# Egerváry Research Group on Combinatorial Optimization 



## TECHNICAL REPORTS

TR-2016-21. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

# Global Rigidity of Periodic Graphs under Fixed-lattice Representations 

Viktória E. Kaszanitzky, Bernd Schulze, and Shin-ichi Tanigawa

# Global Rigidity of Periodic Graphs under Fixed-lattice Representations 

Viktória E. Kaszanitzky ${ }^{\star}$, Bernd Schulze ${ }^{\star \star}$, and Shin-ichi Tanigawa ${ }^{\star \star \star}$


#### Abstract

In [8] Hendrickson proved that $(d+1)$-connectivity and redundant rigidity are necessary conditions for a generic (non-complete) bar-joint framework to be globally rigid in $\mathbb{R}^{d}$. Jackson and Jordán 9 confirmed that these conditions are also sufficient in $\mathbb{R}^{2}$, giving a combinatorial characterization of graphs whose generic realizations in $\mathbb{R}^{d}$ are globally rigid. In this paper, we establish analogues of these results for infinite periodic frameworks under fixed lattice representations. Our combinatorial characterization of globally rigid generic periodic frameworks in $\mathbb{R}^{2}$ in particular implies toroidal and cylindrical counterparts of the theorem by Jackson and Jordán.


## 1 Introduction

A bar-joint framework (or simply framework) in $\mathbb{R}^{d}$ is a pair $(G, p)$, where $G=$ $(V, E)$ is a graph and $p: V \rightarrow \mathbb{R}^{d}$ is a map. We think of a framework as a straight line realization of $G$ in $\mathbb{R}^{d}$ in which the length of an edge $u v \in E$ is given by the Euclidean distance between the points $p(u)$ and $p(v)$. A well-studied problem in discrete geometry is to determine the rigidity of frameworks. A framework $(G, p)$ is called (locally) rigid if, loosely speaking, it cannot be deformed continuously into another non-congruent framework while maintaining the lengths of all edges. It is well-known that a generic framework $(G, p)$ is rigid in $\mathbb{R}^{d}$ if and only if every generic realization of $G$ in $\mathbb{R}^{d}$ is rigid [1,6]. In view of this fact, a graph $G$ is said to be

[^0]rigid in $\mathbb{R}^{d}$ if some/any generic realization of $G$ is rigid in $\mathbb{R}^{d}$. A classical theorem by Laman [16] says that $G$ is rigid in $\mathbb{R}^{2}$ if and only if $G$ contains a spanning subgraph $H$ such that $|F| \leq 2|V(F)|-3$ for every nonempty $F \subseteq E(H)$, where $V(F)$ denotes the set of vertices incident to $F$.

Another central property in rigidity theory is global rigidity. A framework ( $G, p$ ) is called globally rigid, if every framework $(G, q)$ in $\mathbb{R}^{d}$ with the same edge lengths as $(G, p)$ has the same distances between all pairs of vertices as $(G, p)$. Although deciding the global rigidity of a given framework is a difficult problem in general, the problem becomes tractable if we restrict attention to generic frameworks [7], i.e. frameworks with the property that the coordinates of all points $p(v), v \in V$, are algebraically independent over $\mathbb{Q}$.

In 1992 Hendrickson [8] established the following necessary condition for a generic framework in $\mathbb{R}^{d}$ to be globally rigid.

Theorem 1.1 (Hendrickson [8]). If $(G, p)$ is a generic globally rigid framework in $\mathbb{R}^{d}$, then $G$ is a complete graph with at most $d+1$ vertices, or $G$ is $(d+1)$-connected and redundantly rigid in $\mathbb{R}^{d}$, where $G$ is called redundantly rigid if $G-e$ is rigid for every $e \in E(G)$.

Although the converse direction is false for $d \geq 3$ as pointed out by Connelly, it turned out to be true for $d \leq 2$.

Theorem 1.2 (Jackson and Jordán $[9 \mid)$. Let $(G, p)$ be a generic framework in $\mathbb{R}^{2}$. Then $(G, p)$ is globally rigid if and only if $G$ is a complete graph with at most 3 vertices, or $G$ is 3-connected and redundantly rigid in $\mathbb{R}^{2}$.

Based on the theory of stress matrices by Connelly [2, 3], Gortler, Healy, and Thurston [7] gave an algebraic characterization of the global rigidity of generic frameworks. This in particular implies that all generic realizations of a given graph share the same global rigidity properties in $\mathbb{R}^{d}$, as in the case of local rigidity. However the problem of extending Theorem 1.2 to higher dimension remains unsolved.

Largely motivated by practical applications in crystallography, materials science and engineering, as well as by mathematical applications in areas such as sphere packings, the rigidity analysis of infinite periodic frameworks has seen an increased interest in recent years. A particularly relevant to our work is an extension of Laman's theorem to periodic frameworks with fixed-lattice representations by Ross [21. In her rigidity model, a periodic framework can deform continuously under a fixed periodicity constraint (i.e., each orbit of points is fixed).

In this paper, we shall initiate the global rigidity counterpart of the rigidity theory of periodic frameworks. The global rigidity of periodic frameworks is considered at the same level as Ross's rigidity model [21, 22], and we shall extend Theorem 1.1 and Theorem 1.2 to periodic frameworks. Analogous to Theorem 1.1 there are two types of necessary conditions, a graph connectivity condition (Lemma 3.1) and a redundant rigidity condition (Lemma 3.7). Our main result (Theorem 4.2) is that these necessary conditions are also sufficient in $\mathbb{R}^{2}$, thus giving a first combinatorial characterization of the global rigidity of generic periodic frameworks. The proof of
this result is inspired by the work in 10,23 . In particular, it does not require the notion of stress matrices [2, 3]. Note also that our proof does not rely on periodic global rigidity in $\mathbb{R}^{2}$ being a generic property, meaning that all generic realizations of a periodic graph in the plane share the same global rigidity properties.

As for the rigidity of periodic frameworks, an extension of Laman's theorem was established in a more general setting by Malestein and Theran [17], where the underlying lattice may deform during a motion of a framework (but it is still subject to being periodic). Extending our result to this general setting would be an important challenging open problem.

Important corollaries of our main theorem are toroidal and cylindrical counterparts of Theorem 1.2. Here we only give a statement for cylindrical frameworks, but the statement for toroidal frameworks can be derived in a similar fashion (see Theorem 6.1). Consider a straight-line drawing of a graph $G$ on a flat cylinder $\mathcal{C}$. We regard it as a bar-joint framework on $\mathcal{C}$. Using the metric inherited from its representation as $\mathbb{R}^{2} / L$ for a fixed one-dimensional lattice $L$, the local/global rigidity is defined. Ross's theorem [21 for periodic frameworks implies that a generic framework on $\mathcal{C}$ is rigid if and only if the underlying graph contains a spanning subgraph $H$ such that $|F| \leq 2|V(F)|-2$ for every $F \subseteq E(H)$ and $|F| \leq 2|V(F)|-3$ for every nonempty contractible $F \subseteq E(H)$, where $F$ is said to be contractible if every cycle in $F$ is contractible on $\mathcal{C}$.

Theorem 1.3. A generic framework $(G, p)$ with $|V(G)| \geq 3$ on a flat cylinder $\mathcal{C}$ is globally rigid if and only if it is redundantly rigid on $\mathcal{C}$, 2-connected, and has no contractible subgraph $H$ with $|V(H)| \geq 3$ and $|B(H)|=2$, where $B(H)$ denotes the set of vertices in $H$ incident to some edge not in $H$.

The paper is organized as follows. In Section 2, we define the concept of global rigidity for periodic frameworks with a fixed lattice representation, and then establish Hendrickson-type necessary conditions for a generic periodic framework to be globally rigid in $\mathbb{R}^{d}$ in Section 3. In Section 4 we then show that for $d=2$ the necessary conditions established in Section 3 are also sufficient for generic global rigidity (Theorem 4.2). Section 5 is devoted to the proofs of the combinatorial lemmas stated in Section 4.

## 2 Preliminaries

### 2.1 Periodic graphs

A simple graph $\tilde{G}=(\tilde{V}, \tilde{E})$ is called $k$-periodic if $\operatorname{Aut}(\tilde{G})$ contains a subgroup $\Gamma$ isomorphic to $\mathbb{Z}^{k}$ such that the quotient $\tilde{G} / \Gamma=(\tilde{V} / \Gamma, \tilde{E} / \Gamma)$ is finite. $\Gamma$ is called a periodicity of $\tilde{G}$. A $k$-periodic graph can be represented succinctly by assigning an orientation and an element of $\Gamma$ to each edge of $\tilde{G} / \Gamma$. To see this, choose a representative from each vertex orbit, and denote these representative vertices by $v_{1}, \ldots, v_{n}$, where $n$ denotes the number of vertex orbits. Then each edge orbit between $\Gamma v_{i}$ and $\Gamma v_{j}$ can be written as $\left\{\left\{\gamma v_{i}, \beta_{v_{i} v_{j}} \gamma v_{j}\right\}: \gamma \in \Gamma\right\}$ for a unique $\beta_{v_{i} v_{j}} \in \Gamma$. Hence,
by directing the edge orbit from $\Gamma v_{i}$ to $\Gamma v_{j}$ in $\tilde{G} / \Gamma$ and then assigning the label $\beta_{v_{i} v_{j}}$, we have encoded enough information to recover $\tilde{G}$. The resulting directed (multi-)graph $G$ with the group-labeling $\psi: E(G) \rightarrow \Gamma$ described above is called the quotient $\Gamma$ labeled graph of $\tilde{G}$, and is denoted by the pair $(G, \psi)$. (See Figure 1 for two examples.) Although $V(G)$ denotes the set of vertex orbits, it is often convenient to identify $V(G)$ with the set $\left\{v_{1}, \ldots, v_{n}\right\}$ of the representative vertices, and throughout the paper we will follow this convention by assuming that a fixed representative vertex has been chosen from each vertex orbit.

Let $\Gamma$ be a group isomorphic to $\mathbb{Z}^{k}$. In general, a pair $(G, \psi)$ of a directed (multi)graph $G$ and a map $\psi: E(G) \rightarrow \Gamma$ is called a $\Gamma$-labeled graph. Throughout this paper we will assume that $G$ is loopless. Although $G$ is directed, its orientation is used only for the reference of the group-label, and we are free to change the orientation of each edge by imposing the property on that if an edge has a label $\gamma$ in one direction, then it has $\gamma^{-1}$ in the other direction. More precisely, two edges $e_{1}, e_{2}$ are regarded as identical if they are parallel with the same direction and the same label, or with the opposite direction and the opposite labels. Throughout the paper, all $\Gamma$-labeled graphs are assumed to be semi-simple, that is, no identical two edges exist (although parallel edges may exist).

For a given $\Gamma$-labeled graph $(G, \psi)$, one can construct a $k$-periodic graph $\tilde{G}$ by setting $V(\tilde{G})=\left\{\gamma v_{i}: v_{i} \in V(G), \gamma \in \Gamma\right\}$ and $E(\tilde{G})=\left\{\left\{\gamma v_{i}, \psi\left(v_{i} v_{j}\right) \gamma v_{j}\right\}:\left(v_{i}, v_{j}\right) \in\right.$ $E(G), \gamma \in \Gamma\}$. This $\tilde{G}$ is called the covering of $(G, \psi)$.

We define a walk as an alternating sequence $v_{1}, e_{1}, v_{2} \ldots, e_{k}, v_{k+1}$ of vertices and edges such that $v_{i}$ and $v_{i+1}$ are the endvertices of $e_{i}$. For a closed walk $C=v_{1}, e_{1}, v_{2} \ldots, e_{k}, v_{1}$ in $(G, \psi)$, let $\psi(C)=\prod_{i=1}^{k} \psi\left(e_{i}\right)^{\operatorname{sign}\left(e_{i}\right)}$, where $\operatorname{sign}\left(e_{i}\right)=1$ if $e_{i}$ has forward direction in $C$, and $\operatorname{sign}\left(e_{i}\right)=-1$ otherwise. For a subgraph $H$ of $G$ define $\Gamma_{H}$ as the subgroup of $\Gamma$ generated by the elements $\psi(C)$, where $C$ ranges over all closed walks in $H$. The rank of $H$ is defined to be the rank of $\Gamma_{H}$. Note that the rank of $G$ may be less than the rank of $\Gamma$, in which case the covering graph $\tilde{G}$ contains an infinite number of connected components (see Figure 1(a)).

We say that an edge set $F$ is balanced if the subgraph induced by $F$ has rank zero, i.e., $\psi(C)=\mathrm{id}$ for every closed walk $C$ in $F$.

One useful tool to compute the rank of a subgraph is the switching operation. A switching at $v \in V(G)$ by $\gamma \in \Gamma$ changes $\psi$ to $\psi^{\prime}$ defined by $\psi^{\prime}(e)=\gamma \psi(e)$ if $e$ is directed from $v, \psi^{\prime}(e)=\gamma^{-1} \psi(e)$ if $e$ is directed to $v$, and $\psi^{\prime}(e)=\psi(e)$ otherwise.

### 2.2 Periodic frameworks

In the context of graph rigidity, a pair $(G, p)$ of a graph $G=(V, E)$ and a map $p: V \rightarrow \mathbb{R}^{d}$ is called a (bar-joint) framework in $\mathbb{R}^{d}$. A periodic framework is a special type of infinite framework defined as follows.

Let $\tilde{G}$ be a $k$-periodic graph with periodicity $\Gamma$, and let $L: \Gamma \rightarrow \mathbb{R}^{d}$ be a nonsingular homomorphism with $k \leq d$, where $L$ is said to be nonsingular if $L(\Gamma)$ has rank $k$. A pair $(\tilde{G}, \tilde{p})$ of $\tilde{G}$ and $\tilde{p}: \tilde{V} \rightarrow \mathbb{R}^{d}$ is said to be an L-periodic framework in $\mathbb{R}^{d}$ if

$$
\begin{equation*}
\tilde{p}(v)+L(\gamma)=\tilde{p}(\gamma v) \quad \text { for all } \gamma \in \Gamma \text { and all } v \in \tilde{V} \tag{2.1}
\end{equation*}
$$


(a)

(c)

(b)

$$
\begin{gathered}
(0,2) \longrightarrow>p \\
\&(0,0)(1,1) \\
(0,0) \geqslant \downarrow
\end{gathered}
$$

(d)

Figure 1: The framework in (a) has infinitely many connected components, and its quotient $\mathbb{Z}^{2}$-labeled graph shown in (b) is of rank one. The framework in (c) has two connected components, and its quotient $\mathbb{Z}^{2}$-labeled graph shown in (d) is of rank two. The vertices of the two components are depicted with two distinct colors in (c). We remark that neither of these frameworks is $L$-periodically globally rigid, by Lemmas 3.1 and 3.7, respectively.

We also say that a pair $(\tilde{G}, \tilde{p})$ is $k$-periodic in $\mathbb{R}^{d}$ if it is $L$-periodic for some nonsingular homomorphism $L: \Gamma \rightarrow \mathbb{R}^{d}$. Note that the rank $k$ of the periodicity may be smaller than $d$. For instance, if $k=1$ and $d=2$, then $(\tilde{G}, \tilde{p})$ is an infinite strip framework in the plane. Any connected component of the framework in Figure 1(a), for example, is such a strip framework (with $\Gamma=\langle(1,1)\rangle$ ).

An $L$-periodic framework $(\tilde{G}, \tilde{p})$ is generic if the set of coordinates is algebraically independent over the rationals modulo the ideal generated by the equations (2.1). For simplicity of description, throughout the paper, we shall assume that $L$ is a rationalvalued function ${ }^{1}$, i.e., $L: \Gamma \rightarrow \mathbb{Q}^{d}$.

Let $(\tilde{G}, \tilde{p})$ be an $L$-periodic framework and let $(G, \psi)$ be the quotient $\Gamma$-labeled graph of $G$. Following the convention that $V(G)$ is identified with the set $\left\{v_{1}, \ldots, v_{n}\right\}$ of representative vertices, one can define the quotient $\Gamma$-labeled framework as the triple

[^1]$(G, \psi, p)$ with $p: V(G) \ni v_{i} \mapsto \tilde{p}\left(v_{i}\right) \in \mathbb{R}^{d}$. In general, a $\Gamma$-labeled framework is defined to be a triple $(G, \psi, p)$ of a finite $\Gamma$-labeled graph $(G, \psi)$ and a map $p: V(G) \rightarrow \mathbb{R}^{d}$. The covering of $(G, \psi, p)$ is a $k$-periodic framework $(\tilde{G}, \tilde{p})$, where $\tilde{G}$ is the covering of $G$ and $\tilde{p}$ is uniquely determined from $p$ by (2.1).

We say that a $\Gamma$-labeled framework $(G, \psi, p)$ is generic if the set of coordinates in $p$ is algebraically independent over the rationals. Note that an $L$-periodic framework $(\tilde{G}, \tilde{p})$ is generic if and only if the quotient $(G, \psi, p)$ of $(\tilde{G}, \tilde{p})$ is generic.

### 2.3 Rigidity and global rigidity

Let $G=(V, E)$ be a graph. Two frameworks $(G, p)$ and $(G, q)$ in $\mathbb{R}^{d}$ are said to be equivalent if

$$
\|p(u)-p(v)\|=\|q(u)-q(v)\| \quad \text { for all } u v \in E
$$

They are congruent if

$$
\|p(u)-p(v)\|=\|q(u)-q(v)\| \quad \text { for all } u, v \in V .
$$

A framework $(G, p)$ is called globally rigid if every framework $(G, q)$ in $\mathbb{R}^{d}$ which is equivalent to $(G, p)$ is also congruent to $(G, p)$.

We may define the corresponding periodicity-constrained concept as follows. An $L$-periodic framework $(\tilde{G}, \tilde{p})$ in $\mathbb{R}^{d}$ is $L$-periodically globally rigid if every $L$-periodic framework in $\mathbb{R}^{d}$ which is equivalent to $(\tilde{G}, \tilde{p})$ is also congruent to $(\tilde{G}, \tilde{p})$. Note that if the rank of the periodicity is equal to zero, then $L$-periodic global rigidity coincides with the global rigidity of finite frameworks.

A key notion to analyze the $L$-periodic global rigidity is the $L$-periodic rigidity. By the periodicity constraint 2.1 , the space of all $L$-periodic frameworks in $\mathbb{R}^{d}$ for a given graph $\tilde{G}$ can be identified with Euclidean space $\mathbb{R}^{d n}$ so that the topology is defined. A framework ( $\tilde{G}, \tilde{p})$ is called L-periodically rigid if there is an open neighborhood $N$ of $\tilde{p}$ in which every $L$-periodic framework $(\tilde{G}, \tilde{q})$ which is equivalent to $(\tilde{G}, \tilde{p})$ is also congruent to $(\tilde{G}, \tilde{p})$.

### 2.4 Characterizing $L$-periodic rigidity

A key tool to analyze the local or the global rigidity of finite frameworks is the lengthsquared function and its Jacobian, called the rigidity matrix. One can follow the same strategy to analyze local or global periodic rigidity.

For a $\Gamma$-labeled graph $(G, \psi)$ and $L: \Gamma \rightarrow \mathbb{R}^{d}$, define $f_{G, L}: \mathbb{R}^{d|V(G)|} \rightarrow \mathbb{R}^{|E(G)|}$ by

$$
f_{G, L}(p)=\left(\ldots,\left\|p\left(v_{i}\right)-\left(p\left(v_{j}\right)+L\left(\psi\left(v_{i} v_{j}\right)\right)\right)\right\|^{2}, \ldots\right) \quad\left(p \in \mathbb{R}^{d|V(G)|}\right)
$$

For a finite set $V$, the complete $\Gamma$-labeled graph $K(V, \Gamma)$ on $V$ is defined to be the graph on $V$ with the edge set $\{(u, \gamma v): u, v \in V, \gamma \in \Gamma\}$. We simply denote $f_{K(V, \Gamma), L}$ by $f_{V, L}$.

By (2.1) we have the following fundamental fact.

Proposition 2.1. Let $(\tilde{G}, \tilde{p})$ be an L-periodic framework and let $(G=(V, E), \psi, p)$ be a quotient $\Gamma$-labeled framework of ( $\tilde{G}, \tilde{p})$. Then ( $\tilde{G}, \tilde{p})$ is L-periodically globally (resp. locally) rigid if and only if for every $q \in \mathbb{R}^{d|V|}$ (resp. for every $q$ in an open neighborhood of $p$ in $\left.\mathbb{R}^{d|V|}\right)$, $f_{G, L}(p)=f_{G, L}(q)$ implies $f_{V, L}(p)=f_{V, L}(q)$.

In view of this proposition, we say that a $\Gamma$-labeled framework $(G, \psi, p)$ is $L$ periodically globally (or, locally) rigid if for every $q \in \mathbb{R}^{d|V|}$ (resp. for every $q$ in an open neighborhood of $p$ in $\left.\mathbb{R}^{d|V|}\right)$, $f_{G, L}(p)=f_{G, L}(q)$ implies $f_{V, L}(p)=f_{V, L}(q)$, and we may focus on characterizing the $L$-periodic global (or, local) rigidity of $\Gamma$-labeled frameworks.

For $X \subset \mathbb{R}^{d}$, an isometry $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ of $\mathbb{R}^{d}$ is said to be $X$-invariant if $h(x)-h(0)=$ $x$ for every $x \in X$. The following is the first fundamental fact for analyzing periodic rigidity.

Proposition 2.2. Let $V$ be a finite set, $p, q: V \rightarrow \mathbb{R}^{d}$ two maps, and let $L: \Gamma \rightarrow \mathbb{R}^{d}$ be nonsingular. Suppose that $p(V)$ affinely spans $\mathbb{R}^{d}$. Then $f_{V, L}(p)=f_{V, L}(q)$ holds if and only if $q$ can be written as $q=h \circ p$ for some $L(\Gamma)$-invariant isometry $h$ of $\mathbb{R}^{d}$.

Proof. To see the necessity, assume that $f_{V, L}(p)=f_{V, L}(q)$. Then $\|p(u)-p(w)\|=$ $\|q(u)-q(w)\|$ for every pair of elements $u, w \in V$. Since $p(V)$ affinely spans the whole space, this implies that there is a unique isometry $h: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $q(u)=h(p(u))$ for every $u \in V$. In other words, there is an orthogonal matrix $S$ such that $q(u)-q(v)=S(p(u)-p(v))$ for every $u, v \in V$. By $f_{V, L}(p)=f_{V, L}(q)$, we have $\|p(v)-(p(u)+L(\gamma))\|=\|q(v)-(q(u)+L(\gamma))\|$ for every $u, v \in V$ and every $\gamma \in \Gamma$, which implies $\langle(I-S)(p(u)-p(v)), L(\gamma)\rangle=0$, and hence $\left\langle p(u)-p(v),\left(I-S^{\top}\right) L(\gamma)\right\rangle=$ 0 . Since $p(V)$ affinely spans the whole space, $\left(I-S^{\top}\right) L(\gamma)=0$ for every $\gamma$. In other words, $S$ fixes each element in $L(\Gamma)$ as required.

Conversely, suppose that $q$ is represented as $q(v)=S p(v)+t$ for some $t \in \mathbb{R}^{d}$ and some orthogonal matrix $S$ that fixes each element in $L(\Gamma)$. Then we have $\| q(v)-$ $(q(u)+L(\gamma))\|=\| S(p(v)-(p(u)+L(\gamma)))\|=\| p(v)-(p(u)+L(\gamma)) \|$ for every $u, v \in V$ and every $\gamma \in \Gamma$, implying $f_{V, L}(q)=f_{V, L}(p)$.

The following algebraic characterization is the periodic version of one of the fundamental facts in rigidity theory, and is known even in the periodic case if $k=d$ 22].

Proposition 2.3. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{d}$ with $|V(G)| \geq$ $d+1$ and rank $k$ periodicity $\Gamma$, and let $L: \Gamma \rightarrow \mathbb{R}^{d}$ be nonsingular. Then $(G, \psi, p)$ is L-periodically rigid if and only if

$$
\left.\operatorname{rank} d f_{G, L}\right|_{p}=d|V(G)|-d-\binom{d-k}{2}
$$

where $\left.d f_{G, L}\right|_{p}$ denotes the Jacobian of $f_{G, L}$ at $p$.
Proof. Since the rank of $\Gamma$ is $k$, the set of $L(\Gamma)$-invariant isometries forms a $\left(d+\binom{d-k}{2}\right)$-dimensional manifold. Hence $\left.\operatorname{rank} d f_{V, L}\right|_{p}=d|V(G)|-d-\binom{d-k}{2}$. By the standard argument using the inverse function theorem, it follows that $(G, \psi, p)$ is $L$-periodically rigid if and only if $\left.\operatorname{rank} d f_{V, L}\right|_{p}=\left.\operatorname{rank} d f_{G, L}\right|_{p}$, implying the statement.

For $d=2$ Ross 21] gave a combinatorial characterization of the rank of $\left.d f_{G, L}\right|_{p}$ for generic $(G, \psi, p)$, which implies the following. (Her statement is only for $k=2$, but the proof can easily be adapted to the case when $k=1$.)

Theorem 2.4 (Ross [21]). Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{2}$ with rank $k \geq 1$ periodicity $\Gamma$ and let $L: \Gamma \rightarrow \mathbb{R}^{2}$ be nonsingular. Then $(G, \psi, p)$ is $L$ periodically rigid if and only if $(G, \psi)$ contains a spanning subgraph $\left(H, \psi_{H}\right)$ satisfying the following count conditions:

- $|E(H)|=2|V(G)|-2$;
- $|F| \leq 2|V(F)|-3$ for every nonempty balanced $F \subseteq E(H)$;
- $|F| \leq 2|V(F)|-2$ for every nonempty $F \subseteq E(H)$;
where $V(F)$ denotes the set of vertices incident to $F$.
Note that if $k=0$, then an $L$-periodic framework is simply a finite framework, and generic rigid frameworks in $\mathbb{R}^{2}$ are characterized by the celebrated Laman theorem [16].


## 3 Necessary Conditions

In this section we provide necessary conditions for $L$-periodic global rigidity. As in the finite case, there are two types of conditions, a connectivity condition and a redundant rigidity condition. These two conditions are stated in Lemma 3.1 and Lemma 3.7, respectively.

### 3.1 Necessary connectivity conditions

Let $(G, \psi)$ be a $\Gamma$-labeled graph with $\Gamma$ having rank $k$. For a subgraph $H$ of $G, B(H)$ is defined to be the set of vertices in $H$ incident to some edge in $E(G) \backslash E(H)$, and we denote $I(H)=V(H) \backslash B(H)$. A subgraph $H$ is said to be an $(s, t)$-block if the rank of $H$ is $s,|B(H)|=t$, and $I(H) \neq \emptyset$.

Lemma 3.1. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{d}$ with $|V(G)| \geq 2$, rank $k$ periodicity $\Gamma$, and nonsingular $L: \Gamma \rightarrow \mathbb{R}^{d}$. If $(G, \psi, p)$ is L-periodically globally rigid, then $G$ contains no $(s, t)$-block $H$ with $(s+1) t \leq d$ such that $V(H) \neq V(G)$ or $s<k$.

Proof. We first remark that the following holds for any $\Gamma$-labeled graph $\left(H, \psi_{H}\right)$ and any $v \in V(H)$ :

If a hyperplane $\mathcal{H}$ of $\mathbb{R}^{d}$ contains $\left\{p(v)+L(\gamma): \gamma \in \Gamma_{H}\right\}$, then
$f_{H, L}(g \circ p)=f_{H, L}(p)$ holds for the reflection $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with respect to $\mathcal{H}$.
This follows from Proposition 2.2 by noting that the reflection $g$ is $L\left(\Gamma_{H}\right)$-invariant.

Suppose that $G$ has an $(s, t)$-block $H$ satisfying the property of the statement. If $t=0$ and $V(H) \neq V(G)$ (i.e., $G$ is disconnected), then by translating $p(V(H))$ we obtain $q$ with $f_{G, L}(p)=f_{G, L}(q)$ and $f_{V, L}(p) \neq f_{V, L}(q)$, contradicting the global rigidity of $(G, \psi, p)$. Thus we have

$$
\begin{equation*}
t>0 \text { or } V(H)=V(G) \tag{3.2}
\end{equation*}
$$

Define $B^{\prime}$ by $B^{\prime}=B(H)$ if $t>0$ and otherwise $B^{\prime}=\{x\}$ by picking any vertex $x \in V(G)$, and consider the set of points $P=\left\{p(v)+L(\gamma): v \in B^{\prime}, \gamma \in \Gamma_{H}\right\}$. We have the following:

$$
\begin{equation*}
\text { The affine span aff } P \text { of } P \text { is a proper subspace of } \mathbb{R}^{d} \text {. } \tag{3.3}
\end{equation*}
$$

Indeed, if $t>0$, then $B^{\prime}=B(H)$ and aff $P$ has dimension $(s+1) t-1$, which is less than $d$ by the lemma assumption. On the other hand, if $t=0$, then $B^{\prime}=\{x\}$ and aff $P$ has dimension $s$, which is less than $d$ by (3.2) and the lemma assumption. Thus (3.3) follows.

By (3.3) we can take a hyperplane $\mathcal{H}$ that contains aff $P$. Since $p$ is generic, such a hyperplane can be taken such that $\mathcal{H}$ contains no point in $\left\{p(v): v \in V(G) \backslash B^{\prime}\right\}$. Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be the reflection of $\mathbb{R}^{d}$ with respect to $\mathcal{H}$, and we define $q: V \rightarrow \mathbb{R}^{d}$ by $q(v)=g(p(v))$ if $v \in V(H)$, and $q(v)=p(v)$ otherwise.

We first show $f_{G, L}(p)=f_{G, L}(q)$. Take any edge $e=u v$ in $G$. If $e \notin E(H)$, then $p(u)=q(u)$ and $p(v)=q(v)$ (in particular, $g$ is identity on $p(B(H))$ ), implying $\|p(u)-(p(v)+L(\psi(e)))\|=\|q(u)-(q(v)+L(\psi(e)))\|$. Otherwise, (3.1) implies $\|p(u)-(p(v)+L(\psi(e)))\|=\|q(u)-(q(v)+L(\psi(e)))\|$. Thus $f_{G, L}(p)=f_{G, L}(q)$ follows.

To derive a contradiction we shall show $f_{V, L}(p) \neq f_{V, L}(q)$ by splitting the proof into two cases depending on whether $V(H)=V(G)$ or not.

Suppose that $V(G) \neq V(H)$. By the definition of an $(s, t)$-block, we can take a $v \in I(H)$. Then $f_{V, L}(p) \neq f_{V, L}(q)$ holds since $\|p(v)-p(u)\| \neq\|q(v)-q(u)\|$ for any $u \in V(G) \backslash V(H)$.

Suppose that $V(H)=V(G)$. Let $x \in B^{\prime}$ and $u \in I(H) \backslash B^{\prime}$. (As $x$ was chosen arbitrary from $V(G)$, we may suppose $I(H) \backslash B^{\prime} \neq \emptyset$.) By the lemma assumption, $s<k$ holds, and hence we can take $\gamma^{*} \in \Gamma$ that is not spanned by $\Gamma_{H}$. As $\gamma^{*}$ is not spanned by $\Gamma_{H}$, we could take the above hyperplane $\mathcal{H}$ such that $p(x)-L\left(\gamma^{*}\right)$ is outside of $\mathcal{H}$. Note that $p(u) \neq q(u)$ as $p(u) \notin \mathcal{H}$ (by $\left.u \in I(H) \backslash B^{\prime}\right)$. Hence the set of points equidistant from $p(v)$ and $q(v)$ is $\mathcal{H}$, which in turn implies that the set of points equidistant from $p(v)+L\left(\gamma^{*}\right)$ and $q(v)+L\left(\gamma^{*}\right)$ is $\mathcal{H}+L\left(\gamma^{*}\right)$. Therefore, as $p(x) \notin \mathcal{H}+L\left(\gamma^{*}\right)$ but $p(x) \in \mathcal{H},\left\|p(x)-\left(p(u)+L\left(\gamma^{*}\right)\right)\right\| \neq\left\|p(x)-\left(q(u)+L\left(\gamma^{*}\right)\right)\right\|=$ $\left\|q(x)-\left(q(u)+L\left(\gamma^{*}\right)\right)\right\|$. This implies $f_{V, L}(p) \neq f_{V, L}(q)$.

Consider, for example, the framework shown in Figure 2(a) and its quotient $\mathbb{Z}^{2}$ labeled graph $(G, \psi)$ shown in (b). The subgraph $H$ of $(G, \psi)$ induced by the dashed edges is a $(1,1)$-block with $V(H) \neq V(G)$. Thus, by Lemma 3.1, the framework in (a) is not globally $L$-periodically rigid. Here aff $(P)$ is one of the thin black lines in (a) connecting the copies of the black vertices, and $g$ is the reflection in aff $(P)$. The framework $(\tilde{G}, \tilde{q})$ is obtained from $(\tilde{G}, \tilde{p})$ by reflecting each connected component of the

(a)

(c)

(b)

(d)

Figure 2: Examples of frameworks which are not globally $L$-periodically rigid, illustrating the proof of Lemma 3.1 for a rank 2 group $\Gamma=\mathbb{Z}^{2}$.
framework with dashed edges in the corresponding parallel copy of aff $(P)$ containing the black vertices of the component.

Figure 2 (c) shows another example of a framework which is not globally $L$-periodically rigid by Lemma 3.1. Consider the corresponding quotient $\mathbb{Z}^{2}$-labeled graph $(G, \psi)$ shown in Figure 2(d). The subgraph $H$ induced by the dashed edges is a $(0,2)$-block of $G$ with $V(H)=V(G)$ but $0=s<k=2$. Here aff $(P)$ is one of the lines in (c) indicated by thin black line segments connecting pairs of black vertices, and $g$ is again the reflection in $\operatorname{aff}(P)$. The framework $(\tilde{G}, \tilde{q})$ is obtained from $(\tilde{G}, \tilde{p})$ as described in the previous case.

Sometimes Lemma 3.1 can be strengthened by decomposing graphs. Consider for example the case $d=2$. Suppose that $\left(G_{1}, \psi_{1}, p_{1}\right)$ is redundantly $L$-periodically rigid but contains a $(1,1)$-block $H$. Then by Lemma $3.1(G, \psi, p)$ is not $L$-periodically globally rigid. Now consider attaching a new $L$-periodically globally rigid framework $\left(G_{2}, \psi_{2}, p_{2}\right)$ at a vertex in $I(H)$ with $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=1$. Then the resulting framework is clearly not $L$-periodically globally rigid but $H$ is no longer a (1,1)-block and the resulting graph may satisfy the cut condition (and may also be redundantly $L$ periodically rigid). In general, if a framework has a cut vertex, then we should look at each 2-connected component individually based on the following fact.

Lemma 3.2. Let $(G, \psi, p)$ be a $\Gamma$-labeled framework with rank $d$ periodicity $\Gamma$, and suppose that it can be decomposed into two frameworks $\left(G_{i}, \psi_{i}, p_{i}\right)(i=1,2)$ with
$\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=1$. Then $(G, \psi, p)$ is L-periodically globally rigid if and only if each $\left(G_{i}, \psi_{i}, p_{i}\right)$ is L-periodically globally rigid.

Proof. Note that, if the underlying periodicity group $\Gamma$ has rank $d$, then every $L(\Gamma)$ invariant isometry is a translation. Hence the claim follows from Proposition 2.2.

A similar statement to Lemma 3.2 holds if we assume that the intersection of the two frameworks forms an $L$-periodically globally rigid subframework. Extending it to a more general gluing scenario (and sharpening the necessary condition for global periodic rigidity) is left as an open problem.

### 3.2 The necessity of redundant $L$-periodic rigidity

Let $X$ be a smooth manifold and $f: X \rightarrow \mathbb{R}^{m}$ be a smooth map. Then $x \in X$ is said to be a regular point of $f$ if the Jacobian $\left.d f\right|_{x}$ has maximum rank, and is a critical point of $f$ otherwise. Also $f(x)$ is said to be a regular value of $f$ if, for all $y \in f^{-1}(f(x)), y$ is a regular point of $f$. Otherwise $f(x)$ is called a critical value of $f$.

We use the following lemmas.
Lemma 3.3. (See, e.g., 10]) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be a polynomial map with rational coefficients and $p$ be a generic point in $\mathbb{R}^{d}$. If $\left.d f\right|_{p}$ is row-independent, then $f(p)$ is generic in $\mathbb{R}^{k}$.

Lemma 3.4. (See, e.g., [77) Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be a polynomial map with rational coefficients and $p$ be a generic point in $\mathbb{R}^{d}$. Then $f(p)$ is a regular value of $f$.

For a vector $p$ in $\mathbb{R}^{d}$, let $\mathbb{Q}(p)$ be the field generated by the entries of $p$ and the rationals. For a field $F$ and an extension $K$, let $t d[K: F]$ denote the transcendence degree of the extension. For a field $K$, let $\bar{K}$ be the algebraic closure of $K$. We also need the following lemma which will be used in the proof of Lemma 4.5. (See, e.g., 11, Proposition 13] for the proof.)

Lemma 3.5. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ be a polynomial map with rational coefficients and $p$ be a generic point in $\mathbb{R}^{d}$. Suppose that $\left.d f\right|_{p}$ is nonsingular. Then for every $q \in f^{-1}(p)$ we have $\overline{\mathbb{Q}(p)}=\overline{\mathbb{Q}(q)}$.

We now return to our discussion of $L$-periodically globally rigid frameworks. Let $\Gamma$ be a group isomorphic to $\mathbb{Z}^{k}, t=\max \{d-k, 1\},(G, \psi)$ be a $\Gamma$-labeled graph with $|V| \geq t$, and $L: \Gamma \rightarrow \mathbb{R}^{d}$ be nonsingular. We pick any $t$ vertices $v_{1}, \ldots, v_{t}$, and define the augmented function of $f_{G, L}$ by $\hat{f}_{G, L}:=\left(f_{G, L}, g\right)$, where $g: \mathbb{R}^{d|V|} \rightarrow \mathbb{R}^{d+\left(\frac{d^{-k}}{2}\right)}$ is a rational polynomial map given by
$g(p)=\left(p_{1}\left(v_{1}\right), \ldots, p_{d}\left(v_{1}\right), p_{1}\left(v_{2}\right), \ldots, p_{d-1}\left(v_{2}\right), \ldots, p_{1}\left(v_{t}\right), \ldots, p_{d-t+1}\left(v_{t}\right)\right) \quad\left(p \in \mathbb{R}^{d|V|}\right)$
with $p_{i}\left(v_{j}\right)$ denoting the $i$-th coordinate of $p\left(v_{j}\right)$. Augmenting $f_{G, L}$ by appending $g$ corresponds to "pinning down" some coordinates to eliminate trivial continuous motions. The following claim is implicit in the proof of Proposition 2.3.

Proposition 3.6. Let $(G, \psi, p)$ be a $\Gamma$-labeled framework in $\mathbb{R}^{d}$ with rank $k$ periodicity and $L: \Gamma \rightarrow \mathbb{R}^{d}$. Suppose that $p$ is generic and $|V(G)| \geq \max \{d-k, 1\}$. Then

$$
\left.\operatorname{rank} d \hat{f}_{G, L}\right|_{p}=\left.\operatorname{rank} d f_{G, L}\right|_{p}+d+\binom{d-k}{2}
$$

We say that $(G, \psi, p)$ is redundantly L-periodically rigid if $(G-e, \psi, p)$ is $L$-periodically rigid for every $e \in E(G)$. (For simplicity, we slightly abuse notation here and denote the restriction of $\psi$ to $E(G)-e$ also by $\psi$.)

Lemma 3.7. Let $(G=(V, E), \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{d}$ with rank $k$ periodicity $\Gamma$ and nonsingular $L: \Gamma \rightarrow \mathbb{R}^{d}$. Suppose also that $|V| \geq d+1$ if $k \geq 1$ and $|V| \geq d+2$ if $k=0$. If $(G, \psi, p)$ is L-periodically globally rigid, then $(G, \psi, p)$ is redundantly L-periodically rigid.

Proof. The proof idea is from [13]. Suppose for a contradiction that $(G-e, \psi, p)$ is not $L$-periodically rigid for some $e \in E$. Since $(G, \psi, p)$ is $L$-periodically globally rigid, it is $L$-periodically rigid. Hence by Proposition 2.3 and Proposition 3.6 we have $\left.\operatorname{rank} d \hat{f}_{G-e, L}\right|_{p}=d|V|-1$. Since $p$ is generic, Lemma 3.3 implies that

$$
\begin{equation*}
t d\left[\mathbb{Q}\left(\hat{f}_{G-e, L}(p)\right): \mathbb{Q}\right] \geq d|V|-1 \tag{3.4}
\end{equation*}
$$

$\hat{f}_{G-e, L}(p)$ is a regular value of $\hat{f}_{G-e, L}$ by Lemma 3.4. Hence its preimage is a 1dimensional smooth manifold (see, e.g., [20]). Since this manifold is bounded and closed, it is compact, and it consists of a disjoint union of cycles by the classification of 1-dimensional manifolds. Let $\mathcal{O}$ be the component that contains $p$.

Consider $f_{e, L}: \mathbb{R}^{d|V|} \rightarrow \mathbb{R}$ which returns $\| p(u)-\left(p(v)+L(\psi(e)) \|^{2}\right.$ for the edge $e=u v$. Since $\hat{f}_{G-e, L}(p)$ is a regular value, we have $\left.\operatorname{rank} d f_{e, L}\right|_{p}=\left.\operatorname{rank} d \hat{f}_{G, L}\right|_{p}-$ $\left.\operatorname{rank} d \hat{f}_{G-e, L}\right|_{p}=1$ (see, e.g., 12 , Lemma 3.4] for the proof of the first equation). Hence $\left.d f_{e, L}\right|_{p}$ is nonzero, and the intermediate value theorem implies that there is a $q \in \mathcal{O}$ with $f_{e, L}(q)=f_{e, L}(p)$ and $q \neq p$. We can assign an orientation to $\mathcal{O}$ and we may assume that $q$ is chosen as close to $p$ as possible in the forward direction.
$f_{e, L}(p)=f_{e, L}(q)$ implies that $\hat{f}_{G, L}(p)=\hat{f}_{G, L}(q)$. This implies $\hat{f}_{V, L}(p)=\hat{f}_{V, L}(q)$ since ( $G, p$ ) is $L$-periodically globally rigid. By Proposition $2.2, q$ can be written as $q=h \circ p$ for some $L(\Gamma)$-invariant isometry $h$. Since $p\left(v_{1}\right)=q\left(v_{1}\right)$, there is an orthogonal matrix $S$ such that $q(u)=S p(u)+(I-S) p\left(v_{1}\right)$ for every $u$ and $S$ fixes each element in $L(\Gamma)$.

Take a path $\gamma:[0,1] \ni t \mapsto p_{t} \in \mathcal{O}$ with $\gamma(0)=p$ and $\gamma(1)=q$, and define a path $\gamma^{\prime}:[0,1] \ni t \mapsto h \circ p_{t} \in \mathbb{R}^{d|V|}$. Since $h$ fixes each element in $L(\Gamma)$, we have $f_{G, L}(p)=f_{G, L}\left(p_{t}\right)=f_{G, L}\left(h \circ p_{t}\right)$ for every $t \in[0,1]$. In other words, $\gamma^{\prime}$ is a path in $\mathcal{O}$.

If $\gamma$ and $\gamma^{\prime}$ cover $\mathcal{O}$ then we can assume that $f_{e}$ increases as we pass through $p$ in the forward direction. Then $f_{e}$ has to increase as we pass through $q$. Thus there are values $t_{1}, t_{2}$ with $0<t_{1}<t_{2}<1$ and $f_{e}\left(p_{t_{2}}\right)<f_{e}\left(p_{1}\right)=f_{e}(q)=f_{e}(p)=f_{e}\left(p_{0}\right)<f_{e}\left(p_{t_{1}}\right)$. Using the intermediate value theorem, we then get a contradiction, because there exists a point $p^{\prime}$ with $f_{e}\left(p^{\prime}\right)=f_{e}(p)$ between $p_{0}$ and $p_{1}$.

If $\gamma$ and $\gamma^{\prime}$ do not cover $\mathcal{O}$, then there exists a $t \in[0,1]$ such that $\gamma(t)=\gamma^{\prime}(t)$. At this $t$, we have $p_{t}(u)=h\left(p_{t}(u)\right)$ for every $u \in V$. In other words, $p_{t}(V)$ is contained
in the invariant subspace $H$ of $h$, which is a proper affine subspace of $\mathbb{R}^{d}$ as $p \neq q$. Let $d^{\prime}(<d)$ be the affine dimension of $H$. Since $H$ contains $L(\Gamma)$ whose basis is rational, $H$ is determined by $\left(d^{\prime}+1\right) d$ parameters, at most $\left(d^{\prime}+1-k\right) d$ of which are independent over $\mathbb{Q}$. Thus we get $t d\left[\mathbb{Q}\left(p_{t}\right): \mathbb{Q}\right] \leq\left(d^{\prime}+1-k\right) d+\left(|V|-\left(d^{\prime}+1\right)\right) d^{\prime}$. On the other hand, since $\mathbb{Q}\left(\hat{f}_{G-e, L}(p)\right)=\mathbb{Q}\left(\hat{f}_{G-e, L}\left(p_{t}\right)\right) \subseteq \mathbb{Q}\left(p_{t}\right)$, we also have $t d\left[\mathbb{Q}\left(p_{t}\right)\right.$ : $\mathbb{Q}] \geq t d\left[\mathbb{Q}\left(\hat{f}_{G-e, L}(p)\right): \mathbb{Q}\right] \geq d|V|-1$ by $(3.4)$. Thus $|V| \leq 1+d^{\prime}+\frac{1-k d}{d-d^{\prime}} \leq d+\frac{1-k d}{d-d^{\prime}}$. The last term is at most $d$ if $k \geq 1$ and at most $d+1$ if $k=0$, which contradicts the assumption of the statement.

## 4 Characterizing Periodic Global Rigidity

In this section we characterize periodic global rigidity in the plane based on the necessary conditions given in Section 3. We need to introduce one more term to describe the main theorem combinatorially. Given a $\Gamma$-labeled graph $(G, \psi)$, Proposition 2.3 implies that $(G, \psi, p)$ is $L$-periodically rigid for some generic $p$ if and only if $(G, \psi, p)$ is $L$-periodically rigid for every generic $p$. Moreover, Theorem 2.4 says that the choice of $L$ is not important as long as $L$ is nonsingular. In view of these facts, we say that $(G, \psi)$ is periodically rigid in $\mathbb{R}^{d}$ if $(G, \psi, p)$ is L-periodically rigid for some (any) generic $p: V(G) \rightarrow \mathbb{R}^{d}$ and for some (any) nonsingular $L: \Gamma \rightarrow \mathbb{R}^{d}$.

We are now ready to state our main theorems.
Theorem 4.1. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{2}$ with rank one periodicity $\Gamma$ and $|V(G)| \geq 3$, and let $L: \Gamma \rightarrow \mathbb{R}^{2}$ be nonsingular. Then $(G, \psi, p)$ is L-periodically globally rigid if and only if $(G, \psi)$ is redundantly periodically rigid in $\mathbb{R}^{2}$, 2-connected, and has no (0,2)-block.

Theorem 4.2. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{2}$ with rank two periodicity $\Gamma$ and $|V(G)| \geq 3$, and let $L: \Gamma \rightarrow \mathbb{R}^{2}$ be nonsingular. Then $(G, \psi, p)$ is L-periodically globally rigid if and only if each 2-connected component $\left(G^{\prime}, \psi^{\prime}\right)$ of $(G, \psi)$ is redundantly periodically rigid in $\mathbb{R}^{2}$, has no $(0,2)$-block, and has rank two.

Combining Theorem 4.1 and Theorem 4.2 with Proposition 2.1, we have the main theorem in this paper.

Theorem 4.3. A generic L-periodic framework ( $\tilde{G}, \tilde{p}$ ) with at least three vertex orbits is L-periodically globally rigid in the plane if and only if its quotient $\Gamma$-labeled graph $(G, \psi)$ satisfies the combinatorial condition in Theorem 1.2, Theorem 4.1 or Theorem 4.2 depending on the rank of the periodicity.

For smaller frameworks we have the following.
Lemma 4.4. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework in $\mathbb{R}^{2}$ with rank $k$ periodicity $\Gamma$, and let $L: \Gamma \rightarrow \mathbb{R}^{2}$ be nonsingular. If $|V(G)|=1$, then $(G, \psi, p)$ is L-periodically globally rigid. If $|V(G)|=2$ and $k \geq 1$, then $(G, \psi, p)$ is L-periodically globally rigid if and only if the rank of $\Gamma_{G}$ is $k$.

Proof. Let $V(G)=\{u, v\}$, and suppose that every edge is oriented to $v$.
If $k=1$, then there exist two edges from $u$ to $v$ with distinct labels. By switching, we may assume that these labels are id and $\gamma$. Given $q(v)$, there are only two possible positions for $q(u)$ if $(G, \psi, p)$ is equivalent to $(G, \psi, p)$. In both cases, the resulting framework is congruent to ( $G, \psi, p$ ), and hence $(G, \psi, p)$ is $L$-periodically globally rigid.

If $k=2$, then there exists a third edge with label $\gamma^{\prime}$ not spanned by $\gamma$. The given distance between $q(u)$ and $\gamma^{\prime} q(v)$ then uniquely determines the position of $q(u)$. Thus, $(G, \psi, q)$ is again congruent to $(G, \psi, p)$, and hence $(G, \psi, p)$ is $L$-periodically globally rigid.

We remark here that there is an efficient algorithm to check whether $(G, \psi)$ satisfies the combinatorial conditions of the main theorem. After finding the 2 -connected components of $G$ the method given in [15] can be used here as well to check their redundant periodic rigidity. Their rank can also be checked easily by finding an equivalent gain function by switchings (see, e.g., [15). Finally, for each pair of vertices we can check whether they are the boundary of a ( 0,2 )-block.

The proofs of Theorem 4.1 and Theorem 4.2 are almost identical and consist of two parts, an algebraic part and a combinatorial part. The algebraic part is solved in Lemma 4.5, and the combinatorial part is solved in Lemmas 4.6 and 4.7.

Let $(G, \psi)$ be a $\Gamma$-labeled graph and let $v$ be a vertex of $G$. We say that $v$ is nondegenerate if for every neighbor $u$ of $v$, the set $\{L(\psi(e)): e=v u \in E(G)\}$ is affinely independent. Suppose that every edge incident to $v$ is directed from $v$. For each pair of nonparallel edges $e_{1}=v u$ and $e_{2}=v w$ in $(G, \psi)$, let $e_{1} \cdot e_{2}$ be the edge from $u$ to $v$ with label $\psi(v u)^{-1} \psi(v w)$. We define $\left(G_{v}, \psi_{v}\right)$ to be the $\Gamma$-labeled graph obtained from $(G, \psi)$ by removing $v$ and inserting $e_{1} \cdot e_{2}$ for every pair of nonparallel edges $e_{1}, e_{2}$ incident to $v$ (unless an edge identical to $e_{1} \cdot e_{2}$ is already present in $(G, \psi)$ ). The following is the periodic generalization of an observation given in 10,23 .

Lemma 4.5. Let $(G, \psi, p)$ be a generic $\Gamma$-labeled framework with $|V(G)| \geq d+1$ and $L: \Gamma \rightarrow \mathbb{R}^{d}$ be nonsingular. Suppose that $G$ has a nondegenerate vertex $v$ of degree $d+1$ for which

- $(G-v, \psi)$ is L-periodically rigid in $\mathbb{R}^{d}$, and
- $\left(G_{v}, \psi_{v}, p^{\prime}\right)$ is L-periodically globally rigid in $\mathbb{R}^{d}$ with notation $p^{\prime}=\left.p\right|_{V(G)-v}$.

Then $(G, \psi, p)$ is L-periodically globally rigid in $\mathbb{R}^{d}$.
Proof. Pin the framework $(G, \psi, p)$ (as done in Section 3.2) and take any $q \in$ $\hat{f}_{G, L}^{-1}\left(\hat{f}_{G, L}(p)\right)$. Since $|V(G)| \geq d+1$, we may assume that $v$ is not "pinned" (i.e., $v$ is different from the vertices selected when augmenting $f_{G, L}$ to $\hat{f}_{G, L}$ ). Our goal is to show that $p=q$.

Let $p^{\prime}$ and $q^{\prime}$ be the restrictions of $p$ and $q$ to $V(G)-v$, respectively. Since $\left(G-v, \psi, p^{\prime}\right)$ is $L$-periodically rigid, $\left.d \hat{f}_{G-v, L}\right|_{p^{\prime}}$ is nonsingular by Proposition 2.3 and Proposition 3.6. Hence it follows from Lemma 3.5 that $\overline{\mathbb{Q}\left(p^{\prime}\right)}=\overline{\mathbb{Q}\left(q^{\prime}\right)}$. This in turn implies that $q^{\prime}$ is generic.

We may assume that all the edges incident to $v$ are directed from $v$. Let $e_{0}=$ $v v_{0}, e_{1}=v v_{1}, \ldots, e_{d}=v v_{d}$ denote the edges incident to $v$, where $v_{i}=v_{j}$ may hold. By switching we may assume $\psi\left(v v_{0}\right)=\mathrm{id}$. For each $1 \leq i \leq d$, let

$$
\begin{aligned}
\gamma_{i} & =\psi\left(v v_{i}\right), \\
x_{i} & =p\left(v_{i}\right)+L\left(\gamma_{i}\right)-p\left(v_{0}\right), \\
y_{i} & =q\left(v_{i}\right)+L\left(\gamma_{i}\right)-q\left(v_{0}\right),
\end{aligned}
$$

and let $P$ and $Q$ be the $d \times d$-matrices whose $i$-th row is $x_{i}$ and $y_{i}$, respectively. Note that since $v$ is nondegenerate and $p^{\prime}, q^{\prime}$ are generic, $x_{1}, \ldots, x_{d}$ and $y_{1}, \ldots, y_{d}$ are, respectively, linearly independent, and hence $P$ and $Q$ are both nonsingular.

Let $x_{v}=p(v)-p\left(v_{0}\right)$ and $y_{v}=q(v)-q\left(v_{0}\right)$. We then have $\left\|x_{v}\right\|=\left\|y_{v}\right\|$ since $G$ has the edge $v v_{0}$ with $\psi\left(v v_{0}\right)=\mathrm{id}$. Due to the existence of the edge $e_{i}$ we also have

$$
\begin{aligned}
0 & =\left\langle p\left(v_{i}\right)+L\left(\gamma_{i}\right)-p(v), p\left(v_{i}\right)+L\left(\gamma_{i}\right)-p(v)\right\rangle-\left\langle q\left(v_{i}\right)+L\left(\gamma_{i}\right)-q(v), q\left(v_{i}\right)+L\left(\gamma_{i}\right)-q(v)\right\rangle \\
& =\left\langle x_{i}-x_{v}, x_{i}-x_{v}\right\rangle-\left\langle y_{i}-y_{v}, y_{i}-y_{v}\right\rangle \\
& =\left(\left\|x_{i}\right\|^{2}-\left\|y_{i}\right\|^{2}\right)-2\left\langle x_{i}, x_{v}\right\rangle+2\left\langle y_{i}, y_{v}\right\rangle,
\end{aligned}
$$

where we used $\left\|x_{v}\right\|=\left\|y_{v}\right\|$. Denoting by $\delta$ the $d$-dimensional vector whose $i$-th coordinate is equal to $\left\|x_{i}\right\|^{2}-\left\|y_{i}\right\|^{2}$, the above $d$ equations can be summarized as

$$
0=\delta-2 P^{T} x_{v}+2 Q^{T} y_{v}
$$

which is equivalent to

$$
y_{v}=\left(Q^{T}\right)^{-1} P^{T} x_{v}-\frac{1}{2}\left(Q^{T}\right)^{-1} \delta .
$$

By putting this into $\left\|x_{v}\right\|^{2}=\left\|y_{v}\right\|^{2}$, we obtain

$$
\begin{equation*}
x_{v}^{T}\left(I_{d}-P Q^{-1}\left(P Q^{-1}\right)^{T}\right) x_{v}-\left(\delta^{T} Q^{-1}\left(Q^{-1}\right)^{T} P^{T}\right) x_{v}+\frac{1}{4} \delta^{T} Q^{-1}\left(Q^{-1}\right)^{T} \delta=0 \tag{4.1}
\end{equation*}
$$

where $I_{d}$ denotes the $d \times d$ identity matrix.
Note that each entry of $P$ is contained in $\mathbb{Q}\left(p^{\prime}\right)$, and each entry of $Q$ is contained in $\mathbb{Q}\left(q^{\prime}\right)$. Since $\overline{\mathbb{Q}\left(p^{\prime}\right)}=\overline{\mathbb{Q}\left(q^{\prime}\right)}$, this implies that each entry of $P Q^{-1}$ is contained in $\overline{\mathbb{Q}\left(p^{\prime}\right)}$. On the other hand, since $p$ is generic, the set of coordinates of $p(v)$ (and hence those of $\left.x_{v}\right)$ is algebraically independent over $\overline{\mathbb{Q}\left(p^{\prime}\right)}$. Therefore, by regarding the left-hand side of (4.1) as a polynomial in $x_{v}$, the polynomial must be identically zero. In particular, we get

$$
I_{d}-P Q^{-1}\left(P Q^{-1}\right)^{T}=0
$$

Thus, $P Q^{-1}$ is orthogonal. In other words, there is some orthogonal matrix $S$ such that $P=S Q$, and we get $\left\|p\left(v_{i}\right)+L\left(\gamma_{i}\right)-p\left(v_{0}\right)\right\|=\left\|x_{i}\right\|=\left\|S y_{i}\right\|=\left\|y_{i}\right\|=\| q\left(v_{i}\right)+$ $L\left(\gamma_{i}\right)-q\left(v_{0}\right) \|$ for every $1 \leq i \leq d$. Therefore, $q^{\prime} \in f_{G_{v}, L}^{-1}\left(f_{G_{v}, L}\left(p^{\prime}\right)\right)$. Since $\left(G_{v}, \psi_{v}, p\right)$ is $L$-periodically globally rigid, this in turn implies that $f_{V-v, L}\left(p^{\prime}\right)=f_{V-v, L}\left(q^{\prime}\right)$. Thus we have $p^{\prime}=q^{\prime}$.

Since $v$ is nondegenerate and $p$ is generic, $\left\{p\left(v_{i}\right)+L\left(\gamma_{i}\right): 0 \leq i \leq d\right\}$ affinely spans $\mathbb{R}^{d}$. Hence there is a unique extension of $p^{\prime}: V-v \rightarrow \mathbb{R}^{d}$ to $r: V \rightarrow \mathbb{R}^{d}$ such that $f_{G, L}(r)=f_{G, L}(p)$. Thus we obtain $p=q$.

The combinatorial part consists of the following two lemmas whose proof will be given in the next sections separately.

Lemma 4.6. Let $(G, \psi)$ be a $\Gamma$-labeled graph with rank $k \geq 1$ periodicity $\Gamma$. Suppose that $(G, \psi)$ is 2-connected, redundantly periodically rigid in $\mathbb{R}^{2}$, and has no ( 0,2 )-block. Then at least one of the following holds:
(i) There exists $e \in E(G)$ such that the $\Gamma$-labeled graph $(G-e, \psi)$ is 2-connected, redundantly periodically rigid, and has no (0,2)-block.
(ii) $G$ has a vertex of degree three.

Lemma 4.7. Let $(G, \psi)$ be a $\Gamma$-labeled graph with rank $k \geq 1$ periodicity $\Gamma$ and $|V(G)| \geq 4$. Suppose that $(G, \psi)$ is 2-connected, redundantly periodically rigid in $\mathbb{R}^{2}$, and has no ( 0,2 )-block. Then the minimum degree of $G$ is at least three and the following hold for every vertex $v$ of degree three.

- $v$ is nondegenerate.
- $(G-v, \psi)$ is periodically rigid in $\mathbb{R}^{2}$.
- $\left(G_{v}, \psi_{v}\right)$ is 2-connected, redundantly periodically rigid in $\mathbb{R}^{2}$, and has no (0,2)block.

Assuming the correctness of Lemma 4.6 and Lemma 4.7 we are now ready to prove our main theorems. Proof. [Proof of Theorem 4.1] To see the necessity, first observe the following:
$(G, \psi)$ has no $(s, t)$-block $H$ with $(s+1) t \leq 2=d$ such that $V(H) \neq V(G)$
or $s<1=k$ if and only if $(G, \psi)$ is 2 -connected and has no ( 0,2 )-block.
Indeed, if $(G, \psi)$ is not 2 -connected, then it has an $(s, t)$-block $H$ with $s \leq k=1$, $t \leq 1$, and $V(H) \neq V(G)$. Conversely, suppose that $(G, \psi)$ has an $(s, t)$-block $H$ with $(s+1) t \leq 2$ such that $V(H) \neq V(G)$ or $s<k=1$. If $H$ is not a $(0,2)$-block, then $s \geq 1, t \leq 1$ and $V(H) \neq V(G)$ hold. Hence $G$ is not 2 -connected. Thus by (4.2) the necessity of the conditions follows from Lemmas 3.1 and 3.7.

The proof of the sufficiency is done by induction on the lexicographic order of the list $(V(G), E(G))$. Suppose that $|V(G)|=3$. By the 2 -connectivity, $G$ contains a triangle and the minimum degree in $G$ is at least three. Let $G^{\prime}$ be an inclusionwise minimal spanning subgraph that is 2 -connected and redundantly periodically rigid. Then it consists of five edges, two parallel classes and one simple edge. Since $G^{\prime}$ has a vertex of degree three, we can use Lemmas 4.5 and 4.4 to deduce that $\left(G^{\prime}, \psi\right)$ (and hence $(G, \psi))$ is $L$-periodically globally rigid.

Assume that $|V(G)| \geq 4$. Suppose that $G$ has a vertex of degree three. By Lemma 4.7, $\left(G_{v}, \psi_{v}\right)$ is 2-connected, redundantly periodically rigid, and has no (0,2)block. Hence, by induction, $\left(G_{v}, \psi_{v}, p\right)$ is $L$-periodically globally rigid. Therefore it follows from Lemma 4.7 and Lemma 4.5 that $(G, \psi, p)$ is $L$-periodically globally rigid.

Thus we may assume that $G$ has no vertex of degree three. Then by Lemma 4.6 there is an edge $e$ such that $(G-e, \psi)$ is 2-connected, redundantly periodically rigid, and has no ( 0,2 )-block. By induction, $(G-e, \psi, p)$ (and hence $(G, \psi, p)$ ) is $L$-periodically globally rigid.
Proof. [Proof of Theorem 4.2 By Lemma 3.2 we may assume that $G$ is 2-connected. Then the necessity of the conditions again follows from Lemmas 3.1 and 3.7 .

The proof of the sufficiency is similar to that of Theorem 4.1, and it is done by induction on the lexicographic order of the list $(V(G), E(G))$. The case when $|V(G)|=$ 3 is exactly the same as that for Theorem 4.1. Hence we assume $|V(G)| \geq 4$.

Suppose that $G$ has a vertex of degree three. By Lemma 4.7, $\left(G_{v}, \psi_{v}\right)$ is 2-connected, redundantly periodically rigid, and has no ( 0,2 )-block. Also, by the definition of $\left(G_{v}, \psi_{v}\right)$, we have $\Gamma_{G_{v}}=\Gamma_{G}$. Hence, by induction, $\left(G_{v}, \psi_{v}, p\right)$ is $L$-periodically globally rigid. Therefore it follows from Lemma 4.7 and Lemma 4.5 that $(G, \psi, p)$ is $L$-periodically globally rigid.

Thus we may assume that $G$ has no vertex of degree three. Then by Lemma 4.6 there is an edge $e$ such that $(G-e, \psi)$ is 2 -connected, redundantly periodically rigid, and has no $(0,2)$-block. If the rank of $\Gamma_{G-e}$ is equal to two, then we can apply the induction hypothesis, meaning that $(G-e, \psi, p)$ (and hence $(G, \psi, p)$ ) is $L$-periodically globally rigid. Therefore, we assume that the rank of $\Gamma_{G-e}$ is smaller than two.

Since $(G-e, \psi)$ is periodically rigid, Theorem 2.4 implies that the rank of $\Gamma_{G-e}$ is nonzero. Thus the rank of $\Gamma_{G-e}$ is one. By switching, we may suppose that every label in $E(G-e)$ is in $\Gamma_{G-e}$ and consider the restriction $L^{\prime}: \Gamma_{G-e} \rightarrow \mathbb{R}^{2}$ of $L$. By Theorem 4.1, $(G-e, \psi, p)$ is $L^{\prime}$-periodically globally rigid. To show that $(G, \psi, p)$ is $L$-periodically globally rigid, take any $q: V(G) \rightarrow \mathbb{R}^{2}$ such that $f_{G, L}(p)=f_{G, L}(q)$. Since $(G-e, \psi, p)$ is $L^{\prime}$-periodically globally rigid, Proposition 2.2 implies that $q$ can be written as $q=h \circ p$ for some $L\left(\Gamma_{G-e}\right)$-invariant isometry $h$. Since the rank of $\Gamma_{G-e}$ is one and the dimension of the ambient space is two, $h$ is either the identity or the reflection along the line whose direction is in the span of $L\left(\Gamma_{G-e}\right)$.
Let $i$ and $j$ be the endvertices of $e$ and let $\gamma_{e}=\psi(e)$. Using the orthogonal matrix $S$ representing the reflection along the span of $L\left(\Gamma_{G-e}\right)$, we have $q(i)-q(j)=$ $S(p(i)-p(j))$. By looking at the length constraint for $e,\left\|p(i)-\left(p(j)+L\left(\gamma_{e}\right)\right)\right\|=$ $\left\|q(i)-\left(q(j)+L\left(\gamma_{e}\right)\right)\right\|$, which implies $\left\langle(I-S)\left(p_{i}-p_{j}\right), L\left(\gamma_{e}\right)\right\rangle=0$, or equivalently, $\left\langle p_{i}-p_{j},\left(I-S^{\top}\right) L\left(\gamma_{e}\right)\right\rangle=0$. Note that $S$ is determined by $L\left(\Gamma_{G-e}\right)$, and independent from $p_{i}-p_{j}$. Hence, the generic assumption for $p$ implies $\left(I-S^{\top}\right) L\left(\gamma_{e}\right)=0$. Since $\gamma_{e} \notin \Gamma_{G-e}$, this implies $I=S$. Thus we get $f_{V, L}(p)=f_{V, L}(q)$, and $(G, \psi, p)$ is $L$-periodically globally rigid.

## 5 Proof of the Combinatorial Part

Due to Theorem 2.4, we may work in a purely combinatorial world in order to prove Lemma 4.6 and Lemma 4.7.

Since all the graphs we treat in the following discussions are $\Gamma$-labeled graphs, we shall use the following convention. Throughout the section, we omit the labeling function $\psi$ to denote a $\Gamma$-labeled graph $(G, \psi)$. The underlying graph of each $\Gamma$ -
labeled graph is directed, but the direction is used only to refer to the group labeling. So the underlying graph is treated as an undirected graph if we are interested in its graph-theoretical properties, such as the connectivity, vertex degree, and so on.

Let $G=(V, E)$ be a $\Gamma$-labeled graph. For disjoint sets $X, Y \subseteq V, d_{G}(X, Y)$ denotes the number of edges between $X$ and $Y$, and let $d_{G}(X):=d_{G}(X, V \backslash X)$ and $d_{G}(v)=d_{G}(\{v\})$ for $v \in V$. For $X \subseteq V, i_{G}(X)$ denotes the number of edges induced by $X$. For an edge set $F$, let $G[F]=(V(F), F)$.

Given two $\Gamma$-labeled graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, let $G_{1} \cup G_{2}=$ $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$ and $G_{1} \cap G_{2}=\left(V_{1} \cap V_{2}, E_{1} \cap E_{2}\right)$. Note that $G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}$ are $\Gamma$-labeled graphs whose labeling are inherited from those of $G_{1}$ and $G_{2}$. Note also that, when taking the union or the intersection, the labels are taken into account and two edges are recognized as the same edge if and only if they are identical. Hence $G_{1} \cup G_{2}$ may contain parallel edges even if $G_{1}$ and $G_{2}$ are simple.

Several terms defined for edge sets will be used for graphs $G$ by implicitly referring to $E(G)$. If there is no confusion, terms for graphs will be conversely used for edge sets $E$ by referring to the graph $(V(E), E)$.

We use the following terminology from matroid theory. Given a matroid $\mathcal{M}=$ $(E, \mathcal{I})$, we define a relation on $E$ by saying that $e, f \in E$ are related if $e=f$ or if there is a circuit $C$ in $\mathcal{M}$ with $e, f \in C$. It is well-known that this is an equivalence relation. The equivalence classes are called the components of $\mathcal{M}$. If $\mathcal{M}$ has at least two elements and only one component then $\mathcal{M}$ is said to be connected. If $\mathcal{M}$ has components $E_{1}, E_{2}, \ldots, E_{t}$ and $\mathcal{M}_{i}$ is the matroid restriction of $\mathcal{M}$ onto $E_{i}$ then $\mathcal{M}=\mathcal{M}_{1} \oplus \mathcal{M}_{2} \oplus \cdots \oplus \mathcal{M}_{t}$ is the direct sum of the $\mathcal{M}_{i}$ 's.

### 5.1 Count matroids

Let $V$ be a finite set and $\Gamma$ be a group isomorphic to $\mathbb{Z}^{k}$. We say that an edge set $E$ is independent if $|F| \leq 2|V(F)|-3$ for every nonempty balanced $F \subseteq E$ and $|F| \leq 2|V(F)|-2$ for every nonempty $F \subseteq E$. Proposition 2.3 and Theorem 2.4 imply that the family of all independent edge sets forms the family of independent sets of a matroid on $K(V, \Gamma)$, which is denoted by $\mathcal{R}_{2}(V, \Gamma)$ or simply by $\mathcal{R}_{2}(V)$. (This can also be checked in a purely combinatorial fashion, see, e.g., 15.) Let $r_{2}$ be the rank function and $\mathrm{cl}_{2}$ be the closure operator of $\mathcal{R}_{2}(V)$.

We say that $G$ is $M$-connected if the restriction of $\mathcal{R}_{2}(V(G))$ to $E(G)$ is connected.
By Theorem 2.4, $G$ is periodically rigid in $\mathbb{R}^{2}$ if and only if $r_{2}(G)=2|V(G)|-2$, where $r_{2}(G):=r_{2}(E(G))$. Note that if $G$ is balanced, then the restriction of $\mathcal{R}_{2}(V)$ to $E(G)$ is isomorphic to the 2-dimensional generic rigidity matroid. Hence we say that $G$ is rigid if $G$ is balanced and $r_{2}(G)=2|V(G)|-3$.

We can use known properties of the 2-dimensional generic rigidity matroids for balanced sets. The following statements can be found in [9] (with a slightly different terminology).

Lemma 5.1. If a $\Gamma$-labeled graph $G$ is balanced and $M$-connected, then $G$ is rigid.
Lemma 5.2. Let $G_{1}$ and $G_{2}$ be two rigid graphs. Suppose that $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq 2$ and $G_{1} \cup G_{2}$ is balanced. Then $G_{1} \cup G_{2}$ is rigid.

The following simple property was first observed in 21.
Lemma 5.3 ( $[21])$. Let $v$ be a vertex of degree two in $G$ with $|V(G)| \geq 2$. Then $r_{2}(G-v)=r_{2}(G)-2$.

Lemma 5.3 enables us to show an analogue of Lemma 5.2.
Lemma 5.4. Let $G_{1}$ and $G_{2}$ be $\Gamma$-labeled graphs.
(i) If $G_{1}$ is periodically rigid, $G_{2}$ is rigid and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq 2$, then $G_{1} \cup G_{2}$ is periodically rigid.
(ii) If $G_{1}$ and $G_{2}$ are periodically rigid and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geq 2$, then $G_{1} \cup G_{2}$ is periodically rigid.

Proof. Let $G_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$. To see the first claim, suppose that $G_{1}$ is periodically rigid and $G_{2}$ is rigid. Since $G_{2}$ is rigid it has a spanning balanced set, and by switching we may suppose that $\psi(e)=$ id for every edge $e$ in the spanning balanced set. Thus we have $K^{0}\left(V_{2}\right) \subseteq \mathrm{cl}_{2}\left(E_{2}\right)$, where $K^{0}\left(V_{2}\right)$ denotes the set of edges on $V_{2}$ whose labels are the identity. Since $\left|V_{1} \cap V_{2}\right| \geq 2$, there are two distinct vertices $u$ and $v$ in $V_{1} \cap V_{2}$. Let $F$ be the edge set of the complete bipartite subgraph of $K^{0}\left(V_{2}\right)$ whose one partite set is $\{u, v\}$ and whose other partite set is $V_{2} \backslash V_{1}$. By Lemma 5.3., we have $r_{2}\left(E_{1} \cup F\right)=r_{2}\left(E_{1}\right)+2\left|V_{2} \backslash V_{1}\right|$. Since $F \subseteq K^{0}\left(V_{2}\right) \subseteq \mathrm{cl}_{2}\left(E_{2}\right)$, we get

$$
r_{2}\left(E_{1} \cup E_{2}\right) \geq r_{2}\left(E_{1} \cup F\right)=2\left|V_{1}\right|-2+2\left|V_{2} \backslash V_{1}\right|=2\left|V_{1} \cup V_{2}\right|-2 .
$$

Thus $G_{1} \cup G_{2}$ is periodically rigid.
We can use the same argument to prove the second statement. In this case we have $K^{0}\left(V_{2}\right) \subset K\left(V_{2}, \Gamma\right) \subseteq \operatorname{cl}_{2}\left(E_{2}\right)$ and we can again use Lemma 5.3 to deduce that $r_{2}\left(E_{1} \cup E_{2}\right)=2\left|V_{1} \cup V_{2}\right|-2$, which completes the proof.

## 5.2 $M$-connectivity and ear decomposition

Jackson and Jordán [9] used ear decompositions of connected rigidity matroids as a key tool in their proof of Theorem 1.2, Let $C_{1}, C_{2}, \ldots, C_{t}$ be a non-empty sequence of circuits of the matroid $\mathcal{M}$. For $1 \leq j \leq t$, we denote $D_{j}=C_{1} \cup C_{2} \cup \cdots \cup C_{j}$ and define the lobe $\tilde{C}_{j}$ of $C_{j}$ by $\tilde{C}_{j}=C_{j} \backslash D_{j-1}$. We say that $C_{1}, C_{2}, \ldots, C_{t}$ is a partial ear decomposition of $\mathcal{M}$ if for every $2 \leq i \leq t$ the following properties hold:
(E1) $C_{i} \cap D_{i-1} \neq \emptyset$,
(E2) $C_{i} \backslash D_{i-1} \neq \emptyset$,
(E3) no circuit $C^{\prime}$ satisfying (E1) and (E2) has $C^{\prime} \backslash D_{i-1}$ properly contained in $C_{i} \backslash$ $D_{i-1}$.

An ear decomposition of $\mathcal{M}$ is a partial ear decomposition with $D_{t}=E$. We need the following facts about ear decompositions.

Lemma 5.5 ( [5, [9]). Let $\mathcal{M}$ be a matroid. Then the following hold.
(a) $\mathcal{M}$ is connected if and only if $\mathcal{M}$ has an ear decomposition.
(b) If $\mathcal{M}$ is connected then any partial ear decomposition of $\mathcal{M}$ can be extended to an ear decomposition of $\mathcal{M}$.
(c) If $C_{1}, C_{2}, \ldots, C_{t}$ is an ear decomposition of $\mathcal{M}$ then $r\left(D_{i}\right)-r\left(D_{i-1}\right)=\left|\tilde{C}_{i}\right|-1$ for $2 \leq i \leq t$.

For an $M$-connected graph $G=(V, E)$, an ear decomposition of $E$ means an ear decomposition of the restriction of $\mathcal{R}_{2}(V)$ to $E$.

When the matroid $\mathcal{M}$ is specialized to the generic 2 -dimensional rigidity matroid, several properties of ear-decompositions were proved in [9, 14]. We will use the following (with some of the terminology adjusted to fit our context).

Lemma 5.6 ( $[9])$. Let $G$ be balanced $M$-connected, and let $C_{1}, \ldots, C_{t}$ be an ear decomposition of $E(G)$ with $t \geq 2$. Let $Y=V\left(C_{t}\right) \backslash \bigcup_{i=1}^{t-1} V\left(C_{i}\right)$. Then the following hold.
(a) Either $Y=\emptyset$ and $\left|\tilde{C}_{t}\right|=1$, or $Y \neq \emptyset$ and every edge $e \in \tilde{C}_{t}$ is incident to $Y$.
(b) $\left|\tilde{C}_{t}\right|=2|Y|+1$.

We say that $G$ is minimally $M$-connected if $G$ is $M$-connected and for every $e \in$ $E(G), G-e$ is not $M$-connected. In [14, Lemma 3.4.3], Jordán pointed out that Lemma 5.6 immediately implies the existence of a degree three vertex in a minimally $M$-connected graph. His proof actually gives a slightly stronger statement as follows.

Lemma 5.7. Let $G$ be balanced and minimally $M$-connected, and let $C_{1}, \ldots, C_{t}$ be an ear decomposition of $E(G)$. Let $Y=V\left(C_{t}\right)-V\left(\bigcup_{i=1}^{t-1} C_{i}\right)$. If $t \geq 2$, then $Y$ contains a vertex which has degree three in $G$. Moreover, if $|Y| \geq 2$, then $Y$ contains at least two vertices of degree three in $G$.

Proof. Since $G$ is minimally $M$-connected, $\left|\tilde{C}_{t}\right|>1$. Lemma 5.6 (a) says that, if $\left|\tilde{C}_{t}\right|>1$, then $Y \neq \emptyset$ and every edge in $\tilde{C}_{t}$ is incident to $Y$. Moreover, Lemma 5.6(b) says that

$$
\begin{equation*}
\left|\tilde{C}_{t}\right|=2|Y|+1 \tag{5.1}
\end{equation*}
$$

Hence if $|Y|=1$ then the vertex in $Y$ has degree three.
If $|Y| \geq 2$, then the edge set of $G$ induced by $Y$ is a proper subset of $\tilde{C}_{t}$, and hence $i_{G}(Y) \leq 2|Y|-3$. Combining this with (5.1), we have that the total degree of the vertices of $Y$ is $d_{G}(Y, V(G) \backslash Y)+2 i_{G}(Y)=\left|C_{t}\right|+i_{G}(Y)=4|Y|-2$. Thus $Y$ contains at least two vertices that have degree three in $G$.

It is well known that every circuit in the generic rigidity matroid (i.e., every balanced circuit) is 2-connected and 3-edge-connected. The next lemma shows that even if $G$ is unbalanced or $M$-connected, we can guarantee the same connectivity.

Lemma 5.8. If $G$ is $M$-connected, then $G$ is 2-connected and 3-edge-connected.

Proof. The statement is known if $G$ is balanced (see, e.g., [9]). Hence we assume that $G$ is unbalanced.

It suffices to consider the case when $G$ is an unbalanced circuit. Suppose that $G$ can be decomposed into two edge-disjoint subgraphs $G_{1}$ and $G_{2}$ with $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leq 1$ and $\left|V\left(G_{i}\right)\right| \geq 2$ for $i=1,2$. Then $2|V(G)|-1=|E(G)|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \leq$ $2\left|V\left(G_{1}\right)\right|-2+2\left|V\left(G_{2}\right)\right|-2 \leq 2|V(G)|-2$, which is a contradiction. Thus $G$ is 2-connected.

The same counting argument works for showing that $G$ is 3-edge-connected. Suppose that there are two vertex-disjoint induced subgraphs $G_{1}$ and $G_{2}$ connected by at most two edges in $G$ with $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$. Then we have $2|V(G)|-1=$ $|E(G)| \leq\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|+2 \leq 2\left|V\left(G_{1}\right)\right|-2+2\left|V\left(G_{2}\right)\right|-2+2=2|V(G)|-2$, which is a contradiction.

### 5.3 Redundant rigidity and M-connectivity

Based on the ear decomposition, in this section we shall reveal a connection between redundant rigidity and $M$-connectivity. In particular, we show that, under a certain connectivity condition, these properties are equivalent. This is an analogue of the fact that $M$-connectivity is equivalent to redundant rigidity under (near) 3-connectivity in the plane [9, Theorem 3.2].

In Lemma 5.10 we first give the unbalanced version of Lemma 5.1. For the proof we need the following technical lemma.

Lemma 5.9. Let $E_{1}$ and $E_{2}$ be balanced edge sets in a $\Gamma$-labeled graph $G$. Suppose that $E_{1} \cup E_{2}$ is unbalanced. Then the graph $\left(V\left(E_{1}\right) \cap V\left(E_{2}\right), E_{1} \cap E_{2}\right)$ is disconnected.
Proof. This is a special case of [15, Lemma 2.4]. Since the proof is easy, we include it for completeness. Suppose that $\left(V\left(E_{1}\right) \cap V\left(E_{2}\right), E_{1} \cap E_{2}\right)$ is connected. Then one can take a spanning tree $T$ in $\left(V\left(E_{1} \cup E_{2}\right), E_{1} \cup E_{2}\right)$ such that $T \cap E_{i}$ is a spanning tree in $\left(V\left(E_{i}\right), E_{i}\right)$ for $i=1,2$. By switching, we may assume that $\psi(e)=$ id for every $e \in T$. Since $E_{i}$ is balanced, we get $\psi(e)=$ id for every $e \in E_{1} \cup E_{2}$, contradicting that $E_{1} \cup E_{2}$ is unbalanced.

Lemma 5.10. If $G$ is unbalanced and $M$-connected, then $G$ is periodically rigid.
Proof. Since $G$ is M-connected, $E(G)$ has an ear decomposition $C_{1}, \ldots, C_{t}$. It follows from $\left|D_{i} \cap C_{i+1}\right| \geq 1$ that there are at least two vertices in $V\left(D_{i}\right) \cap V\left(C_{i+1}\right)$. We will prove by induction on $i$ that

$$
\begin{equation*}
r_{2}\left(D_{i}\right)=2\left|V\left(D_{i}\right)\right|-3 \text { if } D_{i} \text { is balanced, and } r_{2}\left(D_{i}\right)=2\left|V\left(D_{i}\right)\right|-2 \text { otherwise. } \tag{5.2}
\end{equation*}
$$

This follows from the definition of the underlying matroid if $i=1$. Hence, we assume $i \geq 2$.

If $D_{i-1}$ is unbalanced, then by induction $D_{i-1}$ is periodically rigid. By Lemma 5.4, $D_{i-1} \cup C_{i}$ is periodically rigid, implying (5.2).

If $D_{i-1}$ is balanced, then by induction it is rigid. If $C_{i}$ is periodically rigid, then by Lemma $5.4(\mathrm{i}), D_{i-1} \cup C_{i}$ is periodically rigid. If $C_{i}$ is rigid and $D_{i-1} \cup C_{i}$ is balanced, then by Lemma 5.2, $D_{i-1} \cup C_{i}$ is rigid.

For (5.2) it remains to show $r_{2}\left(D_{i}\right)=2\left|V\left(D_{i}\right)\right|-2$ if $C_{i}$ and $D_{i-1}$ are balanced and $D_{i-1} \cup C_{i}$ is unbalanced. Let $s:=2\left|V\left(C_{i} \cap D_{i-1}\right)\right|-3-\left|C_{i} \cap D_{i-1}\right|$. Since $C_{i} \cap D_{i-1}$ is balanced and independent, we have $s \geq 0$. If $s=0$ then $C_{i} \cap D_{i-1}$ is rigid as $C_{i} \cap D_{i-1}$ is balanced. Hence by Lemma 5.8, $C_{i} \cap D_{i-1}$ is connected. However, since $\left(V\left(C_{i}\right) \cap V\left(D_{i-1}\right), C_{i} \cap D_{i-1}\right)$ is disconnected by Lemma 5.9, we have $V\left(C_{i}\right) \cap V\left(D_{i-1}\right) \neq V\left(C_{i} \cap D_{i-1}\right)$. This in particular implies

$$
\begin{equation*}
s+2\left(\left|V\left(C_{i}\right) \cap V\left(D_{i-1}\right)\right|-\left|V\left(C_{i} \cap D_{i-1}\right)\right|\right) \geq 1 \tag{5.3}
\end{equation*}
$$

Since $D_{i-1}$ is rigid and $C_{i}$ is a balanced circuit, Lemma 5.5(c) implies

$$
\begin{aligned}
r_{2}\left(D_{i}\right) & =r_{2}\left(D_{i-1}\right)+\left|C_{i} \backslash D_{i-1}\right|-1 \\
& =2\left|V\left(D_{i-1}\right)\right|-3+\left|C_{i}\right|-\left|C_{i} \cap D_{i-1}\right|-1 \\
& =2\left|V\left(D_{i-1}\right)\right|-3+2\left|V\left(C_{i}\right)\right|-2-2\left|V\left(C_{i} \cap D_{i-1}\right)\right|+3+s-1 \\
& =2\left(\left|V\left(D_{i-1}\right)\right|+\left|V\left(C_{i}\right)\right|-\left|V\left(C_{i} \cap D_{i-1}\right)\right|\right)-3+s \\
& =2\left|V\left(D_{i}\right)\right|-3+2\left(\left|V\left(C_{i}\right) \cap V\left(D_{i-1}\right)\right|-\left|V\left(C_{i} \cap D_{i-1}\right)\right|\right)+s \\
& \geq 2\left|V\left(D_{i}\right)\right|-2
\end{aligned}
$$

where the last inequality follows from (5.3).
Since $E(G)=D_{t}$ and $G$ is unbalanced, we conclude that $G$ is periodically rigid by (5.2).

The following is an analogue of [9, Theorem 3.2]. Using the lemmas collected so far, its proof is now a direct adaptation of that of [9, Theorem 3.2].

Theorem 5.11. Let $G$ be unbalanced and suppose that it has no $(0,2)$-block. Then $G$ is 2-connected and redundantly periodically rigid if and only if $G$ is $M$-connected.

Proof. Suppose first that $G$ is M-connected. By Lemma $5.8 G$ is 2 -connected. Also $G$ is periodically rigid by Lemma 5.10. Since every edge is included in a circuit, we have $r_{2}(G-e)=r_{2}(G)$ for every edge $e \in E(G)$, meaning that $G-e$ is periodically rigid. Thus $G$ is redundantly periodically rigid.

Conversely, suppose that $G$ is 2 -connected and redundantly periodically rigid. Suppose further for a contradiction that $G$ is not $M$-connected. Then $E(G)$ can be decomposed into M-connected components $E_{1}, \ldots, E_{t}$ with $t \geq 2$. By Lemmas 5.10 and 5.1. we have $r_{2}\left(E_{i}\right)=2\left|V\left(E_{i}\right)\right|-3$ if $E_{i}$ is balanced and $r_{2}\left(E_{i}\right)=2\left|V\left(E_{i}\right)\right|-2$ otherwise. Let $a_{i}$ be the number of vertices in $G\left[E_{i}\right]$ which are shared by other $G\left[E_{j}\right]$. With this notation, we have

$$
\begin{align*}
& 2|V(G)|-2 \geq r_{2}(E(G))=\sum_{i=1}^{t} r_{2}\left(E_{i}\right) \\
& =\sum_{E_{i}: \text { balanced }}\left(2\left|V\left(E_{i}\right)\right|-3\right)+\sum_{E_{i} \text { :unbalanced }}\left(2\left|V\left(E_{i}\right)\right|-2\right) \\
& =\sum_{i=1}^{t}\left(2\left|V\left(E_{i}\right)\right|-a_{i}\right)+\sum_{E_{i} \text { :balanced }}\left(a_{i}-3\right)+\sum_{E_{i}: \text { unbalanced }}\left(a_{i}-2\right) . \tag{5.4}
\end{align*}
$$

Since $G$ is redundantly periodically rigid, every $M$-connected component contains a circuit. Hence, for each balanced $E_{i}$, we have $\left|V\left(E_{i}\right)\right| \geq 4$ (since the smallest balanced circuit is $K_{4}$ ). This means that, if $a_{i} \leq 2$ for a balanced $E_{i}$, then $G\left[E_{i}\right]$ is a ( 0,2 )block in $G$. Hence we have $a_{i} \geq 3$ for each balanced $E_{i}$. On the other hand, for each unbalanced $E_{i}$, we have $a_{i} \geq 2$ since $G$ is 2-connected. Therefore the last two terms in (5.4) are nonnegative. Observe finally that $\sum_{i=1}^{k}\left(2\left|V\left(E_{i}\right)\right|-a_{i}\right) \geq 2|V(G)|$, since each vertex of $G$ contained in a unique $E_{i}$ is counted twice while the rest of the vertices are counted at least twice. Therefore (5.4) is at least $2|V(G)|$, which is a contradiction.

### 5.4 Proof of Lemma 4.7

We first solve the following main case of the proof of Lemma 4.7
Lemma 5.12. Let $G$ be a 2-connected and redundantly periodically rigid graph that has no $(0,2)$-block. Then so is $G_{v}$.

Proof. The 2-connectivity of $G_{v}$ follows from the 2-connectivity of $G$. Let $E_{v}$ be the set of edges incident with $v$ in $G$, and assume that those edges are directed from $v$. Let $F$ be the set of edges $e_{1} \cdot e_{2}$ over all pairs of nonparallel edges $e_{1}, e_{2}$ in $E_{v}$. Recall that $G_{v}$ is obtained from $G$ by removing $v$ and adding $F$, where the label of $e_{1} \cdot e_{2}$ is defined to be $\psi\left(e_{1}\right)^{-1} \psi\left(e_{2}\right)$. Thus, we have that

$$
\begin{equation*}
E_{v} \cup F \text { is a circuit. } \tag{5.5}
\end{equation*}
$$

We first show that $G_{v}$ has no $(0,2)$-block. Suppose to the contrary that $G_{v}$ contains a ( 0,2 )-block $H$. Take a maximal such $H$. We split the proof into four cases depending on how $H$ intersects with $F$ as follows. (Case 1) If $|E(H) \cap F|=0$, then $H$ is also a ( 0,2 )-block of $G$, a contradiction. (Case 2) If $|E(H) \cap F|=1$, then $B(H)$ is exactly the endvertices of the edge $e$ in $E(H) \cap F$. Hence $H \cap G$ would be a ( 0,2 )-block in $G$ with $V(H \cap G)=V(H)$ and $B(H \cap G)=B(H)$. This is a contradiction. (Case 3) If $F \subseteq E(H)$, then $\left(H+E_{v}\right) \cap G$ is a $(0,2)$-block in $G$ by (5.5), again a contradiction. (Case 4) The remaining case is when $\left|N_{G}(v)\right|=3$ and $|E(H) \cap F|=2$. Recall that $F$ forms a balanced triangle if $\left|N_{G}(v)\right|=3$. Hence $H+F$ would be balanced and hence be a $(0,2)$-block in $G_{v}$, which contradicts the maximality of $H$. This completes the proof that $G_{v}$ has no ( 0,2 )-block.

To see that $G_{v}$ is redundantly periodically rigid, take any edge $e \in E\left(G_{v}\right)$. Our goal is to show that $G_{v}-e$ is periodically rigid. We take an edge $f$ from $E_{v}$. Suppose first that there is a circuit $C$ in $G+F$ with $f \in C$ and $e \notin C$. Since $C \subseteq E(G)+F-e$, we have $\mathrm{cl}_{2}(E(G)+F-e)=\mathrm{cl}_{2}(E(G)+F-e-f)$. On the other hand, since $G$ is redundantly periodically rigid, $\mathrm{cl}_{2}(E(G)+F)=\operatorname{cl}_{2}(E(G)+F-e)$. Thus, $\mathrm{cl}_{2}(E(G)+$ $F)=\mathrm{cl}_{2}(E(G)+F-e-f)$, and we get $r_{2}(G+F-e-f)=r_{2}(G+F)=2|V(G)|-2$. Since $v$ has degree two in $G+F-e-f$, we get $r_{2}\left(G_{v}-e\right)=2|V(G)|-2-2=\left|V\left(G_{v}\right)\right|-2$. Thus, $G_{v}-e$ is periodically rigid.

So we may suppose that every circuit in $G+F$ that contains $f$ also contains $e$. Then by (5.5), $e \in F$. Suppose that $G_{v}-e$ is not periodically rigid.

Claim 5.13. $G_{v}-e$ contains an $M$-connected component $D^{\prime}$ with $D^{\prime} \cap(F-e)=\emptyset$.

Proof. We split the proof into two cases depending on the size of $N_{G}(v)$.
Case 1: $\left|N_{G}(v)\right|=3$. We denote $N_{G}(v)=\left\{v_{1}, v_{2}, v_{3}\right\}$, and assume that $e$ connects $v_{1}$ and $v_{2}$. For $i=1,2$, let $e_{i}$ be the edge in $F$ that connects $v_{i}$ and $v_{3}$, and let $D_{i}$ be the $M$-connected component in $G_{v}-e$ that contains $e_{i}$. We first show that $D_{1} \neq D_{2}$. To see this, suppose $D_{1}=D_{2}$. Then $e \in \operatorname{cl}_{2}\left(D_{1}\right)$ since $\left\{e, e_{1}, e_{2}\right\}$ is balanced. This however implies that $\mathrm{cl}_{2}\left(E\left(G_{v}\right)\right)=\mathrm{cl}_{2}\left(E\left(G_{v}-e\right)\right)$ and hence $G_{v}$ is not periodically rigid as $G_{v}-e$ is not. This contradiction implies $D_{1} \neq D_{2}$.

Next, to see the statement of the claim, assume that $D_{1}$ and $D_{2}$ are all the $M$ connected components in $G_{v}-e$. By Lemma 5.1 and Lemma 5.10, $r_{2}\left(D_{i}\right)=2\left|V\left(D_{i}\right)\right|-$ $3+\delta\left(D_{i}\right)$, where $\delta\left(D_{i}\right)=0$ if it is balanced and $\delta\left(D_{i}\right)=1$ otherwise. Since $G_{v}-e$ is not periodically rigid, $2\left|V\left(G_{v}\right)\right|-3 \geq r_{2}\left(G_{v}-e\right)=r_{2}\left(D_{1}\right)+r_{2}\left(D_{2}\right) \geq 2\left(\left|V\left(D_{1}\right)\right|+\right.$ $\left.\left|V\left(D_{2}\right)\right|\right)-6+\delta\left(D_{1}\right)+\delta\left(D_{2}\right)$, implying $2\left|V\left(D_{1}\right) \cap V\left(D_{2}\right)\right|+\delta\left(D_{1}\right)+\delta\left(D_{2}\right) \leq 3$. Since $V\left(D_{1}\right) \cap V\left(D_{2}\right) \neq \emptyset$, we obtain

$$
\left|V\left(D_{1}\right) \cap V\left(D_{2}\right)\right|=1 \text { and } \delta\left(D_{1}\right)+\delta\left(D_{2}\right) \leq 1 .
$$

The first equation implies that $G$ has no edge between $v_{1}$ and $v_{2}$ except possibly $e$. The second inequality implies that at least $D_{1}$ or $D_{2}$ is balanced. Without loss of generality we assume that $D_{2}$ is balanced. If $\left|V\left(D_{2}\right)\right| \geq 3$, then $G\left[D_{2}\right]$ or $G\left[D_{2}-e_{2}\right]$ is a subgraph of $G$, and one of them forms a ( 0,2 )-block in $G$ since $\left\{v_{2}, v_{3}\right\}$ forms a cut, which contradicts that $G$ has no $(0,2)$-block. On the other hand, if $\left|V\left(D_{2}\right)\right|=2$, then $D_{2}=\left\{e_{2}\right\}$ and $G$ has no edge between $v_{2}$ and $v_{3}$ except possibly $e_{2}$. Therefore $E_{v} \cup(F \cap E(G))$ induces a ( 0,2 )-block in $G$, which is again a contradiction. This contradiction completes the proof for Case 1.
Case 2: $\left|N_{G}(v)\right|=2$. Let $e_{1}$ be the edge in $F$ different from $e$. Let $D_{1}$ be the $M$ connected component in $G_{v}-e$ that contains $e_{1}$. If $D_{1}$ is unbalanced, then $D_{1}$ is periodically rigid by Lemma 5.10, and hence $e \in \operatorname{cl}_{2}\left(D_{1}\right)$. This however implies that $G_{v}$ is not periodically rigid, which is a contradiction. Thus $D_{1}$ is balanced.

If $D_{1}$ is the only $M$-component in $G_{v}-e$, then $G\left[D_{1}\right]$ or $G\left[D_{1}-e_{1}\right]$ would be a $(0,2)$-block in $G$ by $\left|V\left(D_{1}\right)\right| \geq 3$. Thus $G_{v}-e$ has an $M$-component different from $D_{1}$.

Let $D^{\prime}$ be an $M$-component in $G_{v}-e$ satisfying the condition of Claim 5.13. Let $g \in D^{\prime}$ be arbitrary, and let $C_{1}$ be a circuit in $G+F$ with $e, g \in C_{1}$. By (5.5), $E_{v} \cup F$ is a circuit. Since $e \in F$ and $g \notin E_{v}+F$, by the circuit elimination, we have a circuit $C_{2} \subseteq\left(C_{1} \cup\left(E_{v}+F\right)\right)-e$ with $g \in C_{2}$. We claim

$$
\begin{equation*}
C_{2} \cap\left(E_{v}+e\right)=\emptyset . \tag{5.6}
\end{equation*}
$$

To see this recall that every circuit in $G+F$ containing $f$ also contains $e$. As $e \notin C_{2}$, we get $f \notin C_{2}$. Moreover, since $v$ has degree three in $G+F, f \notin C_{2}$ implies $E_{v} \cap C_{2}=\emptyset$, implying (5.6).

By (5.6), $C_{2}$ is a circuit in $G_{v}-e$. However, according to the construction of $C_{2}$, we have $C_{2} \cap\left(E_{v}+F\right) \neq \emptyset$, which means that $C_{2}$ intersects $F-e$ by (5.6). Since $D^{\prime} \cap(F-e)=\emptyset$ and $f \in C_{2} \cap D^{\prime}, C_{2}$ intersects more than one $M$-connected component in $G_{v}-e$, which is a contradiction.

Proof. [Proof of Lemma 4.7] By Lemma 5.3, the minimum degree of $G$ is at least three. Let $v$ be a vertex of degree three, and suppose without loss of generality that all the edges incident to $v$ are directed from $v$. To prove that $v$ is nondegenerate, we have to show that there is no neighbor $u$ of $v$ such that the set $\{L(\psi(e)): e=v u \in E(G)\}$ is affinely dependent. If $v$ has three distinct neighbors, then this is clearly true. If $v$ has exactly two neighbors, any parallel edges are not identical, and hence the parallel edges form an unbalanced cycle. Thus the statement is again true. Hence by 2 -connectivity of $G$ we conclude that $v$ is nondegenerate.

Next we show that $G-v$ is periodically rigid. Take any edge $e$ incident to $v$. Since $G$ is redundantly periodically rigid, we have $2|V(G)|-2=r_{2}(G)=r_{2}(G-e)$. Since $v$ has degree two in $G-e$, we get $r_{2}(G-v)=r_{2}(G-e)-2=2|V(G-v)|-2$ by Lemma 5.3, implying that $G-v$ is periodically rigid.

Finally the statement for $G_{v}$ has already been proved in Lemma 5.12.

### 5.5 Proof of Lemma 4.6

The proof of Lemma 4.6 is rather involved, and it consists of three major parts. In Lemma 5.14 we first show the existence of a degree three vertex in a minimally $M$-connected graph. By this result, we may focus on the case when $G$ is not minimally $M$-connected, i.e., $E^{\prime}=\{e \in E(G): G-e$ is $M$-connected $\}$ is nonempty. By Lemma $5.11, G-e$ is 2 -connected and redundantly periodically rigid for every $e \in E^{\prime}$ for which $G-e$ has no $(0,2)$-block. Thus, what remains to show is that there is an edge $e \in E^{\prime}$ such that $G-e$ has no ( 0,2 )-block. We prove this by contradiction. A key lemma for this will be Lemma 5.20 , which shows that, for any ( 0,2 )-block $H_{e}$ in $G-e$ for $e \in E^{\prime}, H_{e}$ contains an edge $f$ in $E^{\prime}$. The proof is completed by first taking $e \in E^{\prime}$ such that $\left|V\left(H_{e}\right)\right|$ is as small as possible and then showing that $G-f$ has no (0, 2)-block for $f \in E\left(H_{e}\right) \cap E^{\prime}$.
We start with the following lemma, which is an unbalanced version of Lemma 5.7 The proof strategy is similar, but its proof is technically more involved.

Lemma 5.14. If $G$ is unbalanced and minimally $M$-connected, then $G$ has a vertex of degree three.

Proof. Let $C_{1}, \ldots, C_{t}$ be an ear decomposition of $E(G)$. The statement trivially follows from the edge count of $G$ if $t=1$. Hence we assume $t \geq 2$. Let $D_{i}=\bigcup_{j=1}^{i} C_{j}$. We will use the notation $V=V(G)$ and $V^{\prime}=V\left(D_{t-1}\right)$. Our goal is to prove that the average degree of $V \backslash V^{\prime}$ (denoted by $d_{\text {avg }}\left(V \backslash V^{\prime}\right)$ ) is less than 4, implying that $V \backslash V^{\prime}$ must contain a vertex of degree three. The proof is split into two cases depending on whether $D_{t-1}$ is balanced or not.
Case 1: Suppose that $D_{t-1}$ is unbalanced. Then it follows from Lemma 5.11 that $D_{t-1}$ is periodically rigid. Using Lemma 5.5(c) we have

$$
\begin{equation*}
\left|C_{t} \backslash D_{t-1}\right|-1=r_{2}\left(D_{t-1} \cup C_{t}\right)-r_{2}\left(D_{t-1}\right)=2|V|-2-\left(2\left|V^{\prime}\right|-2\right)=2\left|V \backslash V^{\prime}\right| \tag{5.7}
\end{equation*}
$$

since $D_{t-1} \cup C_{t}$ is periodically rigid and $D_{t-1}$ is unbalanced M-connected.

Since $D_{t-1}$ is periodically rigid, $K\left(V^{\prime}, \Gamma\right) \subseteq \operatorname{cl}_{2}\left(D_{t-1}\right)$. Therefore, since $G$ is minimally $M$-connected, no edge in $C_{t} \backslash D_{t-1}$ is induced by $V^{\prime}$. This implies $V \backslash V^{\prime} \neq \emptyset$, and by Lemma 5.8 we further have

$$
\begin{equation*}
d\left(V \backslash V^{\prime}, V^{\prime}\right) \geq 3 \tag{5.8}
\end{equation*}
$$

Combining (5.7) and (5.8), we get

$$
d_{a v g}\left(V \backslash V^{\prime}\right)=\frac{2\left|C_{t} \backslash D_{t-1}\right|-d\left(V \backslash V^{\prime}, V^{\prime}\right)}{\left|V \backslash V^{\prime}\right|}=\frac{4\left|V \backslash V^{\prime}\right|+2-d\left(V \backslash V^{\prime}, V^{\prime}\right)}{\left|V \backslash V^{\prime}\right|}<4 .
$$

Case 2: Suppose that $D_{t-1}$ is balanced. We may assume that $C_{t}$ is balanced (otherwise, by Lemma 5.5, we can start the ear decomposition with the unbalanced circuit $C_{t}$, and hence we are back in Case 1). We prove that $V \backslash V^{\prime} \neq \emptyset$.

Since $D_{t-1}$ is balanced, we may assume $\psi(e)=\mathrm{id}$ for every $e \in D_{t-1}$. Let $X=$ $\left\{e \in D_{t} \mid \psi(e) \neq \mathrm{id}\right\}$. Since $D_{t}$ is unbalanced, we have $\emptyset \neq X \subseteq C_{t} \backslash D_{t-1}$. However, since $C_{t}$ is balanced, $G\left[C_{t}\right]-X$ must be disconnected. This in turn implies $|X| \geq 3$ by Lemma 5.8, and hence

$$
\begin{equation*}
\left|C_{t} \backslash D_{t-1}\right| \geq 3 \tag{5.9}
\end{equation*}
$$

On the other hand, by Lemma 5.5(c) we have

$$
\begin{equation*}
\left|C_{t} \backslash D_{t-1}\right|-1=r\left(D_{t-1} \cup C_{t}\right)-r\left(D_{t-1}\right)=2|V|-2-\left(2\left|V^{\prime}\right|-3\right)=2\left|V \backslash V^{\prime}\right|+1 \tag{5.10}
\end{equation*}
$$

as $D_{t-1} \cup C_{t}$ is periodically rigid and $D_{t-1}$ is balanced and M-connected. Combining (5.9) and (5.10), we get $V \backslash V^{\prime} \neq \emptyset$. By Lemma 5.8 we again have (5.8).

Let $F$ be the set of edges in $C_{t} \backslash D_{t-1}$ induced by $V^{\prime}$. If $F \neq \emptyset$, then we have
$d_{a v g}\left(V \backslash V^{\prime}\right)=\frac{2\left|C_{t} \backslash\left(D_{t-1} \cup F\right)\right|-d\left(V \backslash V^{\prime}, V^{\prime}\right)}{\left|V \backslash V^{\prime}\right|}=\frac{4\left|V \backslash V^{\prime}\right|+2-d\left(V \backslash V^{\prime}, V^{\prime}\right)}{\left|V \backslash V^{\prime}\right|}<4$
where the equation follows from (5.10) and the last inequality follows from (5.8).
Hence we suppose $F=\emptyset$ and every edge in $C_{t} \backslash D_{t-1}$ is incident to $V \backslash V^{\prime}$. By Lemma 5.9, the graph $\left(V\left(C_{t}\right) \cap V\left(D_{t-1}\right), C_{t} \cap D_{t-1}\right)$ is disconnected. Since every edge in $C_{t} \backslash \overline{D_{t-1}}$ is incident to $V \backslash V^{\prime}$, the disconnectivity of $\left(V\left(C_{t}\right) \cap V\left(D_{t-1}\right), C_{t} \cap D_{t-1}\right)$ implies that $V \backslash V^{\prime}$ is a cut set in $G\left[C_{t}\right]$. Hence Lemma 5.8 implies $\left|V \backslash V^{\prime}\right| \geq 2$. Since $C_{t}$ is balanced, the number of edges of $C_{t}$ induced by $V \backslash V^{\prime}$ is at most $2\left|V \backslash V^{\prime}\right|-3$, and we obtain

$$
\left|C_{t} \backslash D_{t-1}\right| \leq 2\left|V \backslash V^{\prime}\right|-3+d\left(V \backslash V^{\prime}, V^{\prime}\right)
$$

Combining this with (5.10), we get $d\left(V \backslash V^{\prime}, V^{\prime}\right) \geq 5$. Applying (5.10) again gives

$$
d_{a v g}\left(V \backslash V^{\prime}\right)=\frac{2\left|C_{t} \backslash D_{t-1}\right|-d\left(V \backslash V^{\prime}, V^{\prime}\right)}{\left|V \backslash V^{\prime}\right|} \leq \frac{4\left|V \backslash V^{\prime}\right|-1}{\left|V \backslash V^{\prime}\right|}<4 .
$$

This completes the proof.
The next target is to prove Lemma 5.18 and Lemma 5.19, which will be needed for the proof of Lemma 5.20. Lemmas 5.18 and 5.19 may be considered as periodic versions of the 2-sum lemma and the cleaving lemma given in [9]. For the proofs we first need three technical lemmas.

Lemma 5.15. Let $X$ and $Y$ be nonempty edge sets with $X \backslash Y \neq \emptyset, Y \backslash X \neq \emptyset$, and $|V(X) \cap V(Y)|=2$ such that $X \cup Y$ is a circuit. Let $l_{X}=2|V(X)|-|X|$ and $l_{Y}=2|V(Y)|-|Y|$. Then the following hold.
(i) If $X \cup Y$ is balanced, then $\left(l_{X}, l_{Y},|X \cap Y|\right)=(3,3,0)$.
(ii) If $X \cup Y$ is unbalanced, then $\left(l_{X}, l_{Y},|X \cap Y|\right)=(3,2,0),\left(l_{X}, l_{Y},|X \cap Y|\right)=(2,3,0)$, or $\left(l_{X}, l_{Y},|X \cap Y|\right)=(2,2,1)$.

Proof. Let $l_{X \cup Y}=2|V(X \cup Y)|-|X \cup Y|$. Then by $|V(X) \cap V(Y)|=2$ we have

$$
l_{X}+l_{Y}+|X \cap Y|=4+l_{X \cup Y} .
$$

If $X \cup Y$ is balanced, then $l_{X \cup Y}=2, l_{X} \geq 3$ and $l_{Y} \geq 3$. Hence $\left(l_{X}, l_{Y},|X \cap Y|\right)=$ $(3,3,0)$. And if $X \cup Y$ is unbalanced, then $l_{X \cup Y}=1, l_{X} \geq 2$ and $l_{Y} \geq 2$. This gives the result.

The following properties for balanced circuits is implicit in [9]. (Although the proof is omitted, a counting argument identical to Lemma 5.17 gives a proof.)

Lemma 5.16. Let $G$ be a balanced circuit and $H$ be $a(0,2)$-block in $G$. Then $H$ does not have an edge on $B(H)$. Also let $G_{0}=H$ and $G_{1}=G-I(H)$. Then the following hold.
(i) $\left|E\left(G_{i}\right)\right|=2\left|V\left(G_{i}\right)\right|-3$ for $i=0,1$.
(ii) $|F| \leq 2|V(F)|-4$ for any nonempty $F$ with $F \subsetneq E\left(G_{i}\right)$ and $\{a, b\} \subseteq V(F)$.
(iii) $|F| \leq 2|V(F)|-3$ for any nonempty $F$ with $F \subseteq E\left(G_{i}\right)$.

The following is an unbalanced counterpart.
Lemma 5.17. Let $G$ be an unbalanced circuit and $H$ be a (0,2)-block in $G$. Let $G_{0}=H-f_{0}^{\prime}$ if $H$ has an edge $f_{0}^{\prime}$ on $B(H)$, and let $G_{0}=H$ otherwise. Also let $G_{1}=G-I(H)$. Then the following hold.
(i) $\left|E\left(G_{i}\right)\right|=2\left|V\left(G_{i}\right)\right|-3+i$ for $i=0,1$.
(ii) $|F| \leq 2|V(F)|-4+\delta(F)$ for any nonempty $F$ with $F \subsetneq E\left(G_{i}\right)$ and $\{a, b\} \subseteq V(F)$.
(iii) $|F| \leq 2|V(F)|-3+\delta(F)$ for any nonempty $F$ with $F \subseteq E\left(G_{i}\right)$,
where $\delta(F)=0$ if $F$ is balanced and $\delta(F)=1$ otherwise.
Proof. Denote $G_{i}=\left(V_{i}, E_{i}\right)$. Since $G$ is an unbalanced circuit, for every nonempty $F \subsetneq E(G)$, we have $|F| \leq 2|V(F)|-2$, and $|F| \leq 2|V(F)|-3$ if $F$ is balanced. This implies (iii). We also have $\left|E_{0}\right| \leq 2\left|V_{0}\right|-3$ and $\left|E_{1}\right| \leq 2\left|V_{1}\right|-2$. On the other hand, by $E_{0} \cap E_{1}=\emptyset$, Lemma 5.15 implies $\left|E_{i}\right| \geq 2\left|V_{i}\right|-3$, and exactly one of $G_{0}$ and $G_{1}$ satisfies $\left|E_{i}\right|=2\left|V_{i}\right|-2$. Thus we get (i).

To see (ii), take $F \subsetneq E_{0}$ with $a, b \in V(F)$. Suppose for a contradiction that $F$ violates (ii). Then by (i) $\left|F \cup E_{1}\right|=|F|+\left|E_{1}\right| \geq 2|V(F)|-3+2\left|V\left(E_{1}\right)\right|-2=$ $2\left|V\left(F \cup E_{1}\right)\right|-1$, which contradicts the fact that $G$ is a circuit. The same counting argument works for $F \subsetneq E_{1}$ with $\{a, b\} \subseteq V(F)$. Thus (ii) holds.

Lemma 5.18. Let $G$ be unbalanced and $M$-connected and let $H$ be a ( 0,2 )-block in $G$ with $B(H)=\{a, b\}$. Then there is exactly one edge $f_{0}$ in $K(\{a, b\}, \Gamma)$ (which may exist in $G$ ) such that $H+f_{0}$ is balanced $M$-connected.

Proof. Since $H$ is balanced, $H$ has at most one edge between $a$ and $b$. We denote it by $f_{0}^{\prime}$ if it exists, and let $G_{0}=H-f_{0}^{\prime}$ if $f_{0}^{\prime}$ exists, and $G_{0}=H$ otherwise. Since $G_{0}$ is balanced and connected, there is exactly one edge $f_{0}$ in $K(\{a, b\}, \Gamma)$ whose addition to $G_{0}$ keeps the balancedness. (This $f_{0}$ coincides with $f_{0}^{\prime}$ if $f_{0}^{\prime}$ exists.) Moreover, Lemma 5.17 implies $G_{0}+f_{0}$ is a circuit if $G$ is an unbalanced circuit. Thus we have shown the following:

If $G$ is an unbalanced circuit, then there is exactly one edge $f_{0} \in K(\{a, b\}, \Gamma)$ such that $H+f_{0}$ is a balanced circuit.

Next we consider a general $M$-connected graph $G$. Take any $e \in E(H)-f_{0}^{\prime}$. Since $G$ is $M$-connected, $G$ has a circuit $C_{e}$ containing $e$ and some edge $f \in E(G) \backslash E(H)$. Since $C_{e}$ is 2-connected by Lemma 5.8, it spans $a$ and $b$. Hence, $H \cap C_{e}$ is a ( 0,2 )-block in $G\left[C_{e}\right]$, and by (5.11) there is exactly one edge $f_{0, e}$ on $\{a, b\}$ such that $H \cap C_{e}+f_{0, e}$ is a balanced circuit.

Since $H$ is balanced, we actually have $f_{0, e}=f_{0, e^{\prime}}$ for any $e, e^{\prime} \in E(H)-f_{0}^{\prime}$. We denote the edge by $f_{0}$. Then we have shown that, for every $e \in E(H)-f_{0}, H+f_{0}$ contains a circuit $H \cap C_{e}+f_{0}$ that contains $e$ and $f_{0}$. This in turn implies the $M$-connectivity of $H+f_{0}$.

The edge $f_{0}$ that was proved to exist in Lemma 5.26 is called the cleaving edge for the $(0,2)$-block $H$, and $H+f_{0}$ is called the cleavage graph of $H$.

Lemma 5.19. Let $G$ be $M$-connected, $H$ be a (0,2)-block in $G$, and $f_{0}$ be the cleaving edge for $H$. If $H+f_{0}-f$ is $M$-connected for some $f \in E\left(H-f_{0}\right)$, then $G-f$ is M-connected.

Proof. By the counting formulae given in Lemma 5.16 and Lemma 5.17, it is not difficult to check the following:

Let $C_{1}$ be a circuit in $H+f_{0}-f$ and $C_{2}$ be a circuit in $G$. If $f_{0} \in C_{1}$ and $C_{2} \backslash E(H) \neq \emptyset$, then $\left(C_{1}-f_{0}\right) \cup\left(C_{2}-E(H)\right)$ is a circuit.

To see the $M$-connectivity of $G-f$, we take two edges $e_{1} \in E(H-f)$ and $e_{2} \in E(G-$ $f) \backslash E(H)$. By the $M$-connectivity of $G, G$ has a circuit $C_{2}$ containing $e_{1}$ and $e_{2}$. Since $C_{2}$ is 2-connected, $\{a, b\} \subset V\left(C_{2}\right)$. On the other hand, since $H+f_{0}-f$ is $M$-connected, it has a circuit $C_{1}$ with $f_{0}, e_{1} \in C_{1}$. Thus, by (5.12), $C:=\left(C_{1}-f_{0}\right) \cup\left(C_{2}-E(H)\right)$ is a circuit which is contained in $G-f$.

Since $e_{1}$ and $e_{2}$ are chosen arbitrarily over $e_{1} \in E(H-f)$ and $e_{2} \in E(G-f) \backslash E(H)$, the above construction further implies that for every $e^{\prime} \in E(H-f), G-f$ has a circuit containing $e^{\prime}$ and $e_{2}$, while for every $e^{\prime} \in E(G-f) \backslash E(H), G-f$ has a circuit containing $e^{\prime}$ and $e_{1}$. In other words, for every $e^{\prime} \in E(G-f), G-f$ has a circuit $C_{e^{\prime}}$ intersecting $C$, which implies the $M$-connectivity of $G-f$.

We are now ready to prove the following key lemma.
Lemma 5.20. Let $G$ be an unbalanced $M$-connected graph that has no ( 0,2 )-block and its minimum degree is at least four. Suppose that $G-e$ is $M$-connected but $G-e$ has a $(0,2)$-block $H_{e}$ for some $e \in E(G)$. Then $H_{e}-f_{0}$ contains an edge $f$ such that $G-f$ is $M$-connected, where $f_{0}$ is the cleaving edge for $H_{e}$.

Moreover, if an endvertex of $e$ is not in $I\left(H_{e}\right)$, then $f$ can be taken such that $H_{e}-f-f_{0}$ is 2-connected.

Proof. Since $H_{e}$ is balanced and $G$ has no ( 0,2 )-block, we may suppose that
the label of each edge in $H_{e}$ is the identity and $e$ has a non-identity label.
Let $\{a, b\}=B\left(H_{e}\right)$ and let $G^{\prime}=H_{e}+f_{0}$ be the cleavage graph for $H_{e}$. The endvertices of $e$ are denoted by $u$ and $v$. At least one endvertex of $e$ is contained in $I\left(H_{e}\right)$, since otherwise $H_{e}$ would be a $(0,2)$-block in $G$. Hence we may assume $u \in I\left(H_{e}\right)$. As $\left.G^{\prime}, \psi^{\prime}\right)$ is (balanced) $M$-connected by Lemma 5.18, we can take an ear decomposition $C_{1}, \ldots, C_{t}$ of $E\left(G^{\prime}\right)$ such that $f_{0} \in C_{1}$ and $u \in V\left(C_{1}\right)$.

We first solve the case when an endvertex of $e$ is not in $I\left(H_{e}\right)$. We first remark that $t>1$. Otherwise $C_{1}$ contains at least four vertices of degree three in $C_{1}$, one of which is also a degree three vertex in $G$ since an endvertex of $e$ is not in $I\left(H_{e}\right)$. This contradicts that the minimum degree of $G$ is at least four. Thus $t>1$. By Lemma 5.7 and the minimum degree condition for $G$, we have $\left|\tilde{C}_{t}\right|=1$. Let $f$ be the edge in $\tilde{C}_{t}$. Then $H_{e}+f_{0}-f$ is $M$-connected. By Lemma 5.19, $G-f$ is also $M$-connected. It remains to show that $H_{e}-f-f_{0}$ is 2 -connected. Suppose that $H_{e}-f-f_{0}$ is not 2-connected. Then it is not (balanced) rigid, since every rigid graph is 2-connected. This in turn implies that $H_{e}-f+f_{0}$ is not $M$-connected, a contradiction. This completes the proof in the case where an endvertex of $e$ is not in $I\left(H_{e}\right)$.

The difficult case is when both endvertices of $e$ are contained in $I\left(H_{e}\right)$. We may assume that $\left|\tilde{C}_{t}\right|>1$, for otherwise the edge in $\tilde{C}_{t}$ has the desired property.

Claim 5.21. One of the following holds:
(i) $t=1, u, v, a, b$ are distinct, and they are exactly the vertices of degree three in $G^{\prime}$;
(ii) $t>1, V\left(C_{t}\right) \backslash V\left(\bigcup_{i=1}^{t-1} C_{i}\right)=\{v\}$, and $v$ has degree three in $G^{\prime}$.

Proof. If $t=1$, then there are at least four vertices of degree three in $G^{\prime}$ since $E\left(G^{\prime}\right)$ is a balanced circuit. Since the minimum degree of $G$ is at least four, we have (i).

Suppose $t>1$, and suppose also that (ii) does not hold. Then by Lemma 5.7 there is a vertex $w$ in $V\left(C_{t}\right)-V\left(\bigcup_{i=1}^{t-1} C_{i}\right)$ other than $v$ that has degree three in $G^{\prime}$. Since $\{u, a, b\} \subseteq V\left(C_{1}\right), w$ is distinct from them. Hence $w$ has degree three even in $G$, contradicting the minimum degree condition of $G$.

Claim 5.21 implies

$$
\begin{equation*}
d_{G}(v)=4 . \tag{5.14}
\end{equation*}
$$

Claim 5.21 also implies $v \in I\left(H_{e}\right)$, and we can take an edge $f$ in $G^{\prime}$ incident to $v$. We claim that $G$ has a circuit $C^{*}$ with $e \in C^{*}$ and $f \notin C^{*}$. Indeed, since $G-e$ is
$M$-connected, $G-e$ has a circuit $C$ with $f \in C$, and $G$ has a circuit $C^{\prime}$ with $e \in C^{\prime}$ and $f \in C^{\prime}$. By the circuit elimination, we get $C^{*} \subseteq C \cup C^{\prime}-f$ with $e \in C^{*}$. By (5.14) we have

$$
\begin{equation*}
d_{C^{*}}(v)=3 \text { and } d_{G-f}(v)=3 . \tag{5.15}
\end{equation*}
$$

Claim 5.22. $C^{*}$ is unbalanced with $\{a, b\} \subseteq V\left(C^{*}\right)$.
Proof. If $C^{*} \subseteq E\left(H_{e}\right)+e$, then we would have $r\left(C^{*}\right)=r\left(C^{*}-e\right)+1$ by 5.13), which contradicts that $C^{*}$ is a circuit. Hence $C^{*}$ must contain at least one edge from $E(G)-E\left(H_{e}+e\right)$. Thus the 2-connectivity of $C^{*}$ implies $\{a, b\} \subseteq V\left(C^{*}\right)$.

Suppose that $C^{*}$ is balanced. Then every path between $u$ and $v$ in $C^{*}-e$ passes through $a$, since the concatenation of $e$ and a path between $u$ and $v$ avoiding $a$ is unbalanced by (5.13). Hence $a$ is a cut vertex in $C^{*}-e$, contradicting the rigidity of $G\left[C^{*}\right]$. (Note that $u$ and $v$ are distinct from $a$ by Claim 5.21.)

Claim 5.23. If $t=1$, then $V\left(H_{e}\right) \subseteq V\left(C^{*}\right)$.
Proof. Let $X=V\left(C^{*}\right) \cap V\left(H_{e}\right)$ and $Y=V\left(H_{e}\right) \backslash X$. Also let $k$ be the number of edges between $a$ and $b$ in $G$. Note that $C_{1}=E\left(H_{e}\right)+f_{0}$ by $t=1$. (Recall that $C_{1}$ is the initial circuit in the ear decomposition $C_{1}, \ldots, C_{t}$.)

By Claim 5.22 and $e \in C^{*},\{u, v, a, b\} \cap Y=\emptyset$. Hence the edge set of $G$ induced by $Y$ is a proper subset of $C_{1}$. Hence

$$
\begin{equation*}
i_{G}(Y) \leq 2|Y|-3 \tag{5.16}
\end{equation*}
$$

if $|Y| \geq 2$. On the other hand, since $C^{*}$ is an unbalanced circuit by Claim 5.22, we have

$$
\begin{equation*}
i_{G}(X) \geq 2|X|-3+k \tag{5.17}
\end{equation*}
$$

by Lemma5.15. (This can be seen as follows. If $V\left(C^{*}\right) \subseteq V\left(H_{e}\right)$, then $C^{*}$ contains at most two edges between $a$ and $b$, and hence $i_{G}(X) \geq 2|X|-1+(k-2)=2|X|-3+k$. Suppose $V\left(C^{*}\right) \backslash V\left(H_{e}\right) \neq \emptyset$. In this case, by Lemma 5.15, $C^{*}$ contains at most one edge between $a$ and $b$. If $C^{*}$ contains an edge between $a$ and $b$, we have $i_{G}(X) \geq$ $2|X|-2+(k-1)$ by Lemma 5.15. Otherwise, we have $i_{G}(X) \geq 2|X|-3+k$, again by Lemma 5.15.) Finally we claim

$$
\begin{equation*}
i_{G}(X \cup Y) \leq 2|X \cup Y|-2+k . \tag{5.18}
\end{equation*}
$$

To see this, recall that $E\left(H_{e}\right)+f_{0}$ is a balanced circuit. Also $X \cup Y$ induces $E\left(H_{e}\right)+e$ and the edges on $\{a, b\}$. Thus, if $f_{0} \in E(G)$ then we have $i_{G}(X \cup Y) \leq(2|X \cup Y|-$ $2)+1+(k-1)$, and otherwise we have $i_{G}(X \cup Y) \leq(2|X \cup Y|-3)+1+k$. Hence (5.18) holds.

Combining (5.16) (5.17) (5.18), we get

$$
2 i_{G}(Y)+d(X, Y)=i_{G}(Y)+i_{G}(X \cup Y)-i_{G}(X) \leq 4|Y|-2 \quad \text { if }|Y| \geq 2,
$$

and

$$
d(X, Y)=i_{G}(X \cup Y)-i_{G}(X) \leq 2|Y|+1=3 \quad \text { if }|Y|=1
$$

Those imply that, if $Y \neq \emptyset$, then $G$ has a vertex of degree three in $Y$. By the minimum degree condition, we conclude that $Y=\emptyset$.

In the following two claims we show that $G-f$ is $M$-connected. For any $e_{1}, e_{2} \in$ $E(G-f)$, we denote $e_{1} \sim e_{2}$ if $G-f$ has a circuit that contains $e_{1}$ and $e_{2}$. Since $\sim$ is an equivalence relation, for the $M$-connectivity of $G-f$ it suffices to show $e^{\prime} \sim e$ for every $e^{\prime} \in E(G-f)$.

Claim 5.24. For any $e^{\prime} \in E\left(H_{e}-f-f_{0}\right), e^{\prime} \sim e$. Also $C^{*} \cup\left(E\left(H_{e}\right)-f-f_{0}\right)$ is periodically rigid.

Proof. Since $C^{*}$ is an unbalanced circuit by Claim 5.22, $C^{*}$ is periodically rigid. If $t=1$, then Claim 5.23 implies $V\left(H_{e}\right) \subseteq V\left(C^{*}\right)$, and hence $e^{\prime} \in \mathrm{cl}_{2}\left(C^{*}\right)$ for every $e^{\prime} \in E\left(H_{e}-f-f_{0}\right)$. Thus the claim holds for $t=1$.

Suppose $t>1$. Recall that $f$ is incident to $v$. In view of Claim 5.21, $\tilde{C}_{t}$ is equal to the set of edges in $G-e$ incident to $v$. Hence $f \in \tilde{C}_{t}$, implying $f \notin C_{i}$ for $1 \leq i \leq t-1$. Also, since $C^{*}$ is incident to $v$ and $d_{G-f}(v)=3, C^{*}$ contains all the edges in $G-f$ incident to $v$. Thus we have

$$
C^{*} \cup\left(E\left(H_{e}\right)-f-f_{0}\right)=C^{*} \cup \bigcup_{i=1}^{t-1}\left(C_{i}-f_{0}\right),
$$

and the proof of the claim follows by showing the following by induction on $i$ from $i=1$ to $t-1$ :

$$
\begin{equation*}
e^{\prime} \sim e \text { for any } e^{\prime} \in C_{i}-f_{0} \text { and } C^{*} \cup \bigcup_{j=1}^{i}\left(C_{j}-f_{0}\right) \text { is periodically rigid. } \tag{5.19}
\end{equation*}
$$

To see this, we first note that $f_{0} \in \operatorname{cl}_{2}\left(C^{*}\right)$ since $C^{*}$ is periodically rigid and $\{a, b\} \subset$ $V\left(C^{*}\right)$. Hence $C^{*}+f_{0}$ contains a circuit $C_{0}^{*}$ with $f_{0} \in C_{0}^{*}$.

For $i=1$, consider any $e^{\prime} \in C_{1}-C^{*}-f_{0}$. The circuit elimination implies that $C_{1} \cup C_{0}^{*}-f_{0}$ contains a circuit $C_{e^{\prime}}$ with $e^{\prime} \in C_{e^{\prime}}$. Notice that $C_{e^{\prime}}$ is a circuit in $G-f$ and has a nonempty intersection with $C^{*}$. Since $\sim$ is an equivalence relation, this implies $e^{\prime} \sim e$. Also $C^{*} \cup C_{e^{\prime}}$ is periodically rigid by Lemma 5.4. Since $\bigcup_{e^{\prime} \in C_{1}-C^{*}-f_{0}}\left(C^{*} \cup C_{e^{\prime}}\right)=$ $C^{*} \cup\left(C_{1}-f_{0}\right), C^{*} \cup\left(C_{1}-f_{0}\right)$ is periodically rigid.

For $i>1$, consider any $e^{\prime} \in C_{i}-C^{*}-f_{0}$. If $f_{0} \in C_{i}$, then we can apply the same argument. (Specifically, the circuit elimination implies that $C_{i} \cup C_{0}^{*}-f_{0}$ contains a circuit $C_{e^{\prime}}$ with $e^{\prime} \in C_{e^{\prime}}$. Since $C_{e^{\prime}}$ is a circuit in $G-f$ and has a nonempty intersection with $C^{*}$, we get $e^{\prime} \sim e$.) Suppose $f_{0} \notin C_{i}$. According to the definition of ear decompositions, $C_{i}$ has a nonempty intersection with $\bigcup_{j=1}^{i-1} C_{j}$. Take an edge $h$ from the intersection. Note that $h \neq f_{0}$. Since $\left\{e^{\prime}, h\right\} \subseteq C_{i}$, we get $e^{\prime} \sim h \sim e$ by induction. Also the periodic rigidity of $C^{*} \cup \bigcup_{j=1}^{i-1}\left(C_{j}-f_{0}\right)$ follows from Lemma 5.4 and the induction hypothesis. This completes the proof of (5.19) as well as the proof of the claim.

Claim 5.25. For any $e^{\prime} \in E(G-f) \backslash E\left(H_{e}-f_{0}\right), e^{\prime} \sim e$.
Proof. We may assume $e^{\prime} \notin C^{*}$. Let $F=C^{*} \cup\left(E\left(H_{e}\right)-f-f_{0}\right)$. By Claim 5.24, $F$ is periodically rigid. As $f$ is induced by $V(F), f \in \operatorname{cl}_{2}(F)$, and $G$ has a circuit $C^{\prime \prime}$ with
$f \in C^{\prime \prime} \subseteq F+f$. On the other hand, $G$ contains a circuit $C_{e^{\prime}}$ with $e^{\prime}, f \in C_{e^{\prime}}$ by the $M$ connectivity of $G$. Hence, by the circuit elimination, we get a circuit $C_{e^{\prime}}^{\prime} \subset C_{e^{\prime}} \cup C^{\prime \prime}-f$ with $e^{\prime} \in C_{e^{\prime}}^{\prime} \subseteq E(G-f)$. Note that every element in $F$ is related to $e$ by Claim 5.24. Since $C_{e^{\prime}}^{\prime} \cap F \neq \emptyset$, we conclude that $e^{\prime} \sim e$.

By Claim 5.24 and Claim 5.25, we conclude that $G-f$ is $M$-connected.
The following lemma lists properties of ( 0,2 )-blocks which we will use frequently in the following. Most of them follow directly from the definition.

Lemma 5.26. Let $G$ be an unbalanced and $M$-connected graph having no ( 0,2 )-block, and let $e \in E(G)$. Suppose that $G-e$ is unbalanced and $M$-connected, but $G-e$ has a ( 0,2 )-block $H_{e}$. Then the following hold.
(a) Any edge of $G-e$ induced by $V\left(H_{e}\right)$ is included in $H_{e}$ unless it is on the boundary $B\left(H_{e}\right)$, i.e., $E_{G-e}\left(V\left(H_{e}\right)\right)-E_{G-e}\left(B\left(H_{e}\right)\right) \subseteq E_{G-e}\left(H_{e}\right)$.
(b) At least one endvertex of $e$ is included in $I\left(H_{e}\right)$.
(c) If $H_{e}$ is an inclusionwise minimal ( 0,2 )-block in $G-e$, then the cleavage graph of $H_{e}$ is 3-connected.
(d) $\left|E(G-e) \backslash E\left(H_{e}\right)\right| \geq 2$.
(e) $(G-e)-I\left(H_{e}\right)$ is connected.

Proof. (a) This directly follows from the definition of $B\left(H_{e}\right)$.
(b) If both endvertices of $e$ are not in $I\left(H_{e}\right)$, then $H_{e}$ would be a $(0,2)$-block in $G$, a contradiction.
(c) If the cleavage graph of $H_{e}$ is not 3 -connected, then $G-e$ would have a proper subgraph of $H_{e}$ which is a ( 0,2 )-block. This contradicts the minimality of $H$.
(d) Recall that $H_{e}$ is balanced. Hence $G-e$ contains at least two edges which are not in $H_{e}$, since otherwise $G$ cannot be $M$-connected.
(e) Let $B\left(H_{e}\right)=\{a, b\}$. Suppose that $(G-e)-I\left(H_{e}\right)$ is disconnected. Since $G-e$ is connected, $(G-e)-I\left(H_{e}\right)$ has two connected components $C_{a}$ and $C_{b}$ containing $a$ and $b$, respectively. In particular, there is no edge between $a$ and $b$ in $G-e$. If any one of the two components is nontrivial, then $G-e$ has a cut vertex. However, since $G-e$ is $M$-connected, Lemma 5.8 implies that $G-e$ is 2 -connected, a contradiction.

Thus we may assume that both components are trivial. Then we have $V\left(H_{e}\right)=$ $V(G)$. By (a), every edge in $E(G-e)-E\left(H_{e}\right)$ lies on $\{a, b\}$. However, since $G-e$ has no edge between $a$ and $b$, we would have $E(G-e)=E\left(H_{e}\right)$, contradicting (d).

We are now ready to prove Lemma 4.6 .
Proof. [Proof of Lemma 4.6] By Theorem 5.11 it suffices to show that, for any $M$-connected graph $G$ having no $(0,2)$-block and whose minimum degree is at least four, there exists $e \in E(G)$ such that $G-e$ is $M$-connected and has no ( 0,2 )-block. By Lemma 5.14, $G$ is not minimally $M$-connected. In other words, $E^{\prime}=\{e \in E$ : $G-e$ is M-connected $\}$ is not empty.

Suppose that $G-e^{\prime}$ has a $(0,2)$-block for every $e^{\prime} \in E^{\prime}$. Let $H_{e^{\prime}}$ be an inclusionwise minimal $(0,2)$-block in $G-e^{\prime}$ for each $e^{\prime} \in E^{\prime}$, and take $e \in E^{\prime}$ such that $\left|V\left(H_{e}\right)\right|$
is as small as possible. Since the minimum degree of $G$ is at least four, Lemma 5.20 implies that $H_{e}$ contains an edge $f$ such that $G-f$ is $M$-connected.

Let $B\left(H_{e}\right)=\{a, b\}$ and $B\left(H_{f}\right)=\{x, y\}$. The cleaving edges for $H_{e}$ and $H_{f}$ are denoted by $f_{a b}$ and $f_{x y}$, respectively. By Lemma 5.18 and Lemma 5.26(c), $H_{e}+f_{a b}$ and $H_{f}+f_{x y}$ are (balanced) $M$-connected and 3 -connected. Also, by Lemma 5.20 . we may suppose that

$$
\begin{equation*}
H_{e}-f-f_{a b} \text { is 2-connected if an endvertex of } e \text { is not in } I\left(H_{e}\right) \text {. } \tag{5.20}
\end{equation*}
$$

We first claim the following technical fact.
Claim 5.27. If $V(G)=V\left(H_{f}\right)$, then $x$ and $y$ are contained in $I\left(H_{e}\right)$.
Proof. Suppose $V(G)=V\left(H_{f}\right)$ but $x$ is not contained in $I\left(H_{e}\right)$. Let $F=E(G-$ $f) \backslash E\left(H_{f}\right)$. By $V(G)=V\left(H_{f}\right)$ and $\left|B\left(H_{f}\right)\right|=2, F$ is the set of parallel edges on $\{x, y\}\left(=B\left(H_{f}\right)\right)$.

Since $f \in E\left(H_{e}\right)$ and $H_{e}+f_{a b}$ is 3 -connected, $H_{e}$ contains a cycle $C_{a}$ (resp., $C_{b}$ ) that passes through $f$ and avoids $a$ (resp., $b$ ). Since $x$ is not contained in $I\left(H_{e}\right), C_{a}$ or $C_{b}$ avoids $x$, which means that $C_{a} \cap F=\emptyset$ or $C_{b} \cap F=\emptyset$. Without loss of generality assume $C_{a} \cap F=\emptyset$. Hence $C_{a} \subset H_{f}+f$. Since $f \in C_{a} \subset H_{e} \cap\left(H_{f}+f\right)$ and $H_{e}$ and $H_{f}$ are balanced, we conclude that $H_{f}+f$ is balanced. This however implies that $H_{f}+f$ is a ( 0,2 )-block in $G$, which is a contradiction.

We have four cases depending on the relative positions among $\{a, b, x, y\}$.
Case 1: $x \in I\left(H_{e}\right)$ and $y \in V(G) \backslash V\left(H_{e}\right)$. In this case $\{a, b\}$ is a cut of $G-e-f$ since $x$ and $y$ belong to different components in $(G-e)-a-b$. By Claim 5.27, $\{x, y\}$ is also a cut of $G-e-f$. (If $\{x, y\}$ is not a cut in $G-e-f$, then it is also not a cut in $G-f$ and hence $V(G)=V\left(H_{f}\right)$ follows. Hence Claim 5.27implies $x, y \in I\left(H_{e}\right)$, contradicting $y \in V(G) \backslash V\left(H_{e}\right)$.) Now, from the fact that $\{a, b\}$ and $\{x, y\}$ are cuts of $G-e-f, G-e-f$ can be decomposed into four subgraphs $G_{1}, \ldots, G_{4}$ by taking $G_{1}=\left(H_{e}-f\right) \cap\left(H_{f}-e\right), G_{2}=\left(H_{f}-e\right) \cap\left(G-I\left(H_{e}\right)\right), G_{3}=\left(G-I\left(H_{f}\right)\right) \cap\left(H_{e}-f\right)$ and $G_{4}=\left(G-I\left(H_{f}\right)\right) \cap\left(G-I\left(H_{e}\right)\right)$. Then $G_{1}, G_{2}$ and $G_{3}$ are balanced, and each $G_{i}$ has at least two vertices. Thus, $r_{2}(G-e-f) \leq \sum_{i=1}^{4} r_{2}\left(G_{i}\right) \leq \sum_{i=1}^{4} 2\left|V\left(G_{i}\right)\right|-11 \leq$ $2|V(G)|-3$, which contradicts that $G-e-f$ is periodically rigid as $G-e$ is unbalanced $M$-connected.

Case 2: $x \in I\left(H_{e}\right)$ and $y \in I\left(H_{e}\right)$. We first show the following:

$$
\begin{equation*}
\left(H_{e}-f\right) \cup\left(H_{f}-e\right)=G-e-f . \tag{5.21}
\end{equation*}
$$

By the minimum choice of $V\left(H_{e}\right)$, there must exist $w \in V\left(H_{f}\right) \backslash I\left(H_{e}\right)$. By Lemma 5.26(e), $G-I\left(H_{e}\right)$ is connected and hence there is a path from $w$ to any vertex in $G-I\left(H_{e}\right)$. Since such a path avoids $\{x, y\}$ by $\{x, y\} \subseteq I\left(H_{e}\right)$, we get $V(G) \backslash I\left(H_{e}\right) \subseteq I\left(H_{f}\right)$. (Note that such a path starts from the interior of $H_{f}$ and remains in the interior, since it avoids the boundary $\{x, y\}$.) Hence every edge induced by $V(G) \backslash I\left(H_{e}\right)$ is included in $H_{f}$ by Lemma 5.26(a), implying (5.21).

We next prove

$$
\begin{equation*}
\left(H_{e}-f\right) \cap\left(H_{f}-e\right) \text { contains a path between } a \text { and } b \text {. } \tag{5.22}
\end{equation*}
$$

Suppose not. Since $x, y \in I\left(H_{e}\right)$ and $a, b \in V\left(H_{f}\right)$ by (5.21), there are only two possibilities for $H_{f}-e$ : (i) $a$ and $b$ are both cut vertices of $H_{f}-e$, or (ii) $a$ (or $b$ ) is a cut vertex of $H_{f}-e$ and $x, y$ belong to the same component in $\left(H_{f}-e\right)-a$ (or $\left.\left(H_{f}-e\right)-b\right)$. Now consider the cleavage graph $H_{f}+f_{x y}$ of $H_{f} . H_{f}+f_{x y}$ is obtained from $H_{f}-e$ by adding $f_{x y}$ and $e$. However, the above two possibilities imply that $H_{f}+f_{x y}$ is not 3 -connected, which is a contradiction.

We next prove

$$
\begin{equation*}
G-e-f \text { is balanced. } \tag{5.23}
\end{equation*}
$$

To see this suppose $G-e-f$ has an unbalanced cycle $C$. Suppose that $C \cap\left(E\left(H_{e}\right)-\right.$ $f)=\emptyset$. Then, by (5.21), $C \subseteq E\left(H_{f}\right)-e$ holds, and hence $H_{f}$ is unbalanced, which is a contradiction to the balancedness of $H_{f}$. Thus, $C \cap\left(E\left(H_{e}\right)-f\right) \neq \emptyset$, and the symmetric argument also gives $C \cap\left(E\left(H_{f}\right)-e\right) \neq \emptyset$. Therefore, as $B\left(H_{e}\right)=\{a, b\}$, $C$ can be decomposed into two nonempty paths $P_{1}$ and $P_{2}$ such that $P_{1}$ is a path in $H_{e}-f$ between $a$ and $b$. By (5.21) $P_{2}$ is a path in $H_{f}-e$ between $a$ and $b$. Also by (5.22) we have a path $P_{3}$ between $a$ and $b$ in $\left(H_{e}-f\right) \cap\left(H_{f}-e\right)$. Since $P_{1} \cup P_{2}$ is unbalanced, $P_{1} \cup P_{3}$ or $P_{2} \cup P_{3}$ is unbalanced. This however contradicts that both $H_{e}$ and $H_{f}$ are balanced since $P_{1} \cup P_{3} \subseteq H_{e}$ and $P_{2} \cup P_{3} \subseteq H_{f}$. Thus we get (5.23).

By (5.23) we can suppose that the label of each edge in $G-e-f$ is identity. Since $f \in E\left(H_{e}\right), H_{e}$ contains a cycle passing through $f$. Since $H_{e}$ is balanced, the label of $f$ is the identity. Thus $G-e$ is balanced, and this contradicts that $G$ is unbalanced and $M$-connected.

Case 3: $x \in I\left(H_{e}\right)$ and $y \in B\left(H_{e}\right)$. Without loss of generality we assume $b=y$. By Claim 5.27, $\{x, y\}$ is a cut of $G-e-f$. Due to the minimality of $H_{e}, G-e-f$ can be decomposed into three subgraphs $G_{1}, G_{2}, G_{3}$ by taking $G_{1}=\left(H_{e}-f\right) \cap\left(H_{f}-e\right)$, $G_{2}=\left(H_{e}-f\right) \cap\left(G-I\left(H_{f}\right)\right)$ and $G_{3}=\left(G-I\left(H_{e}\right)\right) \cap\left(H_{f}-e\right)$.

Observe that either $G_{1} \cup G_{3}+f_{x y}$ or $G_{1} \cup G_{3}+f_{x y}+e$ is the cleavage graph of $H_{f}$. Since $a$ is a cut vertex in $G_{1} \cup G_{3}$, by the 3-connectivity of the cleavage graph, e connects a vertex in $V\left(G_{1}\right) \backslash\{a\}$ with a vertex in $V\left(G_{3}\right) \backslash\{a\}$. Since $V\left(G_{3}\right) \subseteq V(G) \backslash I\left(H_{e}\right)$, we conclude that an endvertex of $e$ is not in $I\left(H_{e}\right)$. Thus, by (5.20), $H_{e}-f-f_{a b}$ is 2-connected. However, $G_{1} \cup G_{2}=H_{e}-f-f_{a b}$ holds, and $x$ is a cut vertex in $G_{1} \cup G_{2}$. This is a contradiction.

Case 4: $x \notin I\left(H_{e}\right)$ and $y \notin I\left(H_{e}\right)$. We claim that

$$
\begin{equation*}
I\left(H_{e}\right) \nsubseteq I\left(H_{f}\right) \text { and } H_{e}-f-f_{a b} \nsubseteq H_{f} . \tag{5.24}
\end{equation*}
$$

Note that $I\left(H_{e}\right) \subseteq I\left(H_{f}\right)$ implies $H_{e}-f-f_{a b} \subseteq H_{f}$, by Lemma 5.26(a). Hence it suffices to show $H_{e}-f-f_{a b} \nsubseteq H_{f}$. To see this suppose $H_{e}-f-f_{a b} \subseteq H_{f}$. Since $f \in E\left(H_{e}\right)$, we can take a cycle $C$ in $H_{e}-f_{a b}$ that contains $f$. This cycle is balanced since $H_{e}$ is balanced. By $H_{e}-f-f_{a b} \subseteq H_{f}, C$ is contained in $H_{f}+f$. As $C$ is balanced with $f \in C$, it turns out that $H_{f}+f$ is balanced with $B\left(H_{f}+f\right)=B\left(H_{f}\right)$, and $H_{f}+f$ is a $(0,2)$-block in $G$, a contradiction. Thus we have (5.24).

We next claim $I\left(H_{e}\right) \cap I\left(H_{f}\right) \neq \emptyset$. Indeed, an endvertex of $f$ is in $I\left(H_{f}\right)$ by Lemma 5.26(b), and this vertex is in $V\left(H_{e}\right)$ by $f \in E\left(H_{e}\right)$. If this vertex belongs to $I\left(H_{e}\right)$, we are done. If this vertex is in $B\left(H_{e}\right)$, then the other endvertex of $f$ is in
$I\left(H_{e}\right)$. This vertex also belongs to $I\left(H_{f}\right)$, since $H_{e}$ has a path between the endvertices of $f$ avoiding $\{x, y\}$ by the 3-connectivity of $H_{e}+f_{a b}$ and $x, y \notin I\left(H_{e}\right)$.

Thus we can take $v^{*} \in I\left(H_{e}\right) \cap I\left(H_{f}\right)$. Suppose that $\{x, y\} \neq\{a, b\}$, say $a \notin\{x, y\}$. Since $H_{e}+f_{a b}$ is 3 -connected, for any $u \in I\left(H_{e}\right), H_{e}$ has a path from $u$ to $v^{*}$ that avoids $b$ and $f$. Since $x, y \notin I\left(H_{e}\right)$, this in turn implies that $G-f$ has a path between $v^{*} \in I\left(H_{f}\right)$ and $u \in I\left(H_{e}\right)$ that avoids $\{x, y\}$. Thus $I\left(H_{e}\right) \subseteq I\left(H_{f}\right)$, which is a contradiction to (5.24).

Thus we have $\{x, y\}=\{a, b\}$. In other words, $B\left(H_{e}\right)=B\left(H_{f}\right)$. We next prove

$$
\begin{equation*}
e \in E\left(H_{f}\right) \tag{5.25}
\end{equation*}
$$

Suppose not. Then we have the following:
a vertex $u \in V(G)$ belongs to $I\left(H_{f}\right)$ if and only if $G-e-f$ has a path from $u$ to $v^{*}$ that avoids $a$ and $b$.

Indeed, if $G-e-f$ has a path from $u \in V(G)$ to $v^{*}$ avoiding $a$ and $b$, then $u \in I\left(H_{f}\right)$ by $v^{*} \in I\left(H_{f}\right)$. On the other hand, if $u \in I\left(H_{f}\right)$, then $H_{f}-x-y$ has a path between $u$ and $v^{*}$ since $H_{f}+f_{x y}$ is 3 -connected. This path exists in $G-e-f$ since $e \notin E\left(H_{f}\right)$.

To complete the proof of (5.25), recall $v^{*} \in I\left(H_{e}\right) \cap I\left(H_{f}\right)$. Then (5.26) implies $I\left(H_{f}\right) \subseteq I\left(H_{e}\right)$. This actually implies $I\left(H_{f}\right)=I\left(H_{e}\right)$ due to the minimality of $V\left(H_{e}\right)$, which however contradicts (5.24). Thus (5.25) holds.

By the 3 -connectivity of $H_{f}+f_{x y}$ and $\{x, y\}=\{a, b\}, H_{f}-e$ has a path between $v^{*}$ and $a$ that avoids $b$ and a path between $v^{*}$ and $b$ that avoids $a$. As $\{a, b\}$ is a cut in $G-e$, those two paths are contained in $H_{e}$. Also, since $f \notin H_{f}$, those paths are actually contained in $\left(H_{e}-f\right) \cap\left(H_{f}-e\right)$. Thus $\left(H_{e}-f\right) \cap\left(H_{f}-e\right)$ contains a path between $a$ and $b$, and hence $\left(H_{e}-f\right) \cup\left(H_{f}-e\right)$ is balanced (by the same argument as (5.23)). Thus we may assume that the label of each edge in $\left(H_{e}-f\right) \cup\left(H_{f}-e\right)$ is identity.

Recall that $f \in E\left(H_{e}\right)$. Due to the 3 -connectivity of $H_{e}+f_{a b}, H_{e}$ has a cycle passing through $f$. Since $H_{e}$ is balanced, the label of $f$ is identity. In the same way, 5.25) implies that the label of $e$ is identity. In total, $H_{e} \cup H_{f}$ is balanced. However, by $f \in E\left(H_{e}\right), e \in E\left(H_{f}\right)$, and $B\left(H_{e}\right)=B\left(H_{f}\right), H_{e} \cup H_{f}$ turns out to be a $(0,2)$-block in $G$. This contradiction completes the proof.

## 6 Concluding Remarks

### 6.1 Global rigidity of cylindrical/troidal frameworks

Given $\ell \in \mathbb{R}^{2}$, we consider the following equivalence relation of $\mathbb{R}^{2}$ :

$$
\text { for } a, b \in \mathbb{R}^{2}, a \sim_{1} b \text { if and only if } a=b+z \ell \text { for some } z \in \mathbb{Z} .
$$

A flat cylinder $\mathcal{C}_{\ell}=\mathcal{C}$ is obtained by factoring out $\mathbb{R}^{2}$ with the relation $\sim_{1}$. Similarly, given a pair of vectors $\ell_{1} \ell_{2}$ of $\mathbb{R}^{2}$, consider an equivalence relation of $\mathbb{R}^{2}$ by:
for $a, b \in \mathbb{R}^{2}, a \sim_{2} b$ if and only if $a=b+z_{1} \ell_{1}+z_{2} \ell_{2}$ for some pair $z_{1}, z_{2} \in \mathbb{Z}$.

A flat torus $\mathcal{T}_{\ell_{1}, \ell_{2}}=\mathcal{T}$ is obtained by factoring out $\mathbb{R}^{2}$ with the relation $\sim_{2}$.
Given a straight-line drawing of an undirected graph on $\mathcal{C}$ (resp. on $\mathcal{T}$ ), we regard it as a bar-joint framework. Note that such frameworks on $\mathcal{C}$ (resp. on $\mathcal{T}$ ) has a one-to-one correspondence with 1-periodic (resp. 2-periodic) frameworks in $\mathbb{R}^{2}$ through $\sim_{1}$ (resp. $\sim_{2}$ ). Hence our combinatorial characterization of the global rigidity of periodic frameworks immediately implies a characterization of the global rigidity of cylindrical/toroidal frameworks.

The underlying combinations of a drawing on $\mathcal{C}$ (resp. on $\mathcal{T}$ ) is captured by using a $\mathbb{Z}$-labeled graph $(G, \psi)$ (resp. $\mathbb{Z}^{2}$-labeled graph), where each label determines the geodesic between two endvertices. A cylindrical framework (resp. a toroidal framework) is defined as a pair $(G, \psi, p)$ of a $\mathbb{Z}$-labeled graph $(G, \psi)$ (resp. $\mathbb{Z}^{2}$-labeled graph) and $p: V(G) \rightarrow \mathcal{C}$ (resp. $p: V(G) \rightarrow \mathcal{T}$ ). Note that a subgraph $H$ is balanced if and only if it is contractible on the surface. Hence Theorem 4.1 can be translated to Theorem 1.3 for cylindrical frameworks. For toroidal frameworks the statement becomes as follows.

Theorem 6.1. A generic framework $(G, p)$ with $|V(G)| \geq 3$ on $\mathcal{T}$ is globally rigid if and only if each two-connected component is redundantly rigid on $\mathcal{T}$, has no contractible subgraph $H$ with $|V(H)| \geq 3$ and $|B(H)|=2$, and has rank two.

### 6.2 Open problems

There are quite a few remaining questions. As mentioned in the introduction, an important challenging problem is to extend our results to more general settings of global rigidity of periodic frameworks, as was done for local rigidity in [17, 18.

As mentioned above, Theorems 4.1 and 4.2 may be viewed as a characterization of generic globally rigid bar-joint frameworks on a flat cylinder or a flat torus, respectively. A natural open problem is to establish counterparts of Theorem 1.2 in other flat Riemannian manifolds.

A similar question would be about the global rigidity of frameworks on a flat cone. Since a flat cone with cone angle $2 \pi / n$ is the quotient of $\mathbb{R}^{2}$ by an $n$-fold rotation, the global rigidity of such frameworks can be understood by the global rigidity of frameworks in $\mathbb{R}^{2}$ with $n$-fold rotational symmetry (under the given symmetry constraints). The corresponding local rigidity question has been studied in 15,19 and an extension of Laman's theorem is known. Since the space of trivial motions is only of dimension one in this case (only rotations are trivial), an unbalanced rigidity circuit $G$ satisfies the count $|E(G)|=2|V(G)|$. Therefore, we cannot guarantee the existence of a vertex of degree three in $G$. This constitutes the key obstacle in applying our current proof method to this problem.

We may also ask about the global rigidity of finite frameworks with other point group symmetries. However, for the same reason, it also remains open to characterize the symmetry-forced global rigidity of finite bar-joint frameworks in $\mathbb{R}^{2}$ that are generic modulo reflection or dihedral symmetry. In fact, it is currently not even known whether symmetry-forced global rigidity is a generic property for any point group in dimension 2 . Necessary redundant rigidity and connectivity conditions, however, may
be obtained in a similar fashion as described in Section 3.

## Acknowledgements

Part of this work was carried out while the second and third author were visiting the Hausdorff Institute of Mathematics (HIM) in Bonn, Germany, as part of the HIM Trimester Program on Combinatorial Optimization.

## References

[1] L. Asimov and B. Roth, The Rigidity of Graphs, Trans. Amer. Math. Soc. 245: 279-289, 1978.
[2] R. Connelly, Rigidity and energy, Invent. Math. 66: 11-33, 1982.
[3] R. Connelly, Generic global rigidity, Discrete \& Comp. Geom. 33: 549-563, 2005.
[4] R. Connelly, On generic global rigidity, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4:147-155, 1991.
[5] C.R. Coullard and L. Hellerstein, Independence and port oracles for matroids, with an application to computational learning theory, Combinatorica 16(2): 189208, 1996.
[6] H. Gluck, Almost all simply connected closed surfaces are rigid, In Geometric Topology Vol. 488 of Lecture Notes in Mathematics, 225-240, Springer 1975.
[7] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global rigidity, American J. Math., 132:897-939, 2010.
[8] B. Hendrickson, Conditions for unique graph realizations, SIAM J. Comput. 21 (1): 65-84, 1992.
[9] B. Jackson and T. Jordán, Connected rigidity matroids and unique realizations of graphs, J. Comb. Theory B, 94: 1-29, 2005.
[10] B. Jackson, T. Jordán and Z. Szabadka, Globally linked pairs of vertices in equivalent realizations of graphs, Discrete \& Comp. Geom. 35, 493-512, 2006.
[11] B. Jackson, T. Jordán and S. Tanigawa, Unique low rank completability of partially filled matrices, J. Comb. Theory B, 121, 432-462, 2016.
[12] B. Jackson and P. Keevash, Necessary conditions for the global rigidity of direction-length frameworks, Discrete E Comp. Geom., 46(1): 72-85, 2011.
[13] B. Jackson, T. A. McCourt and A. Nixon, Necessary conditions for the generic global rigidity of frameworks on surfaces, Discrete \& Comput. Geom., 52(2): 344-360, 2014.
[14] T. Jordán, Combinatorial rigidity: graphs and matroids in the theory of rigid frameworks, MSJ Memoirs, 34:33-112, 2016.
[15] T. Jordán, V. Kaszanitzky and S. Tanigawa, Gain-sparsity and symmetry-forced rigidity in the plane, Discrete \& Comp. Geom., 55(2): 314-372, 2016.
[16] G. Laman, On graphs and rigidity of plane skeletal structures, J. Engrg. Math., 4: 331-340, 1970.
[17] J. Malestein and L. Theran, Generic combinatorial rigidity of periodic frameworks, Advances in Mathematics, 233(1): 291-331, 2013.
[18] J. Malestein and L. Theran, Frameworks with forced symmetry II: orientationpreserving crystallographic groups. Geom. Dedicata, 170, 219-262, 2014.
[19] J. Malestein and L. Theran, Frameworks with forced symmetry I: reflections and rotations. Discrete Comput. Geom., 54, 339-367, 2015.
[20] J. W. Milnor, Topology from the differentiable viewpoint., Based on notes by David W. Weaver. The University Press of Virginia, Charlottesville, Va., 1965.
[21] E. Ross, Inductive constructions for frameworks on a two-dimensional fixed torus, Discrete E Comp. Geom., 54(1): 78-109, 2015.
[22] E. Ross, The rigidity of periodic frameworks as graphs on a fixed torus, Contributions to Discrete Mathematics, 9(1), 11-45, 2014.
[23] S. Tanigawa, Sufficient conditions for the global rigidity of graphs, J. Comb. Theory B, 113(C):123-140, 2015.


[^0]:    *Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom, and Department of Computer Science and Information Theory, Budapest University of Technology and Economics, Magyar tudósok krt 2., Budapest, 1117, Hungary E-mail: viktoria@cs.elte.hu Supported by EPSRC First Grant EP/M013642/1 and by the Hungarian Scientific Research Fund (OTKA, grant number K109240).
    **Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom E-mail: b.schulze@lancaster.ac.uk Supported by EPSRC First Grant EP/M013642/1.
    ***Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and Centrum Wiskunde \& Informatica (CWI), Postbus 94079, 1090 GB Amsterdam, The Netherlands E-mail: tanigawa@kurims.kyoto-u.ac.jp Supported by JSPS Postdoctoral Fellowships for Research Abroad, JSPS Grant-in-Aid for Scientific Research(A)(25240004), and JSPS Grant-in-Aid for Young Scientists (B) (No. 15K15942).

[^1]:    ${ }^{1}$ This assumption is not essential. Let $\gamma_{1}, \ldots, \gamma_{k}$ be a set of generators of $\Gamma$ and let $H$ be the set of coordinates of the vectors $L\left(\gamma_{i}\right)$ for $1 \leq i \leq k$. Then one can apply the subsequent arguments even if $L$ is not rational by replacing $\mathbb{Q}$ with the field extension $\mathbb{Q}(H)$. If $L$ is not rational-valued, then we say that $(\tilde{G}, \tilde{p})$ is generic if the set of coordinates is algebraically independent over $\mathbb{Q}(H)$ modulo the ideal generated by the equations 2.1 .

