obtained from G by removing all
nodes (i, j) with i + j > M . To show feasibility of x, it suffices to show that every
path from s to r, from r to t and from s to t has at least M intermediate nodes in H.

A path in H from a node (i, j) ∈ V (H) to r has to cross j intermediate rows
and hence has at least j internal nodes. Hence, for every node (i, j) with i, j ∈
{0, 1 . . . ,M}, i + j ≤ M , the number of internal nodes in every path from (i, j) to r
in H is at least j. Now every path from s to r in H has to go through (0,M) and
hence has at least M internal nodes from V (H)∩ V ′. Similarly, every path from r to
t in H has at least M internal nodes from V (H)∩ V ′. Finally, the distance from s to
t in H is at least the distance from r to t in H owing to the edge r → s and hence,
the number of internal nodes from V (H) ∩ V ′ in any path from s to t in H is also at
least M .

The next lemma shows a lower bound on the objective value of an integral optimum
solution.

Lemma 3.2. An optimal solution to (s, r, t)-Node-Lin-3-Cut in the node-weighted
graph constructed above has weight at least 1.

Proof. Let U∗ be an integral optimal solution. We will show the lower bound on the
weight of U∗ in two steps. We define the axis-parallel neighbors of a node (i, j) to
be the nodes in {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)} and a path to be an axis-
parallel path if all neighbors of a node (i, j) occurring in the path are its axis-parallel
neighbors. In the first step of the proof, we will show that U∗ consists of an axis-
parallel path from a node in the topmost row to a node in the bottommost row and an
axis-parallel path from a node in the leftmost column to a node in rightmost column.
In the second step of the proof, we will show a lower bound on the total weight of the
union of the nodes in these two paths.

Lemma 3.3. The optimal solution U∗ contains a set of nodes which form an axis-
parallel path P1 from a node in the bottommost row to a node in the topmost row in
G.

Lemma 3.4. The optimal solution U∗ contains a set of nodes which form an axis-
parallel path P2 from a node in the leftmost column to a node in the rightmost column
in G.

We defer the proof of Lemmas 3.3 and 3.4 and proceed with the proof of Lemma
3.2. The next claim follows immediately from the definition of axis-parallel paths.

Claim 3.1. Every axis-parallel path from node (i1, j1) to (i2, j2) contains at least
|i2 − i1|+ |j2 − j1| − 1 internal nodes.

We also have the following claim from the definition of the node weights.
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Claim 3.2. For every node (i, j) for i, j ∈ {0, 1, . . . ,M} with i+ j = M , we have

wij = max

{
1

2
− (1− α)i

M
, α,

1

2
− (1− α)j

M

}
.

Let P1 and P2 be the node sets guaranteed by Lemmas 3.3 and 3.4 respectively.
Without loss of generality, let P1 be the node set in U∗ that induces an axis-parallel
path from a node (a, 0) to a node (b,M). Similarly, let P2 be the node set in U∗ that
induces an axis-parallel path from a node (0, c) to a node (M,d) (see Figure 4).

Figure 4: The red circled nodes denote the axis-parallel path P1 and the blue circled
nodes denote the axis-parallel path P2.

Since P1 is an axis-parallel path from a node in the bottommost row to a node in the
topmost row, there exists a node in P1 from the diagonal. Let (x,M − x) be the first
node along the axis-parallel path P1 that is in the diagonal. Let P ′1 be the restriction
of P1 from (a, 0) to (x,M − x). Let (x′, y′) be the first node along the axis-parallel
path P2 that is either in the diagonal or in P ′1. Let P ′2 be the restriction of P2 from
(0, c) to (x′, y′). By construction, all nodes (p, q) of P ′1 ∪ P ′2 satisfy p + q ≤ M . We
will show that the total weight of the nodes in P ′1∪P ′2 is at least 1. This suffices since
P ′1 ∪ P ′2 ⊆ U∗. We distinguish two cases.

1. Suppose P ′2 is a path from (0, c) to a node (i, j) of P ′1, where i + j ≤ M . By
Claim 3.1, the axis-parallel path P ′2 has at least |i−0|+|j−c|−1 ≥ i−1 internal
nodes. Furthermore, the path P ′1 is the concatenation of an axis-parallel path
Q1 from (a, 0) to (i, j) and an axis-parallel path Q2 from (i, j) to (x,M − x).
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Hence, by Claim 3.1, the axis-parallel path P ′1 has at least |i− a|+ |j− 0| − 1 +
1 + |x− i|+ |M − x− j| − 1 ≥ j + |x− i|+ |M − x− j| − 1 ≥M − i− 1 internal
nodes. We recall that all these nodes have weight (1− α)/M . Additionally, the
nodes (a, 0) and (0, c) have weight (1−α)/M each. The node (x,M −x) on the
diagonal has weight at least α by Claim 3.2. Combining these, we get that the
total weight of the nodes in P ′1 ∪ P ′2 is at least

((i− 1) + (M − i− 1) + 2)

(
1− α
M

)
+ α = 1.

2. Suppose P ′2 is a path from (0, c) to a node (x′,M − x′) on the diagonal. In
this case, we will show that the total weight of the nodes in P ′1 and P ′2 are each
lower bounded by 1/2. By Claim 3.1, the axis-parallel path P ′1 has at least
|x− a|+ |M − x− 0| − 1 ≥M − x− 1 internal nodes each of which has weight
(1−α)/M . Additionally, the end-node (a, 0) also has weight (1−α)/M and the
end-node (x,M − x) has weight at least 1/2 − (1 − α)((M − x)/M) by Claim
3.2. Thus, the total weight of the nodes in P ′1 is at least

((M − x− 1) + 1)

(
1− α
M

)
+

1

2
− (1− α)(M − x)

M
=

1

2
.

We proceed by a similar argument for the total weight of the nodes in P ′2. By
Claim 3.1, the axis-parallel path P ′2 has at least |x′−0|+ |M−x′−c|−1 ≥ x′−1
internal nodes each of which has weight (1− α)/M . Additionally, the end-node
(0, c) also has weight (1 − α)/M and the end-node (x′,M − x′) has weight at
least 1/2− (1− α)(x′/M) by Claim 3.2. Thus, the total weight of the nodes in
P ′2 is at least

((x′ − 1) + 1)

(
1− α
M

)
+

1

2
− (1− α)x′

M
=

1

2
.

This completes the proof of Lemma 3.2.

We now prove Lemma 3.3. The proof of Lemma 3.4 is similar.

Proof of Lemma 3.3. Let U∗t denote an inclusionwise-minimal subset of U∗ such that
G − U∗t contains no path from r to t. We will show that U∗t contains a path P1 as
required. Showing this is equivalent to showing the following combinatorial statement:
every subset of nodes that intersects all paths from left to right in a diagonalized-grid
(since G contains a diagonalized-grid) has a subset of nodes that induce an axis-
parallel path from a node in the topmost row to a node in the bottommost row in G.
We proceed to show this now.

We will show the combinatorial statement using a coloring argument. Let

R := U∗t ∪ {(i,−1), (i,M + 1) : i ∈ {0, 1, . . . ,M}} and

B := (V ′ \ U∗t ) ∪ {(−1, j), (M + 1, j) : j ∈ {0, 1, . . . ,M}}.
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and call the corresponding nodes as red and blue nodes respectively (we observe that
the sets R and B have extra nodes in addition to the nodes in the diagonalized-grid
of G, but this is only for the purposes of notational convenience in this proof). We
will construct an auxiliary graph for the purposes of the proof—for clarity, we will
refer to the vertices of G as nodes and the vertices of the auxiliary graph as vertices.

We construct an undirected graph H as follows. The vertex set of H is given by
V (H) := {vi,j : i, j ∈ {0, 1, . . . ,M + 1}} ∪ {a, b, c, d}. We call a vertex vi,j to be in
column i and row j. We define a′ := v0,0, b

′ := vM+1,0, c
′ := v0,M+1, d

′ := vM+1,M+1

and call them to be the corner vertices.
The edge set of H is denoted by E(H): a vertex vi,j is adjacent to all vertices in

V (H)∩{vi−1,j, vi+1,j, vi,j−1, vi,j+1} (i.e., the undirected grid edges) and vertices a, b, c, d
are adjacent to a′, b′, c′, d′ respectively.

We note that H is a plane graph that corresponds to a square grid with four
pendant vertices that are adjacent to the four corner vertices of the grid. In the
following, it is helpful to consider overlaying H on top of G as shown in Figure 5
with each internal face of H containing exactly one node from V ′. For a vertex
vi,j ∈ V (H) \ {a, a′, b, b′, c, c′, d, d′}, we define Di,j

1 := {(i, j), (i− 1, j− 1)} and Di,j
2 :=

{(i − 1, j), (i, j − 1)}. We emphasize that Di,j
1 and Di,j

2 consist of nodes from the
original graph G. They are the nodes in the two diagonally opposite faces adjacent
to vi,j in the overlay (see Figure 5).

Figure 5: The diagonalized-grid of the graph G is shown in gray while the graph H
is shown in black. For visual simplicity, we have not included the diagonal edges of
the diagonalized-grid. The extra red and blue nodes are also shown. For node vi,j,
the nodes of G in the two diagonally opposite faces Di,j

1 and Di,j
2 are also shown.
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We now modify H to obtain a directed subgraph D′ as follows: for an edge e ∈ E(H)
with e = {vi,j, vi+b1,j+b2} where b1, b2 ∈ {0, 1} and b1+b2 = 1, we say that e is bi-labeled
if |{(i, j), (i+ b1− 1, j+ b2− 1)}∩R| = 1 and |{(i, j), (i+ b1− 1, j+ b2− 1)}∩B| = 1
(i.e., the two faces of the edge contain a node from R and B). In addition, we will call
the edges {a, a′}, {b, b′}, {c, c′}, {d, d′} to be trivially bi-labeled. We delete all edges of
H that are not bi-labeled. We orient the trivially bi-labeled edges as a′ → a, b→ b′,
c→ c′ and d′ → d and orient the remaining bi-labeled edges by the following rule (see
Figure 6):

1. for an edge e = {vi,j, vi+1,j}, we will orient the edge as

(a) vi,j → vi+1,j if (i, j) ∈ R and (i, j − 1) ∈ B and declare (i, j) to be the left
node and (i, j − 1) to be the right node of the edge,

(b) vi+1,j → vi,j if (i, j) ∈ B and (i, j−1) ∈ R and declare (i, j) to be the right
node and (i, j − 1) to be the left node of the edge,

2. for an edge e = {vi,j, vi,j+1}, we will orient the edge as

(a) vi,j+1 → vi,j if (i, j) ∈ R and (i− 1, j) ∈ B and declare (i, j) to be the left
node and (i− 1, j) to be the right node of the edge,

(b) vi,j → vi,j+1 if (i, j) ∈ B and (i−1, j) ∈ R and declare (i, j) to be the right
node and (i− 1, j) to be the left node of the edge,

We observe that this orienting rule ensures that the left and right nodes of every
oriented edge are red and blue respectively (see Figure 6).

Figure 6: Orienting the bi-labeled edges of H.

We make one final modification to D′ to obtain D: for each vertex vi,j where
i, j ∈ {1, . . . ,M},

(I) if Di,j
1 ⊆ B and Di,j

2 ⊆ R, then (see Figure 7) we replace the vertex vi,j by
v1i,j, v

2
i,j, declare them to be the vertices in row i and column j, and replace the

head of the incoming edge from the vertex in column i−1, row j by v1i,j, replace
the head of the incoming edge from the vertex in column i + 1, row j by v2i,j,
replace the tail of the outgoing edge to the vertex in column i, row j+ 1 by v1i,j,
and replace the tail of the outgoing edge to the vertex in column i, row j − 1
by v2i,j, and
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(II) if Di,j
1 ⊆ R and Di,j

2 ⊆ B, then (see Figure 8) we replace the vertex vi,j by
v1i,j, v

2
i,j, declare them to be the vertices in row i and column j, and replace the

head of the incoming edge from the vertex in column i, row j+ 1 by v1i,j, replace
the head of the incoming edge from the vertex in column i, row j − 1 by v2i,j,
replace the tail of the outgoing edge to the vertex in column i+ 1, row j by v1i,j,
and replace the tail of the outgoing edge to the vertex in column i − 1, row j
by v2i,j.

We call the above operation to be a split operation. We emphasize that the operation
separates the red nodes in a consistent manner. The left and right nodes of all oriented
edges still remain the same after the split operation.

Figure 7: Splitting operation (I).

Figure 8: Splitting operation (II).

Claim 3.3. Let v ∈ V (D) \ {a, b, c, d}. Then, the incoming and outgoing degree of v
are either both zero or are both 1.

Proof. Vertices in D that were obtained by splitting a vertex in D′ clearly satisfy the
property since they have incoming and outgoing degree to be 1 after the split. So, we
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may assume that v is a vertex in D′ as well as D. Suppose v has incoming degree to
be one in D′ (the proof for outgoing degree being one is identical).

Suppose v is not a corner vertex. Let v = vi,j. Without loss of generality, let the
incoming edge be from a vertex in column i − 1 and row j (see Figure 9). Then,
(i− 1, j− 1) ∈ B, (i− 1, j) ∈ R. Based on whether (i, j− 1) is in R or B and whether
(i, j) is in R or B, we have four cases. One of the cases cannot happen since vi,j is a
vertex in both D and D′. The remaining three cases show that the outgoing degree
from vi,j is also one in D′.

Figure 9: Degree of internal vertices: Case (a) is impossible. Cases (b), (c) and (d)
have a unique outgoing edge as well.

Suppose v is a corner vertex. Without loss of generality, let v = v0,M = c′ (see
Figure 10). Now, depending on whether (0,M) is in R or B, we have two cases. In
both cases, the outgoing degree from v0,M is indeed one.

Figure 10: Degree of corner vertices.

Thus, the only vertices in D with outgoing degree 1 and incoming degree 0 are b
and c while the only vertices in D with incoming degree 1 and outgoing degree 0 are
a and d. Hence, by Claim 3.3, there exists a path from c to either a or d in D.

Claim 3.4. Suppose there exists a path from c to d in D. Then there exists a path in
G− U∗t from s to r.
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Proof. Suppose we have a path from c to d in D. Let P denote the nodes of G along
the right of the edges in this path. Thus, P induces a path from a node in the leftmost
column to a node in the rightmost column in G. We recall that the right nodes along
the edges in the path are blue nodes and are indeed not in U∗t . Thus, we have a path
from a node in the leftmost column to a node in the rightmost column in G−U∗t and
hence a path from r to t in G− U∗t .

Claim 3.4 shows that a path from c to d in D contradicts the fact that U∗t is a r → t
cut in G. Thus, we must have a path from c to a in D. Claim 3.5 below completes
the proof of the lemma.

Claim 3.5. Suppose there exists a path from c to a in D. Then there exists an axis
parallel path from a node in the topmost row to a node in the bottommost row in U∗t .

Proof. Suppose we have a path Q from c to a in D. Let P denote the nodes of G
along the left of the edges in this path. We recall that the left nodes along the edges
in the path are red nodes and hence are in U∗t . Thus, P is a path from a node in the
topmost row to a node in the bottommost row in G. It remains to show that P can
be transformed into an axis-parallel path.

Suppose P uses a diagonal edge in G. Without loss of generality, let it be (i−1, j)→
(i, j − 1). Let Q′ be the path Q projected on D′—i.e., use the projected edges in D′.
Then, Q′ traverses vi−1,j → vi,j → vi,j−1. These edges imply that (i−1, j), (i, j−1) ∈ R
and (i − 1, j − 1) ∈ B. If (i, j) ∈ B, then the split operation to obtain D from D′
shows that the edges in Q do not exist in D, a contradiction (see Figure 11).

Figure 11: Diagonal path P . Path Q′ is impossible owing to the split operation.

Thus, we may assume that (i, j) ∈ R and is hence in U∗t . In this case, we can ensure
that P makes fewer axis-parallel turns by rerouting as (i− 1, j)→ (i, j)→ (i, j− 1)}
(see Figure 12). By rerouting this way for each diagonal edge of P , we obtain the
required axis-parallel path.
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Figure 12: Diagonal path P can be made axis-parallel.

With Lemmas 3.1 and 3.2, we prove the main theorem of the section. We restate
it below for convenience.

Theorem 3.1. The integrality gap of the Distance-LP is at least
√

2.

Proof. We will use the sequence of instances constructed at the beginning of the
section. By Lemmas 3.1 and 3.2, it only remains to fix a choice of α and bound the
sum of the node weights. We will pick an α that minimizes the sum of the node
weights in order to get the largest possible integrality gap.

We now compute the sum of the node weights as a function of α. We have the
following three claims from the definitions of the node weights.

Claim 3.6. ∑
i,j∈{0,...,M}: i+j 6=M

wij =
(1− α)(M + 1)

2
.

Claim 3.7. ∑
i,j∈{0,...,M}: i+j=M,

i<(1− 1
2(1−α))M or i>( 1

2(1−α))M

wij =

(
(1− 2α)M

4(1− α)

)(
1 + 2α

2
+

1− α
M

)
.

Claim 3.8. ∑
i,j∈{0,...,M}: i+j=M,

(1− 1
2(1−α))M≤i≤( 1

2(1−α))M

wij =
α2M

1− α
.

Using the above three claims, we have that

M∑
i=0

M∑
j=0

wij =

(
3− 4α + 2α2

4(1− α)

)
M + 1− 3α

2
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Now, the minimum value of the function f(α) := (3 − 4α + 2α2)/(4(1 − α)) in the
domain (0, 1/2) occurs at α = 1− 1/

√
2 and thus the minimum value of the function

is minα∈(0,1/2) f(α) = 1/
√

2. Using this value of α shows that the objective value of an

optimal solution to the linear program is at most 1/
√

2 + Θ(1/M) while the objective
value of an optimal integral solution is at least 1. Consequently, the integrality gap
of the sequence of instances constructed as above converges to

√
2 when M tends to

infinity.

4 Blocking Arborescences

In this section, we show the equivalence between r-InOut-Node-Blocker and
(s, r, t)-Node-Lin-3-Cut. We need the notion of the Strong-Node-Cut problem:
the input is a directed graph with node weights, and the goal is to find a minimum
weight subset of nodes whose deletion results in at least two disjoint weakly connected
components. We observe that Strong-Node-Cut can be solved in polynomial-time.

Theorem 4.1. There exists an efficient α-approximation algorithm for r-InOut-
Node-Blocker if and only if there exists an efficient α-approximation for (s, r, t)-
Node-Lin-3-Cut.

Proof. We first show that r-InOut-Node-Blocker is a combination of (s, r, t)-
Node-Lin-3-Cut and Strong-Node-Cut.

Claim 4.1. For every directed graph D = (V,E) with r ∈ V , the optimal solution to
r-InOut-Node-Blocker has value equal to

min

{
min

s,t∈V−r
{(s, r, t)-Node-Lin-3-Cut in D} ,Strong-Node-Cut in D

}
.

Proof. Let U be an optimal solution of r-InOut-Node-Blocker in D = (V,E) with
r ∈ V . The optimal values of both (s, r, t)-Node-Lin-3-Cut in D and Strong-
-Node-Cut in D are upper bounds for the weight of U . If the weight of U is
strictly smaller than Strong-Node-Cut, then D[V −U ] is weakly connected. By the
definition of U , we have that D[V −U ] does not contain an in-r-arborescence and hence
it has a strongly connected component C1 not containing r with δoutD[V−U ](C1) = ∅.
Similarly, since D[V − U ] does not contain an out-r-arborescence, it has a strongly
connected component C2 not containing r with δinD[V−U ](C2) = ∅. Since D[V − U ]
is weakly connected, we have C1 6= C2. Since C1 and C2 are strongly connected
components, they are disjoint. For arbitrary nodes s ∈ C1 and t ∈ C2, there are no
directed paths from s to r, from r to t and from s to t in D[V − U ]. Thus U is a
feasible solution to (s, r, t)-Node-Lin-3-Cut in D.

Now we turn to the proof of the theorem. The ‘if’ part follows from Claim 4.1
above. To see the other direction, consider an instance D = (V,E) of (s, r, t)-Node-
Lin-3-Cut. Clearly, we may assume that s, r and t have infinite weights. For each
node v ∈ V , add an arc from t to v and an arc from v to s. This step does not affect
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the values of the feasible solutions to (s, r, t)-Node-Lin-3-Cut. Let D′ denote the
graph thus arising.

We claim that the feasible solutions with finite weight of (s, r, t)-Node-Lin-3-Cut
and those of r-InOut-Node-Blocker coincide in D′. Indeed, assume first that U
is a solution of (s, r, t)-Node-Lin-3-Cut in D′. As D′[V − U ] does not contain a
directed path from s to r or from r to t, there exists no in-r-arborescence or out-r-
arborescence in D′[V −U ], hence U is also a solution of r-InOut-Node-Blocker in
D′. Now assume that U is a solution of r-InOut-Node-Blocker in D′ with finite
weight, that is, s, t /∈ U . If D′[V − U ] contains a directed path from s to r or from r
to t or from s to t, then the arcs that were added to D can be used to obtain either
an in-r-arborescence or an out-r-arborescence, a contradiction. Hence no such path
exists and so U is also a solution of (s, r, t)-Node-Lin-3-Cut in D′.

By the above, an α-approximate solution to r-InOut-Node-Blocker in the ex-
tended graph is also an α-approximate solution to (s, r, t)-Node-Lin-3-Cut in D,
thus concluding the proof of the theorem.

The above proof ideas also extend to show that there exists an efficient αapproxi-
mation algorithm for r-InOut-Edge-Blocker if and only if there exists an efficient
α-approximation for (s, r, t)-Edge-Lin-3-Cut, which is equivalent to (s, r, t)-Node-
Lin-3-Cut.
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Appendix A Necessary conditions for (2)

Claim A.1. Condition (2) is satisfied by ξ if and only if the following hold for ζ:

ζ

(√
2− 1√

2

)
= 0, (11)

(1− y)ζ(y) +

∫ 1−y

y

ζ(z) dz =
1

2
if

√
2− 1√

2
≤ y ≤ 1

2
, (12)

(1− y)ζ(y)−
∫ y

1−y
ζ(z) dz =

1

2
if

1

2
≤ y ≤ 1√

2
. (13)

Proof. The direction showing that (11)-(13) imply (2) was already shown in Claim
2.4. We now argue the necessity of (11), (12) and (13).

To see the necessity of (12), we consider a = b = y for
√
2−1√
2
≤ y ≤ 1

2
. For this
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choice of a and b, condition (2) necessitates that

1 = 2

∫ 1

0

ξ(y, z) dz + 2

∫ 1

y

ξ(z, y) dz

= 2

∫ 1−y

0

ξ(y, z) dz + 2

∫ 1−y

y

ξ(z, y) dz

= 2

∫ 1−y

0

ζ(y) dz + 2

∫ 1−y

y

ζ(z) dz

= 2(1− y)ζ(y) + 2

∫ 1−y

y

ζ(z) dz,

which shows the necessity of (12). The second equation above is because ξ(y, z) =
ξ(z, y) = 0 for z > 1− y since y ≤ 1/2.

To see the necessity of (13), we consider a = y, b = 1 − y for some y such that
1
2
≤ y ≤ 1√

2
. For this choice of a and b, condition (2) necessitates that

1 =

∫ 1

0

(ξ(y, z) + ξ(1− y, z)) dz +

∫ 1

y

ξ(z, 1− y) dz +

∫ 1

1−y
ξ(z, y) dz

=

∫ 1

0

ξ(y, z) dz +

∫ 1

0

ξ(1− y, z) dz + 0 + 0

=

∫ 1−y

0

ξ(y, z) dz +

∫ y

0

ξ(1− y, z) dz

=

∫ 1−y

0

ζ(y) dz +

∫ y

0

ζ(1− y) dz

= (1− y)ζ(y) + yζ(1− y). (14)

We note that the bounds on y imply that
√
2−1√
2
≤ 1− y ≤ 1

2
. Hence, by (12) applied

to y′ := 1− y, we obtain that

yζ(1− y) =
1

2
−
∫ y

1−y
ζ(z) dz. (15)

Substituting (15) in (14) and rewriting in the required form shows the necessity of
(13).

To see the necessity of (11), we consider a = b <
√
2−1√
2

. For this choice of a and b,

condition (2) necessitates that

1 = 2

∫ 1

0

ξ(a, z) dz + 2

∫ 1

a

ξ(z, a) dz = 0 + 2

∫ 1

a

ξ(z, a) dz = 2

∫ 1√
2

√
2−1√
2

ζ(z) dz. (16)

Now, by (12) applied to y =
√
2−1√
2

, we obtain that

1

2
=

1√
2
ζ

(√
2− 1√

2

)
+

∫ 1√
2

√
2−1√
2

ζ(z)dz =
1√
2
ζ

(√
2− 1√

2

)
+

1

2
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where the second equation is obtained by substituting (16). Hence, ζ(
√
2−1√
2

) = 0,

showing the necessity of (11).

Appendix B Integral of ξ on the unit square

We show that if ξ is defined as in (10), then
∫ 1

0

∫ 1

0
ξ(z1, z2) dz1 dz2 = 1

2
√
2
. By substi-

tuting the function values, we get∫ 1

0

∫ 1

0

ξ(z1, z2) dz1 dz2 =

∫
(z1,z2)∈R1

ξ(z1, z2) dz2 dz1 +

∫
(z1,z2)∈R2

ξ(z1, z2) dz2 dz1

=

(
1− 1√

2

)2(
1 +

1√
2

)
+

∫ 1√
2

z1=
√
2−1√
2

∫ 1−z1

z2=0

ξ(z1, z2) dz2 dz1

=

(
1− 1√

2

)2(
1 +

1√
2

)
+

∫ 1√
2

√
2−1√
2

(1− z1)ζ(z1) dz1

=

(
1− 1√

2

)2(
1 +

1√
2

)
+

∫ 1√
2

√
2−1√
2

(1− z1)(2z1(2− z1)− 1)

4z1(1− z1)2
dz1

=

√
2− 1

2
√

2
+

√
2− 1

2
=

1

2
√

2
.
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