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Finding strongly popular b-matchings in bipartite

graphs

Tamás Király? and Zsuzsa Mészáros-Karkus??

Abstract

The computational complexity of the bipartite popular matching problem
depends on how indi�erence appears in the preference lists. If one side has
strict preferences while nodes on the other side are all indi�erent (but prefer to
be matched), then a popular matching can be found in polynomial time [Cseh,
Huang, Kavitha, 2015]. However, as the same paper points out, the problem
becomes NP-complete if nodes with strict preferences are allowed on both sides
and indi�erent nodes are allowed on one side. We show that the problem of
�nding a strongly popular matching is polynomial-time solvable even in the
latter case. More generally, we give a polynomial-time algorithm for the many-
to-many version, i.e. the strongly popular b-matching problem, in the setting
where one side has strict preferences while agents on the other side may have
one tie of arbitrary length at the end of their preference list.

1 Introduction

A bipartite preference system with ties consists of a bipartite multigraph G =
(S, T ;E) and, for every node v ∈ S ∪ T , a partial order �v on the edges incident to
v. This partial order is usually called the preference list of v. Given a bipartite
preference system with ties, a node prefers a matching M1 to a matching M2 if it
is either matched in M1 but unmatched in M2, or matched by a better edge in M1

than in M2. A matching M1 is more popular than a matching M2 if the number of
nodes preferring M1 to M2 is strictly larger than the number of nodes preferring M2

to M1. This relation is not transitive; it is possible that M1 is more popular than M2,
M2 is more popular than M3, and M3 is more popular than M1 [2]. A matching M
is popular if no matching is more popular than M , and it is strongly popular if
M is more popular than any other matching. These notions were �rst introduced by
Gärdenfors [8], who showed that a) every strongly popular matching is stable and b)
in case of no ties, all stable matchings are popular.
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Informally, the existence of a strongly popular matching means that the `popularity
contest' among matchings has an undisputed winner. There obviously cannot be
two distinct strongly popular matchings, because both of them would have to be
more popular than the other, which is impossible. Furthermore, a strongly popular
matching must be a unique popular matching. However, there are instances where
the popular matching is unique but it is not strongly popular; we refer the reader to
the full version of [2] for an example.
Algorithmic questions about popular matchings have generated a lot of interest

lately, see Section 1.1 for a short summary of recent results. Here we just mention
that for any preference system with ties (even non-bipartite), it can be decided in
polynomial time if a given matching is popular or strongly popular [2]. This means
that the decision problem for popular matchings is in the complexity class NP, while
the decision problem for strongly popular matchings is in the lesser-known complex-
ity class UP (Unambiguous Polynomial-time). The latter class, introduced by Valiant
[20], consists of the decision problems solvable by an NP machine such that all wit-
nesses are rejected in a �no� instance, while exactly one witness is accepted in a �yes�
instance. The strongly popular matching problem belongs to this class because each
�yes� instance has a single strongly popular matching and it can be veri�ed in poly-
nomial time. In contrast to the abundance of NP-complete problems, no complete
problem is known for the class UP.
For a node v ∈ S ∪ T , let δG(v) denote the set of edges incident to v in G. In

the most general setting, the preference list of v can be an arbitrary partial order on
δG(v). However, we will also consider three types of nodes with restrictions on their
preferences:

• nodes with strict preferences, where the preference order �v is a total order
on δG(v),

• indi�erent nodes, where every incident edge is equally good (and better than
being unmatched),

• nodes with restricted ties, whose preference list contains a single tie of ar-
bitrary length at the end of the list, i.e. who have a set of least preferred edges,
and a total order on the rest of δG(v).

Notice that the �rst two types are included in the third. Our main result concerns
preference systems where nodes in S have strict preferences while nodes in T have
restricted ties. This kind of preference system is well-known in the stable matching
literature: Irving and Manlove [14] studied it in the context of the Hospitals/Residents
problem, motivated by practical applications like the Scottish Foundation Allocation
Scheme. It also has theoretical interest: Huang et al. [9] gave a 1.25-approximation
algorithm for the maximum stable matching problem under such preferences, which
is the only known case that matches the lower bound of approximability under the
Unique Games Conjecture.
Let us describe the known results on the popular and strongly popular matching

problem under various preferences. If all nodes have strict preferences, then every
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stable matching is popular [8]. On one hand, this implies that there always exists a
popular matching and one can be found using the well-known Gale-Shapley algorithm
[7]. On the other hand, we can decide if a strongly popular matching exists by �nding
an arbitrary stable matching and checking whether it is strongly popular (this also
works in non-bipartite preference systems without ties [2]).
The problems become considerably harder when indi�erent nodes are also allowed

on one of the sides. If nodes in S have strict preferences while those in T are all
indi�erent, then the existence of a popular matching can still be decided in polynomial
time, as shown by Cseh, Huang, and Kavitha [4]. However, they also showed that
the problem becomes NP-complete if we allow nodes with strict preferences in both
S and T ; see the full version of [4] and [5] for proofs.
In this paper, we prove that the existence of a strongly popular matching can be

decided in polynomial time in the latter setting, and even when nodes with restricted
ties are allowed in T . This is the �rst result that demonstrates that the strongly
popular matching problem is considerably easier than the popular matching problem.

Theorem 1.1. Given a bipartite preference system (G = (S, T ;E),�) where nodes
in S have strict preferences and nodes in T have restricted ties, it can be decided in
polynomial time if there is a strongly popular matching.

Our algorithm successively �nds edges that cannot be in a strongly popular match-
ing or must be in any strongly popular matching, and also maintains a directed graph
related to the possible structure of the strongly popular matching. The set of possible
candidates keeps shrinking until, at the end, we can either conclude that there is no
strongly popular matching, or exactly one candidate matching remains. In the latter
case, we can check in polynomial time whether this matching is strongly popular.
Our result also extends to the strongly popular b-matching problem in bi-

partite preference systems. In the b-matching problem, each node v has a quota
b(v) ∈ Z+. An edge set M ⊆ E is a b-matching if dM(v) ≤ b(v) for every v, where
dM(v) denotes the number of edges of M incident to v. There are various ways to
de�ne popularity for b-matchings, and in this paper we follow the de�nition used by
Brandl and Kavitha [3] and Kamiyama [15] (we note that a di�erent de�nition of
popularity is used in [19]). The precise de�nition of popularity in the many-to-many
setting is presented in Section 2, where we also prove the following result, which has
not yet been published in the literature.

Theorem 1.2. In arbitrary bipartite preference systems with ties, popularity and
strong popularity of a given b-matching can be decided in polynomial time using all-
pairs shortest paths in an auxiliary digraph.

For the problem of deciding the existence of a strongly popular b-matching, we
again consider the setting where one side has strict preferences while the other side
has restricted ties. All nodes prefer to �ll as much of their quota as possible. As
mentioned by Manlove et al. [17] and Irving and Manlove [14], this setting is relevant
to several real-world applications: for example, in a Hospitals/Residents allocation
problem, hospitals may not be willing to rank all admissible residents, but may opt
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1.1 Related work on popular matchings 4

instead to rank only the best ones and put the rest in a tie at the end of their preference
list. Similar partial ranking of admissible students is natural in student allocation and
project allocation problems. We prove the following extension of Theorem 1.1.

Theorem 1.3. Given a bipartite preference system (G = (S, T ;E),�) with quotas
b(v) ∈ Z+ (v ∈ S ∪ T ), where nodes in S have strict preferences and nodes in T
have restricted ties, it can be decided in polynomial time if there is a strongly popular
b-matching.

The proof is presented in Section 3. Theorem 1.1 is obtained by setting b ≡ 1.

1.1 Related work on popular matchings

There are several fascinating questions about the computational complexity of the
popular matching problem. For bipartite preference systems with no ties, Huang
and Kavitha [10] showed that a maximum size popular matching can be found in
polynomial time, and Cseh and Kavitha [6] gave an algorithm for deciding if a given
edge belongs to a popular matching. On the other hand, the complexity of deciding
the existence of a popular matching in a non-bipartite preference system without
ties is still open. Huang and Kavitha [11] introduced the notion of unpopularity
factor, and showed that, for any positive ε, it is NP-hard to compute a matching
with unpopularity factor within 4

3
− ε of optimal. In another paper, they showed

that the problem of �nding a maximum-weight popular matching is NP-hard, while
a maximum-weight popular half-integral matching can be found in polynomial time.
The complexity of the bipartite maximum-weight popular matching problem is open.
Several recent results concern a slightly di�erent, one-sided model (also known as

the House Allocation model), where one side has preference lists, while nodes on the
other side do not vote at all and do not prefer to be matched. Abraham et al. [1]
gave a polynomial-time algorithm for �nding a popular matching in this model. If the
preferences are strict, then optimal popular matchings can also be found for various
notions of optimality [16, 18].

2 Popular b-matchings

The popular matching problem can be extended to the many-to-one setting (the
so-called Hospitals-Residents problem), and also to the many-to-many setting (the
bipartite b-matching problem). Two models have been proposed, one by Nasre and
Rawat [19], and another by Brandl and Kavitha [3]. In this paper we use the latter
model, but introduce it in a slightly di�erent way. Both papers proved that, in case
of strict preferences, a maximum size popular b-matching in the respective models
can be found in polynomial time. Kamiyama [15] extended the second model with
matroid constraints, and showed how to �nd a maximum size popular b-matching if
the constraints are de�ned by weakly base orderable matroids.
Let G = (S, T ;E) be a bipartite graph, and let b : S ∪ T → Z+ denote the quota

function. We de�ne the notion of popularity in b-matchings for general bipartite
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preference systems with ties, where the partial orders �v (v ∈ S∪T ) can be arbitrary.
For edges e, f ∈ δG(v), let

votev(e, f) =


1 if e �v f

−1 if e ≺v f

0 otherwise.

For technical reasons, we need to allow the empty set as an argument, so we extend
the de�nition by votev(e, ∅) = 1, votev(∅, f) = −1, and votev(∅, ∅) = 0. Let M1 and
M2 be b-matchings, and let v ∈ S ∪ T . We say that (e1, . . . , eb(v); f1, . . . , fb(v)) is a
valid enumeration of (M1,M2) at v if

• each ei is either an edge in M1 ∩ δG(v) or the empty set

• each fi is either an edge in M2 ∩ δG(v) or the empty set

• each edge of M1 ∩ δG(v) appears exactly once among the eis

• each edge of M2 ∩ δG(v) appears exactly once among the fis

• if ei = fj ∈M1 ∩M2 ∩ δG(v), then i = j

• if ei = ∅ and fi 6= ∅ for some i, then there is no j such that ei 6= ∅ and fi = ∅.

The last property implies that the number of indices i where ei 6= ∅ and fi 6= ∅ is
min{|M1 ∩ δG(v)|, |M2 ∩ δG(v)|}. We de�ne

votev(M1,M2) = min{
b(v)∑
i=1

votev(ei, fi) : (e1, . . . , eb(v); f1, . . . , fb(v))

is a valid enumeration of (M1,M2) at v}.

Observe that we take the valid enumeration that is worst from the point of view of
M1. This implies that votev(M1,M2) + votev(M2,M1) ≤ 0, but equality does not
necessarily hold. De�ne

vote(M1,M2) =
∑

v∈S∪T

votev(M1,M2).

A b-matching M is popular if vote(M,M ′) ≥ 0 for every b-matching M ′, and it is
strongly popular if vote(M,M ′) > 0 for every b-matching M ′ distinct from M . If
b ≡ 1, then these de�nitions coincide with the standard de�nitions for matchings.
Since vote(M1,M2) + vote(M2,M1) ≤ 0 for any two b-matchings (M1,M2), there can
be at most one strongly popular b-matching.
In the remainder of the section, we show that popularity and strong popularity

of a given b-matching M can be decided in polynomial time. We de�ne an auxiliary
bipartite graph ĜM = (Ŝ, T̂ ; ÊM) where every node v ∈ S∪T is replaced by b(v) nodes
v̂1, . . . , v̂b(v). For st ∈ E \M , we introduce edges ŝit̂j for every i ∈ [b(s)] and j ∈ [b(t)].
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We also de�ne edges corresponding to M that form a matching M̂ : for every edge
st ∈ M , we add a single edge ŝt = ŝit̂j, in such a way that M̂ = {ŝt : st ∈ M} is a
matching in ĜM . This is possible because dM(v) ≤ b(v) for every v ∈ S ∪ T . Thus,
an edge e = st ∈ E has a single corresponding edge in ÊM if e ∈ M , and b(s)b(t)
corresponding edges if e ∈ E \M .
The preference system on G induces a preference system on ĜM , with the additional

de�nition that each node is indi�erent between edges in ÊM corresponding to the
same edge in E \M . Note that it is not true that M is popular if and only if M̂ is
popular. However, we can characterize the popularity of M using alternating paths
with respect to M̂ in ĜM , and this leads to a polynomial-time algorithm for deciding
if M is popular / strongly popular.
We de�ne a weight function w on ÊM . Let w(e) = 0 if e ∈ M̂ . For given ŝit̂j ∈

ÊM \ M̂ , let e1 be the edge of M̂ incident to ŝi if ŝi is covered by M̂ , otherwise let e1
be the empty set. Similarly, let e2 be the edge of M̂ incident to t̂j if t̂j is covered by
M̂ , otherwise let e2 = ∅. Let

w(ŝit̂j) = voteŝi(e1, ŝit̂j) + votet̂j(e2, ŝit̂j).

An alternating cycle with respect to M̂ is a cycle with edges alternating between
M̂ and ÊM \M̂ . An alternating path is a path alternating between M̂ and ÊM \M̂ ,
such that if the �rst or last edge is in ÊM \ M̂ , then the corresponding end-node of
the path is not covered by M̂ . The modi�er of an alternating path P , denoted by
mod(P ) ∈ {0, 1, 2}, is the number of its end-nodes covered by M̂ . An alternating
path P is invalid if mod(P ) = 1 and its end-nodes are v̂i and v̂j for the same v,
otherwise it is valid.

Theorem 2.1. A b-matching M is popular if and only if w(C) ≥ 0 for every alter-
nating cycle C and w(P ) + mod(P ) ≥ 0 for every valid alternating path P in the
auxiliary graph ĜM . A b-matching M is strongly popular if and only if w(C) > 0 for
every alternating cycle C and w(P ) + mod(P ) > 0 for every valid alternating path P
in the auxiliary graph ĜM .

Proof. We �rst prove that if M is not popular, then the alternating cycle or path
described in the theorem exists (the same proof works for strong popularity). Since
M is not popular, there exists a b-matching M ′ such that vote(M,M ′) < 0. We may
assume that at least one endpoint of every edge ofM is covered byM ′, since otherwise
that edge can be added to M ′.
We de�ne a matching M̂ ′ in ĜM based on the voting at the individual nodes. If

st ∈M∩M ′, then we include ŝt in M̂ ′. For every v ∈ S∪T , we �x a valid enumeration
(ev1, . . . , e

v
b(v); f

v
1 , . . . , f

v
b(v)) of (M,M ′) at v that is a minimizer of votev(M,M ′) and

satis�es the following property: if evi is an edge vw of M , then v̂w = v̂iŵj for some j.
It is easy to see that there is an enumeration with this property, since we can permute
the indices arbitrarily. If f = st is an edge in M ′ \M , then there are indices i and j
such that f = f s

i and f = f t
j . We include ŝit̂j in M̂ ′, and denote it by f̂ .

Consider M̂∆M̂ ′, i.e. the symmetric di�erence of M̂ and M̂ ′. Since its degrees
are at most 2, M̂∆M̂ ′ is the disjoint union of cycles C1, . . . , Ck and paths P1, . . . , Pl.
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Observe that C1, . . . , Ck are alternating cycles and P1, . . . , Pl are alternating paths.
Furthermore, each Pi is valid, because the validity of the enumeration at v means that
if some vi is covered by M̂ ′ but not by M̂ , then any vj covered by M̂ is also covered
by M̂ ′.

Claim 2.2. vote(M,M ′) =
∑k

i=1w(Ci) +
∑l

j=1(w(Pj) + mod(Pj)).

Proof. Consider an edge f = st in M ′ \M , and the corresponding edge f̂ = ŝit̂j in
M̂ ′. Let e1 (e2) be the edge of M̂ incident to ŝi (t̂j) if it is covered by M̂ , and the
empty set otherwise. By de�nition, f = f s

i and f = f t
j , so

w(f̂) = voteŝi(e1, f̂) + votet̂j(e2, f̂) = votes(e
s
i , f

s
i ) + votet(e

t
j, f

t
j ).

This means that
∑k

i=1w(Ci) +
∑l

j=1w(Pj) counts all votes except those of type
votev(e

v
i , f

v
i ) where evi ∈ M and f v

i = ∅. The number of these votes is exactly the
number of nodes covered by M̂ but not by M̂ ′, which equals

∑l
j=1 mod(Pj).

We obtained that
∑k

i=1w(Ci) +
∑l

j=1(w(Pj) + mod(Pj)) = vote(M,M ′) < 0, so
either there is a cycle Ci for which w(Ci) < 0, or there is a path Pj for which w(Pj) +
mod(Pj) < 0. This proves the �if� direction of the theorem.
To prove the �only if� direction, we examine two cases.

Case 1: there is an alternating cycle C with w(C) < 0. We cannot directly use the
cycle to construct a b-matching M ′ and a valid enumeration of (M,M ′) that shows
vote(M,M ′) < 0, because the enumeration determined by the cycle may violate the
last property in the de�nition of valid enumerations. However, this may happen only
if C contains distinct edges ŝi1 t̂j1 and ŝi2 t̂j2 for some st ∈ E \M . The following claim
shows how to avoid this problem.

Claim 2.3. If an alternating cycle C contains distinct edges ŝi1 t̂j1 and ŝi2 t̂j2 corre-
sponding to the same edge st ∈ E \M , then, by removing these edges and adding ŝi1 t̂j2
and ŝi2 t̂j1, we get two alternating cycles C1, C2 with w(C1) + w(C2) = w(C).

Proof. The exchange results in 2 cycles because the graph is bipartite. The de�nition
of w implies that w(ŝi1 t̂j1) + w(ŝi2 t̂j2) = w(ŝi1 t̂j2) + w(ŝi2 t̂j1), so w(C1) + w(C2) =
w(C).

Since w(C) < 0, one of the resulting cycles has negative weight. We can repeat
similar operations until we get a cycle C ′ with w(C ′) < 0 which in addition does not
contain distinct edges corresponding to the same edge of E \M . By exchanging along
the cycle, we obtain a matching M̂ ′, which determines a b-matching M ′ and a valid
enumeration of (M,M ′) at each node. This implies vote(M,M ′) ≤ w(C ′) < 0.

Case 2: there is a valid alternating path P with w(P ) + mod(P ) < 0. As in Case 1,
some modi�cations are needed in order to obtain valid enumerations. The counterpart
of Claim 2.3 for this case is the following.
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Claim 2.4. If a valid alternating path P contains distinct edges ŝi1 t̂j1 and ŝi2 t̂j2 cor-
responding to the same edge st ∈ E \M , then, by removing these edges and adding
ŝi1 t̂j2 and ŝi2 t̂j1, we get an alternating cycle C ′ and a valid alternating path P ′ with
w(C ′) + w(P ′) = w(P ) and mod(P ′) = mod(P ).

Proof. The proof is the same as the proof of Claim 2.3, with the additional observation
that P ′ has the same end-nodes as P , so P ′ is also valid and mod(P ′) = mod(P ).

The claim implies that, by repeating this operation as many times as needed, we
either get a a cycle C ′ with w(C ′) < 0 or a valid path P ′ with w(P ′) + mod(P ′) < 0,
having the additional property that it does not use distinct edges corresponding to
the same edge of E \M . By exchanging along the path or cycle, we get a matching
M̂ ′, which determines a b-matching M ′ and a valid enumeration of (M,M ′) at each
node. In the cycle case we have vote(M,M ′) ≤ w(C ′) < 0. In the path case, voting
according to this valid enumeration gives the result w(P ′) + mod(P ′), because the
number of nodes covered by M̂ but not by M̂ ′ is mod(P ′). This implies vote(M,M ′) ≤
w(P ′) + mod(P ′) < 0. This concludes the proof for popularity. The proof for strong
popularity is analogous, with vote(M,M ′) ≤ 0 in place of vote(M,M ′) < 0.

Using Theorem 2.1, it is straightforward to check the popularity or strong popularity
of a b-matching M .

Proof of Theorem 1.2. Given a b-matching M , we construct the auxiliary bipartite
graph ĜM and the weight function w as speci�ed in the �rst part of the section. Let
DM be the directed graph obtained from ĜM by orienting the edges of M̂ from Ŝ to T̂
and the edges of Ê \M̂ from T̂ to Ŝ. We can use the Bellman-Ford algorithm to check
if there is a directed cycle C with w(C) < 0 or w(C) = 0. If there is no negative cycle,
then we can compute the minimum weight paths between all pairs of nodes. Based
on this, we can decide if there is a valid alternating path P with w(P ) + mod(P ) < 0
or w(P ) + mod(P ) = 0.

3 Proof of the main theorem

In this section we prove Theorem 1.3. We are given a bipartite multigraph G =
(S, T ;E) and a quota function b : S ∪ T → Z+. Every node v ∈ S has a strict
preference order �v over its incident edges, while the preference list of a node in T
may contain one tie of arbitrary length at the end of the list. We give a polynomial-
time algorithm which decides if the instance admits a strongly popular b-matching
(SPbM for short), as de�ned in Section 2.

3.1 Preliminaries

Before going into the details, we give an overview of the main ideas of the proof.
We may assume, without loss of generality, that G has no isolated nodes and that
b(v) ≤ dG(v) for every v ∈ S∪T . During the algorithm, we modify the instance using
the following two reduction operations.
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3.1 Preliminaries 9

1. We remove edges that cannot appear in an SPbM of the current instance. We
remove any isolated nodes that arise, and we also decrease quotas if they exceed
the degree.

2. We �x edges that are guaranteed to belong to the SPbM of the current instance
if it has one. Fixed edges are removed, and the quotas of their two endnodes
are decreased by one. Nodes that become isolated are also removed.

Let Gk = (Sk, T k;Ek) be the instance after performing k of the above reduction
operations, let bk be the corresponding quota function, and let F be the set of edges
�xed so far.

Lemma 3.1. If the original instance has an SPbM M , then F ⊆ M , and M \ F is
an SPbkM in Gk.

Proof. The proof is by induction on k; the claim is obviously true for k = 0. Let
Gk−1 be the instance before the last operation. If the last operation was the removal
of an edge st, then, by induction, M contains F , M \ F is an SPbk−1M of Gk−1, and
st /∈M . Thus M \ F is an SPbkM of Gk.
If we �xed an edge st in the last operation, thenM \(F −st) is an SPbk−1M of Gk−1

by induction, and st ∈M \ (F − st) because we only �x edges that are guaranteed to
belong to the SPbk−1M. This implies that st ∈ M . Since bk is obtained from bk−1 by
decreasing the quota of s and t by one, M \ F is an SPbkM of Gk.

Note that it is possible that Gk has an SPbkM even though G does not have an
SPbM. This is not a problem however: if we eventually obtain an empty graph by
reduction operations, then F is the only candidate for an SPbM by Lemma 3.1, and
we can check in polynomial time if it is an SPbM of G or not by Theorem 1.2. On
the other hand, if we obtain a graph Gk that has no SPbkM, then G has no SPbM by
Lemma 3.1.
To summarize, our strategy is to do reduction operations until we get to the empty

graph or we get a certi�cate that there is no SPbM. The question is how to identify
edges that can be removed or �xed. In the proof, we will present a sequence of claims
about certain edges being removable or �xable. Each claim is constructive in the sense
that the speci�ed edges can be found in linear time.
Each claim is followed by the description of a property satis�ed by any instance

that cannot be further reduced by the reduction operations described in the claim.
At any point in the proof, we assume (without explicitly stating it) that our instance
G has all the properties described previously. This assumption is valid because the
algorithm can make reductions until all properties are satis�ed.

Additional de�nitions. An edge st ∈ E is called a blocking edge with respect
to a b-matching M if it satis�es the following three conditions: i) st 6∈ M , ii) s does
not �ll its quota in M or there is a node t′ such that st′ ∈ M and t �s t

′, and iii) t
does not �ll its quota in M or there is a node s′ such that s′t ∈M and s �t s

′. If M
is an SPbM, then there is no blocking edge with respect to M . Indeed, if M ′ is the
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3.2 Description of the algorithm 10

b-matching obtained from M by adding a blocking edge st and removing st′ if s �lls
its quota in M and removing s′t if t �lls its quota in M , then vote(M,M ′) ≤ 0, which
contradicts that M is an SPbM.
In addition to blocking edges, we will use alternating paths and cycles to show that

certain b-matchings cannot be strongly popular. Note that these are paths and cycles
in G, not in the auxiliary graph ĜM de�ned in Section 2 (we do not use ĜM in this
section). Given a b-matching M and an alternating path or cycle w.r.t. M , let M ′

be the b-matching obtained from M by exchanging along the path or cycle � if we
exchange along a path whose �rst or last edge is not in M and the endpoint �lls its
quota, then we also remove (one of) the worst edge(s) ofM covering the corresponding
endpoint of the path. If we can show that vote(M,M ′) ≤ 0, then M is not an SPbM.
At some points in the proof (proofs of Claim 3.7, Lemmas 3.10 and 3.11), we

append an extra edge ts′ to an alternating path ending in st ∈M . We call the result
an alternating quasi-path if s′ appears earlier on the path. If we exchange along
the quasi-path and s′ �lls its quota in M , then, as above, we have to remove the
worst edge s′t′ of M at s′. This is a problem if s′t′ belongs to the quasi-path, because
we cannot remove it twice. However, in the situations where we use this technique,
ts′ is guaranteed to be better than s′t′ at s′, and if s′t′ is in the quasi-path, then
we can exchange along the cycle part of the quasi-path to get a b-matching M ′ with
vote(M,M ′) ≤ 0.
The following auxiliary digraph D plays an important role in the proof: for every

node v ∈ S ∪ T , we orient the �rst b(v) strictly ordered edges on v's preference list
towards their other endpoint. (Note that there may be less than b(v) outgoing edges
from a node v ∈ T because the edges in the tie at the end of the list are not directed
outwards.) Some edges may be bidirected; however, as our �rst claim (Claim 3.2)
will show, bidirected edges can always be �xed. The digraph D has to be recomputed
after each reduction.

3.2 Description of the algorithm

We assume that G has no isolated nodes and that b(v) ≤ dG(v) for every v ∈ S ∪ T .

Orientation. For every node v ∈ S ∪ T , we orient the �rst b(v) strictly ordered
edges on v's preference list towards their other endpoint. The digraph obtained this
way is denoted by D, and it is recomputed after every reduction.

Claim 3.2. If an edge st ∈ E is bidirected in D, then it belongs to the SPbM if there
is one.

Proof. If M is a b-matching and st 6∈M , then st is blocking with respect to M .

Property 1. After reductions according to Claim 3.2, D does not contain bidirected
edges.

Claim 3.3. If there are b(v) directed edges to a node v ∈ S ∪T : w1v, w2v, . . . , wb(v)v,
and uv is an edge such that uv ≺v wiv for every 1 ≤ i ≤ b(v), then uv cannot belong
to the SPbM.
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Proof. Suppose that M is an SPbM and uv ∈M . Then there is an index 1 ≤ i ≤ b(v)
such that wiv 6∈M , but then wiv is a blocking edge with respect to M .

Property 2. After reductions according to the previous claims, every node s ∈ S is
entered by at most b(s) directed edges in D, and if there are more than b(t) directed
edges entering a node t ∈ T , then t is indi�erent between at least two of them.

De�nition 3.4. Suppose the current instance admits an SPbM M . Let T1 be the set
of nodes t ∈ T for which there is an edge in M which is one of the least preferred
edges by t, and there is a directed edge not in M entering t.

Claim 3.5. If there is a directed edge entering a node t ∈ T and the number of directed
edges incident to t is at most b(t), then the edges entering t belong to the SPbM if
there is one.

Proof. Suppose that the SPbM M does not contain one of these edges st; then t has
to �ll its quota, otherwise st would be blocking. Since at most b(t) directed edges
are incident to t, there has to be an edge ut that belongs to M and is not directed.
There are b(u) directed edges from u, therefore there is a directed edge ut2 which
does not belong to M . Consider the path that starts with st, tu and then alternates
between directed edges that do not belong toM and edges ofM that are not directed
backwards in the path. If at some point the path returns to a previous node, then we
get an alternating cycle, and exchanging along the cycle yields a matching M ′ such
that vote(M,M ′) ≤ 0. Otherwise we can continue the path, until we reach a node
t′ ∈ T such that the edges of M incident to t′ are all directed towards t′. We reached
t′ in a directed edge not in M , therefore t′ �lls its quota, which means that there are
b(t′) directed edges in M entering t′, so by Property 2, t′ ∈ T1. By exchanging along
the path we get a matching M ′ such that vote(M,M ′) ≤ 0. Indeed, the vote of each
node of S on the path is -1, while only the following nodes may have a positive vote:
the nodes of T in the path except for t and t′, and the other endpoint of the edge of
M incident to s. (t′ has a nonpositive vote because t′ ∈ T1, and therefore one of the
least preferred edges by t′ is in M . This means that the edge that we remove from
M at t′ is also a least preferred edge.) This contradicts the assumption that M is an
SPbM.
See Figure 1 for an illustration of both cases.

Property 3. After reductions according to the previous claims, if there is a directed
edge entering a node t ∈ T , the number of directed edges incident to t is more than
b(t).

De�nition. Let T2 be the set of nodes in T with out-degree less than b(t) in D and
with no incoming directed edges.

Claim 3.6. Suppose that the number of directed edges in D[S ∪ (T \ T2)] entering a
node s ∈ S plus the number of edges between s and T2 is more than b(s). Let sv be
the least preferred by s among these edges. Then sv cannot belong to the SPbM.
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Figure 1: The solid edges belong to the SPbM.

Proof. Suppose that sv belongs to the SPbM M . Every directed edge entering s has
to belong to M too, because these are preferred over sv and therefore they would be
blocking. Thus, there has to be an edge st 6∈M with t ∈ T2. There is an edge ts′ ∈M
because t �lls its quota (otherwise st would be blocking). There are b(s′) directed
edges leaving s′, therefore there is one which is not in M . Consider the alternating
path that starts with vs, st, ts′ and then alternates between directed edges that do
not belong to M and edges of M that are not directed backwards in the path. If at
some point this path returns to a previous node of the path, then we get an alternating
cycle, otherwise we reach a node t′ ∈ T such that the edges of M incident to t′ are all
directed towards t′. This means that t′ ∈ T1. Let M ′ be the b-matching we get from
M by exchanging along the cycle or path; this satis�es vote(M,M ′) ≤ 0 similarly as
in the proof of Claim 3.5.

Property 4. After reductions according to the previous claims, the number of directed
edges in D[S ∪ (T \T2)] entering a node s ∈ S plus the number of edges between s and
T2 is at most b(s).

Claim 3.7. If uv is an edge in G[S ∪ (T \ T2)] and it is not a directed edge in any
direction, then uv cannot belong to the SPbM.

Proof. Suppose that uv is in the SPbM M , u ∈ T \ T2, and v ∈ S. The number of
directed edges incident to u is at least b(u) by Property 3. If such an edge has head
or tail v, then it is also in M , otherwise it would be blocking. We can conclude that
there is a directed edge su or us for some s 6= v, which is not in M .
Case 1: There is a directed edge su entering u for some s 6= v, which is not in M .

There are b(v) directed edges leaving v, therefore there is a directed edge vt 6∈ M .
Consider the path starting with su, uv and then alternating between directed edges
that are not in M and edges of M that are not directed backwards in the path.
Similarly to the proof of Claim 3.5, we either reach a node t′ ∈ T1, or return to a
previous node of the path, and exchanging along the obtained path or cycle yields a
matching M ′ such that vote(M,M ′) ≤ 0.
Case 2: There is a directed edge us leaving u for some s 6= v, which is not in M .

First we build a path starting with vu and then alternating between directed edges
that are not in M and edges of M in G[S ∪ (T \ T2)] that are not directed backwards
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until we can. The latter can be achieved because a node s ∈ S entered by a directed
edge not in M �lls its quota, so by Property 4 there is an incident edge in M not
directed towards s whose other endpoint is not in T2. If we return to a previous node of
the path, then exchanging along the cycle yields a matchingM ′ and vote(M,M ′) ≤ 0.
If we reach a node t ∈ T \ T2 such that there is no s′ ∈ S such that ts′ is a directed
edge not inM , then there is a directed edge not inM pointing to this node t by Claim
Property 3, which we add to the path. Let this (quasi-)path be denoted by P . We
continue P from v with edges alternating between directed edges not in M and edges
of M that are not directed backwards. If we reach a node t′ ∈ T1, then exchanging
along the (quasi-)path yields a matching M ′ and vote(M,M ′) ≤ 0; see Figure 2 for
an illustration of this case. If we return to a previous node of the path, then, again,
exchanging along the obtained cycle yields a matching M ′ and vote(M,M ′) ≤ 0.

Figure 2: The solid edges belong to the SPbM.

Property 5. After reductions according to the previous claims, every edge of G is
either directed in D or has one endpoint in T2.

Lemma 3.8. Suppose there is an SPbM M , and a directed edge st 6∈M . Then there
is a directed path from s to a node in T1 that starts with st and which is alternating
with respect to M .

Proof. We claim that if t ∈ T \ T1, then there is a directed edge ts2 in M . Indeed,
t �lls its quota (otherwise st would be blocking), and t ∈ T \ T2 because st enters
t. Therefore, by Property 5, only edges of D are incident to t, and if all edges of
M incident to t are directed towards t, then t ∈ T1 by Properties 2 and 3. We can
conclude that there is at least one outgoing directed edge ts2 that belongs to M .
There are b(s2) directed edges leaving s2, so there is a directed edge s2t2 6∈ M .

Continuing the alternating directed path like this we either reach a node in T1 or we
get an alternating directed cycle which contradicts the strong popularity of M .

Lemma 3.9. Suppose there is an SPbM M , and a directed edge st ∈M . Then there
is a directed path from s to a node in T1 that starts with st and which is alternating
with respect to M .
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Proof. If t ∈ T \ T1, then there is a directed edge ts2 6∈M , because if not, then there
are less than b(t) directed edges leaving t, therefore all edges entering t are in the tie
at the end of t's preference list, and there is a directed edge not in M entering t by
Property 3, which means that t ∈ T1. The node s2 �lls its quota since otherwise ts2
would be blocking; therefore, there is a directed edge s2t2 ∈M because of Property 4.
Continuing the alternating directed path like this we either reach a node in T1 or we
get an alternating directed cycle which contradicts that M is strongly popular.

Lemma 3.10. If M is an SPbM, then dM(v) = b(v) for every v ∈ S ∪ T .

Proof. Let M be an SPbM, and suppose that a node s ∈ S does not �ll its quota.
Then there is a directed edge leaving s that is not in M . By Lemma 3.8, there
is an alternating directed path from s to a node t ∈ T1 that starts with this edge.
Exchanging along this alternating path yields a b-matchingM ′ with vote(M,M ′) ≤ 0.
Now suppose that a node t ∈ T \ T2 does not �ll its quota. There are no directed

edges not in M entering t, because they would be blocking. Thus by Property 3 there
is a directed edge ts 6∈M . We have already seen that nodes in S �ll their quota. By
Property 4, there is a directed edge st′ ∈ M with t′ 6= t, and by Lemma 3.9 there
is an alternating directed path P from s to a node t1 ∈ T1 that starts with st′. If
this path reaches t, then we get an alternating directed cycle which contradicts the
strong popularity of M . If not, let s′t1 be a directed edge which does not belong to
M (such an edge exists by the de�nition of T1). Let M ′ be the b-matching we get
from M by exchanging along the alternating (quasi-)path ts ∪ P ∪ t1s′. This satis�es
vote(M,M ′) ≤ 0.
Finally, suppose that a node t ∈ T2 does not �ll its quota. Let st be an edge that

is not in M . It follows from Property 4 that there is a directed edge st′ ∈ M since
s �lls its quota. By Lemma 3.9, there is a directed alternating path P from s to a
node t1 ∈ T1 that starts with st′. Let s′t1 be a directed edge that does not belong to
M . Let M ′ be the b-matching we get from M by exchanging along the alternating
(quasi-)path ts ∪ P ∪ t1s′. This satis�es vote(M,M ′) ≤ 0.

Lemma 3.11. Let M be an SPbM and st ∈ M a directed edge. If s prefers st′ over
st, then st′ ∈M .

Proof. Suppose st′ 6∈M . By Lemma 3.9, there is an alternating directed path P from
s to a node t1 ∈ T1 which starts with st, and by Lemma 3.8 there is an alternating
directed path P ′ from s to a node t′1 ∈ T1 which starts with st′. If P ′ intersects P ,
then we get an alternating cycle, and exchanging along this cycle yields a b-matching
M ′ such that vote(M,M ′) ≤ 0. Otherwise, let s′t1 be a directed edge that does not
belong to M , and let M ′ be the b-matching we get from M by exchanging along the
alternating (quasi-)path s′t1 ∪ P ∪ P ′. This satis�es vote(M,M ′) ≤ 0.

Claim 3.12. If the number of directed edges in D[T \ T2 ∪ S] entering a node s ∈ S
plus the number of edges between s and T2 are less than b(s), then s's most preferred
edge has to belong to the SPbM if there is one.

Proof. This follows from Lemmas 3.10 and 3.11.
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Property 6. After reductions according to the previous claims, the number of directed
edges in D[T \ T2 ∪ S] entering a node s ∈ S plus the number of edges between s and
T2 is exactly b(s).

Lemma 3.13. If G is not the empty graph (and all the listed properties hold), then
there is no SPbM.

Proof. Suppose G is not empty andM is an SPbM. If a directed edge st is inM , then
there is either a directed edge entering s that does not belong to M , or there is an
edge st′ 6∈ M with t′ ∈ T2 because of Property 6. If a directed edge ts is not in M
and t ∈ T \ T2, then there is a directed edge in M entering t since t �lls its quota.
It follows that given a directed edge st ∈ M , we can go on a backwards directed

alternating path from s until we reach a node s′ such that there is an edge s′u 6∈ M
with u ∈ T2 (the backwards walk cannot intersect itself because that would give a
directed alternating cycle showing that M is not strongly popular). Thus, for every
directed edge st ∈M with t ∈ T1, there is a node s′ ∈ S such that there is a directed
alternating path P from s′ to t with last edge st, and there is an edge s′u 6∈ M with
u ∈ T2. We call the path us ∪ P a type 1 path from t to u. From every node in T1
there is a type 1 path to a node in T2.
Let us be an edge in M with u ∈ T2. By Property 6, there is a directed edge

st 6∈ M . By Lemma 3.8, there is a directed alternating path P from s to a node
t′ ∈ T1 which starts with the edge st. We call the path us ∪ P a type 2 path from
u to t′. From every node in T2 there is a type 2 path to a node in T1.
We go back and forth between T1 and T2 on type 1 and type 2 paths, such that

we choose the �rst edge of a type 1 path from a node t ∈ T1 to be one of the least
preferred edges by t (we can do this because of the de�nition of T1), and we choose
the �rst edge of a type 2 path from u ∈ T2 to be one of the least preferred edges
by u (we can do this because there are less than b(u) directed edges leaving u, and
u �lls its quota). We stop if we return to a node in T1 or T2 that we have already
touched, or the �rst time a type 2 path P intersects a previous type 2 path P ′ at a
node t ∈ T \ (T1 ∪ T2). If this happens we can forget about the paths before P ′ and
P ′, and we can replace the part of P after t with the part of P ′ after t and still get a
type 2 path.
We can conclude that if G is not the empty graph, then there are nodes t1, t2, . . . , tk

in T1 and u1, u2, . . . , uk in T2 such that there is a type 1 path Pi from ti to ui and
a type 2 path P ′i from ui to ti+1 for i = 1, . . . , k where tk+1 := t1, the �rst edge of
Pi is one of the least preferred edges by ti and the �rst edge of P ′i is one of the least
preferred edges by ui. Type 2 paths do not intersect at a node in T \ (T1 ∪ T2). Next
we show that these paths can be assumed to be edge-disjoint.
We may choose the paths to be edge-disjoint (although not necessarily node-disjoint),

because when we reach a node in S ∪ T \ (T1 ∪ T2) that we have already used, we can
always choose to proceed on an edge not yet used. Indeed, if there are ` non-outgoing
edges in M incident to a node s ∈ S, then there are at least ` edges not in M leaving
s, and if there are ` edges inM leaving s, then there are at least ` non-outgoing edges
not in M incident to s (because of Lemma 3.10 and Property 6). Similarly, if there
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are ` edges not in M leaving a node t ∈ T \ (T1 ∪ T2), then there are at least ` edges
in M entering t (because of Lemma 3.10).
Let C denote the closed tour P1 ∪ P ′1 ∪ P2 ∪ P ′2 ∪ · · · ∪ Pk ∪ P ′k. The nodes of C

in order are v1v2 . . . vn, where v1 = vn. These nodes are not necessarily distinct; let
V (C) denote the node set of C without multiplicities. The tour C is alternating with
respect to M . Let M ′ be the b-matching we get from M by exchanging the edges
along C.
For each vj, let (ej1, . . . , e

j
b(vj)

; f j
1 , . . . , f

j
b(vj)

) be the valid enumeration of (M,M ′) at

vj where e
j
i and f

j
i are consecutive edges of C whenever eji 6= f j

i . By de�nition, we
have

votevj(M,M ′) ≤
b(vj)∑
i=1

votevj(e
j
i , f

j
i ).

Observe that vivi+1 ∈M if i is odd and vivi+1 ∈M ′ if i is even. Therefore

vote(M,M ′) =
∑

vj∈V (C)

votevj(M,M ′)

≤
∑

j is odd

votevj(vjvj+1, vj−1vj) +
∑

j is even

votevj(vj−1vj, vjvj+1).

The right hand side is equal to 0, because

• if we sum up the votes of the nodes in S∪T \ (T1∪T2) of a type 1 path between
the two edges of the path incident to that node, we get +1

• if we sum up the votes of the nodes in S∪T \ (T1∪T2) of a type 2 path between
the two edges of the path incident to that node, we get −1

• the vote of each node in T1 ∪ T2 is at most 0.

We obtained that vote(M,M ′) ≤ 0, thus M is not strongly popular.

Lemma 3.13 shows that by performing the reduction operations de�ned in the
claims, we either get a certi�cate that the graph has no SPbM (which implies that
the original graph also has none), or we eventually reach the empty graph. The latter
means that the only possible candidate for an SPbM in the original graph is the set
of �xed edges F . We can check in polynomial time if F is an SPbM of the original
preference system or not.

4 Conclusion

We proved that in case of strict preferences on one side and restricted ties on the other
side, the existence of a strongly popular b-matching can be decided in polynomial time.
This is a clear indication that the strongly popular matching problem is signi�cantly
easier than the popular matching problem. It seems to be di�cult to complement
this with hardness results; as mentioned in the introduction, the strongly popular
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matching problem is in the complexity class UP, for which no complete problems are
known. Therefore, the more promising direction is to attempt to show polynomial-
time solvability for other types of preference systems. In particular, the decision
problem for strongly popular matchings is open in the following two cases:

• bipartite preference systems with strict preference and indi�erence allowed on
both sides,

• bipartite preference systems with strict preferences on one side, and arbitrary
preferences on the other side.

Our techniques do not seem to extend easily to these problems.
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