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On minimally 2-T -connected digraphs

Olivier Durand de Gevigney? and Zoltán Szigeti??

Abstract

We prove that in a minimally 2-T -connected digraph there exists a vertex
of in-degree and out-degree 2. This is a common generalization of two earlier
results of Mader [1], [3].

1 Introduction

Let D = (V,A) be a digraph. As usual, ρD and δD denote the in- and out-degree
functions of D and, for U,W ⊂ V , U = V \ U, D[U ] denotes the subgraph of D
induced by U and dD(U,W ) denotes the number of arcs with tail in U \W and head
in W \ U .

We say that D is k-arc-connected if |V | ≥ 2 and for every ordered pair (u, v) of
vertices, there exist k arc disjoint paths from u to v. We call D minimally k-arc-
connected if D is k-arc-connected and the deletion of any arc destroys this property.
Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To
prove that result he showed the following theorem. The special case of Theorem 1.1
when k = 2 will be generalized in this paper.

Theorem 1.1 (Mader [1]). Every minimally k-arc-connected digraph D contains a
vertex v with ρD(v) = δD(v) = k.

The digraph D is said to be k-vertex-connected if |V | ≥ k+ 1 and for every ordered
pair (u, v) of vertices, there exist k innerly vertex disjoint paths from u to v. We say
that D is minimally k-vertex-connected if D is k-vertex-connected and the deletion of
any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1.1 also holds for vertex-
connectivity.

Conjecture 1.2 (Mader [2]). Every minimally k-vertex-connected digraph D contains
a vertex v with ρD(v) = δD(v) = k.

Mader [3] settled Conjecture 1.2 for k = 2.
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Theorem 1.3 (Mader [3]). Every minimally 2-vertex-connected digraph D contains
a vertex v with ρD(v) = δD(v) = 2.

For T ⊆ V , the digraph D is called 2-T -connected if |V | ≥ 3 and for every ordered
pair (u, v) of vertices, there exist 2 paths from u to v that are arc disjoint and innerly
vertex disjoint in T. This notion generalizes both 2-arc-connectivity (T = ∅) and 2-
vertex-connectivity (T = V ). It is easy to see that D is 2-T -connected if and only if
deleting any arc or any vertex in T , the remaining digraph is strongly-connected.

We provide a common generalization of Theorem 1.1 for k = 2 and Theorem 1.3.
The proof will follow the ideas of Mader [3].

Theorem 1.4. Every minimally 2-T -connected digraph D, that contains no parallel
arc leaving a vertex in T , contains a vertex v with ρD(v) = δD(v) = 2.

Note that Theorem 1.4 implies Theorem 1.1 for k = 2 (when T = ∅) and Theorem
1.3 (when T = V , since no parallel arc exists in a minimally 2-vertex-connected
digraph).

We present the proof of Theorem 1.4 in the language of bi-sets. For XI ⊆ XO ⊆ V ,
X = (XO, XI) is called a bi-set. The set XI is called the inner-set, XO is the outer-
set and w(X) = XO \ XI is the wall of X. If XI = ∅ or XO = V , the bi-set X is
called trivial. The complement of X is defined by X = (XI , XO). The intersection
and the union of two bi-sets X = (XO, XI) and Y = (YO, YI) are defined by X u Y
= (XO ∩ YO, XI ∩ YI) and X t Y = (XO ∪ YO, XI ∪ YI). An arc xy enters X, if
x ∈ V \XO and y ∈ XI . The in-degree ρ̂D(X) of X is the number of arcs entering X.

Let T ⊆ V and gT be the modular fonction defined on subsets of V by gT (v) = 1
for v ∈ T and gT (v) = 2 for v ∈ V \T . Let fT

D(X) = ρ̂D(X)+gT (w(X)). The following
Menger type result can be readily proved.

Claim 1.5. D is 2-T -connected if and only if for all nontrivial bi-sets X of V (D),

fT
D(X) ≥ 2. (1)

A bi-set X is called tight if fT
D(X) = 2. It is easy to verify the following characteri-

zation of minimally 2-T -connected digraphs.

Claim 1.6. D is minimally 2-T -connected if and only if (1) and (2) are satisfied.

every arc of D enters a tight bi-set of D. (2)

2 Proof of Theorem 1.4

Proof. Suppose that the theorem is false and let D = (V,A) be a counterexample.
Let us define the following set: A0 = {xy ∈ A : ρD(y) > 2 and δD(x) > 2}.

Lemma 2.1. A0 6= ∅.

Proof. Suppose that A0 = ∅. If an arc a enters a vertex u of in-degree 2 or leaves a
vertex u of out-degree 2, then we say that u covers a. By A0 = ∅, every arc is covered
by at least one of its end-vertices. Since D is a counterexample of the theorem, a vertex
can cover at most 2 arcs and, for all v ∈ V, ρD(v) + δD(v) ≥ 5. Hence, by |V | ≥ 3, we
have the following contradiction. 2|V | ≥ |A| = 1

2

∑
v∈V (ρD(v) + δD(v)) ≥ 5

2
|V |.
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Let T be the set of bi-sets T so that either T or T is a tight bi-set entered by an
arc of A0. By Lemma 2.1 and (2), T 6= ∅. Let X = (XO, XI) be an element of T such
that |XO| + |XI | is minimum. Without loss of generality we may assume that X is a
tight bi-set entered by the arc ab of A0. Note that either w(X) = ∅ and ρ̂D(X) = 2 or
w(X) ∈ T and ρ̂D(X) = 1.

Lemma 2.2. There exists no arc xy in A0 such that y ∈ XI and x ∈ XO.

Proof. Suppose there exists an arc xy in A0 such that y ∈ XI and x ∈ XO. By (2),
there exists a tight bi-set Y = (YO, YI) entered by xy, so Y ∈ T .

Claim 2.3. XO ∪ YO = V.

Proof. Otherwise, XtY is a nontrivial bi-set. By y ∈ XI ∩YI , XuY is a nontrivial bi-
set. Then, by X and Y are tight, (1) applied for XtY and XuY and the submodularity
of fT

D (since ρ̂D is submodular and gT is modular), we have

2 + 2− 2 ≥ fT
D(X) + fT

D(Y )− fT
D(X t Y) ≥ fT

D(X u Y) ≥ 2.

Hence equality holds everywhere, so XuY is tight. Moreover, XuY is entered by xy,
that is XuY ∈ T and, by u ∈ XO \YO, we have |(XuY)O|+ |(XuY)I | < |XO|+ |XI |,
a contradiction.

Claim 2.4. XI ∩ YI = y, w(X u Y) = ∅ and |w(X)| = |w(Y)| = 1.

Proof. By Y = (YI , YO) ∈ T and the minimality of X , we have

|YI |+ |YO| ≥ |XO|+ |XI |. (3)

Since X,Y ∈ T , 1 ≥ |w(X)| and 1 ≥ |w(Y)|. Then, by (3), Claim 2.3 and y ∈ XI ∩ YI ,
we have

2 ≥ |YO ∩ w(X)|+ |w(Y) ∩XO| ≥ |XI ∩ w(Y)|+ 2|XI ∩ YI |+ |w(X) ∩ YI | ≥ 2.

Thus we have equality everywhere and the claim follows.

By xy ∈ A0, Claim 2.4 and the tightness of X and Y, we have

2 < ρD(y) = ρD(XI ∩ YI) = ρ̂D(XI ∩ YI) ≤ ρ̂D(X) + ρ̂D(Y)

= (fT
D(X)− gT (w(X))) + (fT

D(Y)− gT (w(Y))) ≤ (2− 1) + (2− 1) = 2,

a contradiction that completes the proof of Lemma 2.2.

Lemma 2.5. D[XI ] is strongly-connected.

Proof. Suppose there exists ∅ 6= U ⊂ XI with ρD[XI ](U) = 0. Then, by (1) applied
for Z = (ZO, ZI) = (U ∪ w(X), U), w(Z) = w(X) and the tightness of X, we have

2 ≤ ρ̂D(Z) + gT (w(Z)) ≤ ρ̂D(X) + gT (w(X)) = 2.

Hence, equality holds everywhere, so Z is a tight bi-set with ρ̂D(Z) = ρ̂D(X) thus
entered by ab, that is Z ∈ T . By ZI ⊂ XI and w(X) = w(Z), we have |ZO| + |ZI | <
|XO|+ |XI |, a contradiction.
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Lemma 2.6. The following statements hold for V+ = {v ∈ V : ρD(v) > 2 = δD(v)}.

(a) If ρD(v) > 2 and uv ∈ A \ A0, then u ∈ V+.

(b) If XI 6= b, then XI ⊆ V+.

(c) w(X) ⊆ V+.

Proof. (a) By ρD(v) > 2 and uv ∈ A \ A0, we have δ(u) = 2, and then, since D is a
counterexample, ρD(u) > 2 and hence u ∈ V+.

(b) By ρD(b) > 2 and (a), all vertices from which b is reachable in D − A0 by a
nontrivial path are in V+. Thus, by Lemmas 2.2 and 2.5, XI − b ⊆ V+. By XI 6= b
and Lemma 2.5, there exists an arc bc in D[XI ]. By Lemma 2.2, c ∈ V+ and (a), we
get b ∈ V+.

(c) If w(X) 6= ∅, then, by ρ̂D(X) = 1 and (1) applied for (XI , XI), we have
dD(w(X), XI) ≥ 1, so, by Lemma 2.2, (b) and (a), we obtain w(X) ⊆ V+.

We finish the proof by considering the in-degree of XI . We distinguish two cases.

Case 1. If XI = b, then, by ab ∈ A0, the assumption of the theorem and X is tight,
we have the following contradiction.

2 < ρD(b) = ρ̂D(X) + dD(w(X), b) ≤ ρ̂D(X) + gT (w(X)) = 2.

Case 2. If XI 6= b, then, by X is a tight bi-set entered by ab, Lemma 2.6(c), (1)
applied for (XI , XI) and Lemma 2.6(b), we have the following contradiction.

3− 2 ≥ ρ̂D(X) + 2|w(X)| − 2 ≥ ρ̂D(X) + dD(w(X), XI)− δD(XI)

= ρD(XI)− δD(XI) =
∑
v∈XI

(ρD(v)− δD(v)) ≥ |XI | ≥ 2.

These contradictions complete the proof of the theorem.
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