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Reachability-based matroid-restricted
packing of arborescences

Csaba Király? and Zoltán Szigeti??

Abstract

The fundamental result of Edmonds [5] started the area of packing arborescences and
the great number of recent results shows increasing interest of this subject. Two types
of matroid constraints were added to the problem in [2, 3, 9], here we show that both
contraints can be added simultaneously. This way we provide a solution to a common gen-
eralization of the reachability-based packing of arborescences problem of the first author
[14] and the matroid intersection problem of Edmonds [4].

1 Introduction

This paper considers problems on arborescence packings in rooted digraphs where a rooted
digraph is a digraph D = (V +s, A) with a designated root vertex s. Throughout this paper a
packing in a digraph means arc-disjoint subgraphs. Different types of matroid constraints will
be added simultaneously to the arborescence packing problem in such a way that the problem
obtained contains the matroid intersection problem. The solution provided to this problem in
this paper applies ideas from the proof of the matroid intersection theorem of Edmonds [4].

An s-arborescence is a directed tree on a vertex-set containing the root vertex s in which
each vertex has in-degree 1 except s. An s-arborescence in a rooted digraph D = (V + s, A) is
spanning if its vertex set is V + s. For definitions from matroid theory, we refer to the next
section.

Edmonds [5] solved the packing problem of k spanning s-arborescences in a rooted digraph.
It is well-known that this problem can be formulated as a matroid intersection problem. Indeed,
if the first matroid is the k-sum of the graphic matroid of the underlying undirected graph of
D and the second matroid is the direct sum of the uniform matroids U|∂(v)|,k on the set ∂(v) of
arcs entering v for v ∈ V, then the set of the arc sets of the union of k arc-disjoint spanning
s-arborescences of D is the set of common bases of these two matroids.

Frank [9] (and later Bernáth and T. Király [2]) observed that one can go further, namely
in the above construction the uniform matroids can be replaced by arbitrary matroids. It is
mentioned in [9] that this way one may get a solution to the problem of matroid-restricted
packing of k spanning s-arborescences where a packing of s-arborescences T1, . . . , Tk in a rooted
digraph D = (V + s, A) is said to be matroid-restricted if, given a matroid Mv on ∂(v) for
every v ∈ V,

{A(Ti) ∩ ∂(v) : Ti contains v} is independent in Mv for every v ∈ V. (1)
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If M is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V, then a matroid-restricted
packing is called an M-restricted packing.

Another way of adding a matroid constraint to the problem of packing arborescences, was
proposed by Durand de Gevigney, Nguyen, Szigeti in [3]. A packing of s-arborescences T1, . . . , Tt

in a rooted digraph D = (V + s, A) is said to be matroid-based if, given a matroidM on the
set ∂(V ) of arcs leaving s,

{∂(V ) ∩ A(Ti[s, v]) : Ti contains v} is a base of M for every v ∈ V, (2)

where T [s, v] denotes the unique path from s to v in an s-arborescence T. Durand de Gevigney,
Nguyen, Szigeti [3] solved the problem of matroid-based packing of s-arborescences. Bérczi
and Frank proposed later a more natural problem of matroid-based packing of spanning s-
arborescences (see in [1]). Recently, a superset of the authors of this paper in [8] proved that
this problem is NP-complete.

We propose in this paper to solve the problem of matroid-based matroid-restricted pack-
ing of s-arborescences where both of the above matroid constraints are added. Note that
the proposed problem contains the problems of matroid-based packing of s-arborescences and
matroid-restricted packing of spanning s-arborescences. It is not surprising that it also con-
tains the problem of matroid intersection. Indeed, if M1 and M2 are two matroids on S, then
the problem of matroid-based matroid-restricted packing of s-arborescences for the instance of
digraph, with two vertices s and v and parallel arcs sv each corresponding to an element of S,
and matroids M1 and M2, reduces to the matroid intersection problem.

Observe that, by the above mentioned negative result of [8], the problem of matroid-based
matroid-restricted packing of spanning s-arborescences is NP-complete, however, we will solve
this problem for special cases where the first matroid is restricted to several fundamental classes.
Observe that, by [2, Corollary 3.2] and by the matroid intersection algorithm of Edmonds, the
problem of matroid-based matroid-restricted packing of spanning s-one-arborescences can be
solved in polynomial time where an s-one-arborescence is an s-arborescence with only one
arc leaving its root s.

In fact, we will propose an even more general problem. To be able to do this, we men-
tion another direction in which the problem of packing spanning arborescences was gener-
alized. Kamiyama, Katoh, Takizawa [13] solved the packing problem of k reachability s-one-
arborescences where an s-one-arborescence with a root arc e in a rooted digraph D = (V +s, A)
is said to be a reachability s-one arborescence if its vertex set is the set of vertices reachable
from s by a directed path of D with first arc e.

The first author [14] provided a common generalization of the problems of matroid-based
packing of s-arborescences and packing of k reachability s-one-arborescences, namely the prob-
lem of reachability-based packing of s-arborescences, where a packing of s-arborescences T1, . . . , Tt

in a rooted digraph D = (V + s, A) is said to be reachability-based if, given a matroid M
on ∂(V ) with rank function r,

{∂(V )∩A(Ti[s, v]) : Ti contains v} is independent in M of size r(∂s(P (v))) for all v ∈ V, (3)

where P (v) denotes the set of vertices in V from which v is reachable by a directed path in D
and ∂s(X) denotes the set of arcs from s to X.

In this paper, we will solve the problem of reachability-based matroid-restricted packing of
s-arborescences. We will show that, by applying the proof method of the matroid intersection
theorem, the problem of reachability-based matroid-restricted packing of s-arborescences can
be reduced to the problem of reachability-based packing of s-arborescences.
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2 Definitions

Let D = (V + s, A) be a rooted digraph. For X ⊆ V, let X = V + s − X. For Z ⊆ X,
∂Z(X) denotes the set of arcs from Z to X. If Z = X, then Z is omitted from the index. By
consequence, |∂(X)| is the in-degree of the set X. Let P (X) denote the set of vertices in V
from which X can be reached by a directed path. Note that, by definition, P (X) contains X
and does not contain the vertex s.

We need some basic terminologies from matroid theory, we refer to [10] for more details. A
function b : 2Ω → Z is called submodular if for all X, Y ⊆ Ω,

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ).

A function p : 2Ω → Z is called supermodular if −p is submodular. By the results of Iwata,
Fleischer and Fujishige [12] and independently by Schrijver [15], a submodular function can be
minimized in polynomial time.

For a set function r : 2S → Z+, M = (S, r) is called a matroid if r is 0 on the ∅, monotone
non-decreasing, subcardinal (r(Q) ≤ |Q|) and submodular. The members of I = {Q ⊆ S :
r(Q) = |Q|} are called independent sets of the matroid and r is called the rank function of
the matroid. It is well known that a matroid can also be defined by its independent sets. Let
Q ⊆ S. The maximal independent sets in Q are called bases of Q. Note that all bases of Q are of
the same size, namely r(Q). The bases of S are called the bases ofM. We say that an element s
of Q is a bridge of Q if r(Q−s) = r(Q)−1. We define SpanM(Q) = {s ∈ S : r(Q∪{s}) = r(Q)}.
Note that SpanM is monotone.

As examples, let us mention the following matroids:

1. graphic matroid: I = edge sets of forests in a graph;

2. transversal matroid: I = subsets of S that can be covered by a matching in a bipartite
graph G = (S, T ;E);

3. uniform matroids Un,k: I = {Q ⊆ S : |Q| ≤ k} where |S| = n;

4. free matroid: Un,n.

Note that uniform matroids form a special class of transversal matroids where G is the
complete bipartite graph Kn,k.

We will need the following operations on matroids. Let M = (S, r) be a matroid. For
Q ⊆ S, M|Q is the matroid with rank function r|Q obtained from M by restriction on Q.
For s ∈ S, M− s is the matroid obtained from M by deletion of s, that is, a matroid on
S − s with rank function r|S−s, while M/s is the matroid obtained from M by contraction
of s, that is, a matroid on S − s with a rank function rM/s(Q) = r(Q ∪ s) − 1. The k-sum of
the matroid M is the matroid whose independent sets are those sets that can be partitioned
into k independent sets of M. For matroids M1 and M2 on disjoint sets S1 and S2 with rank
functions r1 and r2, their direct sumM1⊕M2 is the matroid on S1 ∪S2 with rank function
r⊕(Q) = r1(Q∩ S1) + r2(Q∩ S2) for all Q ⊆ S1 ∪ S2. Note that s is a bridge inM if and only if
M' (M− s)⊕ U1,1.

3 Results

The first result on packing arborescences is due to Edmonds [5].
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Theorem 3.1 ([5]). Let D = (V + s, A) be a rooted digraph and k a positive integer. There
exists a packing of k spanning s-arborescences in D if and only if

|∂(X)| ≥ k for all ∅ 6= X ⊆ V. (4)

Edmonds [4] proved a much more general result on the intersection of two arbitrary matroids.

Theorem 3.2 ([4]). Let M1 = (S, r1) and M2 = (S, r2) be two matroids and k a positive
integer. There exists a common independent set of M1 and M2 of size k if and only if

r1(X) + r2(S− X) ≥ k for all X ⊆ S. (5)

For matroids M1 and M2 on the same set S, one can find in polynomial time a maximum
cardinality common independent set by the matroid intersection algorithm of Edmonds [4].

Theorem 3.1 was generalized in many directions. First, we mention the following result that
can be proved by Theorem 3.2.

Theorem 3.3 ([2, 9]). Let D = (V + s, A) be a rooted digraph, k a positive integer and
M2 = (A, r2) a matroid which is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V.
There exists an M2-restricted packing of spanning s-arborescences in D if and only if

r2(∂(X)) ≥ k for all ∅ 6= X ⊆ V. (6)

Durand de Gevigney, Nguyen and Szigeti [3] proved the following extension of Theorem 3.1.

Theorem 3.4 ([3]). Let D = (V + s, A) be a rooted digraph and M1 = (∂(V ), r1) a matroid.
There exists an M1-based packing of s-arborescences in D if and only if

r1(∂s(X)) + |∂V−X(X)| ≥ r1(∂(V )) for all ∅ 6= X ⊆ V . (7)

In [14], the first author generalized Theorem 3.4 as follows.

Theorem 3.5 ([14]). Let D = (V + s, A) be a rooted digraph and M1 = (∂(V ), r1) a matroid.
There exists an M1-reachability-based packing of s-arborescences in D if and only if

r1(∂s(X)) + |∂V−X(X)| ≥ r1(∂s(P (X))) for all X ⊆ V . (8)

In this paper, we prove the following result that is a common generalization of all the results
previously mentioned in this paper.

Theorem 3.6. Let D = (V + s, A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2)
two matroids such that M2 is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V . There
exists an M1-reachability-based M2-restricted packing of s-arborescences in D if and only if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂s(P (X))) for all X ⊆ V and F ⊆ ∂s(X). (9)

When we require M1-based packings, (9) can be simplified as follows.

Corollary 3.7. Let D = (V + s, A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2)
two matroids such that M2 is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V . There
exists an M1-based M2-restricted packing of s-arborescences in D if and only if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂(V )) for all ∅ 6= X ⊆ V and F ⊆ ∂s(X). (10)
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It is proved in [8] that the problem of matroid-based packing of spanning arborescences
is NP-complete, however, (7) is a necessary and sufficient condition for the case of several
fundamental matroid classes, as follows.

Theorem 3.8 ([8]). Let D = (V + s, A) be a rooted digraph and M1 = (∂(V ), r1) a matroid
of rank 2 or a graphic matroid or a transversal matroid. There exists an M1-based packing of
spanning s-arborescences in D if and only if (7) holds.

Observe that the arc set A′ of an M1-based M2-restricted packing of s-arborescences is
independent in M2 hence restricting M2 to A′ we get the free matroid. Moreover, as an
M1-based M2-restricted packing of s-arborescences is obviously M1-based, (7) also holds for
(V + s, A′). Hence we get the following corollary from Corollary 3.7 and Theorem 3.8.

Corollary 3.9. Let D = (V + s, A) be a rooted digraph, M1 = (∂(V ), r1) a matroid of rank
2, a graphic matroid, or a transversal matroid, and M2 = (A, r2) a matroid that is the direct
sum of matroids Mv = (∂(v), rv) for v ∈ V . There exists an M1-based M2-restricted packing
of spanning s-arborescences in D if and only if (10) holds.

4 Preliminaries

Before proving Theorem 3.6, we provide some lemmas that will be useful later. Let D,M1 and
M2 be as in Theorem 3.6. For X ⊆ V and F ⊆ ∂s(X), let

b(X,F ) := r1(F ) + r2(∂(X)− F ),

p(X) := r1(∂s(P (X))).

The submodularity of b was proved in [2]. However, we need a bit more hence we give the full
proof of the following lemma.

Lemma 4.1. Let X,X ′ ⊆ V , F ⊆ ∂s(X) and F ′ ⊆ ∂s(X
′). Then

b(X,F ) + b(X ′, F ′) ≥ b(X ∩X ′, F ∩ F ′) + b(X ∪X ′, F ∪ F ′). (11)

Moreover, if e ∈ (∂(X)− F )− (∂(X ′)− F ′), then

r1(F )+r1(F ′)+r2(∂(X)−(F ∪e))+r2((∂(X ′)−F ′)∪e) ≥ b(X∩X ′, F ∩F ′)+b(X∪X ′, F ∪F ′).
(12)

Proof. First note that

(∂X(x)− F ) ∩ (∂X′(x)− F ′) ⊇ ∂X∪X′(x)− (F ∪ F ′) for every x ∈ X ∪X ′, and (13)

(∂X(x)− F ) ∪ (∂X′(x)− F ′) ⊇ ∂X∩X′(x)− (F ∩ F ′) for every x ∈ X ∩X ′. (14)

By M2 =
⊕

v∈V Mv, the monotonicity and the submodularity of r2, (13) and (14), we get

r2(∂(X)− F ) + r2(∂(X ′)− F ′)
=

∑
x∈X

rx(∂X(x)− F ) +
∑

x∈X′
rx(∂X′(x)− F ′)

=
∑

x∈X−X′
rx(∂X(x)− F ) +

∑
x∈X′−X

rx(∂X′(x)− F ′)

+
∑

x∈X∩X′

(
rx(∂X(x)− F ) + rx(∂X′(x)− F ′)

)
≥

∑
x∈(X−X′)∪(X′−X)∪(X∩X′)

rx(∂X∪X′(x)− (F ∪ F ′)) +
∑

x∈X∩X′
rx(∂X∩X′(x)− (F ∩ F ′))

= r2(∂(X ∪X ′)− (F ∪ F ′)) + r2(∂(X ∩X ′)− (F ∩ F ′)).
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We get (11) by the above inequality and by the submodularity of r1.
Note that, by e = uv ∈ (∂(X)− F )− (∂(X ′)− F ′),

(∂X(v)− (F ∪ e)) ∩ ((∂X′(v)− F ′) ∪ e) = (∂X(v)− F ) ∩ (∂X′(v)− F ′), (15)

(∂X(v)− (F ∪ e)) ∪ ((∂X′(v)− F ′) ∪ e) = (∂X(v)− F ) ∪ (∂X′(v)− F ′). (16)

By (15), (16) and the previous proof, (12) follows.

Although p(X) is not supermodular in general, we will prove the supermodular inequality
for specific pairs in the next lemma, following an idea from [14].

Lemma 4.2. Let X and X ′ be two subsets of V and v ∈ X ∩X ′ such that X ′ ⊆ P (v). Then

p(X) + p(X ′) ≤ p(X ∩X ′) + p(X ∪X ′). (17)

Proof. Since the reachability is transitive and v ∈ X∩X ′, we get P (X ′) ⊆ P (X∩X ′) and hence
∂s(P (X ′)) ⊆ ∂s(P (X ∩X ′)). Furthermore, P (X) ⊆ P (X ∪X ′) is obvious hence ∂s(P (X)) ⊆
∂s(P (X ∪X ′)). Thus, by the monotonicity of the rank function r1, we get (17).

5 The proof

Observe that the existence of anM1-reachability-basedM2-restricted packing of s-arborescences
and that of s-one-arborescences are equivalent as an s-arborescence can be split into multiple
s-one-arborescences. Hence, in the following proof, we will use s-one-arborescences.

Necessity: Let {T1, . . . , Tt} be an M1-reachability-based M2-restricted packing of s-one-
arborescences in D. As each Ti is an s-one-arborescence, ∂(V ) ∩ A(Ti) = ∂(V ) ∩ A(Ti[s, v])
for every v ∈ V (Ti). For every vertex v ∈ V , let Bv = {ei = ∂(V ) ∩ A(Ti), v ∈ V (Ti)}. Let
now X ⊆ V, F ⊆ ∂s(X) and B =

⋃
v∈X Bv. Since SpanM1

is monotone, by (3) and definition of
P (X), we have SpanM1

(B) ⊇
⋃

v∈X SpanM1
(Bv) ⊇

⋃
v∈X ∂s(P (v)) = ∂s(P (X)). Then, since r1

is monotone, we have the following inequality (∗) r1(B) ≥ r1(∂s(P (X))). For each ei ∈ B− F,
there exists a vertex v ∈ X such that ei ∈ Bv and then since Ti is an s-arborescence and
v ∈ V (Ti) ∩X, there exists ai ∈ A(Ti) ∩ (∂(X) − F ). Since r2 is monotone, {ai : ei ∈ B − F}
is independent in M2, these arborescences are edge-disjoint, r1 is subcardinal and by (∗), we
have r2(∂(X) − F ) ≥ r2({ai : ei ∈ B − F}) = |{ai : ei ∈ B − F}| = |B − F | ≥ |B| − |F | ≥
r1(B)− r1(F ) ≥ r1(∂s(P (X)))− r1(F ) that is, (9) is satisfied.

Sufficiency: We suppose that the theorem is not true. Let us take a counterexample (D,M1,M2)
((9) is satisfied but the desired packing of s-one-arborescences does not exist) that first mini-
mizes the number of arcs in D and then the number of non-bridge edges in M2.

We say that a pair consisting of X ⊆ V and F ⊆ ∂s(X) is tight if b(X,F ) = p(X) and is
critical for an edge e if (X,F ) is tight and e is a bridge in M2|∂(X)−F .

Case 1. First suppose that there exists an edge e for which no critical pair exists. Then the
following hold.

r1(F ) + r2(∂D−e(X)− F ) ≥ r1(∂D−e
s (PD−e(X))) for all X ⊆ V and F ⊆ ∂D−e

s (X), (18)

r1(∂D−e
s (PD−e(w))) = r1(∂s(P (w))) for every w ∈ V. (19)

Proof. First, suppose to the contrary that there exist X ⊆ V and F ⊆ ∂D−e
r (X) that vio-

lates (18). Then, by (9), the subcardinality of r2, (X,F ) violates (18) and the monotonicity
of r1, we have r1(∂s(P (X))) ≤ r1(F ) + r2(∂(X) − F ) ≤ r1(F ) + r2(∂D−e(X) − F ) + 1 ≤
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r1(∂D−e
s (PD−e(X))) ≤ r1(∂s(P (X))), so equality holds everywhere. Hence (X,F ) is tight in D

and e is a bridge in M2|∂(X)−F . Therefore, (X,F ) is critical for e, a contradiction.
Now, suppose to the contrary that there exists w ∈ V that violates (19). Let F ′ =

∂D−e
s (PD−e(w)), F = ∂s(P (w)) and X ′ = PD−e(w). By the definition of X ′ and F ′, ∂(X ′)−F ′ ⊆
{e}. Then, by w violates (19), F ′ ⊆ F, P (w) ⊆ P (X ′), the monotonicity of r1, (9) and
the subcardinality of r2, we have r1(F ′) + 1 ≤ r1(F ) = r1(∂s(P (w))) ≤ r1(∂s(P (X ′))) ≤
r1(F ′) + r2(∂(X ′)− F ′) ≤ r1(F ′) + 1. Thus equality holds everywhere. Hence (X ′, F ′) is tight,
and r2(∂(X ′) − F ′) = r2(e) = 1, that is, e is a bridge in M2|∂(X′)−F ′ . Therefore, (X ′, F ′) is
critical for e, a contradiction.

By (18), (D − e,M1 − e,M2 − e) satisfies the condition of the theorem. By |A(D − e)| <
|A(D)|, it is not a counterexample, so there exists an (M1 − e)-reachability-based (M2 − e)-
restricted packing T1, . . . , Tt of s-one-arborescences in D− e, that is, for every v ∈ V, {A(Ti)∩
∂D−e(v) : v ∈ V (Ti)} is independent in Mv − e (and hence in Mv) and {A(Ti) ∩ ∂D−e(V ) :
v ∈ V (Ti)} is independent in M1 − e (and hence in M1) of size r1(∂D−e

r (PD−e(v))) that is, by
(19), of size r1(∂s(P (v))). Then T1, . . . , Tt is an M1-reachability-based M2-restricted packing
of s-one-arborescences in D, and the proof is complete in this case.

Case 2. Suppose now that there exists a non-bridge edge e = uv in M2. Since we are not in
Case 1, there exists a critical pair (X,F ) for e such that X is minimal.

Claim 5.1. X ⊆ P (v).

Proof. Let (X ′, F ′) = (P (v), ∂s(P (v))). By ∂(X ′) − F ′ = ∅ and ∂s(P (X ′)) = F ′, we get
r2(∂(X ′)−F ′) = r2(∅) = 0 = r1(∂s(P (X ′)))− r1(F ′), that is (X ′, F ′) is tight. By the tightness
of (X,F ) and (X ′, F ′), Lemma 4.2, (9) and (11), we have b(X,F )+b(X ′, F ′) = p(X)+p(X ′) ≤
p(X ∩X ′) + p(X ∪X ′) ≤ b(X ∩X ′, F ∩ F ′) + b(X ∪X ′, F ∪ F ′) ≤ b(X,F ) + b(X ′, F ′). Hence
equality holds everywhere, in particular, (X ∩ X ′, F ∩ F ′) is tight. Note that, by X ′ = P (v)
and uv ∈ ∂(X)− F, e ∈ Y := ∂(X ∩X ′)− (F ∩ F ′). Suppose that e is not a bridge in M2|Y .
Then there exists an M2-base B′ of Y not containing e. Since no edge exists from X −X ′ to
X ∩X ′, B′ ⊆ ∂(X)−F so there exists anM2-base B of ∂(X)−F containing B′. Since B′ was
anM2-base of Y, e /∈ B. Thus e is not a bridge inM2|∂(X)−F , which is a contradiction. So e is
a bridge in M2|∂(X∩X′)−(F∩F ′), thus (X ∩X ′, F ∩ F ′) is a critical pair for e. It follows, by the
minimality of X, that X ⊆ X ′ = P (v).

LetM′
2 = (M2/e)⊕e (with rank function r′2), that is,M′

2 is obtained fromM2 by contracting
e and adding back e as a bridge. Note thatM′

2 will still be a direct sum of its submatroids on
∂(w) for w ∈ V asM′

2 =
⊕

w∈V−vMw⊕M′
v whereM′

v = (Mv/e)⊕ e. We show now that (9)
with respect to M′

2 holds, that is,

b′(X ′, F ′) := r1(F ′) + r′2(∂(X ′)− F ′) ≥ r1(∂s(P (X ′))) for all X ′ ⊆ V and F ′ ⊆ ∂s(X
′). (20)

Proof. Assume for a contradiction that there exists (X ′, F ′) that violates (20), that is, b′(X ′, F ′) ≤
p(X ′)− 1. By the definition of contraction, r′2(Y ) = r2(Y ) if e ∈ Y and r2(Y ∪ e)− 1 if e /∈ Y.
It follows, by (9) for (X ′, F ′) and the monotinicity of r2, that p(X ′) ≤ b(X ′, F ′) ≤ r1(F ′) +
r2((∂(X ′)−F ′)∪e) ≤ b′(X ′, F ′)+1. By adding the above two inequalities, we get that all these in-
equalities hold with equalities, so v ∈ X ′, e /∈ ∂(X ′)−F ′ and r1(F ′)+r2((∂(X ′)−F ′)∪e) = p(X ′).
Since (X,F ) is a critical pair for e, e ∈ ∂(X)−F , r1(F )+r2(∂(X)−(F∪e))+1 = b(X,F ) = p(X)
and, by Claim 5.1, we have X ⊆ P (v) hence the condition of Lemma 4.2 is satisfied. By the
two equalities above, Lemma 4.2, (9) for the pairs (X ∩X ′, F ∩ F ′) and (X ∪X ′, F ∪ F ′) and
(12), we get a contradiction.
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By (20), (D,M1,M′
2) satisfies the condition of the theorem. Note that if f is a bridge in

M2, then it will be a bridge inM′
2 also. Then the number of non-bridge edges inM′

2 is one less
than in M2, hence (D,M1,M′

2) is not a counterexample, so there exists an M1-reachability-
based M′

2-restricted packing T1, . . . , Tt of s-one-arborescences in D, that is, for every v ∈ V,
Y = {A(Ti) ∩ ∂(v) : v ∈ V (Ti)} is independent in M′

v (and hence, by rv(Y ) ≤ |Y | = r′v(Y ) ≤
rv(Y ), independent in Mv) and {A(Ti) ∩ ∂(V ) : v ∈ V (Ti)} is independent in M1 of size
r1(∂s(P (v))). Then, as the independent sets of M′

2 are also independent in M2, T1, . . . , Tt is
an M1-reachability-based M2-restricted packing of s-one-arborescences in D, and the proof is
complete in this case.

Case 3. We may suppose finally that each edge is a bridge in M2, that is, M2 is the free
matroid. Note that in this case (9) implies (8) and hence we can conclude by Theorem 3.5. ��

6 Algorithmic aspects

We show in this section how to derive from our proof a polynomial algorithm to find either
a reachability-based matroid-restricted packing of s-one-arborescences or a pair (X,F ) that
violates (9).

First we show how to check in polynomial time whether (9) holds. We start with the following
observation.

Lemma 6.1. If there exists a pair that violates (9), then there also exists a pair (X∗, F ∗)
violating (9) and a vertex v such that v ∈ X∗ ⊆ P (v).

The proof will be similar to the proof of Claim 5.1.

Proof. Let (X,F ) be a pair that violates (9) such that X is maximal and F is also maximal
with respect to X. Let v ∈ X. If X ⊆ P (v), then (X∗, F ∗) := (X,F ) is as required. Otherwise,
let (X ′, F ′) = (P (v), ∂s(P (v))). By ∂(X ′)−F ′ = ∅ and ∂s(P (X ′)) = F ′, we get r2(∂(X ′)−F ′) =
r2(∅) = 0 = r1(∂s(P (X ′)))−r1(F ′), that is (X ′, F ′) is tight. By (11), as (X,F ) violates (9) and
by the tightness (X ′, F ′), and by Lemma 4.2, we have b(X ∩X ′, F ∩F ′) + b(X ∪X ′, F ∪F ′) ≤
b(X,F ) + b(X ′, F ′) < p(X) + p(X ′) ≤ p(X ∩ X ′) + p(X ∪ X ′). Hence (X ∩ X ′, F ∩ F ′) or
(X ∪X ′, F ∪ F ′) is violating (9). By the maximality of (X,F ), if P (v) 6⊆ X or ∂s(P (v)) 6⊆ F ,
then (X ∪X ′, F ∪ F ′) does not violate (9). Thus, in this case, (X∗, F ∗) = (X ∩X ′, F ∩ F ′) is
violating (9), moreover, by the definition of X ′, v ∈: X∗ ⊆ P (v) as required. Therefore, we find
a violating pair as required except when P (v) ⊆ X and ∂s(P (v)) ⊆ F . However, this cannot
hold for all v ∈ X as then X =

⋃
v∈X P (v) = P (X) and F = ∂s(X) = ∂(X) hence (9) holds

with equality, a contradiction.

By Lemma 6.1, (9) holds if and only if for every v ∈ V, it holds for all pairs (X,F ) with the
addition property that v ∈ X ⊆ P (v). Note that for a fixed vertex v, for all v ∈ X ⊆ P (v),
P (X) = P (v), so the right hand side of (9) is constant.

On the one hand, for a fixed set X ⊆ V, r1(F ) + r2(∂(X) − F ) for all F ⊆ ∂s(X) is a
submodular function, so by submodular function minimization one can determine in polynomial
time, for all X ⊆ V, q(X) = min{r1(F ) + r2(∂(X)− F ) : F ⊆ ∂s(X)}. On the other hand, by
Lemma 4.1, q(X) is submodular. Then, using again submodular function minimization, one can
check in polynomial time whether for a fixed v ∈ V, for all v ∈ X ⊆ P (v), q(X) ≥ r1(∂s(P (v))).
We may hence conclude that we can check in polynomial time whether (9) holds.
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It follows that (8) can also be checked in polynomial time. Then the proof of Theorem 3.5
in [14] provides a polynomial algorithm to find either a Reachability-based packing of s-one-
arborescences or a set that violates (8).

Now we can explain our algorithm. We check first whether (9) holds. As mentioned above,
in polynomial time, either we find a set that violates (9) and we stop or we know that (9) holds
and we continue. If every edge is a bridge in M2 then the problem reduces to the problem of
reachability-based packing of s-one-arborescences and hence we are done by the above remark
on the algorithm of [14]. If there exists a non-bridge edge inM2, then let us choose one, say e.
Let us check if (D − e,M1 − e,M2 − e) satisfies (18) and (19). (18) is just (9) for the smaller
graph, so we can do it. The second one is trivially polynomial to check. If both hold, then
recursively we use our algorithm for (D−e,M1−e,M2−e) and the packing obtained will be a
required packing for (D,M1,M2). Otherwise, (D,M1,M′

2), whereM′
2 is defined in Case 2 in

the proof of Theorem 3.6, satisfies (20) and recursively we use our algorithm for (D,M1,M′
2)

and the packing obtained will be a required packing for (D,M1,M2). Note that during the
recursive execution of our algorithm either the number of edges decreases by one or the number
of non-bridge edges in M2 decreases by one, hence our algorithm stops in polynomial time.

The above argument shows that the following theorem holds.

Theorem 6.2. Let D = (V + s, A) be a rooted digraph, M1 = (∂(V ), r1) and M2 = (A, r2)
two matroids such that M2 is the direct sum of the matroids Mv = (∂(v), rv) for v ∈ V . There
exists a polynomial algorithm to find either an M1-reachability-based M2-restricted packing of
s-arborescences in D or a pair (X,F ) that violates (9).

7 Concluding remarks

7.1 An extension for dypergraphs

A dypergraph is a directed hypergraph where each oriented hyperedge, called a dyperedge,
has one head and multiple tails. An s-hyperarborescence is a dypergraph which can be
trimmed to an s-arborescence, that is, each of its dyperedges can be substituted by one arc
from one of its tails to its head such that the resulting digraph is an s-arborescence. [7] showed
that all arborescence packing results can be simply generalized to dypergraphs. The idea is to
substitute each dyperedge of the input dypergraph by a new vertex such that it is entered by
multiple arcs from each of the tails of the dyperedge and it has only one outgoing arc, called a
head arc, that has the same head as the dyperedge. By the same construction one can get a
generalization of the result presented here, one only needs to add the free matroid on ∂(v) for
each new vertex v and keep the original matroid M2 on the head arcs.

7.2 An open question

We conclude this paper with some remarks on the weighted versions of the problems. Suppose
that we are given a weight function on the set of arcs of a digraph. The weight of a packing of
arborescences is the sum of the weights of the arcs of the arborescences in the packing. It is clear
that one can find a packing of k spanning s-arborescences of minimum weight (if one exists)
with the weighted matroid intersection algorithm [6]. Similarly, a matroid-restricted packing
of spanning s-arborescences of minimum weight (if one exists) can be found with the weighted
matroid intersection algorithm. The weighted version of the problem of matroid-based packing
of s-arborescences was solved in [3] by the ellipsoid method [11] and submodular function
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minimization [12, 15]. It is an open problem whether there exists a polynomial algorithm to
solve the common generalization of these problems, that is to find a matroid-based matroid-
restricted packing of s-arborescences of minimum weight.

Finally, we note that the weighted version of the problem of reachability-based packing of
s-arborescences was solved in [1] by an abstract reformulation of the problem. Obviously, the
problem of reachability-based matroid-restricted packing of s-arborescences of minimum weight
also remains open.
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