Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2017-05. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

On minimally $2-T$-connected digraphs

Olivier Durand de Gevigney and Zoltán Szigeti

On minimally $2-T$-connected digraphs

Olivier Durand de Gevigney* and Zoltán Szigeti*»

Abstract

We prove that in a minimally $2-T$-connected digraph there exists a vertex of in-degree and out-degree 2 . This is a common generalization of two earlier results of Mader [1], [3].

1 Introduction

Let $D=(V, A)$ be a digraph. As usual, $\boldsymbol{\rho}_{D}$ and $\boldsymbol{\delta}_{D}$ denote the in- and out-degree functions of D and, for $U, W \subset V, \overline{\boldsymbol{U}}=V \backslash U, \boldsymbol{D}[\boldsymbol{U}]$ denotes the subgraph of D induced by U and $\boldsymbol{d}_{\boldsymbol{D}}(\boldsymbol{U}, \boldsymbol{W})$ denotes the number of arcs with tail in $U \backslash W$ and head in $W \backslash U$.

We say that D is k-arc-connected if $|V| \geq 2$ and for every ordered pair (u, v) of vertices, there exist k arc disjoint paths from u to v. We call D minimally k-arcconnected if D is k-arc-connected and the deletion of any arc destroys this property. Instead of 1-arc-connected we will use strongly-connected.

Mader [1] provided a constructive characterization of k-arc-connected digraphs. To prove that result he showed the following theorem. The special case of Theorem 1.1 when $k=2$ will be generalized in this paper.

Theorem 1.1 (Mader [1]). Every minimally k-arc-connected digraph D contains a vertex v with $\rho_{D}(v)=\delta_{D}(v)=k$.

The digraph D is said to be k-vertex-connected if $|V| \geq k+1$ and for every ordered pair (u, v) of vertices, there exist k innerly vertex disjoint paths from u to v. We say that D is minimally k-vertex-connected if D is k-vertex-connected and the deletion of any arc destroys this property.

Mader [2] conjectured that a result similar to Theorem 1.1 also holds for vertexconnectivity.

Conjecture 1.2 (Mader [2]). Every minimally k-vertex-connected digraph D contains a vertex v with $\rho_{D}(v)=\delta_{D}(v)=k$.

Mader [3] settled Conjecture 1.2 for $k=2$.

[^0]Theorem 1.3 (Mader [3]). Every minimally 2-vertex-connected digraph D contains a vertex v with $\rho_{D}(v)=\delta_{D}(v)=2$.

For $T \subseteq V$, the digraph D is called $2-T$-connected if $|V| \geq 3$ and for every ordered pair (u, v) of vertices, there exist 2 paths from u to v that are arc disjoint and innerly vertex disjoint in T. This notion generalizes both 2 -arc-connectivity $(T=\emptyset)$ and 2 -vertex-connectivity $(T=V)$. It is easy to see that D is $2-T$-connected if and only if deleting any arc or any vertex in T, the remaining digraph is strongly-connected.

We provide a common generalization of Theorem 1.1 for $k=2$ and Theorem 1.3 . The proof will follow the ideas of Mader [3].

Theorem 1.4. Every minimally 2-T-connected digraph D, that contains no parallel arc leaving a vertex in T, contains a vertex v with $\rho_{D}(v)=\delta_{D}(v)=2$.

Note that Theorem 1.4 implies Theorem 1.1 for $k=2$ (when $T=\emptyset$) and Theorem 1.3 (when $T=V$, since no parallel arc exists in a minimally 2 -vertex-connected digraph).

We present the proof of Theorem 1.4 in the language of bi-sets. For $X_{I} \subseteq X_{O} \subseteq V$, $\mathbf{X}=\left(X_{O}, X_{I}\right)$ is called a bi-set. The set X_{I} is called the inner-set, X_{O} is the outerset and $\boldsymbol{w}(\mathbf{X})=X_{O} \backslash X_{I}$ is the wall of \mathbf{X}. If $X_{I}=\emptyset$ or $X_{O}=V$, the bi-set \mathbf{X} is called trivial. The complement of \mathbf{X} is defined by $\overline{\mathbf{X}}=\left(\overline{X_{I}}, \overline{X_{O}}\right)$. The intersection and the union of two bi-sets $\mathbf{X}=\left(X_{O}, X_{I}\right)$ and $\mathbf{Y}=\left(Y_{O}, Y_{I}\right)$ are defined by $\mathbf{X} \sqcap \mathbf{Y}$ $=\left(X_{O} \cap Y_{O}, X_{I} \cap Y_{I}\right)$ and $\mathbf{X} \sqcup \mathbf{Y}=\left(X_{O} \cup Y_{O}, X_{I} \cup Y_{I}\right)$. An arc $x y$ enters \mathbf{X}, if $x \in V \backslash X_{O}$ and $y \in X_{I}$. The in-degree $\hat{\rho}_{D}(\mathbf{X})$ of \mathbf{X} is the number of arcs entering X.

Let $\boldsymbol{T} \subseteq V$ and $\boldsymbol{g}^{\boldsymbol{T}}$ be the modular fonction defined on subsets of V by $g^{T}(v)=1$ for $v \in T$ and $g^{T}(v)=2$ for $v \in V \backslash T$. Let $\boldsymbol{f}_{\boldsymbol{D}}^{\boldsymbol{T}}(\mathbf{X})=\hat{\rho}_{D}(\mathbf{X})+g^{T}(w(\mathbf{X}))$. The following Menger type result can be readily proved.

Claim 1.5. D is 2-T-connected if and only if for all nontrivial bi-sets X of $V(D)$,

$$
\begin{equation*}
f_{D}^{T}(\mathrm{X}) \geq 2 \tag{1}
\end{equation*}
$$

A bi-set X is called tight if $f_{D}^{T}(\mathrm{X})=2$. It is easy to verify the following characterization of minimally $2-T$-connected digraphs.

Claim 1.6. D is minimally 2-T-connected if and only if (1) and (2) are satisfied. every arc of D enters a tight bi-set of D.

2 Proof of Theorem 1.4

Proof. Suppose that the theorem is false and let $D=(V, A)$ be a counterexample. Let us define the following set: $\boldsymbol{A}_{\mathbf{0}}=\left\{x y \in A: \rho_{D}(y)>2\right.$ and $\left.\delta_{D}(x)>2\right\}$.

Lemma 2.1. $A_{0} \neq \emptyset$.
Proof. Suppose that $A_{0}=\emptyset$. If an arc a enters a vertex u of in-degree 2 or leaves a vertex u of out-degree 2 , then we say that u covers a. By $A_{0}=\emptyset$, every arc is covered by at least one of its end-vertices. Since D is a counterexample of the theorem, a vertex can cover at most 2 arcs and, for all $v \in V, \rho_{D}(v)+\delta_{D}(v) \geq 5$. Hence, by $|V| \geq 3$, we have the following contradiction. $2|V| \geq|A|=\frac{1}{2} \sum_{v \in V}\left(\rho_{D}(v)+\delta_{D}(v)\right) \geq \frac{5}{2}|V|$.

Let $\boldsymbol{\mathcal { T }}$ be the set of bi-sets T so that either T or $\overline{\mathrm{T}}$ is a tight bi-set entered by an arc of A_{0}. By Lemma 2.1 and $(2), \mathcal{T} \neq \emptyset$. Let $\mathbf{X}=\left(X_{O}, X_{I}\right)$ be an element of \mathcal{T} such that $\left|X_{O}\right|+\left|X_{I}\right|$ is minimum. Without loss of generality we may assume that X is a tight bi-set entered by the arc $\boldsymbol{a b}$ of A_{0}. Note that either $w(\mathbf{X})=\emptyset$ and $\hat{\rho}_{D}(\mathbf{X})=2$ or $w(\mathrm{X}) \in T$ and $\hat{\rho}_{D}(\mathrm{X})=1$.

Lemma 2.2. There exists no arc $x y$ in A_{0} such that $y \in X_{I}$ and $x \in X_{O}$.
Proof. Suppose there exists an arc $x y$ in A_{0} such that $y \in X_{I}$ and $x \in X_{O}$. By (2), there exists a tight bi-set $\mathrm{Y}=\left(Y_{O}, Y_{I}\right)$ entered by $x y$, so $\mathrm{Y} \in \mathcal{T}$.

Claim 2.3. $X_{O} \cup Y_{O}=V$.
Proof. Otherwise, $\mathrm{X} \sqcup \mathrm{Y}$ is a nontrivial bi-set. By $y \in X_{I} \cap Y_{I}, \mathrm{X} \sqcap \mathrm{Y}$ is a nontrivial biset. Then, by X and Y are tight, (1) applied for $\mathrm{X} \sqcup \mathrm{Y}$ and $\mathrm{X} \sqcap \mathrm{Y}$ and the submodularity of f_{D}^{T} (since $\hat{\rho}_{D}$ is submodular and g^{T} is modular), we have

$$
2+2-2 \geq f_{D}^{T}(X)+f_{D}^{T}(Y)-f_{D}^{T}(\mathrm{X} \sqcup \mathrm{Y}) \geq f_{D}^{T}(\mathrm{X} \sqcap \mathrm{Y}) \geq 2
$$

Hence equality holds everywhere, so $\mathrm{X} \sqcap \mathrm{Y}$ is tight. Moreover, $\mathrm{X} \sqcap \mathrm{Y}$ is entered by $x y$, that is $\mathrm{X} \sqcap \mathrm{Y} \in \mathcal{T}$ and, by $u \in X_{O} \backslash Y_{O}$, we have $\left|(\mathrm{X} \sqcap \mathrm{Y})_{O}\right|+\left|(\mathrm{X} \sqcap \mathrm{Y})_{I}\right|<\left|X_{O}\right|+\left|X_{I}\right|$, a contradiction.

Claim 2.4. $X_{I} \cap Y_{I}=y, w(\mathrm{X} \sqcap \mathrm{Y})=\emptyset$ and $|w(\mathrm{X})|=|w(\mathrm{Y})|=1$.
Proof. By $\overline{\mathrm{Y}}=\left(\overline{Y_{I}}, \overline{Y_{O}}\right) \in \mathcal{T}$ and the minimality of X , we have

$$
\begin{equation*}
\left|\overline{Y_{I}}\right|+\left|\overline{Y_{O}}\right| \geq\left|X_{O}\right|+\left|X_{I}\right| . \tag{3}
\end{equation*}
$$

Since $\mathrm{X}, \mathrm{Y} \in \mathcal{T}, 1 \geq|w(\mathbf{X})|$ and $1 \geq|w(\mathrm{Y})|$. Then, by (3), Claim 2.3 and $y \in X_{I} \cap Y_{I}$, we have

$$
2 \geq\left|\overline{Y_{O}} \cap w(\mathrm{X})\right|+\left|w(\mathrm{Y}) \cap \overline{X_{O}}\right| \geq\left|X_{I} \cap w(\mathrm{Y})\right|+2\left|X_{I} \cap Y_{I}\right|+\left|w(\mathrm{X}) \cap Y_{I}\right| \geq 2
$$

Thus we have equality everywhere and the claim follows.
By $x y \in A_{0}$, Claim 2.4 and the tightness of X and Y , we have

$$
\begin{aligned}
2 & <\rho_{D}(y)=\rho_{D}\left(X_{I} \cap Y_{I}\right)=\hat{\rho}_{D}\left(X_{I} \cap Y_{I}\right) \leq \hat{\rho}_{D}(\mathrm{X})+\hat{\rho}_{D}(\mathrm{Y}) \\
& =\left(f_{D}^{T}(\mathrm{X})-g^{T}(w(\mathrm{X}))\right)+\left(f_{D}^{T}(\mathrm{Y})-g^{T}(w(\mathrm{Y}))\right) \leq(2-1)+(2-1)=2,
\end{aligned}
$$

a contradiction that completes the proof of Lemma 2.2 .
Lemma 2.5. $D\left[X_{I}\right]$ is strongly-connected.
Proof. Suppose there exists $\emptyset \neq U \subset X_{I}$ with $\rho_{D\left[X_{I}\right]}(U)=0$. Then, by (1) applied for $\mathbf{Z}=\left(Z_{O}, Z_{I}\right)=(U \cup w(\mathbf{X}), U), w(\mathbf{Z})=w(\mathbf{X})$ and the tightness of \mathbf{X}, we have

$$
2 \leq \hat{\rho}_{D}(\mathbf{Z})+g^{T}(w(\mathbf{Z})) \leq \hat{\rho}_{D}(\mathbf{X})+g^{T}(w(\mathbf{X}))=2 .
$$

Hence, equality holds everywhere, so Z is a tight bi-set with $\hat{\rho}_{D}(Z)=\hat{\rho}_{D}(X)$ thus entered by $a b$, that is $\mathbf{Z} \in \mathcal{T}$. By $Z_{I} \subset X_{I}$ and $w(\mathbf{X})=w(\mathbf{Z})$, we have $\left|Z_{O}\right|+\left|Z_{I}\right|<$ $\left|X_{O}\right|+\left|X_{I}\right|$, a contradiction.

Lemma 2.6. The following statements hold for $\boldsymbol{V}_{+}=\left\{v \in V: \rho_{D}(v)>2=\delta_{D}(v)\right\}$.
(a) If $\rho_{D}(v)>2$ and $u v \in A \backslash A_{0}$, then $u \in V_{+}$.
(b) If $X_{I} \neq b$, then $X_{I} \subseteq V_{+}$.
(c) $w(\mathrm{X}) \subseteq V_{+}$.

Proof. (a) By $\rho_{D}(v)>2$ and $u v \in A \backslash A_{0}$, we have $\delta(u)=2$, and then, since D is a counterexample, $\rho_{D}(u)>2$ and hence $u \in V_{+}$.
(b) By $\rho_{D}(b)>2$ and (a), all vertices from which b is reachable in $D-A_{0}$ by a nontrivial path are in V_{+}. Thus, by Lemmas 2.2 and 2.5, $X_{I}-b \subseteq V_{+}$. By $X_{I} \neq b$ and Lemma 2.5, there exists an arc $b c$ in $D\left[X_{I}\right]$. By Lemma 2.2, $c \in V_{+}$and (a), we get $b \in V_{+}$.
(c) If $w(\mathrm{X}) \neq \emptyset$, then, by $\hat{\rho}_{D}(\mathrm{X})=1$ and (1) applied for $\left(X_{I}, X_{I}\right)$, we have $d_{D}\left(w(\mathrm{X}), X_{I}\right) \geq 1$, so, by Lemma 2.2, (b) and (a), we obtain $w(\mathrm{X}) \subseteq V_{+}$.

We finish the proof by considering the in-degree of X_{I}. We distinguish two cases.
Case 1. If $X_{I}=b$, then, by $a b \in A_{0}$, the assumption of the theorem and X is tight, we have the following contradiction.

$$
2<\rho_{D}(b)=\hat{\rho}_{D}(\mathbf{X})+d_{D}(w(\mathbf{X}), b) \leq \hat{\rho}_{D}(\mathbf{X})+g^{T}(w(\mathbf{X}))=2 .
$$

Case 2. If $X_{I} \neq b$, then, by X is a tight bi-set entered by $a b$, Lemma 2.6(c), (1) applied for $\left(\overline{X_{I}}, \overline{X_{I}}\right)$ and Lemma 2.6 (b), we have the following contradiction.

$$
\begin{aligned}
3-2 & \geq \hat{\rho}_{D}(\mathrm{X})+2|w(\mathrm{X})|-2 \geq \hat{\rho}_{D}(\mathrm{X})+d_{D}\left(w(\mathrm{X}), X_{I}\right)-\delta_{D}\left(X_{I}\right) \\
& =\rho_{D}\left(X_{I}\right)-\delta_{D}\left(X_{I}\right)=\sum_{v \in X_{I}}\left(\rho_{D}(v)-\delta_{D}(v)\right) \geq\left|X_{I}\right| \geq 2 .
\end{aligned}
$$

These contradictions complete the proof of the theorem.

References

[1] W. Mader. A reduction method for edge-connectivity in graphs. Journal of Combinatorial Theory, Series B, 74-93, 1978.
[2] W. Mader. Connectivity and edge-connectivity in finite graphs. In Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge, 1979), volume 38 of London Math. Soc. Lecture Note Ser., pages 66-95. Cambridge Univ. Press, Cambridge, 1979.
[3] W. Mader. On vertices of outdegree n in minimally n-connected digraphs. Journal of Graph Theory, 39(2) 129-144, 2002.

[^0]: *E-mail: odegevigney@gmail.com
 ${ }^{\star \star}$ Univ. Grenoble Alpes, Grenoble INP, CNRS, G-SCOP, 48 Avenue Félix Viallet, Grenoble, France, 38000. E-mail: zoltan.szigeti@grenoble-inp.fr

