
Egerv́ary Research Group
on Combinatorial Optimization

Technical reportS

TR-2017-09. Published by the Egerváry Research Group, Pázmány P. sétány 1/C,
H–1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres . ISSN 1587–4451.

Beating the 2-approximation factor
for Global Bicut

Kristóf Bérczi, Karthekeyan Chandrasekaran,

Tamás Király, Euiwoong Lee, and Chao Xu

October 2017

EGRES Technical Report No. 2017-09 1

Beating the 2-approximation factor for Global Bicut

Kristóf Bérczi?, Karthekeyan Chandrasekaran??, Tamás Király?,

Euiwoong Lee? ? ?, and Chao Xu??

Abstract

In the fixed-terminal bicut problem, the input is a directed graph with two
specified nodes and the goal is to find a smallest subset of edges whose removal
ensures that the two specified nodes cannot reach each other. In the global bicut
problem, the input is a directed graph and the goal is to find a smallest subset of
edges whose removal ensures that there exist two nodes that cannot reach each
other. Fixed-terminal bicut and global bicut are natural extensions of {s, t}-min
cut and global min-cut respectively, from undirected graphs to directed graphs.
Fixed-terminal bicut is NP-hard, admits a simple 2-approximation, and does
not admit a (2− ε)-approximation for any constant ε > 0 assuming the unique
games conjecture. In this work, we show that global bicut admits a (2−1/448)-
approximation, thus improving on the approximability of the global variant in
comparison to the fixed-terminal variant.

1 Introduction

The global minimum cut problem is a classic interdiction problem that admits efficient
algorithms in undirected graphs. In this work, we study the following generalization
of the global minimum cut problem from undirected graphs to directed graphs:

BiCut: Given a directed graph, find a smallest subset of edges whose removal ensures
that there exist two distinct nodes that cannot reach each other.

A natural approach to solving BiCut is by iterating over all pairs of distinct nodes
s and t in the input graph and solving the following fixed-terminal bicut problem:

{s, t}-BiCut: Given a directed graph with two specified terminal nodes s, t, find a
smallest subset of edges whose removal ensures that s and t cannot reach each other.

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös Loránd
University, Budapest, Email: {berkri,tkiraly}@cs.elte.hu. Kristóf and Tamás are supported
by the Hungarian National Research, Development and Innovation Office – NKFIH grants K109240
and K120254 and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human
Capacities.

??University of Illinois, Urbana-Champaign. Email: {karthe,chaoxu3}@illinois.edu. Chao is
supported in part by NSF grant CCF-1526799.
? ? ?Carnegie Mellon University, Pittsburgh. Email: euiwoonl@cs.cmu.edu

October 2017

1.1 Results 2

Clearly, {s, t}-BiCut is equivalent to 2-terminal multiway-cut in directed graphs
(the goal in k-terminal multiway cut is to remove a smallest subset of edges to ensure
that the given k terminals cannot reach each other). A classic result by Garg, Vazirani
and Yannakakis shows that {s, t}-BiCut is NP-hard [9]. A simple 2-approximation
algorithm is to return the union of a minimum s → t cut and a minimum t → s cut
in the input directed graph. The approximability of {s, t}-BiCut has seen renewed
interest in the last few months culminating in inapproximability results matching
the best-known approximability factor [4, 15]: {s, t}-BiCut has no efficient (2 − ε)-
approximation for any constant ε > 0 assuming the Unique Games Conjecture [14].
These results suggest that we have a very good understanding of the complexity and
the approximability of the fixed-terminal variant, i.e., {s, t}-BiCut. In contrast, even
the complexity of the global variant, i.e., BiCut, is still an open problem.

The motivations for studying BiCut are multifold. In many network defense/attack
applications, global cuts and connectivity are much more important than connectivity
between fixed pairs of terminals. On the one hand, BiCut is a fundamental global cut
problem with interdiction applications involving directed graphs. On the other hand,
there is no known complexity theoretic result for BiCut. The fundamental nature of
the problem coupled with the lack of basic tractability results are compelling reasons
to investigate this problem.

Furthermore, BiCut is an ideal candidate problem to study towards understand-
ing whether cut problems exhibit a dichotomous behaviour between global and fixed-
terminal variants in directed graphs. For concreteness, we recall the 3-Cut problem
and the 3-way-Cut problem in undirected graphs. In 3-Cut, the input is an undi-
rected graph and the goal is to find a smallest subset of edges whose removal ensures
that there exist 3 nodes that cannot reach each other. In 3-way-Cut, the input is
an undirected graph with 3 specified nodes and the goal is to find a smallest subset
of edges whose removal ensures that the 3 specified nodes cannot reach each other.
While the global variant, namely 3-Cut, admits an efficient algorithm [10, 13], the
fixed-terminal variant, namely 3-way-Cut, is NP-hard [7]. Such a dichotomy in
complexity/approximability between global and fixed-terminal variants is hardly un-
derstood in directed graphs. In this work, we exhibit such a dichotomy for directed
graphs by focusing on BiCut.

1.1 Results

In spite of an extensive body of literature on cut problems in directed graphs, the
complexity of BiCut is still an open problem. In this work, we exhibit a dichotomy
in the approximability between BiCut and {s, t}-BiCut. While {s, t}-BiCut is
inapproximable to a constant factor better than 2 assuming UGC, we show that Bi-
Cut is approximable to a constant factor that is strictly better than 2. The following
is our main result:

Theorem 1.1. There exists an efficient (2−1/448)-approximation algorithm for Bi-
Cut.

We emphasize that the complexity of BiCut is still an open problem.

EGRES Technical Report No. 2017-09

1.1 Results 3

Additional Results on Sub-problems. As a sub-problem in the algorithm for
Theorem 1.1, we consider the following problem:

(s, ∗, t)-Lin-3-Cut (abbreviating linear 3-cut): Given a directed graph D = (V,E)
and two specified nodes s, t ∈ V , find a smallest subset of edges to remove so that
there exists a node r with the property that s cannot reach r and t, and r cannot
reach t in the resulting graph.

(s, ∗, t)-Lin-3-Cut is a global variant of (s, r, t)-Lin-3-Cut, introduced in [8],
where the input specifies three terminals s, r, t and the goal is to find a smallest
subset of edges whose removal achieves the property above. A simple reduction
from 3-way-Cut shows that (s, r, t)-Lin-3-Cut is NP-hard. The approximability
of (s, r, t)-Lin-3-Cut was studied by Chekuri and Madan [4]. They showed that
the inapproximability factor coincides with the flow-cut gap of an associated path-
blocking linear program assuming the Unique Games Conjecture. However, the exact
approximability factor is still unknown. On the positive side, there exists a simple
combinatorial 2-approximation algorithm for (s, r, t)-Lin-3-Cut.

A 2-approximation for (s, ∗, t)-Lin-3-Cut can be obtained by iterating over all
choices for the terminal r and using the above-mentioned 2-approximation for (s, r, t)-
Lin-3-Cut. However, for the purposes of getting a strictly better than 2-approxima-
tion for BiCut, we need a strictly better than 2-approximation for (s, ∗, t)-Lin-3-
Cut. We obtain the following improved approximation factor:

Theorem 1.2. There exists an efficient 3/2-approximation algorithm for (s, ∗, t)-
Lin-3-Cut.

We emphasize that, similar to BiCut, we do not know if (s, ∗, t)-Lin-3-Cut is
NP-hard. Upon encountering cut problems in directed graphs whose complexity is
difficult to determine, it is often insightful to consider the complexity of the analogous
problem in undirected graphs. Our next result shows that the undirected counterpart
of (s, ∗, t)-Lin-3-Cut is in fact solvable in polynomial time. We observe that reach-
ability in undirected graphs is a symmetric property: if a node s can reach another
node t, then the node t can also reach the node s. Hence, the analogous problem
in undirected graphs is the following: given an undirected graph with two specified
nodes s, t, remove a smallest subset of edges so that the resulting graph has at least
3 connected components with s and t being in different components. More generally,
we consider the following:

{s, t}-Sep-k-Cut: Given an undirected graph G = (V,E) with two specified nodes
s, t ∈ V , find a smallest subset of edges to remove so that the resulting graph has at
least k connected components with s and t being in different components.

The complexity of {s, t}-Sep-k-Cut for constant k was posed as an open problem
by Queyranne [17]. In this work, we resolve this open problem by showing that
{s, t}-Sep-k-Cut is solvable in polynomial-time for every constant k.

Theorem 1.3. For every constant k, there is an efficient algorithm to solve {s, t}-
Sep-k-Cut.

EGRES Technical Report No. 2017-09

1.2 Related Work 4

Organization. We set the notation and discuss another cut problem which is useful
as a subproblem in our algorithm in Section 1.3. We prove Theorems 1.2 and 1.3 in
Section 2 and Theorem 1.1 in Section 3.

A preliminary version of this work, together with related hardness results, appeared
in the Proceedings of APPROX 2017 [2].

1.2 Related Work

In spite of an extensive literature on cut problems, we are unaware of any work on
BiCut. We mention some work related to the other two problems mentioned in the
previous section. (s, r, t)-Lin-3-Cut was introduced by Erbacher et al. in [8]. They
showed that the problem is fixed-parameter tractable when parameterized by the size
of the solution.
k-Cut is a well-known partitioning problem in undirected graphs with a rich his-

tory. In k-Cut, the input is an undirected graph and the goal is to find a smallest
subset of edges to remove so that the resulting graph has at least k connected compo-
nents. When k is part of the input, this is NP-hard [10] and admits a 2-approximation
[18]. When k is a constant, this is solvable in polynomial time [10, 13, 20].

The fixed-terminal variant of k-Cut is known as k-Way-Cut. In k-Way-Cut,
the input is an undirected graph with k specified terminals s1, . . . , sk and the goal
is to find a smallest subset of edges to remove so that no two terminals can reach
each other in the resulting graph. It is well-known that k-Way-Cut is NP-hard
[7]. For k = 3, a 12/11-approximation is known [5, 11], while for constant k, the
current-best approximation factor is 1.2975 due to Sharma and Vondrák [19]. These
results are based on an LP-relaxation proposed by Călinescu, Karloff and Rabani
[6], known as the CKR relaxation. Manokaran, Naor, Raghavendra and Shwartz [16]
showed that the inapproximability factor coincides with the integrality gap of the
CKR relaxation. Recently, Angelidakis, Makarychev and Manurangsi [1] exhibited
instances with integrality gap at least 6/(5 + (1/k− 1))− ε for every k ≥ 3 and every
ε > 0 for the CKR relaxation.

1.3 Preliminaries

We recall another cut problem in digraphs that is used as a subproblem in our algo-
rithm. Given a directed graph D = (V,E), we call a node to be a source if it can
reach every other node in D. The following subproblem is used in our algorithm:

DoubleCut: Given a directed graph, find a smallest subset of edges to remove so
that the resulting graph has no source node.

DoubleCut is also an extension of global minimum cut from undirected graphs to
directed graphs. The tractability of DoubleCut is folklore (e.g., see [3]). We will
need the specific structure of an optimal solution to DoubleCut. The following
characterization of directed graphs with no source node shows the needed structure:

Theorem 1.4. (E.g., see [3]) Let D = (V,E) be a directed graph. The following are
equivalent:

EGRES Technical Report No. 2017-09

Section 2. Lin3Cut problems 5

1. D has no source node.

2. There exist two disjoint non-empty sets S, T ⊂ V with δin(S) ∪ δin(T) = ∅.

From the above theorem, we conclude that every optimal solution to Double-
Cut is given by the incoming edges of two disjoint non-empty subsets of nodes. The
efficient algorithms for solving DoubleCut can be used to obtain such a pair of sets.

Notations. Let D = (V,E) be a directed graph. For two disjoint sets X, Y ⊂ V , we
denote δD(X, Y) to be the set of edges (u, v) with u ∈ X and v ∈ Y and d(X, Y) to
be the cut value |δD(X, Y)|. We use δinD (X) := δD(V \X,X), δoutD (X) := δ(X, V \X),
dinD (X) := |δinD (X)| and doutD (X) := |δout(X)|. We drop the subscripts when the graph
D is clear from context. We use a similar notation for undirected graphs by dropping
the superscripts in and out. For two nodes s, t ∈ V , a subset X ⊂ V is an st-set if
t ∈ X ⊆ V − s. The cut value of an st-set X is din(X). For two sets A,B ⊆ V , let

β(A,B) := |δin(A) ∪ δin(B)|, and

σ(A,B) := |δin(A)|+ |δin(B)|.

2 Lin3Cut problems

In this section, we prove Theorems 1.2 and 1.3. Theorem 1.2 gives a 3/2-approxima-
tion for (s, ∗, t)-Lin-3-Cut and is a necessary component of our proof of Theorem
1.1. Theorem 1.3 is an investigation of (s, ∗, t)-Lin-3-Cut in undirected graphs and
answers an open problem posed by Queyranne [17].

2.1 A 3/2-approximation for (s, ∗, t)-Lin-3-Cut

One of our main tools used in the approximation algorithm for BiCut is a 3/2-
approximation algorithm for (s, ∗, t)-Lin-3-Cut. We present this algorithm now. We
recall the problem (s, ∗, t)-Lin-3-Cut: Given a directed graph with specified nodes
s, t, find a smallest subset of edges whose removal ensures that the graph contains a
node r with the property that s cannot reach r and t, and r cannot reach t.

Notations. Let V be the node set of a graph. A family C of subsets of V is a chain
if for every pair of sets A,B ∈ C, we have A ⊂ B or B ⊂ A. We observe that a chain
family can have at most |V | non-empty sets. Two sets A and B are uncomparable if
A \B and B \A are non-empty. A set A is compatible with a chain C if C ∪ {A} is a
chain, and it is not compatible otherwise.

We first rephrase the problem in a convenient way.

Lemma 2.1. (s, ∗, t)-Lin-3-Cut in a directed graph D = (V,E) is equivalent to

min {β(A,B) : t ∈ A (B ⊆ V − {s}} .

EGRES Technical Report No. 2017-09

2.1 A 3/2-approximation for (s, ∗, t)-Lin-3-Cut 6

Proof. Let F ⊆ E be an optimal solution for (s, ∗, t)-Lin-3-Cut in D and let

(A,B) := argmin{β(A,B) : t ∈ A (B ⊆ V − s}.

Let us fix an arbitrary node r ∈ B − A. Since the deletion of δin(A) ∪ δin(B) results
in a graph with no directed path from s to r, from r to t and from s to t, the edge set
δin(A) ∪ δin(B) is a feasible solution to (s, r, t)-Lin-3-Cut in D, thus implying that
|F | ≤ β(A,B).

On the other hand, F is a feasible solution for (s, r′, t)-Lin-3-Cut in D for some
r′ ∈ V −{s, t}. Let A′ be the set of nodes that can reach t in D−F , and R′ be the set
of nodes that can reach r′ in D − F . Then, F ⊇ δin(A′). Moreover, F ⊇ δin(R′ ∪A′)
since R′∪A′ has in-degree 0 in D−F , and s is not in R′∪A′ because it cannot reach r′

and t in D−F . Therefore, taking B′ = R′ ∪A′ we get F ⊇ δin(A′)∪ δin(B′).

The above reformulation shows that the optimal solution is given by a chain consist-
ing of two st-sets. The following lemma shows that we can obtain a 3/2 approximation
to the required chain.

Lemma 2.2. There exists an efficient algorithm that given a directed graph D =
(V,E) with nodes s, t ∈ V returns a pair of st-sets A (B ⊆ V such that

β(A,B) ≤ 3

2
min{β(A,B) : t ∈ A (B ⊆ V − {s}}.

Proof. The objective is to find a chain of two st-sets A, B with minimum β(A,B).
To obtain an approximation, we build a chain C of st-sets with the property that, for
some value k ∈ Z+,

(i) every set C ∈ C is a st-set with din(C) ≤ k, and

(ii) every st-set T with din(T) strictly less than k is in C.

We use the following procedure to obtain such a chain: We initialize with k being
the minimum st-cut value and C consisting of a single minimum st-cut. In a general
step, we find two st-sets: a st-set Y compatible with the current chain C, i.e. C ∪{Y }
forming a chain, with minimum din(Y) and a st-set Z not compatible with the current
chain C, i.e. crossing at least one member of C, with minimum din(Z). We will later
see that such sets Y and Z can be found in polynomial time. If din(Y) ≤ din(Z), then
we add Y to C, and set k to din(Y); otherwise we set k to din(Z), and stop.

Proposition 2.3. Let C denote the chain before any general step of the above-men-
tioned procedure. Then, for every C ∈ C and for every st-set A that is not in C, we
have

din(A) ≥ din(C).

Proof. Let A be a st-set that is not in C. Suppose for the sake of contradiction
that din(A) < din(C) for some C ∈ C. Let C ′ denote the chain consisting of those
members of C that were added before C. Since A 6∈ C and C is a set of minimum
cut value compatible with C ′, we have that A should cross at least one member of C ′.
Hence, by din(A) < din(C), the procedure stops before adding C to the chain C ′, a
contradiction.

EGRES Technical Report No. 2017-09

2.1 A 3/2-approximation for (s, ∗, t)-Lin-3-Cut 7

Proposition 2.4. The chain C and the value k obtained at the end of the above-
mentioned procedure satisfy (i) and (ii).

Proof. The construction immediately guarantees that every set C ∈ C is a st-set. By
Proposition 2.3 and by construction of C and k, we have that din(C) ≤ k for every
C ∈ C and hence, we have (i).

By construction, C contains all st-sets T that are compatible with C with din(T) < k.
Suppose for the sake of contradiction, we have an st-set T with din(T) < k that is not
in C. Then, the set T should be incompatible with C. We note that the procedure
terminates by setting k = din(Z) for some Z that is incompatible with C. However,
the set T is a contradiction to the choice of Z in the procedure. Therefore, there does
not exist a st-set T with din(T) < k that is not in C and hence, we have (ii).

By the above, the procedure stops with a chain C containing all st-sets of cut value
less than k, and an st-set Z of cut value exactly k which crosses some member X of C.
If the optimum value of our problem is less than k, then both members of the optimal
pair (A,B) belong to the chain C, and we can find them by taking the minimum of
β(A′, B′) where A′ ⊂ B′ with A′, B′ ∈ C.

We can thus assume that the optimum is at least k. Since din(Z) = k and din(X) ≤
k, the submodularity of the in-degree function implies

din(X ∩ Z) + din(X ∪ Z) ≤ din(Z) + din(X) ≤ 2k.

Hence either din(X ∩ Z) ≤ k or din(X ∪ Z) ≤ k. Since

d(X \ Z,X ∩ Z) + d(Z \X,X ∩ Z) ≤ din(X ∩ Z) and

d(V \ (X ∪ Z), X \ Z) + d(V \ (X ∪ Z), Z \X) ≤ din(X ∪ Z),

at least one of the following four possibilities holds:

1. din(X ∩ Z) ≤ k and d(X \ Z,X ∩ Z) ≤ 1
2
k. Choose A = X ∩ Z, B = X. Then

β(A,B) = d(X \ Z,X ∩ Z) + din(X) ≤ 1
2
k + k = 3

2
k.

2. din(X ∩ Z) ≤ k and d(Z \X,X ∩ Z) ≤ 1
2
k. Choose A = X ∩ Z, B = Z. Then

β(A,B) = d(Z \X,X ∩ Z) + din(Z) ≤ 1
2
k + k = 3

2
k.

3. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), X \ Z) ≤ 1
2
k. Choose A = Z, B = X ∪ Z.

Then β(A,B) = din(Z) + d(V \ (X ∪ Z), X \ Z) ≤ k + 1
2
k = 3

2
k.

4. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z), Z \X) ≤ 1
2
k. Choose A = X, B = X ∪ Z.

Then β(A,B) = din(X) + d(V \ (X ∪ Z), Z \X) ≤ k + 1
2
k = 3

2
k.

Thus a pair (A,B) can be obtained by taking the minimum among the four possi-
bilities above and β(A′, B′) where A′ ⊂ B′ with A′, B′ ∈ C, concluding the proof of the
approximation factor. It remains to ensure that the algorithm can be implemented
to run in polynomial-time.

The algorithm is summarized below. Step 2(a) to obtain Y can be implemented to
run in polynomial-time as follows: let t ∈ C1 ⊂ . . . ,⊂ Cq ⊆ V −s denote the members

EGRES Technical Report No. 2017-09

2.2 An exact algorithm for {s, t}-Sep-k-Cut 8

of C. Find a minimum cut Yi with Ci ⊆ Yi ⊆ V \ Ci+1 for i = 1, . . . , q, and choose Y
to be a minimum one among these cuts. Step 2(b) to obtain Z can be implemented
to run in polynomial-time as follows: for each pair x, y of nodes with y ∈ Ci ⊆ V − x
for some i ∈ {1, . . . , q}, find a minimum cut Zxy with {t, x} ⊆ Zxy ⊆ V − {s, y}, and
choose Z to be a minimum one among these cuts. Since C is a chain, we have that
q ≤ |V | and hence both steps can be implemented to run in polynomial-time.

Approximation Algorithm for (s, ∗, t)-Lin-3-Cut

Input: Directed graph D = (V,E) with s, t ∈ V

1. Let S denote the sink-side of a minimum s → t cut and α denote its value.
Initialize C ← {S} and k ← α.

2. Repeat:

(a) Y ← arg min{din(Y) : Y is a st-set compatible with C}
(b) Z ← arg min{din(Z) : Z is a st-set not compatible with C}
(c) If din(Y) ≤ din(Z), then update C ← C ∪ {Y } and k ← din(Y).

(d) Else, update k ← din(Z), set X to be a set in C that crosses Z and go to
Step 3.

3. Let (A,B)← arg min{β(A,B) : A,B ∈ C, A 6= B}.

4. Let (S, T)← arg min{β(X ∩ Z,X), β(X ∩ Z,Z), β(Z,X ∪ Z), β(X,X ∪ Z)}

5. Return arg min{β(A,B), β(S, T)}.

Theorem 1.2 is a consequence of Lemmas 2.1 and 2.2. The approximation algorithm
is summarized below.

2.2 An exact algorithm for {s, t}-Sep-k-Cut

In this section, we show that {s, t}-Sep-k-Cut is solvable in polynomial time if k
is a fixed constant. We recall the problem {s, t}-Sep-k-Cut: Given an undirected
graph with specified nodes s, t, find a smallest subset of edges whose removal ensures
that the resulting graph has at least k connected components with s and t being in
different components.

Notations. Let G = (V,E) be an undirected graph. Let the minimum size of an
{s, t}-cut in G be denoted by λG(s, t). For two subsets of nodes X, Y , we recall that
d(X, Y) denotes the number of edges between X and Y and that d(X) = d(X, V \X).
The cut value of a partition {V1, . . . , Vq} of V is defined to be the total number of

EGRES Technical Report No. 2017-09

2.2 An exact algorithm for {s, t}-Sep-k-Cut 9

crossing edges, that is, (1/2)
∑q

i=1 d(Vi), and is denoted by γ(V1, . . . , Vq). Let γq(G)
denote the value of an optimum q-Cut in G, i.e.,

γq(G) := min{γ(V1, . . . , Vq) : Vi 6= ∅ ∀ i ∈ [q],

Vi ∩ Vj = ∅ ∀ i, j ∈ [q],∪qi=1Vi = V }.

Proof of Theorem 1.3. Let γ∗ denote the optimum value of {s, t}-Sep-k-Cut in G =
(V,E) and let H denote the graph obtained from G by adding an edge of infinite
capacity between s and t. The algorithm is based on the following observation (we
recommend the reader to consider k = 3 for ease of understanding):

Proposition 2.5. Let {V1, . . . , Vk} be a partition of V corresponding to an optimal
solution of {s, t}-Sep-k-Cut, where s is in Vk−1 and t is in Vk. Then we have
γ(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2γk−1(H).

Proof. Let W1, . . . ,Wk−1 be a minimum (k − 1)-cut in H. Clearly, s and t are in
the same part, so we may assume that they are in Wk−1. Let U1, U2 be a minimum
{s, t}-cut in G[Wk−1]. Then {W1, . . . ,Wk−2, U1, U2} gives an {s, t}-separating k-cut,
showing that

γ∗ ≤ γ(W1, . . . ,Wk−2, U1, U2) = γk−1(H) + λG[Wk−1](s, t). (1)

By Menger’s theorem, we have λG(s, t) pairwise edge-disjoint paths P1, . . . , PλG(s,t)

between s and t in G. Consider one of these paths, say Pi. If all nodes of Pi are from
Vk−1∪Vk, then Pi has to use at least one edge from δ(Vk−1, Vk). Otherwise, Pi uses at

least two edges from δ(V1∪ · · ·∪Vk−2)∪
⋃

i,j≤k−2
i 6=j

δ(Vi, Vj). Hence the maximum number

of pairwise edge-disjoint paths between s and t is

λG(s, t) ≤ d(Vk−1, Vk) +
1

2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

 .

Thus, we have

γ∗ = d(Vk−1, Vk) + d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

≥ λG(s, t) +
1

2

d(V1 ∪ · · · ∪ Vk−2) +
∑

i,j≤k−2
i 6=j

d(Vi, Vj)

= λG(s, t) +

1

2
γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

≥ λG[Wk−1](s, t) +
1

2
γ(V1, . . . , Vk−2, Vk−1 ∪ Vk)

EGRES Technical Report No. 2017-09

Section 3. BiCut 10

that is,

γ∗ ≥ λG[Wk−1](s, t) +
1

2
γ(V1, . . . , Vk−2, Vk−1 ∪ Vk). (2)

By combining (1) and (2), we get γ(V1, . . . , Vk−2, Vk−1 ∪ Vk) ≤ 2γk−1(H), proving the
proposition.

Karger and Stein [13] showed that the number of feasible solutions to k-Cut in
an undirected graph G with value at most 2γk(G) is O(n4k). All these solutions can
be enumerated in polynomial-time for fixed k [12, 13, 21]. This observation together
with Proposition 2.5 gives the algorithm for finding an optimal solution to {s, t}-
SepEdgekCut. The algorithm is summarized below.

Algorithm for {s, t}-Sep-k-Cut

Input: Undirected graph G = (V,E) with s, t ∈ V

1. Let H be the graph obtained from G by adding an edge of infinite ca-
pacity between s and t. In H, enumerate all feasible solutions to Edge-
(k − 1)-Cut—namely the vertex partitions {W1, . . . ,Wk−1}—whose cut value
γH(W1, . . . ,Wk−1) is at most 2γk−1(H). Without loss of generality, assume
s, t ∈ Wk−1.

2. For each feasible solution to Edge-(k − 1)-Cut in H listed in Step 1, find a
minimum {s, t}-cut in G[Wk−1], say U1, U2.

3. Among all feasible solutions {W1, . . . ,Wk−1} to Edge-(k − 1)-Cut listed
in Step 1 and the corresponding U1, U2 found in Step 2, return the k-cut
{W1, . . . ,Wk−2, U1, U2} with minimum γ(W1, . . . ,Wk−2, U1, U2).

The correctness of the algorithm follows from Proposition 2.5: one of the choices
enumerated in Step 1 will correspond to the partition (V1, . . . , Vk−2, Vk−1 ∪Vk), where
(V1, . . . , Vk) is the partition corresponding to the optimal solution.

3 BiCut

In this section, we present our approximation algorithm (Theorem 1.1) for BiCut.
We begin with the high-level ideas of the approximation algorithm in Section 3.1. The
full algorithm and the proof of its approximation ratio are presented in Section 3.2.

We recall the problem BiCut: Given a directed graph, find a smallest number of
edges in whose removal ensures that there exist two distinct nodes s and t such that
s cannot reach t and t cannot reach s. We begin with a reformulation of BiCut that
is helpful for the purposes of designing an algorithm. We recall that for two sets of
nodes A,B, the quantity β(A,B) = |δin(A) ∪ δin(B)|.

EGRES Technical Report No. 2017-09

3.1 Overview of the Approximation Algorithm 11

Definition 3.1. We define two sets A and B to be uncomparable if A \ B 6= ∅ and
B \ A 6= ∅. For a directed graph D = (V,E), let

β := min{β(A,B) : A and B are uncomparable}.

The following lemma shows that bicut is equivalent to finding an uncomparable
pair of subsets of nodes A,B with minimum β(A,B).

Lemma 3.2. BiCut in a given directed graph D = (V,E) is equal to β.

Proof. If A and B are uncomparable and we remove δin(A)∪δin(B) from the directed
graph, then nodes in A \B cannot reach nodes in B \A and vice versa. On the other
hand, if s cannot reach t and t cannot reach s, then the set of nodes that can reach s
and the set of nodes that can reach t are uncomparable, and have in-degree 0.

Using the above formulation, and by recalling that σ(A,B) = |δin(A)| + |δin(B)|,
we have the following natural relaxation of bicut:

Definition 3.3. For a directed graph D = (V,E), let

σ := min{σ(A,B) : A and B are uncomparable}.

A pair where the latter value is attained is called a minimum uncomparable cut-pair.

3.1 Overview of the Approximation Algorithm

In this section, we sketch the argument for a (2 − ε)-approximation for some small
enough ε. We observe that for every pair of subsets of nodes (A,B), we have

β(A,B) = σ(A,B)− d(V \ (A ∪B), A ∩B). (3)

Therefore, β(A,B) ≤ σ(A,B) ≤ 2β(A,B) for every pair of subsets of nodes (A,B)
and hence β ≤ σ ≤ 2β. Furthermore, σ can be computed efficiently (see Lemma 3.4).
Hence, we immediately have a (2 − ε)-approximation if σ ≤ (2 − ε)β. On the other
hand, if σ > (2−ε)β, then d(V \(A∪B), A∩B) > (1−ε)β for every minimizer (A,B)
of β(A,B), thus providing a structural handle on optimal solutions. Our algorithm
proceeds by making several attempts at finding pairs (A′, B′) that could give a (2−ε)-
approximation. Each attempt that is unsuccessful at giving a (2 − ε)-approximation
implies some structural property of the optimal solution. These structural properties
are together exploited by the last attempt to succeed.

Our next attempt is to solve a constrained variant of BiCut: For fixed Z ⊆
V , we would like to find an uncomparable pair (A,B) satisfying A ∩ B = Z that
minimizes β(A,B) among pairs with this property. This problem is solvable efficiently
by reducing to DoubleCut (see Lemma 3.5). The same holds when V \ (A ∪ B) is
fixed. In particular, if there is a pair (A,B) that minimizes β(A,B) and |A ∩B| ≤ 2
or |V \ (A∪B)| ≤ 2, then we can find the minimizer efficiently. Therefore we assume
that every minimizer (A,B) for β(A,B) satisfies |A ∩ B| ≥ 3 and |V \ (A ∪ B)| ≥ 3.
Let us fix one such minimizer (A,B).

EGRES Technical Report No. 2017-09

3.1 Overview of the Approximation Algorithm 12

In the algorithm, we guess nodes x ∈ A \ B, y ∈ B \ A, w1, w2 ∈ V \ (A ∪ B),
and z1, z2 ∈ A ∩ B. The reason for guessing two nodes as opposed to just one node
in the intersection and in the complement of the union is highly technical (it certifies
a detailed structural property of the minimizer (A,B)), and is not relevant to this
overview. We use the notation X := A \ B, Y := B \ A, W := V \ (A ∪ B), and
Z := A ∩B (see Figure 1).

Figure 1: The partitioning of the node set in the graph D. Here, (A,B) denotes the
optimum bicut that is fixed.

We now observe that A is the sink-side of a {w1, w2, y} → {x, z1, z2}-cut while B
is the sink-side of a {w1, w2, x} → {y, z1, z2}-cut. Our next attempt in the algorithm
is to find (X ′, Y ′), where X ′ is the sink-side of a minimum {w1, w2, y} → {x, z1, z2}-
cut, and Y ′ is the sink-side of the minimum {w1, w2, x} → {y, z1, z2}-cut. The hope
behind this attempt is that X ′ could be A and Y ′ could be B as these are feasible
solutions to the respective problems and thus, they would together help us recover the
optimal solution. Unfortunately, this favorable best-case scenario may not happen.
Yet, owing to the feasibility of A and B for the respective problems, we may conclude
that σ(X ′, Y ′) ≤ σ(A,B) ≤ 2β(A,B) = 2β.

Our subsequent attempts are more complex and proceed by refining X ′ and Y ′. For
our next attempt, we observe that Z is the sink-side of a {w1, w2, x, y} → {z1, z2}-
cut. So, our next attempt in the algorithm would be to find Z ′ as the sink-side of
a minimum {w1, w2, x, y} → {z1, z2}-cut and expand X ′ and Y ′ by Z ′ to obtain an
uncomparable pair (A′ = X ′ ∪Z ′, B′ = Y ′ ∪Z ′). Our hope is to find a Z ′ so that the
resulting β(A′, B′) is small. While finding Z ′, we prefer not to have many edges of
E[X ′] ∪ E[Y ′] in the new bicut (A′, B′). This is because, such edges enter only one
among the two sets A′ and B′. We recall that if we have an uncomparable pair (A′, B′)
with lot of edges from V \ (A′ ∪B′) to A′ ∩B′, then the value of β(A′, B′) is going to
be much less than σ(A′, B′) (e.g., see (3)), thus leading to a (2 − ε)-approximation.
So, in order to avoid the edges of E[X ′] ∪ E[Y ′] in the new bicut (A′, B′), we make
such edges more expensive by duplicating them before finding Z ′. Let D1 be the
digraph obtained by duplicating the edges in E[X ′] ∪ E[Y ′], and let Z ′ be the sink-
side of the minimum {w1, w2, x, y} → {z1, z2}-cut in D1. We then show that the pair

EGRES Technical Report No. 2017-09

3.1 Overview of the Approximation Algorithm 13

(X ′ ∪ Z ′, Y ′ ∪ Z ′) is a (2− ε)-approximation unless |δinD1
(Z)| > (2− 3ε)β, thus giving

us more structural handle on the optimum solution.
We next make an analogous attempt by shrinking X ′ and Y ′ instead of expanding.

LetD2 be the digraph obtained by duplicating the edges in E[V \X ′]∪E[V \Y ′], and let
W ′ be the source-side of the minimum {w1, w2} → {x, y, z1, z2}-cut in D2. We obtain
that the pair (X ′\W ′, Y ′\W ′) is a (2−ε)-approximation unless |δoutD2

(W)| > (2−3ε)β.

Figure 2: The quantities α1, . . . , α6.

Let α1, . . . , α6 be the number of edges in each position indicated in Figure 2. If the
attempts so far are unsuccessful, then we use the structural properties derived so far
to arrive at the following:

1. All but O(εβ) edges in δin(X ′)∪ δin(Y ′)∪ δout(W)∪ δin(Z) are as positioned in
Figure 2.

2. The quantities α1, α3, α5 are within O(εβ) of each other (see (29), (30), (31))
and so are α2, α4, α6.

3. Furthermore, (1−O(ε))β = α3 + α4 ≤ β (see Proposition 3.12).

Without loss of generality, we may assume α3 ≥ α4. Hence, by conclusion (3) from
above, we have that α3 ≥ β/2−O(ε)β.

Our final attempt in the algorithm to obtain a (2 − ε)-approximate bicut is to
expand Y ′ by including some nodes from X ′ \ Y ′ and to shrink X ′ by excluding some
nodes from X ′ \ Y ′. We now explain the motivation behind this choice of expanding
and shrinking. Consider S := Y ′ ∪ (X ′ ∩ Z), which is obtained by expanding Y ′ by
including some nodes from X ′ \ Y ′ and T := X ′ \ (X ′ ∩ (W \ Y ′)), which is obtained
by shrinking X ′ by excluding some nodes from X ′ \ Y ′ (see figure 3). By definition,
(S, T) is an uncomparable pair. We will now see that the bicut value of (S, T) is much

EGRES Technical Report No. 2017-09

3.1 Overview of the Approximation Algorithm 14

smaller than 2β. Using conclusions (1) and (2) from above, we obtain that

β(S, T) = |δin(Y ′ ∪ (X ′ ∩ Z)) ∪ δin(X ′ \ (X ′ ∩ (W \ Y ′)))|
= |δin(Y ′)| − α5 + α3 + |δin(X ′)| − α1 +O(ε)β (4)

= σ(X ′, Y ′)− α1 − α5 + α3 +O(ε)β (5)

≤ 2β − α3 +O(ε)β (6)

≤ 3

2
β +O(ε)β. (7)

In the above, equation (4) is by using conclusion (1), equation (5) is by definition
of σ, inequality (6) is by using conclusion (2) and σ(X ′, Y ′) ≤ σ(A,B) ≤ 2β, and
inequality (7) is because α3 ≥ β/2−O(ε)β.

Figure 3: The motivation behind the last attempt.

Although (S, T) is a good approximation to the optimal bicut, we cannot obtain
the sets S and T without the knowledge of W and Z (which, in turn, depend on the
optimal bicut (A,B)). Instead, our algorithmic attempt is to expand Y ′ by including
some nodes from X ′ \ Y ′ and to shrink X ′ by excluding some nodes from X ′ \ Y ′. In
other words, our candidate is a pair (B′, Y ′ ∪ A′) for some X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′

(we need the condition A′ (B′ because B′ and Y ′ ∪ A′ should be uncomparable).
When choosing A′ and B′, we ignore the edges whose contribution do not depend on
A′ and B′. Let H be the digraph obtained by removing the edges in E[Y ′ ∪ (V \X ′)].
Our aim is to minimize |δinH (B′) ∪ δinH (Y ′ ∪ A′)|. However, this quantity differs from
|δinH (A′) ∪ δinH (B′)| by O(εβ), so we may instead aim to minimize the latter.

The crucial observation now is that this latter minimization problem is an instance
of (s, ∗, t)-Lin-3-Cut. While we do not know how to solve (s, ∗, t)-Lin-3-Cut opti-
mally, we can efficiently obtain a 3/2-approximation by Theorem 1.2. By the refor-
mulation of (s, ∗, t)-Lin-3-Cut in Lemma 2.1, we get a pair of subsets (A′, B′) for
which X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′ and which is a 3/2-approximation. In particular,

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 15

|δinH (A′)∪ δinH (B′)| ≤ (3/2)|δinH ((X ′∩ (Z ∪Y ′))∪ δinH (X ′ \ (W \Y ′))| ≤ 3(α3 +O(ε)β)/2.
Using this and proceeding similar to the calculations shown above to obtain the bound
on β(S, T) (i.e., 4, 5, 6, and 7), we derive that β(B′, Y ′ ∪ A′) ≤ (7/4 + O(ε))β, con-
cluding the proof.

3.2 Approximation Algorithm and Analysis

In this section we prove Theorem 1.1 by giving an efficient (2 − ε)-approximation
algorithm for BiCut for a constant ε > 0. We will describe the algorithm, analyze
its approximation factor to show that it is (2 − ε) for some constant ε and compute
the value of ε at the end of the analysis.

We begin by showing that certain relaxations of β can be solved. We first show
that σ can be computed efficiently.

Lemma 3.4. For a directed graph D = (V,E), there exists a polynomial time algo-
rithm to find a minimum uncomparable cut-pair.

Proof. For fixed vertices a and b, there is an efficient algorithm to find A and B such
that a ∈ A\B and b ∈ B\A and σ(A,B) is minimized. Indeed, this is precisely finding
the sink side of a min a→ b cut and that of a min b→ a cut. Trying all distinct pairs
of nodes a and b and taking the minimum gives the desired result.

We next show that we can minimize β(A,B) among uncomparable pairs (A,B)
whose intersection is fixed.

Lemma 3.5. Given a directed graph D = (V,E) and Z ⊆ V , there exists a polynomial
time algorithm to find an uncomparable pair A,B satisfying A∩B = Z that minimizes
β(A,B) among pairs with this property.

Proof. Let D′ = D[V \ Z] be the directed graph induced on V \ Z. We recall that
DoubleCut can be solved in polynomial time in D′ [3]; let X ′ and Y ′ be the disjoint
sets whose incoming edges give the optimal double cut. We claim that the pair
X ′ ∪ Z, Y ′ ∪ Z forms a minimum bicut among all bicuts with intersection Z. Indeed,
assume the optimal solution is β(A,B). Let X = A \ B, Y = B \ A and W =
V − (A ∪B). Then

β(X ′ ∪ Z, Y ′ ∪ Z) = dinD′(X
′) + dinD′(Y

′) + din(Z)

≤ dinD′(X) + dinD′(Y) + din(Z)

= din(Z) + d(W,X) + d(W,Y) + d(X, Y) + d(Y,X)

= β(A,B).

A similar argument shows that we can minimize β(A,B) among uncomparable pairs
(A,B) for which the complement of the union is fixed.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 16

Lemma 3.6. Given a directed graph D = (V,E) and W ⊆ V , there exists a polyno-
mial time algorithm to find an uncomparable pair A,B satisfying V \ (A ∪ B) = W
that minimizes β(A,B) among pairs with this property.

We need the following definition.

Definition 3.7. If c is a capacity function on a directed graph D, then dinc (U) =∑
e∈δin(U) c(e) is the sum of the capacities of incoming edges of U . Similarly, doutc (U) =∑
e∈δout(U) c(e).

We now present the approximation algorithm and the analysis.

Proof of Theorem 1.1. The algorithm is summarized below. We first note that the
algorithm indeed returns the bicut value of an uncomparable pair. The run-time of
the algorithm being polynomial follows from Lemmas 2.2, 3.4, 3.5 and 3.6. In the rest
of the proof, we analyze the approximation factor. We will show that the algorithm
achieves a (2− ε)-approximation factor and compute ε at the end.

Approximation Algorithm for BiCut

Input: Directed graph D = (V,E)

1. Compute (S, T)← arg min{σ(S, T) : S and T are uncomparable} using Lemma
3.4 and set µ1 ← β(S, T)

2. Compute µ2 ← min{β(A,B) : A and B are uncomparable, |A ∩ B| ≤ 2} using
Lemma 3.5

3. Compute µ3 ← min{β(A,B) : A and B are uncomparable, |V \ (A ∪ B)| ≤ 2}
using Lemma 3.6

4. Initialize µ4 ←∞

5. For each tuple of nodes (x, y, z1, z2, w1, w2)

(i) X ′ ← sink-side of the minimum {w1, w2, y} → {x, z1, z2}-cut

(ii) Y ′ ← sink-side of the minimum {w1, w2, x} → {y, z1, z2}-cut

(iii) E1 ← E[X ′] ∪ E[Y ′]

(iv) E2 ← E[V \X ′] ∪ E[V \ Y ′]
(v) D1 ← D with the arcs in E1 duplicated

(vi) D2 ← D with the arcs in E2 duplicated

(vii) Z ′ ← sink-side of minimum {w1, w2, x, y} → {z1, z2}-cut in D1

(viii) W ′ ← source-side of minimum {w1, w2} → {x, y, z1, z2}-cut in D2

(ix) H ← contract X ′ ∩ Y ′ to z′, contract V \X ′ to w′, remove all w′z′ arcs

(x) In H, find w′z′-sets A′ (B′ such that β(A′, B′) is at most
(3/2) min{β(A,B) : z′ ∈ A (B ⊂ V − {w′}} using Lemma 2.2

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 17

(xi) A1 ← (A′ \ {z′}) ∪ (X ′ ∩ Y ′) and B1 ← (B′ \ {z′}) ∪ (X ′ ∩ Y ′)
(xii) Find all bicuts that can be generated using set operations on X ′, Y ′, Z ′,

W ′, A1, B1 and let µ′4 denote the minimum bicut value among these.

(xiii) If µ′4 < µ4, update µ4 ← µ′4

6. Return µ← min{µ1, µ2, µ3, µ4}.

To analyze the approximation factor, let us fix a minimizer (A,B) for BiCut in the
input graph D = (V,E), i.e. fix an uncomparable pair (A,B) such that β(A,B) = β.
Let X := A \B, Y := B \A, Z := A∩B, and W := V \ (A∪B) (see Figure 1). With
this notation, we have

β = d(W ∪Y,X)+d(W ∪X, Y)+din(Z) = d(Y,X ∪Z)+d(X, Y ∪Z)+dout(W). (8)

We may assume that both Z and W are of size at least 3, otherwise the algorithm
finds the optimum since it returns a value µ ≤ µ2, µ3. Let ε > 0 be a constant whose
value will be determined later.

Lemma 3.8. If one of the following is true, then σ ≤ (2− ε)β:

(i) d(W,Z) ≤ (1− ε)β,

(ii) For every z1, z2 ∈ Z, there exists a subset U of nodes containing z1, z2 but not
Z with din(U) < (1− ε)β.

(iii) For every w1, w2 ∈ W , there exists a subset U of nodes not containing w1, w2

but intersecting W with din(U) < (1− ε)β.

Proof.

(i) If d(W,Z) ≤ (1 − ε)β, then σ(A,B) = β(A,B) + d(W,Z) ≤ (2 − ε)β. The
pair (A,B) is uncomparable, and hence σ ≤ σ(A,B). Therefore, we have µ1 =
β(S, T) ≤ σ(S, T) = σ ≤ σ(A,B) ≤ (2− ε)β.

(ii) Suppose condition (ii) holds. Among the sets with in-degree less than (1− ε)β
which do not contain every node of Z, let T be the one with inclusionwise
maximal intersection with Z. Such a set T exists since condition (ii) holds. Let
z1 ∈ Z \ T and z2 ∈ Z ∩ T . There exists a set U containing z1, z2 but not Z
with din(U) < (1− ε)β and z1, z2 ∈ U . Because of the maximal intersection of T
with Z, we have that T 6⊂ U . Hence T and U are uncomparable and therefore
σ ≤ σ(T, U) ≤ (2 − 2ε)β. Therefore, we have µ1 = β(S, T) ≤ σ(S, T) = σ ≤
σ(A,B) ≤ (2− 2ε)β.

(iii) Argument similar to the proof of (ii) shows that the minimum uncomparable
cut-pair is a (2− 2ε)-approximation if condition (iii) holds.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 18

For the rest of the proof, we may assume that

σ ≥ (2− ε)β (9)

since otherwise, the algorithm returns µ ≤ µ1 = σ ≤ (2 − ε)β. By Lemma 3.8, we
have

d(W,Z) ≥ (1− ε)β. (10)

We also have vertices z1, z2 ∈ Z and w1, w2 ∈ W violating conditions (ii) and (iii) of
Lemma 3.8 respectively. Let us fix such vertices, i.e.,

(a) fix z1, z2 ∈ Z such that din(U) ≥ (1− ε)β for all subsets U of nodes containing
z1, z2 but not Z, and

(b) fix w1, w2 ∈ W such that din(U) ≥ (1 − ε)β for all subsets U of nodes not
containing w1, w2 but intersecting W .

Also let us fix an arbitrary choice of x ∈ X, y ∈ Y (since A and B are uncomparable,
we have that X and Y are non-empty and hence such an x and y can be chosen).
Henceforth, we will consider the iteration of Step 5 in the algorithm for this choice of
x, y, z1, z2, w1, w2.

We note that (X ′, Y ′) form an uncomparable pair. If β(X ′, Y ′) ≤ (2 − ε)β, then
the algorithm returns µ ≤ µ4 ≤ (2− ε)β. Therefore, we may assume that

β(X ′, Y ′) ≥ (2− ε)β. (11)

Also, we have din(X ′) ≤ din(X∪Z) because X ′ is the sink-side of a min {w1, w2, y} →
{x, z1, z2} cut. Since din(X ∪ Z) ≤ din(A) ≤ β, we have that

din(X ′) ≤ β. (12)

Similarly,
din(Y ′) ≤ din(Y ∪ Z) ≤ β. (13)

Consequently,
σ(X ′, Y ′) ≤ din(X ′) + din(Y ′) ≤ 2β. (14)

We consider four cases depending on the relations between W and X ′ ∪ Y ′, and
between Z and X ′ ∩ Y ′.

Case 0. Suppose W ∩(X ′∪Y ′) = ∅, Z ⊆ X ′∩Y ′ (see figure 4). In this case δin(X ′)
and δin(Y ′) both contain all edges counted in d(W,Z). Hence β(X ′, Y ′) ≤ σ(X ′, Y ′)−
d(W,Z) ≤ (1 + ε)β. The second inequality here is because σ(X ′, Y ′) ≤ 2β by (14)
and d(W,Z) ≥ (1− ε)β by 10. This shows that (X ′, Y ′) is a (1 + ε)-approximation.

Let c be the capacity function obtained by increasing the capacity of each edge in
E1 to 2, and let c̄ be the capacity function obtained by increasing the capacity of each
edge in E2 to 2. For the remaining three cases, we will use the following proposition.

Proposition 3.9. If din(X ′ ∩ Z ′) ≥ (1 − ε)β and din(Y ′ ∩ Z ′) ≥ (1 − ε)β, then
β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ 2εβ + dinc (Z).

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 19

Figure 4: The case where W ∩ (X ′ ∪ Y ′) = ∅, Z ⊆ X ′ ∩ Y ′.

Proof. If din(X ′ ∩ Z ′) ≥ (1− ε)β, then din(X ′)− din(X ′ ∩ Z ′) ≤ εβ. So

din(X ′ ∪ Z ′) = din(Z ′) + din(X ′)− din(X ′ ∩ Z ′)
− d(X ′ \ Z ′, Z ′ \X ′)− d(Z ′ \X ′, X ′ \ Z ′) (15)

≤ din(Z ′) + εβ − d(X ′ \ Z ′, Z ′ \X ′)− d(Z ′ \X ′, X ′ \ Z ′).

Hence, we have

din(X ′ ∪ Z ′) ≤ din(Z ′) + εβ − d(X ′ \ Z ′, Z ′ \X ′). (16)

Similarly,
din(Y ′ ∪ Z ′) ≤ din(Z ′) + εβ − d(Y ′ \ Z ′, Z ′ \ Y ′). (17)

We need the following proposition.

Proposition 3.10.

β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ σ(X ′ ∪ Z ′, Y ′ ∪ Z ′) + dinc (Z ′)− 2din(Z ′)

+ d(X ′ \ Z ′, Z ′ \X ′) + d(Y ′ \ Z ′, Z ′ \ Y ′). (18)

Proof. By counting the edges entering Z ′, we have

1. dinc (Z ′) = din(Z ′) + |δin(Z ′) ∩ E1|.

2. din(Z ′) = d(V \ (X ′ ∪ Y ′ ∪Z ′), Z ′) + |δin(Z ′)∩E1|+ d(X ′ \Z ′, Z ′ \X ′) + d(Y ′ \
Z ′, Z ′ \ Y ′)− d((X ′ ∩ Y ′) \ Z ′, Z ′ \ (X ′ ∪ Y ′)).

The first equation can be rewritten as

dinc (Z ′)− 2din(Z ′) = −din(Z ′) + |δin(Z ′) ∩ E1|.

Using this and the second equation, we get

dinc (Z ′)− 2din(Z ′) + d(X ′ \ Z ′, Z ′ \X ′) + d(Y ′ \ Z ′, Z ′ \ Y ′)
= −d(V \ (X ′ ∪ Y ′ ∪ Z ′), Z ′) + d((X ′ ∩ Y ′) \ Z ′, Z ′ \ (X ′ ∪ Y ′)).

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 20

Thus the desired inequality (18) simplifies to

β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ σ(X ′ ∪ Z ′, Y ′ ∪ Z ′)− d(V \ (X ′ ∪ Y ′ ∪ Z ′), Z ′)
+ d((X ′ ∩ Y ′) \ Z ′, Z ′ \ (X ′ ∪ Y ′)).

To prove this inequality, we observe that the edges counted by d(V \ (X ′ ∪ Y ′ ∪
Z ′), Z ′) are counted twice in σ(X ′ ∪ Z ′, Y ′ ∪ Z ′). Hence we have the desired relation
(18).

Using (18), (17) and (16) we get

β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ din(X ′ ∪ Z ′) + din(Y ′ ∪ Z ′) + dinc (Z ′)− 2din(Z ′)

+ d(X ′ \ Z ′, Z ′ \X ′) + d(Y ′ \ Z ′, Z ′ \ Y ′)
≤ din(Z ′) + εβ + din(Z ′) + εβ + dinc (Z ′)− 2din(Z ′)

= 2εβ + dinc (Z ′)

≤ 2εβ + dinc (Z).

The last inequality above is because Z is a feasible solution for the minimization
problem that obtains Z ′ and hence dinc (Z ′) ≤ dinc (Z). This completes the proof of the
proposition.

Case 1. Suppose W ∩ (X ′ ∪ Y ′) = ∅ and Z 6⊆ X ′ ∩ Y ′. Without loss of generality,
let Z 6⊆ X ′. The set X ′∩Z ′ contains z1, z2 but not the whole Z, hence din(X ′∩Z ′) ≥
(1− ε)β by (a).

We first consider the subcase where din(Y ′∩Z ′) < (1− ε)β. By the choice of z1, z2,
this means that Z ⊆ Y ′ ∩ Z ′. In this case Y ′ ∩ Z ′ crosses X ′, because X ′ does not
contain all vertices in Z, and Y ′ ∩ Z ′ does not contain x. Thus (X ′, Y ′ ∩ Z ′) is an
uncomparable pair. Now we observe that σ(X ′, Y ′ ∩ Z ′) = din(X ′) + din(Y ′ ∩ Z ′) ≤
(2− ε)β. Thus, σ ≤ (2− ε)β, a contradiction to (9).

Next we consider the other subcase where din(Y ′ ∩ Z ′) ≥ (1 − ε)β. Then, by
Proposition 3.9, we get

β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ 2εβ + dinc (Z).

We are in the case where (X ′∪Y ′)∩W = ∅, so dinc (Z) ≤ din(Z)+d(X,Z)+d(Y, Z). We
now note that din(Z)+d(X,Z)+d(Y, Z) = 2din(Z)−d(W,Z) ≤ 2β−(1−ε)β = (1+ε)β
since d(W,Z) ≥ (1−ε)β and din(Z) ≤ β. Hence we have β(X ′∪Z ′, Y ′∪Z ′) ≤ (1+3ε)β.
Since (X ′ ∪ Z ′, Y ′ ∪ Z ′) is an uncomparable pair, we have that µ4 ≤ (1 + 3ε)β.

Case 2. Suppose W ∩ (X ′ ∪ Y ′) 6= ∅ and Z ⊆ X ′ ∩ Y ′. This is similar to Case 1 by
symmetry.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 21

Case 3. Suppose W ∩ (X ′ ∪ Y ′) 6= ∅ and Z 6⊆ X ′ ∩ Y ′.
Without loss of generality, suppose Z 6⊆ X ′. The set X ′ ∩ Z ′ contains z1, z2 but

not the whole Z, hence din(X ′ ∩ Z ′) ≥ (1 − ε)β. By the same argument as in the
first subcase of Case 1 (first paragraph), we may assume that din(Y ′ ∩Z ′) ≥ (1− ε)β
(otherwise, σ ≤ (2− ε)β, a contradiction to (9)). The inequality β(X ′∪Z ′, Y ′∪Z ′) ≤
2εβ + dinc (Z) holds using Proposition 3.9. If dinc (Z) ≤ (2 − 3ε)β, then these imply
β(X ′ ∪ Z ′, Y ′ ∪ Z ′) ≤ (2− ε)β. Since (X ′ ∪ Z ′, Y ′ ∪ Z ′) is an uncomparable pair, we
would thus have µ4 ≤ (2 − ε)β. Similarly, if doutc (W) ≤ (2 − 3ε)β, then we obtain
µ4 ≤ β(X ′ \W ′, Y ′ \W ′) ≤ (2− ε)β. Thus, we may assume that both

dinc (Z) ≥ (2− 3ε)β, and (19)

doutc (W) ≥ (2− 3ε)β. (20)

Let us define the following quantities (see Figure 2):

1. α1 := d(W \ (X ′ ∪ Y ′),W ∩ (X ′ \ Y ′)),

2. α2 := d(W \ (X ′ ∪ Y ′),W ∩ (Y ′ \X ′)),

3. α3 := d(W ∩ (X ′ \ Y ′), Z ∩ (X ′ \ Y ′)),

4. α4 := d(W ∩ (Y ′ \X ′), Z ∩ (Y ′ \X ′)),

5. α5 := d(Z ∩ (X ′ \ Y ′), X ′ ∩ Y ′ ∩ Z), and

6. α6 := d(Z ∩ (Y ′ \X ′), X ′ ∩ Y ′ ∩ Z).

In propositions 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16, we show a sequence of inequalities
involving these quantities.

Proposition 3.11.

(1− ε)β ≤ din(X ′ ∩ Y ′), din(X ′ ∪ Y ′), din(X ′ ∩ Z), din(X ′ ∪ Z) ≤ (1 + ε)β.

Proof. By submodularity,

din(X ′ ∩ Y ′) + din(X ′ ∪ Y ′) ≤ din(X ′) + din(Y ′) ≤ 2β.

We note that din(X ′∩Y ′) ≥ (1−ε)β by the choice of z1, z2. This shows din(X ′∪Y ′) ≤
(1 + ε)β. Similarly, din(X ′ ∪ Y ′) ≥ (1 − ε)β by the choice of w1, w2, and hence
din(X ′ ∩ Y ′) ≤ (1 + ε)β.

By the assumption of Case 3 and Z (X ′, we have that the sets X ′ and Z are
uncomparable. Hence X ′ ∩ Z contains both z1, z2 but not all of Z. By the choice of
z1, z2, we have din(X ′ ∩ Z) ≥ (1− ε)β. By submodularity,

din(X ′ ∪ Z) ≤ din(X ′) + din(Z)− din(X ′ ∩ Z) ≤ 2β − (1− ε)β = (1 + ε)β.

For the remaining inequalities, we notice that X ′ ∪ Z and Y ′ are uncomparable, so
σ(X ′ ∪ Z, Y ′) ≥ (2− ε)β by (9). However, we have

σ(X ′ ∪ Z, Y ′) = din(X ′ ∪ Z) + din(Y ′) ≤ din(X ′ ∪ Z) + β.

Hence, din(X ′ ∪ Z) ≥ (1 − ε)β. Using submodularity, we obtain din(X ′ ∩ Z) ≤
(1 + ε)β.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 22

Proposition 3.12. (1− 6ε)β ≤ α3 + α4 ≤ β.

Proof. The upper bound follows immediately by definition of α3, α4, β and using
(8). We show the lower bound. From (19), we recall that (2 − 3ε)β ≤ dinc (Z) =
din(Z) + |δin(Z)∩E1| and from (20), we recall that (2− 3ε)β ≤ doutc̄ (W) = dout(W) +
|δout(W)∩E2|. Moreover, we have din(Z) ≤ β and dout(W) ≤ β by (8). Let C be the
set of edges from W to Z, i.e. those counted by d(W,Z). Let a = |δin(Z) \ C| and
b = |δout(W) \ C|. We note that α3 + α4 = |C ∩ E1 ∩ E2| and |C| + a + b ≤ β. We
have |C ∩ E1| ≥ |δin(Z) ∩ E1| − a and |C ∩ E2| ≥ |δout(W) ∩ E2| − b.

From all the above, we get the following sequence of inequalities that show the
lower bound:

|C ∩ E1 ∩ E2| ≥|C| − |C \ E1| − |C \ E2|
=|C| − (|C| − |C ∩ E1|)− (|C| − |C ∩ E2|)
=|C ∩ E1|+ |C ∩ E2| − |C|
≥|δin(Z) ∩ E1| − a+ |δout(W) ∩ E2| − b− |C|
≥(2− 3ε)β − din(Z) + (2− 3ε)β − dout(W)− (a+ b+ |C|)
≥(4− 6ε)β − 3β

=(1− 6ε)β.

Proposition 3.13. (1−8ε)β ≤ α1 +α2 ≤ (1+ε)β and (1−8ε)β ≤ α5 +α6 ≤ (1+ε)β.

Proof. We first show the upper bounds. We have α1 + α2 ≤ din(X ′ ∪ Y ′) which is at
most (1+ε)β by Proposition 3.11. Similarly, we have α5+α6 ≤ din(X ′∩Y ′) ≤ (1+ε)β.
We next show the lower bounds.

We first note that

α5 + α6 ≥ din(X ′ ∩ Y ′ ∩ Z)− |δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)|
− d(V \ (X ′ ∪ Y ′), X ′ ∩ Y ′ ∩ Z). (21)

We bound each of the terms in the RHS now. We observe that X ′ ∩ Y ′ ∩ Z contains
z1, z2 but not all nodes in Z, hence

din(X ′ ∩ Y ′ ∩ Z) ≥ (1− ε)β. (22)

Moreover, we have

|δin(X ′) ∩ δin(Y ′)| = |δin(X ′)|+ |δin(Y ′)| − |δin(X ′) ∪ δin(Y ′)|
= σ(X ′, Y ′)− β(X ′, Y ′)

≤ 2β − (2− ε)β (Using (9) and (11))

= εβ.

Here, |δin(X ′)∩δin(Y ′)| ≤ εβ implies that we have at most εβ edges entering X ′∩Y ′∩Z
from V \ (X ′ ∪ Y ′). Thus, we have

d(V \ (X ′ ∪ Y ′), X ′ ∩ Y ′ ∩ Z) ≤ εβ. (23)

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 23

We further have |δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)| ≤ δin(Z) − α3 − α4. Using Proposition
3.12, we obtain that

|δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)| ≤ δin(Z)− α3 − α4 ≤ 6εβ. (24)

Substituting the bounds from (22), (23), and (24) in (21), we obtain that α5 + α6 ≥
(1 − ε)β − 6εβ − εβ = (1 − 8ε)β. A similar argument shows the lower bound for
α1 + α2.

Proposition 3.14. (1− 16ε)β ≤ α1 + α6 ≤ β and (1− 16ε)β ≤ α2 + α5 ≤ β.

Proof. The upper bounds follow by α1 +α6 ≤ din(X ′) ≤ β and α2 +α5 ≤ din(Y ′) ≤ β.
On the other hand, combining the two inequalities in Proposition 3.13 gives (2 −
16ε)β ≤ α1 +α2 +α5 +α6. Now using the upper bound α2 +α5 ≤ β gives (1−16ε)β ≤
α1 + α6. Similarly, we obtain (1− 16ε)β ≤ α2 + α5.

Proposition 3.15. (1− 23ε)β ≤ α3 + α6 ≤ (1 + ε)β.

Proof. Consider the set M := X ′ ∩ Z. We note that α3 + α6 ≤ din(X ′ ∩ Z). By
Proposition 3.11, we have din(M) ≤ (1 + ε)β, which gives the upper bound. We now
show the lower bound.

By Proposition 3.11, we have

(1− ε)β ≤ din(M). (25)

Next we have

din(M) = α6 + d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) + d(V \ Z,M). (26)

Also,

α1 + α6 + d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) ≤ din(X ′) ≤ β.

Using Proposition 3.14, we thus obtain

d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) ≤ 16εβ. (27)

We next note that α3 + α4 + d(V \ Z,M) ≤ din(Z) ≤ β. Since α3 + α4 ≥ (1 − 6ε)β
using Proposition 3.12, we obtain

d(V \ Z,M) ≤ 6εβ. (28)

Using (25), (26), (27), and (28), we obtain

(1− ε)β ≤ din(M)

= α6 + d((Z \X ′) ∩ Y ′,M \ Y ′)
+ d(Z \ (X ′ ∪ Y ′),M) + d(V \ Z,M)

≤ α6 + 16εβ + α3 + 6εβ

≤ α3 + α6 + 22εβ.

Rewriting the final inequality gives (1− 23ε)β ≤ α3 + α6.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 24

Proposition 3.16. α1 + α5 ≥ 2α3 − 51εβ.

Proof. The above propositions give us a chain of relations:

(1− 16ε)β − α6 ≤ α1 ≤ β − α6,

(1− 8ε)β − α1 ≤ α2 ≤ (1 + ε)β − α1,

(1− 16ε)β − α2 ≤ α5 ≤ β − α2,

(1− 23ε)β − α3 ≤ α6 ≤ (1 + ε)β − α3.

By substitution, we get

α3 − 17εβ ≤ α1 ≤ α3 + 23εβ, (29)

α1 − 17εβ ≤ α5 ≤ α1 + 8εβ. (30)

By substituting again, we get

α3 − 34εβ ≤ α5 ≤ α3 + 31εβ. (31)

Using (29) and (31), we obtain α1 + α5 ≥ 2α3 − 51εβ.

Without loss of generality, let α3 ≥ (α3 + α4)/2, since if not, there is another
iteration of the algorithm where x and y are switched. Therefore, by Proposition
3.12, we have

α3 ≥ (1/2− 3ε)β. (32)

Let H be the directed graph obtained in Step 5(ix) of the algorithm, i.e., by con-
tracting X ′ ∩ Y ′ to a node z′, contracting V \X ′ to a node w′, and removing all w′z′

arcs. Let

A0 := (X ′ ∩ Z) ∪ {z′} and

B0 := (X ′ \W) ∪ {z′}.

We note that (A0, B0) is a feasible solution for Step 5(x) of the algorithm. The
following proposition shows an upper bound on the value of β(A0, B0) in H:

Proposition 3.17.

|δinH (A0) ∪ δinH (B0)| ≤ α3 + 39εβ. (33)

Proof. We have that

|δinH (A0)| = |δH(V \ A0, (X
′ ∩ Z) \ Y ′)|+ |δH(X ′ \ (Y ′ ∪ Z), z′)|

= d(V \ A0, (X
′ ∩ Z) \ Y ′) + d(X ′ \ (Y ′ ∪ Z), X ′ ∩ Y ′), (34)

and

|δinH (B0) \ δinH (A0)| = d(V \X ′, X ′ \ (Y ′ ∪W ∪ Z))

+ d((X ′ ∩W) \ Y ′, X ′ \ (Y ′ ∪W ∪ Z)). (35)

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 25

We would like to bound the sum of the above four terms. The term d(V \A0, (X
′∩

Z) \ Y ′) counts a subset of the edges entering Z. Since we have d(W,Z) ≥ (1− ε)β,
while din(Z) ≤ β, it follows that all but εβ edges entering Z are from W . Hence,

d(V \ A0, (X
′ ∩ Z) \ Y ′) ≤ d((V \ A0) ∩W, (X ′ ∩ Z) \ Y ′) + εβ. (36)

Next, we observe that

d((V \ A0) ∩W, (X ′ ∩ Z) \ Y ′) = α3 + d(W \X ′, (X ′ ∩ Z) \ Y ′). (37)

Using (34), (35), (36), and (37), we obtain that |δinH (A0)∪δinH (B0)|−α3−εβ is at most

d(W \X ′, (X ′ ∩ Z) \ Y ′) + d(X ′ \ (Y ′ ∪ Z), X ′ ∩ Y ′)
+ d(V \X ′, X ′ \ (Y ′ ∪W ∪ Z)) + d((X ′ ∩W) \ Y ′, X ′ \ (Y ′ ∪W ∪ Z)).

We now bound the terms in the above sum to show that the total is at most 38εβ.

1. In order to bound the sum of the first and the fourth terms, we observe that

d(W \X ′, (X ′ ∩ Z) \ Y ′) + d((X ′ ∩W) \ Y ′, X ′ \ (Y ′ ∪W ∪ Z))

+ α3 + α4 ≤ dout(W) ≤ β.

Using α3 + α4 ≥ (1− 6ε)β from Proposition 3.12, we obtain

d(W \X ′, (X ′ ∩ Z) \ Y ′) + d((X ′ ∩W) \ Y ′, X ′ \ (Y ′ ∪W ∪ Z)) ≤ 6εβ.

2. The second term d(X ′ \ (Y ′ ∪Z), X ′ ∩ Y ′) counts a subset of the edges entering
Y ′. We have

d(X ′ \ (Y ′ ∪ Z), X ′ ∩ Y ′) + α2 + α5 ≤ din(Y ′) ≤ β.

Using α2 + α5 ≥ (1− 16ε)β from Proposition 3.14, we obtain

d(X ′ \ (Y ′ ∪ Z), X ′ ∩ Y ′) ≤ 16εβ.

3. The third term d(V \X ′, X ′\(Y ′∪W ∪Z)) counts a subset of the edges entering
X ′. We have

d(V \X ′, X ′ \ (Y ′ ∪W ∪ Z)) + α1 + α6 ≤ din(X ′) ≤ β.

Using α1 + α6 ≥ (1− 16ε)β from Proposition 3.14, we obtain

d(V \X ′, X ′ \ (Y ′ ∪W ∪ Z)) ≤ 16εβ.

Thus, the total contribution is at most 38εβ.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 26

Figure 5: The sets A1 and B1 are completely contained in X ′.

Using Proposition 3.17, Step 5(x) of the algorithm finds w′z′-sets A′ (B′ such that

|δinH (A′) ∪ δinH (B′)| ≤ 3

2
|δinH (A0) ∪ δinH (B0)|

≤ 3

2
(α3 + 39εβ) =

3

2
α3 +

117

2
εβ. (38)

Let A1 := (A′ \ {z′}) ∪ (X ′ ∩ Y ′) and B1 := (B′ \ {z′}) ∪ (X ′ ∩ Y ′), i.e., A1 and B1

are the corresponding sets in V obtained by replacing z′ by X ′ ∩ Y ′ (see Figure 5).
Now we consider the pair (X ′ ∩ B1, Y

′ ∪ A1) and observe that it is an uncomparable
pair. We next compute the bicut value β(X ′ ∩B1, Y

′ ∪A1) of this pair in the original
directed graph. The next proposition will help in bounding the bicut value.

Proposition 3.18.

β(X ′ ∩B1, Y
′ ∪ A1) + α5 + α1 ≤ σ(X ′, Y ′) + |δinH (A′) ∪ δinH (B′)|.

Proof. The proposition follows by counting the edges on the left hand side. We use a
figure to easily visualize the counting argument. We recall that X ′ ∩Y ′ ⊆ A1 ⊆ B1 ⊆
X ′.

We use Figure 6. Each arrow represents that all edges from the set of nodes in the
rectangle containing its tail to the set of nodes in the rectangle containing its head are
counted in the left hand side of Proposition 3.18. In particular, edges corresponding
to δin(X ′∩B1) are marked as thin continuous arrows and δin(Y ′∪A1)\δin(X ′∩B1) are
marked as thin dotted arrows. Edges corresponding to δ(W \ (X ′∪Y ′),W ∩ (X ′∩Y ′)
are marked as thick→ W arrows to indicate that the head v of the edges are in W ∩S
where S is the set of nodes in the rectangle containing the head. Edges corresponding
to δ(Z ∩ (X ′ \ Y ′), X ′ ∩ Y ′ ∩Z) are marked as thick dotted Z → Z arrows to indicate
that the tail u and the head v of the edges are in Z ∩ S1 and Z ∩ S2 respectively
where S1 and S2 are the set of nodes in the rectangles containing the tail and head
respectively.

EGRES Technical Report No. 2017-09

3.2 Approximation Algorithm and Analysis 27

Figure 6: Proof of Proposition 3.18.

In order to argue that every edge in the LHS is also counted in the RHS, we mark
the tail of the arrows as follows: � indicates that the edge is counted in δin(X ′), �
indicates that the edge is counted in δin(Y ′) and ◦ indicates that the edge is counted
in δinH (A′) ∪ δinH (B′).

Using Proposition 3.18 and inequality (38), we get

β(X ′ ∩B1, Y
′ ∪ A1) ≤ σ(X ′, Y ′) + |δinH (A′) ∪ δinH (B′)| − α5 − α1

≤ 2β +
3

2
α3 +

117

2
εβ − α5 − α1.

Next, using Proposition 3.16, we get

β(X ′ ∩B1, Y
′ ∪ A1) ≤ 2β +

3

2
α3 +

117

2
εβ − (2α3 − 51εβ) = 2β − 1

2
α3 +

219

2
εβ.

Finally, we recall that α3 ≥ (1/2− 3ε)β from (32) and hence,

β(X ′ ∩B1, Y
′ ∪ A1) ≤

(
2 +

219

2
ε

)
β − 1

2

(
1

2
− 3ε

)
β =

(
7

4
+ 111ε

)
β.

Based on all the cases analyzed above, the approximation factor is at most

max

{
1 + ε, 1 + 3ε, 2− ε, 7

4
+ 111ε

}
= max

{
2− ε, 7

4
+ 111ε

}
.

In order to minimize the factor, we set ε = 1/448 to get the desired approximation
factor.

EGRES Technical Report No. 2017-09

Section 4. Conclusion and Open Problems 28

4 Conclusion and Open Problems

In this work, we considered BiCut which is a natural extension of the global mini-
mum cut problem from undirected graphs to directed graphs. While its fixed-terminal
variant is well-understood both in terms of complexity and approximability, BiCut
has hardly been investigated in the literature. In this work, we gave a (2 − 1/448)-
approximation for BiCut thus exhibiting a dichotomous behaviour in the approxima-
bility between the global and the fixed-terminal variants. Intriguingly, the complexity
of BiCut remains elusive and is an open problem that merits thorough investigation.

Our approximation algorithm for BiCut needs to solve (s, ∗, t)-Lin-3-Cut as an
intermediate subproblem. In this work, we gave a 3/2-approximation for (s, ∗, t)-Lin-
3-Cut and use this factor in the analysis of the approximation factor for BiCut. If
(s, ∗, t)-Lin-3-Cut is solvable efficiently or if its approximability is better than 3/2,
then the approximability of BiCut would also improve using our techniques. Hence,
it would be interesting to resolve the complexity of (s, ∗, t)-Lin-3-Cut.

References

[1] H. Angelidakis, Y. Makarychev, and P. Manurangsi. An Improved Integrality Gap
for the Călinescu-Karloff-Rabani Relaxation for Multiway Cut. In Proceedings
of the 19th International Conference on Integer Programming and Combinatorial
Optimization, IPCO ’17, pages 40–50, 2017.

[2] K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu. Global and Fixed-
Terminal Cuts in Digraphs. In K. Jansen, J. D. P. Rolim, D. Williamson, and S. S.
Vempala, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2017), volume 81 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 2:1–2:20, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[3] A. Bernáth and G. Pap. Blocking optimal arborescences. Mathematical Program-
ming, 161(1):583–601, Jan 2017.

[4] C. Chekuri and V. Madan. Approximating multicut and the demand graph. In
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 855–874, 2017.

[5] K. Cheung, W. Cunningham, and L. Tang. Optimal 3-terminal cuts and linear
programming. Mathematical Programming, 106(1):1–23, 2006.

[6] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm
for multiway cut. Journal of Computer and System Sciences, 60(3):564–574,
2000.

[7] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–
894, 1994.

EGRES Technical Report No. 2017-09

References 29

[8] R. Erbacher, T. Jaeger, N. Talele, and J. Teutsch. Directed multicut with linearly
ordered terminals. Preprint: https://arxiv.org/abs/1407.7498, 2014.

[9] N. Garg, V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node
weighted graphs. In Proceedings of the 20th International Colloquium on Au-
tomata, Languages and Programming, ICALP ’94, pages 487–498, 1994.

[10] O. Goldschmidt and D. Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res., 19(1):24–37, Feb 1994.

[11] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms
for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436–461, 2004.

[12] D. Karger and R. Motwani. Derandomization through approximation. In Pro-
ceedings of the 26th annual ACM symposium on Theory of computing, STOC ’94,
pages 497–506, 1994.

[13] D. Karger and C. Stein. A new approach to the minimum cut problem. Journal
of ACM, 43(4):601–640, July 1996.

[14] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of
the 34th annual ACM Symposium on Theory of Computing, STOC ’02, pages
767–775, 2002.

[15] E. Lee. Improved Hardness for Cut, Interdiction, and Firefighter Problems. In
Proceedings of the 44th International Colloquium on Automata, Languages, and
Programming, ICALP, pages 92:1–92:14, 2017.

[16] R. Manokaran, J. Naor, P. Raghavendra, and R. Schwartz. SDP Gaps and UGC
Hardness for Multiway Cut, 0-extension, and Metric Labeling. In Proceedings of
the 40th Annual ACM Symposium on Theory of Computing, STOC ’08, pages
11–20, 2008.

[17] M. Queyranne. On Optimum k-way Partitions with Submodular Costs and Mini-
mum Part-Size Constraints. Talk Slides, URL: https://smartech.gatech.edu/
bitstream/handle/1853/43309/Queyranne.pdf, 2012.

[18] H. Saran and V. Vazirani. Finding k Cuts within Twice the Optimal. SIAM
Journal on Computing, 24(1):101–108, 1995.

[19] A. Sharma and J. Vondrák. Multiway cut, pairwise realizable distributions, and
descending thresholds. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, STOC ’14, pages 724–733, 2014.

[20] M. Thorup. Minimum k-way Cuts via Deterministic Greedy Tree Packing. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC
’08, pages 159–166, 2008.

EGRES Technical Report No. 2017-09

https://arxiv.org/abs/1407.7498
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf

References 30

[21] V. Vazirani and M. Yannakakis. Suboptimal cuts: Their enumeration, weight and
number (extended abstract). In Proceedings of the 19th International Colloquium
on Automata, Languages and Programming, ICALP ’92, pages 366–377, 1992.

EGRES Technical Report No. 2017-09

	Introduction
	Results
	Related Work
	Preliminaries

	Lin3Cut problems
	A 3/2-approximation for (s,*,t)-Lin-3-Cut
	An exact algorithm for {s,t}-Sep-k-Cut

	BiCut
	Overview of the Approximation Algorithm
	Approximation Algorithm and Analysis

	Conclusion and Open Problems

