EGERVÁRY RESEARCH GROUP on Combinatorial Optimization

TECHNICAL REPORTS

TR-2017-05. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

On minimally 2-*T*-connected digraphs

Olivier Durand de Gevigney and Zoltán Szigeti

24 March, 2017

On minimally 2-T-connected digraphs

Olivier Durand de Gevigney^{*} and Zoltán Szigeti^{**}

Abstract

We prove that in a minimally 2-*T*-connected digraph there exists a vertex of in-degree and out-degree 2. This is a common generalization of two earlier results of Mader [1], [3].

1 Introduction

Let D = (V, A) be a digraph. As usual, ρ_D and δ_D denote the *in*- and *out-degree* functions of D and, for $U, W \subset V$, $\overline{U} = V \setminus U$, D[U] denotes the subgraph of D induced by U and $d_D(U, W)$ denotes the number of arcs with tail in $U \setminus W$ and head in $W \setminus U$.

We say that D is k-arc-connected if $|V| \ge 2$ and for every ordered pair (u, v) of vertices, there exist k arc disjoint paths from u to v. We call D minimally k-arc-connected if D is k-arc-connected and the deletion of any arc destroys this property. Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To prove that result he showed the following theorem. The special case of Theorem 1.1 when k = 2 will be generalized in this paper.

Theorem 1.1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

The digraph D is said to be k-vertex-connected if $|V| \ge k+1$ and for every ordered pair (u, v) of vertices, there exist k innerly vertex disjoint paths from u to v. We say that D is minimally k-vertex-connected if D is k-vertex-connected and the deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1.1 also holds for vertexconnectivity.

Conjecture 1.2 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = k$.

Mader [3] settled Conjecture 1.2 for k = 2.

^{*}E-mail: odegevigney@gmail.com

^{**}Univ. Grenoble Alpes, Grenoble INP, CNRS, G-SCOP, 48 Avenue Félix Viallet, Grenoble, France, 38000. E-mail: zoltan.szigeti@grenoble-inp.fr

Theorem 1.3 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with $\rho_D(v) = \delta_D(v) = 2$.

For $T \subseteq V$, the digraph D is called 2-*T*-connected if $|V| \ge 3$ and for every ordered pair (u, v) of vertices, there exist 2 paths from u to v that are arc disjoint and innerly vertex disjoint in T. This notion generalizes both 2-arc-connectivity $(T = \emptyset)$ and 2vertex-connectivity (T = V). It is easy to see that D is 2-*T*-connected if and only if deleting any arc or any vertex in T, the remaining digraph is strongly-connected.

We provide a common generalization of Theorem 1.1 for k = 2 and Theorem 1.3. The proof will follow the ideas of Mader [3].

Theorem 1.4. Every minimally 2-*T*-connected digraph *D*, that contains no parallel arc leaving a vertex in *T*, contains a vertex *v* with $\rho_D(v) = \delta_D(v) = 2$.

Note that Theorem 1.4 implies Theorem 1.1 for k = 2 (when $T = \emptyset$) and Theorem 1.3 (when T = V, since no parallel arc exists in a minimally 2-vertex-connected digraph).

We present the proof of Theorem 1.4 in the language of bi-sets. For $X_I \subseteq X_O \subseteq V$, $\mathbf{X} = (X_O, X_I)$ is called a *bi-set*. The set X_I is called the *inner-set*, X_O is the *outer-set* and $\mathbf{w}(\mathbf{X}) = X_O \setminus X_I$ is the *wall* of \mathbf{X} . If $X_I = \emptyset$ or $X_O = V$, the bi-set \mathbf{X} is called *trivial*. The *complement* of \mathbf{X} is defined by $\mathbf{\overline{X}} = (\overline{X_I}, \overline{X_O})$. The *intersection* and the *union* of two bi-sets $\mathbf{X} = (X_O, X_I)$ and $\mathbf{Y} = (Y_O, Y_I)$ are defined by $\mathbf{\overline{X}} = (X_O \cap Y_O, X_I \cap Y_I)$ and $\mathbf{X} \sqcup \mathbf{Y} = (X_O \cup Y_O, X_I \cup Y_I)$. An arc *xy enters* \mathbf{X} , if $x \in V \setminus X_O$ and $y \in X_I$. The *in-degree* $\hat{\boldsymbol{\rho}}_D(\mathbf{X})$ of \mathbf{X} is the number of arcs entering \mathbf{X} .

Let $T \subseteq V$ and g^T be the modular function defined on subsets of V by $g^T(v) = 1$ for $v \in T$ and $g^T(v) = 2$ for $v \in V \setminus T$. Let $f_D^T(\mathsf{X}) = \hat{\rho}_D(\mathsf{X}) + g^T(w(\mathsf{X}))$. The following Menger type result can be readily proved.

Claim 1.5. D is 2-T-connected if and only if for all nontrivial bi-sets X of V(D),

$$f_D^T(\mathsf{X}) \ge 2. \tag{1}$$

A bi-set X is called *tight* if $f_D^T(X) = 2$. It is easy to verify the following characterization of minimally 2-*T*-connected digraphs.

Claim 1.6. D is minimally 2-T-connected if and only if (1) and (2) are satisfied.

every arc of D enters a tight bi-set of D. (2)

2 Proof of Theorem 1.4

Proof. Suppose that the theorem is false and let D = (V, A) be a counterexample. Let us define the following set: $A_0 = \{xy \in A : \rho_D(y) > 2 \text{ and } \delta_D(x) > 2\}.$

Lemma 2.1. $A_0 \neq \emptyset$.

Proof. Suppose that $A_0 = \emptyset$. If an arc *a* enters a vertex *u* of in-degree 2 or leaves a vertex *u* of out-degree 2, then we say that *u* covers *a*. By $A_0 = \emptyset$, every arc is covered by at least one of its end-vertices. Since *D* is a counterexample of the theorem, a vertex can cover at most 2 arcs and, for all $v \in V$, $\rho_D(v) + \delta_D(v) \ge 5$. Hence, by $|V| \ge 3$, we have the following contradiction. $2|V| \ge |A| = \frac{1}{2} \sum_{v \in V} (\rho_D(v) + \delta_D(v)) \ge \frac{5}{2}|V|$. \Box

Let \mathcal{T} be the set of bi-sets T so that either T or $\overline{\mathsf{T}}$ is a tight bi-set entered by an arc of A_0 . By Lemma 2.1 and (2), $\mathcal{T} \neq \emptyset$. Let $\mathsf{X} = (X_O, X_I)$ be an element of \mathcal{T} such that $|X_O| + |X_I|$ is minimum. Without loss of generality we may assume that X is a tight bi-set entered by the arc **ab** of A_0 . Note that either $w(\mathsf{X}) = \emptyset$ and $\hat{\rho}_D(\mathsf{X}) = 2$ or $w(\mathsf{X}) \in T$ and $\hat{\rho}_D(\mathsf{X}) = 1$.

Lemma 2.2. There exists no arc xy in A_0 such that $y \in X_I$ and $x \in X_O$.

Proof. Suppose there exists an arc xy in A_0 such that $y \in X_I$ and $x \in X_O$. By (2), there exists a tight bi-set $\mathbf{Y} = (Y_O, Y_I)$ entered by xy, so $\mathbf{Y} \in \mathcal{T}$.

Claim 2.3. $X_O \cup Y_O = V$.

Proof. Otherwise, $X \sqcup Y$ is a nontrivial bi-set. By $y \in X_I \cap Y_I$, $X \sqcap Y$ is a nontrivial biset. Then, by X and Y are tight, (1) applied for $X \sqcup Y$ and $X \sqcap Y$ and the submodularity of f_D^T (since $\hat{\rho}_D$ is submodular and g^T is modular), we have

$$2+2-2 \ge f_D^T(X) + f_D^T(Y) - f_D^T(\mathsf{X} \sqcup \mathsf{Y}) \ge f_D^T(\mathsf{X} \sqcap \mathsf{Y}) \ge 2.$$

Hence equality holds everywhere, so $X \sqcap Y$ is tight. Moreover, $X \sqcap Y$ is entered by xy, that is $X \sqcap Y \in \mathcal{T}$ and, by $u \in X_O \setminus Y_O$, we have $|(X \sqcap Y)_O| + |(X \sqcap Y)_I| < |X_O| + |X_I|$, a contradiction.

Claim 2.4. $X_I \cap Y_I = y$, $w(\mathsf{X} \cap \mathsf{Y}) = \emptyset$ and $|w(\mathsf{X})| = |w(\mathsf{Y})| = 1$.

Proof. By $\overline{\mathsf{Y}} = (\overline{Y_I}, \overline{Y_O}) \in \mathcal{T}$ and the minimality of X, we have

$$|\overline{Y_I}| + |\overline{Y_O}| \ge |X_O| + |X_I|. \tag{3}$$

Since $X, Y \in \mathcal{T}$, $1 \ge |w(X)|$ and $1 \ge |w(Y)|$. Then, by (3), Claim 2.3 and $y \in X_I \cap Y_I$, we have

$$2 \ge |\overline{Y_O} \cap w(\mathsf{X})| + |w(\mathsf{Y}) \cap \overline{X_O}| \ge |X_I \cap w(\mathsf{Y})| + 2|X_I \cap Y_I| + |w(\mathsf{X}) \cap Y_I| \ge 2.$$

Thus we have equality everywhere and the claim follows.

By $xy \in A_0$, Claim 2.4 and the tightness of X and Y, we have

2 <
$$\rho_D(y) = \rho_D(X_I \cap Y_I) = \hat{\rho}_D(X_I \cap Y_I) \le \hat{\rho}_D(\mathsf{X}) + \hat{\rho}_D(\mathsf{Y})$$

= $(f_D^T(\mathsf{X}) - g^T(w(\mathsf{X}))) + (f_D^T(\mathsf{Y}) - g^T(w(\mathsf{Y}))) \le (2-1) + (2-1) = 2,$

a contradiction that completes the proof of Lemma 2.2.

Lemma 2.5. $D[X_I]$ is strongly-connected.

Proof. Suppose there exists $\emptyset \neq U \subset X_I$ with $\rho_{D[X_I]}(U) = 0$. Then, by (1) applied for $\mathsf{Z} = (Z_O, Z_I) = (U \cup w(\mathsf{X}), U), w(\mathsf{Z}) = w(\mathsf{X})$ and the tightness of X , we have

$$2 \le \hat{\rho}_D(\mathsf{Z}) + g^T(w(\mathsf{Z})) \le \hat{\rho}_D(\mathsf{X}) + g^T(w(\mathsf{X})) = 2.$$

Hence, equality holds everywhere, so Z is a tight bi-set with $\hat{\rho}_D(Z) = \hat{\rho}_D(X)$ thus entered by ab, that is $Z \in \mathcal{T}$. By $Z_I \subset X_I$ and w(X) = w(Z), we have $|Z_O| + |Z_I| < |X_O| + |X_I|$, a contradiction.

Lemma 2.6. The following statements hold for $V_+ = \{v \in V : \rho_D(v) > 2 = \delta_D(v)\}.$

- (a) If $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, then $u \in V_+$.
- (b) If $X_I \neq b$, then $X_I \subseteq V_+$.
- (c) $w(\mathsf{X}) \subseteq V_+$.

Proof. (a) By $\rho_D(v) > 2$ and $uv \in A \setminus A_0$, we have $\delta(u) = 2$, and then, since D is a counterexample, $\rho_D(u) > 2$ and hence $u \in V_+$.

(b) By $\rho_D(b) > 2$ and (a), all vertices from which b is reachable in $D - A_0$ by a nontrivial path are in V_+ . Thus, by Lemmas 2.2 and 2.5, $X_I - b \subseteq V_+$. By $X_I \neq b$ and Lemma 2.5, there exists an arc bc in $D[X_I]$. By Lemma 2.2, $c \in V_+$ and (a), we get $b \in V_+$.

(c) If $w(X) \neq \emptyset$, then, by $\hat{\rho}_D(X) = 1$ and (1) applied for (X_I, X_I) , we have $d_D(w(X), X_I) \geq 1$, so, by Lemma 2.2, (b) and (a), we obtain $w(X) \subseteq V_+$.

We finish the proof by considering the in-degree of X_I . We distinguish two cases. **Case 1.** If $X_I = b$, then, by $ab \in A_0$, the assumption of the theorem and X is tight, we have the following contradiction.

$$2 < \rho_D(b) = \hat{\rho}_D(X) + d_D(w(X), b) \le \hat{\rho}_D(X) + g^T(w(X)) = 2.$$

Case 2. If $X_I \neq b$, then, by X is a tight bi-set entered by ab, Lemma 2.6(c), (1) applied for $(\overline{X_I}, \overline{X_I})$ and Lemma 2.6(b), we have the following contradiction.

$$3-2 \geq \hat{\rho}_D(X) + 2|w(X)| - 2 \geq \hat{\rho}_D(X) + d_D(w(X), X_I) - \delta_D(X_I) \\ = \rho_D(X_I) - \delta_D(X_I) = \sum_{v \in X_I} (\rho_D(v) - \delta_D(v)) \geq |X_I| \geq 2.$$

These contradictions complete the proof of the theorem.

References

- W. Mader. A reduction method for edge-connectivity in graphs. Journal of Combinatorial Theory, Series B, 74-93, 1978.
- [2] W. Mader. Connectivity and edge-connectivity in finite graphs. In Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge, 1979), volume 38 of London Math. Soc. Lecture Note Ser., pages 66-95. Cambridge Univ. Press, Cambridge, 1979.
- [3] W. Mader. On vertices of outdegree n in minimally n-connected digraphs. Journal of Graph Theory, 39(2) 129-144, 2002.