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On packing spanning arborescences with matroid
constraint

Quentin Fortier?, Csaba Király??, Zoltán Szigeti? ? ?, and Shin-ichi Tanigawa‡

Abstract

Let D = (V + s,A) be a digraph with a designated root vertex s. Edmonds’ seminal
result [4] implies that D has a packing of k spanning s-arborescences if and only if D has
a packing of k (s, t)-paths for all t ∈ V , where a packing means arc-disjoint subgraphs.

Let M be a matroid on the set of arcs leaving s. A packing of (s, t)-paths is called
M-based if their arcs leaving s form a base of M while a packing of s-arborescences is
called M-based if, for all t ∈ V, the packing of (s, t)-paths provided by the arborescences
is M-based. Durand de Gevigney, Nguyen and Szigeti proved in [3] that D has an M-
based packing of s-arborescences if and only if D has an M-based packing of (s, t)-paths
for all t ∈ V. Bérczi and Frank conjectured that this statement can be strengthened in
the sense of Edmonds’ theorem such that each s-arborescence is required to be spanning.
Specifically, they conjectured that D has anM-based packing of spanning s-arborescences
if and only if D has an M-based packing of (s, t)-paths for all t ∈ V .

We disprove this conjecture in its general form and we prove that the corresponding
decision problem is NP-complete. However, we prove that the conjecture holds for several
fundamental classes of matroids, such as graphic matroids and transversal matroids. For
all the results presented in this paper, the undirected counterpart also holds.

1 Introduction

The packing problem in digraphs is one of the fundamental topics in graph theory and combina-
torial optimization, where the goal is to find the largest family of disjoint subgraphs satisfying
a specified property in a given digraph. In this paper, by packing subgraphs, we always mean
a set of arc-disjoint subgraphs.

Suppose that we are given a rooted digraph, that is, a digraph D = (V + s, A) with a
designated root vertex s. An s-arborescence is a directed tree rooted at s, i.e., the underlying
undirected graph is a tree and every vertex except s has in-degree one. The celebrated Edmonds
theorem gives an exact relation between arborescence packings and path packings as follows.
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1.1 Contribution and key ideas 2

Theorem 1.1 ([4]). There exists a packing of k spanning s-arborescences in a rooted digraph
D = (V + s, A) if and only if there exists a packing of k (s, t)-paths in D for every t ∈ V .

The problem of packing k (s, t)-paths is equivalent to asking whether one can send k distinct
commodities from s to t by assuming that each arc can transmit at most one commodity. Then
what happens if commodities have an involved independence structure? Here we are interested
in a situation that each commodity ci is assigned to some vertex si at the beginning, and
we would like to know whether every vertex can receive a sufficient amount of independent
commodities to understand the whole structure. By adding an auxiliary root vertex s and arcs
from s to si for each i, we may convert the situation such that all commodities are assigned to
the root s and each arc from the root can be used to transmit only a particular commodity.

More formally, suppose that we are given a matroid-rooted digraph (D = (V +s, A),M),
that is, a matroid M is given on the set of arcs leaving the root s that we call root arcs. We
are interested in a packing of (s, t)-paths whose root arcs form a base of M. Such a packing
is said to be an M-based packing of (s, t)-paths. A packing of s-arborescences is called M-
based if, for all t ∈ V, the packing of (s, t)-paths provided by the arborescences is M-based.
A natural question is whether Edmonds’ theorem can be extended forM-based packings. The
result of Durand de Gevigney, Nguyen and Szigeti [3] gives a partial answer to this question.

Theorem 1.2 ([3]). Let (D = (V + s, A),M) be a matroid-rooted digraph. Then there exists
an M-based packing of s-arborescences in D if and only if there exists an M-based packing of
(s, t)-paths in D for every t ∈ V .

Notice that at the quantitative level, Theorem 1.1 always guarantees the existence of k
spanning s-arborescences while the number of s-arborescences in Theorem 1.2 may be more
than the rank of M since these arborescences are not necessarily spanning.

1.1 Contribution and key ideas

K. Bérczi and A. Frank [8] conjectured that Theorem 1.2 can be strengthened in the sense
of Edmonds’ theorem. This conjecture appeared also in a paper of Bérczi, T. Király and
Kobayashi [2]. More formally, the conjecture is the following.

Conjecture 1.3 ([2]). Let (D = (V + s, A),M) be a matroid-rooted digraph. There exists
an M-based packing of spanning s-arborescences in D if and only if there exists an M-based
packing of (s, t)-paths in D for every t ∈ V .

The main result of this paper is that Conjecture 1.3 is false in its general form. We will
even prove that the following decision problem is NP-complete, which was conjectured by
E.R. Bérczi-Kovács [8].

Problem 1.4. Given a matroid-rooted digraph (D = (V + s, A),M), decide whether there
exists an M-based packing of spanning s-arborescences in D.

As positive results, we will prove that Conjecture 1.3 is true for several fundamental classes
of matroids such as graphic and transversal matroids.

We present the main ideas of the proofs below.

Graphic matroids. Let (D,M) be a matroid-rooted digraph whereM is a graphic matroid
of rank k. Let G = ({0, 1, . . . , k}, E) be a connected undirected graph representing M, so the
edges of G corresponds to the root arcs of D. The idea is to restrict an admissible packing such
that each root arc belong to Ti only if its corresponding edge in G is incident to the vertex i
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1.2 Related works 3

of G. This condition gives an extra property for the packing obtained by induction, based on
which we show how to extend the packing.

Transversal matroids. Let (D,M) be a matroid-rooted digraph whereM is a transversal
matroid of rank k. Let G = (S, T ;E) be a bipartite graph representingM where S corresponds
to the set of root arcs of D and T = {1, . . . , k}. The plan is to replace the matroid-based
condition by the following new condition: a root arc e may belong to Ti only if its corresponding
vertex is connected to i ∈ T in G. The key observation is that if a packing of arborescences
satisfies this new condition then any set of k root arcs belonging to different arborescences of
the packing forms a base of M. Thus the packing is automatically M-based.

Counterexample and NP-completeness. One of the simplest non-graphic and non-
transversal matroids is the Fano matroid. A simple proof shows that Conjecture 1.3 is true for
the Fano matroid when the digraph is acyclic. However, it turns out that Conjecture 1.3 is false
when we allow to extend the Fano matroid by parallel elements. The symmetry of the Fano
matroid will be widely explored in the proof. We will construct our acyclic digraph step by step
by adding sink vertices of in-degree 3. This construction will ensure not only the existence of
the required M-based path packings but also that every M-based arborescence packing is an
extension of the previous instance. We design each construction step so that possible extensions
are restricted.

1.2 Related works

Connectivity is one of the most well-studied properties of graphs. The earliest results related
to our main interest on packing problems concerning connectivity are the papers of Nash-
Williams [17] and Tutte [20] on packing trees in undirected graphs from 1961. The topic of
packing arborescences has been extensively studied in the seventies by Edmonds and Frank
[4, 6]. The connection between these problems was pointed out in a work of Frank [7] on
orientations of graphs.

The hypergraphic counterparts of the above packing results were discovered by Frank, T.
Király, Z. Király and Kriesell [9, 10]. A surprising extension of Edmonds’ result was given
by Katoh, Kamiyama and Takizawa [13] and Fujishige [11] for the case when no spanning
arborescences exist. Szegő [19] gave an abstract version of Edmonds’ result that was extended
to an abstract version of the result of [13] in a paper of Bérczi and Frank [1].

Investigations in rigidity theory inspired an extensive research on possible extensions of Nash-
Williams’ and Tutte’s result. Katoh and Tanigawa [14] introduced the concept of matroid-based
packing of rooted trees and presented several applications of this result in rigidity theory.
Durand de Gevigney, Nguyen and Szigeti [3] used the techniques of Frank to show that, by an
extension of Edmonds’ result, an alternative proof of the packing result of [14] can be obtained.
These breakthrough results inspired an intensive research in the last few years on this topic to
extend the above mentioned results, see [2, 5, 15, 16].

2 Definitions

We will use some basics from matroid theory listed below. For details, we refer to [18]. Recall
that, for a set function r : 2S → Z+,M = (S, r) is called a matroid if r is 0 on the ∅, monotone
non-decreasing, subcardinal (r(Q) ≤ |Q|) and submodular (r(P)+r(Q) ≥ r(P ∩ Q)+r(P ∪ Q)).
The members of I = {Q ⊆ S : r(Q) = |Q|} are called independent sets of the matroid and r
is called the rank function of the matroid. It is well known that a matroid can also be defined
by its independent sets. Let Q ⊆ S. The maximal independent sets in Q are called bases of Q.
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Section 3. Positive results 4

Note that all bases are of the same size. The bases of S are called the bases of M. We define
Span(Q):= {s ∈ S : r(Q ∪ {s}) = r(Q)}. Note that Span is monotone. Two elements a, a′ ∈ S
are said to be parallel in M = (S, r) (in notation, a ‖ a′) if r({a}) = r({a′}) = r({a, a′}) = 1.

The following classes of matroids will be discussed in this paper:

1. graphic matroid : given a graph G = (V,E) with a bijection π : E → S, I := {π(F ) : F
is the edge set of a forest of G};

2. Fano matroid : a rank-3 matroid derived from the Fano plane (the smallest projective
plane with 7 points) on a 7-element ground set (the points of the Fano plane) where every
set of cardinality 3 is a base except the lines of the Fano plane;

3. transversal matroid : given a bipartite graph G = (S, T ;E) with a bijection π : S → S,
I := {π(X) : X ⊆ S that can be covered by a matching in G}.

A special class of the transversal matroids where G is the complete bipartite graph Kn,k

is called the uniform matroid Uk,n. It is well known that a graphic matroid is always
representable by a connected graph and a transversal matroid is always representable by a
bipartite graph where |T | is equal to the rank. It is also well known that a matroid of rank at
most 3 is not graphic if and only if it has a minor isomorphic to the Fano matroid or U2,4 (see
e.g., [18]).

An s-arborescence is a directed tree on a vertex-set containing the root vertex s in which
each vertex has in-degree 1 except s. An s-arborescence in a digraph D = (V + s, A) is
spanning if its vertex set is V +s. For an s-arborescence T and a vertex v 6= s of T , we denote
the unique arc of T entering v by T (v), the unique path from s to v by T [s, v], and its first
arc by eT [s,v]. For disjoint sets X, Y ⊆ V + s, we denote by ∂D

X(Y ) the subset of arcs in D
with tail in X and head in Y . The superscript D will be omitted, when it is clear from the
context. The in-degree of a set X ⊆ V + s is denoted by %D(X):= |∂DV+s−X(X)|.

We say that a matroid-rooted digraph (D = (V + s, A),M = (∂s(V ), r)) is rooted M-arc-
connected if there exists an M-based packing of (s, t)-paths for all vertices t in V. One can
easily prove a Menger-type theorem saying that D is rooted M-arc-connected if and only if

r(∂s(X)) + %D−s(X) ≥ r(M) for all X ⊆ V , (1)

where r(M) denotes the rank of M. For simplicity, we will call an M-based packing of
spanning s-arborescences in D that covers ∂s(V ) a feasible packing.

3 Positive results

In this section, we prove Conjecture 1.3 for several special cases. The necessity of Conjecture
1.3 is always true by Theorem 1.2 (and is easy to prove anyway), so we will only prove the
sufficiency in each case.

3.1 Overview of the proof of Theorem 1.2

Some of our positive results are obtained by extending the proof of Theorem 1.2 given by [3],
and hence we shall first review it by introducing several key ingredients used later. In [3],
Theorem 1.2 was proved in a slightly stronger form by imposing an extra technical condition as
follows. Let (D = (V + s, A),M) be a matroid-rooted digraph. D is called M-independent
if ∂s(v) is independent inM for every v ∈ V . This condition ensures that each root arc can be
used in an M-based packing of s-arborescences in D, as follows.
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3.2 Matroids of rank at most 2 5

Theorem 3.1 ([3]). Let (D = (V + s, A),M = (∂s(V ), r)) be a matroid-rooted digraph. There
exists an M-based packing of s-arborescences in D that covers ∂s(V ) if and only if D is rooted
M-arc-connected and M-independent.

Let (D,M) be as in Theorem 1.2. Observe that, by omitting some root arcs of a rootedM-
arc-connected digraph, one can get a rooted M′-arc-connected and M′-independent digraph,
where M′ is a submatroid of M with the same rank. Therefore, Theorem 1.2 follows from
Theorem 3.1. Observe also that M-independence is a trivial necessary condition for an M-
based packing that covers ∂s(V ).

Let (D,M) be as in Theorem 3.1. We call X ⊆ V tight if (1) holds with equality. We
say that a non-root arc uv is good if ∂s(u) 6⊆ SpanM(∂s(v)). A pair (uv, x) of a good arc uv
in D − s and x ∈ ∂s(u) − SpanM(∂s(v)) is said to be admissible if there is no tight set X
with v ∈ X and u /∈ X such that x is in the span of ∂s(X). The shifting (of (D,M)) along
(uv, x) is a new instance (D′,M′) obtained from (D,M) by removing uv and inserting a new
root arc sv such that sv is a parallel element to x in the underlying matroid. Note that the
shifting satisfies M-independence (resp. rooted M-arc-connectivity) if and only if uv is good
(resp., (uv, x) is admissible). A key observation in [3] is the following. (See Case 2 in the proof
of Theorem 1.6 in [3].)

Lemma 3.2 ([3]). Suppose that D has a good arc. Then D has an admissible pair (uv, x).

The proof of the sufficiency of Theorem 3.1 is done by induction on the number of non-root
arcs. If no good arc exists, then the set of root arcs form anM-based packing of s-arborescences.
Otherwise, by Lemma 3.2, there exists an admissible pair (e, x), and hence the shifting (D′,M′)
along (e, x) is M′-independent and rooted M′-arc-connected. By induction, there exists an
M′-based packing T of s-arborescences in D′ such that it covers ∂′s(V ). We can suppose that
each s-arborescence in T has only one root arc since otherwise we can split it into several
s-arborescences to satisfy this condition. Let T ∈ T be the arborescence covering x and T ′ ∈ T
be the arborescence covering the new root arc f in D′. Then (T −{T, T ′})∪{T ∪ (T ′− f) + e}
is a desired M-based packing of s-arborescences in D that covers ∂s(V ), and this completes
the proof of Theorem 3.1.

Now consider applying the proof to Conjecture 1.3. In the same manner, by induction, one
gets an M′-based packing T of spanning s-arborescences in D′. Our goal is to construct a
feasible packing in D based on T . Let T ∈ T be an arborescence that covers the new root arc
f of D′. If T also contains x, then (T −{T})∪{T − f + e} is anM-based packing of spanning
s-arborescences in D, and we are done. The difficult case is when T does not contain x. We
will show how to overcome this difficulty by new ideas if M has rank at most 2 or is graphic.

3.2 Matroids of rank at most 2

In this section we prove that Conjecture 1.3 is true when r(M) ≤ 2. We first prove the following
technical lemma.

Lemma 3.3. Let T1 and T2 be arc-disjoint spanning s-arborescences on V + s. Let T ′1 (resp.
T ′2) be an s-subarborescence of T1 (resp. T2) such that no non-root arc of T1 (resp. T2) leaves
its vertex set, and let X = V (T ′1) ∩ V (T ′2). Let T ∗1 and T ∗2 be obtained from T1 and T2 by
exchanging for every vertex v in X − s the arcs T1(v) and T2(v). Then T ∗1 and T ∗2 are spanning
s-arborescences on V + s.

Proof. We prove the result for T ∗1 . Suppose that T ∗1 is not an s-arborescence. Since %T ∗1 (v) =
%T1(v) = 1 for every v ∈ V, there exists a circuit C in T ∗1 . Since neither T1 nor T2 contains a
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3.3 Graphic matroids 6

circuit, C contains at least one arc from each arborescence T1 and T2. It follows that there exist
not necessarily distinct arcs uv and wz of C such that uv and wz belong to T2 and the path of
C from z to u belongs to T1. Note then that T1(u) = T ∗1 (u) as T ∗1 contains C and C contains
T1(u).

Since uv belongs to T2 and to T ∗1 , v is in X and hence in T ′2, and thus u is also in T ′2. Since
wz belongs to T2 and to T ∗1 , z is in X and hence in T ′1, and thus, since the path of C from z
to u belongs to T1, u is also in T ′1. It follows that u is in X, and so we have a contradiction,
T1(u) 6= T ∗1 (u) = T1(u).

Theorem 3.4. Let (D = (V +s, A),M = (∂s(V ), r)) be a matroid-rooted digraph with r(M) ≤
2. There exists an M-based packing of spanning s-arborescences in D that covers ∂s(V ) if and
only if D is M-independent and rooted M-arc-connected.

Proof. The proof is done by induction on the number of non-root arcs. As we remarked above,
if no good arc exists, then we can form r(M)(= 1 or 2) spanning s-stars that gives a feasible
packing in D. Hence we assume that D has a good arc. Then, by Lemma 3.2, there exists an
admissible pair (uv, x) along which the shifting (D′,M′) satisfies the conditions of the theorem.
Now, by induction, we get that there exists a feasible packing in D′. Let f be the new root arc
in D′ from s to v. We have the following two cases.

Case 1. If x and f are contained in the same arborescence T of the packing, then substituting
T with T − f + uv in the packing one gets a feasible packing in D.

Case 2. Otherwise, the packing consists of two arborescences T1 and T2 (thus the rank of
M′ is 2), and we can assume that x ∈ T1 and f ∈ T2. Let Vf ⊆ V be the set of vertices
which is reachable from s in T2 by a path starting with the arc f or an arc parallel to f inM.
Let {T ∗1 , T ∗2 } be the packing that arises from {T1, T2} by using Lemma 3.3 with T ′1 := T1, and
T ′2 := T2[Vf + s]. We claim the following.

Claim 3.5. {T ∗1 , T ∗2 } is anM′-based packing of spanning s-arborescences covering the root arcs
in D′.

Proof. By Lemma 3.3, T ∗1 and T ∗2 are spanning s-arborescences. Let V ∗ ⊆ V denote the set of
vertices v ∈ V for which V (T ∗1 [s, v])∩ Vf 6= ∅. Observe that, for every v ∈ V ∗ and u ∈ V − V ∗,
eT ∗1 [s,v] is parallel to f in M′ and eT ∗1 [s,u] = eT1[s,u]. On the other hand, for every w ∈ V − Vf ,
eT ∗2 [s,w] = eT1[s,w]; moreover, for every w ∈ V , eT ∗2 [s,w] is not parallel to f in M′ as T ∗2 has no
root arcs parallel to f by the definition of Vf . Finally, {T1, T2} and {T ∗1 , T ∗2 } cover the same
set of root arcs. These imply the claim.

By Claim 3.5, {T ∗1 , T ∗2 } is also a feasible packing in D′ where x and f are in T ∗1 . Thus we
are in Case 1. This completes the proof of Theorem 3.4.

3.3 Graphic matroids

We prove that Conjecture 1.3 is true for graphic matroids.

Theorem 3.6. Let (D = (V + s, A),M) be a matroid-rooted digraph where M = (∂s(V ), r) is
a graphic matroid of rank k. There exists an M-based packing of spanning s-arborescences in
D covering ∂s(V ) if and only if D is rooted M-arc-connected and M-independent.

Proof. Let G = ({0, 1, . . . , k}, E) be a connected undirected graph with a bijection π : E →
∂s(V ) representing M. From now on, we will refer to the matroid-rooted digraph (D,M) as
(D,G, π). For an edge e ∈ E, let xe= π(e). For X ⊆ V , let EX= π−1(∂s(X)). For each v ∈ V ,
let Cv be the vertex set of the connected component Qv of (V (G), Ev) that contains 0. Note
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3.4 Transversal matroids 7

that, since D is M-independent, k − |Ev| ≥ 0 and Qv is a tree. For v ∈ V, let ~Qv be the
arborescence rooted at 0 that arises by orienting each edge e of Qv to ~e.

We prove the theorem by imposing the following extra property for the packing {T1, . . . , Tk}:

for ~e = ij belonging to ~Qv for some v ∈ V , xe belongs to Tj. (2)

Let (D,G, π) be a counterexample minimizing k|V | −
∑

v∈V |Ev| ≥ 0. We take v∗ such that
|Cv∗ | is as small as possible. If Cv∗ = V (G), then Qv is a spanning tree of G for every v ∈ V .

In this case, using only the root arcs, the 0-arborescences ~Qv show how to define a feasible
packing satisfying (2).

From now on, we suppose that Cv∗ is a proper subset of V (G). Let W= {v ∈ V : Cv = Cv∗}.
Then the vertex set CW of the connected component that contains 0 in (V (G), EW ) is equal to

Cv∗ . For p ∈ V −W , an element e ∈ Ep is called critical if ~e belongs to ~Qp and ~e leaves CW .
By the minimality of |Cv∗| and p ∈ V −W , we have Cp − CW 6= ∅. Hence the following claim

follows from the fact that ~Qp is a spanning 0-arborescence on Cp.

Claim 3.7. For p ∈ V −W , Ep contains a critical element.

Claim 3.8. Let pq be an arc in D with p ∈ V −W and q ∈ W and e a critical element in Ep.
Then (pq, xe) is not admissible.

Proof. Since e is critical, ~e leaves CW = Cq, so xe is not spanned by π(Eq), that is the arc
pq is good. Suppose that (pq, xe) is admissible. Then the shifting (D′, G′, π′) of (D,G, π)
along (pq, xe) satisfies the M′-independence and rooted M′-arc-connectivity conditions. Since
(D,G, π) is a minimum counterexample, we have a feasible packing T ′1, . . . , T

′
k for (D′, G′, π′)

satisfying (2). Let e′ be the new edge parallel to e assigned to the new arc xe′ := sq in the
shifting. As e is critical, (2) implies that xe and xe′ belong to the same spanning s-arborescences
Tj of D. Therefore, by setting T` (1 ≤ ` ≤ k) with T` = T ′` for ` 6= j and Tj = T ′j − xe′ + pq, we
obtain a feasible packing T1, . . . , Tk for (D,G, π) satisfying (2). This contradicts that (D,G, π)
is a counterexample.

Since CW is a proper subset of V (G), r(π(EW )) < k. Therefore, by the rooted M-arc-
connectivity of D, D has an arc pq with p ∈ V −W and q ∈ W . By Claim 3.7, Ep contains
a critical element e, and then Claim 3.8 says that (pq, xe) is not admissible. In other words,
there exists a tight set X ⊆ V with q ∈ X and p /∈ X such that xe is contained in the span of
π(EX).

We shall take such a pair (pq, xe) such that X is minimal. Since π(EX) spans xe while,
as e is critical, π(EW ) does not span xe, we have r(π(EX∩W )) < r(π(EX)). Hence, by the
rooted M-arc-connectivity of D and the tightness of X, %D−s(X ∩W ) ≥ k − r(π(EX∩W )) >
k − r(π(EX)) = %D−s(X). Hence D − s has an arc p′q′ with p′ ∈ X −W and q′ ∈ X ∩W .
Since Ep′ contains a critical element e′ by Claim 3.7, (p′q′, xe′) is not admissible by Claim 3.8,
that is, there exists a tight set X ′ ⊆ V with q′ ∈ X ′ and p′ /∈ X ′ such that xe′ ∈ Span(π(EX′)).
Since p′ ∈ X −W , Ep′ ⊆ EX and hence e′ ∈ EX . [3, Claim 2.1(a)] says that X ∩ X ′ is tight
and xe′ ∈ Span(π(EX∩X′)). Furthermore, q′ ∈ X ∩ X ′, p′ /∈ X ∩ X ′, and e′ ∈ Ep′ is critical,
contradicting the minimal choice of X, since p′ ∈ X −X ′.

3.4 Transversal matroids

The case when M is transversal can be solved by a completely different idea, by reducing
the problem to a packing problem of reachability branchings. For a non-empty set R ⊆ U ,
the subdigraph T = (U,A′) of a digraph D∗ = (V ∗, A) is said to be an R-branching if it
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3.5 Fano matroid – when D is acyclic 8

consists of |R| vertex-disjoint arborescences in D∗ whose roots are in R. We say that T is a
reachability R-branching in D∗ if U is the set of reachable vertices from a vertex in R in D∗.
The following surprising generalization of Edmonds’ theorem was discovered by Kamiyama,
Katoh and Takizawa [13].

Theorem 3.9 ([13]). Let D∗ = (V ∗, A∗) be a digraph and R := {R1, ..., Rk} a family of non-
empty subsets of V ∗. There exits a packing of reachability R-branchings in D∗ if and only if

%D∗(X) ≥ pR(X) for every ∅ 6= X ⊆ V ∗ (3)

where pR(X) denotes the number of Ri’s for which Ri ∩ X = ∅ and there exits a path from a
vertex in Ri to a vertex in X.

We prove now that Conjecture 1.3 is true for transversal matroids.

Theorem 3.10. Let (D = (V + s, A),M = (∂s(V ), r)) be a matroid-rooted digraph, where M
is a transversal matroid. There exists an M-based packing of spanning s-arborescences in D if
and only if D is rooted M-arc-connected.

Proof. Let G = (S, T ;E) be a bipartite graph representingM such that T = {1, . . . , k}, where
k = r(M), and π : S → ∂s(V ) a bijection. Let D∗ = (V ∗, A∗) be the digraph that arises from D
by splitting s into |S| new vertices of out-degree one. Let re denote the tail of e in D∗ for each
e ∈ ∂Ds (V ), R∗ the set of new vertices re and Ri = {re ∈ R∗ : π−1(e) is adjacent to i in G} for
i ∈ T .

Claim 3.11. Every vertex v ∈ V ∗ −R∗(= V − s) is reachable from each Ri in D∗.

Proof. By rootedM-arc-connectivity, there exist k arc-disjoint paths in D from s to any other
vertex v such that the set of their first arcs {e1, . . . , ek} is a base of M. As G has a matching
covering {π−1(e1), . . . , π−1(ek)} and T , the set {re1 , . . . , rek} intersects Ri for i = 1, . . . , k.

Claim 3.12. Condition (3) of Theorem 3.9 holds.

Proof. Let X be a set of vertices in D∗. If X is a subset of R∗ then the claim is obvious.
Otherwise, let v be a vertex of X−R∗. By rootedM-arc-connectivity, there exist anM-based
packing of (s, v)-paths {P1, . . . , Pk} in D. Hence, for every i with Ri ∩X = ∅, there exists an
arc of Pi that enters X in D∗, so by the arc-disjointness of the paths, (3) is satisfied.

By Claim 3.12 and Theorem 3.9, there exists a packing of reachability {R1, . . . , Rk}-branchings
in D∗. By Claim 3.11, each reachability Ri-branching Bi covers V −s. By contracting R∗ into s,
we obtain k pairwise arc-disjoint spanning s-arborescences Ti = Bi/R

∗ in D. The construction
implies that, for each root arc e in Ti, G has an edge between π−1(e) and i. Therefore, for each
v ∈ V and for each i ∈ {1, . . . , k}, the root arc in Ti[s, v] is connected to i in G, implying that
these root arcs over all i form a base ofM. Hence T1, . . . , Tk indeed form anM-based packing
of spanning s-arborescences.

3.5 Fano matroid – when D is acyclic

If D is acyclic, the condition (1) for rooted M-arc-connectivity can be significantly simplified
as follows.

Lemma 3.13. Let (D = (V + s, A),M = (∂s(V ), r)) be a matroid-rooted digraph, where D is
acyclic. Then D is rooted M-arc-connected if and only if

%D−s(v) + r(∂s(v)) ≥ r(M) for all v ∈ V . (4)
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3.5 Fano matroid – when D is acyclic 9

Proof. As (4) follows from (1) when X = {v}, we only prove the sufficiency. Let X ⊆ V . As
D is acyclic, there exists a vertex v0 of D[X] with %D[X](v0) = 0. By the monotonicity of the
in-degree and the rank function r and (4) we get

%D−s(X) + r(∂s(X)) ≥ %D−s(v0) + r(∂s(v0)) ≥ r(M)

thus (1) follows.

In view of Lemma 3.13 one can consider the following strategy to prove Conjecture 1.3
for acyclic digraphs. Consider proving Conjecture 1.3 by induction on |V |. Without loss of
generality we may assume that D is M-independent. Note that in this case (4) is equivalent
to saying that each vertex v is of in-degree at least r(M). Since the claim is obvious when
|V | = 0, we also assume |V | ≥ 1. As D is acyclic, it has a vertex v ∈ V with out-degree
0. Let k = r(M). By Lemma 3.13, D − v is rooted M|∂s(V−v)-arc-connected and there exist
` arcs entering v in D − s for some 0 ≤ ` ≤ k along with k − ` root-arcs entering v which
are independent in M. By induction, there exists an M|∂s(V−v)-based packing of spanning
s-arborescences {T1, . . . , Tk} in D − v. Consider extending this packing in D − v to a packing
of D. For each non-root-arc e = uv entering v, let Be = {eTi[s,u]|u ∈ V (Ti), 1 ≤ i ≤ k}. To
extend the packing of D− v to anM-based packing of D, we need to choose one element from
Be for each non-root-arc e entering v such that the chosen elements form a base ofM with the
k− ` root-arcs entering v. The following lemma claims that this is always possible in the Fano
matroid.

Lemma 3.14. Let B1, . . . , B` be at most 3 bases of the Fano matroid with a 3-coloring of⋃`
i=1Bi such that each base Bi is colorful for i = 1, . . . , `, and let a`+1, . . . , a3 be 3−` independent

elements of the Fano matroid that are not elements of
⋃`
i=1Bi. Then there is a doubly colorful

base of the Fano matroid, that is, one can choose elements ai ∈ Bi for i ∈ {1, . . . , `} of different
colors such that {a1, a2, a3} is a base of the Fano matroid.

Proof. The statement is obvious when ` = 0 and also when ` = 1 as in the latter case there
exists an element of B1 which is not on the a2a3-line of the Fano plane. Similarly, when ` = 2
then we can take any element a2 ∈ B2 and an element a1 of B1 which is not on the a2a3-line.
If we have at least two such choice for a1, then we can chose it to have different color than a2.
Otherwise, the other two elements of B1 are the elements on the a2a3-line different from a3.
Hence a2 is an element of B1 and a1 has a different color than a2 by the colorfulness of B1.

Let now ` = 3. The three basis cannot be disjoint, otherwise the Fano matroid should contain
9 distinct elements and it has just has 7 elements. By relabeling the bases, we can assume that
B1 ∩ B2 6= ∅. Assume that B1 = B2. Since B3 is a base, B3 6=

⋃
{SpanM(B1 − b) − B1 : b ∈

B1} =: L as L is a line. Take a3 ∈ B3 − L and a1, a2 ∈ B1 = B2 with 3 different colors. Then,
as a3 6∈ L and a3 6= a1 nor a2, {a1, a2, a3} is a colorful base. Therefore, we can assume B1 6= B2.
Let y1 ∈ B1 − B2 and y2 ∈ B2 − B1 with the same color and let x ∈ B1 ∩ B2. Take a3 ∈ B3

with the third color. As the line xa3 may contain only one of y1 and y2, we can assume that,
say, y2 is not on this line. Therefore, we can take a1 := x and a2 := y2 such that {a1, a2, a3} is
a colorful base.

Thus we have the following for the Fano matroid.

Theorem 3.15. Let (D,M) be a matroid-rooted digraph where D = (V + s, A) is acyclic and
M = (∂s(V ), r) is a submatroid of the Fano matroid. There exists an M-based packing of
spanning s-arborescences in D if and only if D is rooted M-arc-connected.
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4 Negative results

In this section, we will give a counterexample to Conjecture 1.3 and prove that Problem 1.4 is
NP-complete for acyclic digraphs and a certain class of matroids. The precise statements are
given as follows.

Theorem 4.1. There exist an acyclic digraph D = (V + s, A) and a matroid M of rank three
such that (D,M) is a counterexample to Conjecture 1.3.

Theorem 4.2. Problem 1.4 is NP-complete even if D = (V +s, A) is acyclic andM is a linear
matroid of rank three with a given linear representation.

As we noted before, the matroidM used in the construction, that we call a parallel exten-
sion of the Fano matroid, will arise from the Fano matroid by adding some parallel copies
of its elements.

The proof is done by defining several gadget constructions, each of which restricts possible
packings. Each construction step is referred to as an operation below. In each construction,
we insert new vertices one by one together with three new arcs entering it and no arc leaving
it. A new root arc will always be added keeping the M-independence as well as the fact
that M is a parallel extension of the Fano matroid (or its submatroid). Thus, an instance
(D = (V + s, A),M) constructed by a sequence of operations always satisfies the following
properties:

(i) D is acyclic and, by Lemma 3.13, (D,M) is rooted M-arc-connected;

(ii) If (D,M) is constructed from (D′,M′) by an operation, then every feasible packing for
(D,M) is an extension of a feasible packing for (D′,M′).

By the property (i), in the subsequent discussion we omit to mention that (D,M) is M-
independent and rooted M-arc-connected. By using the property (ii), we shall be able to
control possible extensions of feasible packings.

We say that a vertex v ∈ V gets a base B in a feasible packing {T1, T2, T3} if B =
{eT1[s,v], eT2[s,v], eT3[s,v]}. We also say that v gets eTi[s,v] from u if u is on the path Ti[s, v]
(i = 1, 2, 3). T1, T2 and T3 will be called the red, blue and black arborescences, respectively.
We say that an element of M is colored by λ if it is in the arborescence of color λ.

In the following, the elements of M will be denoted by the first 7 letters of the alphabet
(see Figure 1) and apostrophes, superscripts (when we would need too many apostrophes) or
subscripts will be used when we consider a parallel element of a previously used one (that may
be also an identical element to this previous one). It is well-known that the Fano plane have
automorphisms moving arbitrary 3 points in general position (that is not lying on a line) to
any 3 points in general position.

a b

c

d e
f

g

Figure 1: The elements of the Fano matroid.

Each operation is best described with figures, which are illustrated by the following rule. (See,
e.g., Figure 2a.) The root vertex s is not represented in the figures. A vertex will be represented
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a′

d

v w

a b

c

(a) FC(a,b,c)(v).

u v

wa b

c

a′ b′

c′

(b) ADC(u, v).

a′′

u v

w

a b

c

a′ b′

c′

(c) AFa(u, v).

Figure 2: The three elementary operations.

as a big circle in which Fano plane is illustrated with three particular elements (empty circles)
which represent the base that the vertex will get in every feasible packing. Existing vertices in
the original digraph will be denoted by thicker circles, in which the elements of the bases that
they get in every feasible packing will be signed by their letters. For a vertex v which is added
in an operation, a letter x may be assigned to a point in the Fano plane, which means that a
new root arc sv is added with a new element x in the underlying matroid. Sometimes a new
vertex will be represented by just a point for simplicity.

Operation 4.3. Given (D,M), suppose that a vertex v ∈ V gets the base {a, b, c} in every
feasible packing. Force-color FC(a,b,c)(v) extends (D,M) to (D′,M′) by adding a new vertex
w to D along with 2 incoming root arcs a′ and d and one non-root arc vw, where a′ ‖ a and
{a, c, d} is a line of the Fano plane. See Figure 2a.

Note that, by the automorphisms of the Fano plane, FC(x,y,z)(v) is also defined for any base
{x, y, z} (and the same remark is applied for other operations given below).

Lemma 4.4. With the notation as in Operation 4.3, every feasible packing in (D,M) extends
to a feasible packing in (D′,M′). Moreover, in every feasible packing of (D′,M′), w gets the
base {a′, b, d}, that is, the arc vw will be in the same arborescence as the root arc b.

Proof. Consider any possible extension of a feasible packing of (D,M), where we distribute the
three arcs entering w among the three arborescences. From the construction, w always gets a′

and d from the root. Also, by the assumption of the lemma, v gets {a, b, c}, and w gets one of
them from v. Now, in a feasible extension, w cannot get a from v as a′ ‖ a and cannot get c as
{a′, c, d} is a line. Hence w gets b from v and the packing is feasible as {a′, b, d} is a base.

For simplicity, we also use FC(a,b,c)(v) to denote the new vertex w in Operation 4.3.

Operation 4.5. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Avoid-
different-coloring ADC(u, v) extends (D,M) to (D′,M′) by adding a new vertex w to D
along with two parallel arcs from u to w and an arc from v to w. See Figure 2b.

Lemma 4.6. With the notation as in Operation 4.5, every feasible packing in (D,M) extends
to a feasible packing in (D′,M′) except those where all the parallel pairs (a, a′), (b, b′) and (c, c′)
have different colors.
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Proof. By symmetry, we may assume without loss of generality, that w gets a and b from u in
a feasible packing in (D′,M′). Then w should get c′ from v, which is possible if and only if the
color of c′ is equal to that of c. Thus the claim follows as any feasible packing in (D′,M′) is
an extension of that in (D,M).

For simplicity, we use ADC(u, v) to denote the new vertex w in Operation 4.5.

Operation 4.7. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Avoid-flip
AFa(u, v) extends (D,M) to (D′,M′) by adding a new vertex w along with an incoming root
arc a′′, an arc from u to w and an arc from v to w to D. See Figure 2c.

Lemma 4.8. With the notation as in Operation 4.7, every feasible packing in (D,M) extends
to a feasible packing in (D′,M′) except those where a and a′ have the same color and the colors
of the pairs (b, b′) and (c, c′) are different.

Proof. First we prove that feasible packings in the exceptional case of AF cannot be extended.
The vertex w can get either the base {a′′, b, c′} or the base {a′′, b′, c}. However, both contain
two elements of the same color, which is impossible.

Next observe that in the non-exceptional case of AF , either b and c′ or b′ and c are of different
colors, say b and c′. Let us color a′′ by the color not used by b and c′. Then w can get the base
{a′′, b, c′} that uses the three colors.

By the previous operations, we define the following operation. For bases {a, b, c} and {x, y, z}
in the Fano plane with parallel extension, we denote by {a, b, c} ‖ {x, y, z} if each element in
{a, b, c} is parallel to some element in {x, y, z}.

Operation 4.9. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{x, y, z} in every feasible packing, respectively, such that a ∦ x and {a, b, e} ‖ {x, y, k}, where
{b, e, c} and {y, k, z} are lines of the Fano plane. Forbid-same-color FSC(a,x)(u, v) extends
(D,M) to (D′,M′) by adding 4 new vertices to D and 5 new elements to M as follows. Add
w1 := FC(b,a,c)(u) with new root arcs b′′ and e, w2 := FC(y,x,z)(v), w3 := ADC(w1, w2), and
w4 := AFt(w1, w2), where t denotes the element with t ∈ {b′′, e} and t ∦ x. See Figure 3 for a
possible configuration of FSC.

e e′

e′′

u v

w1 w2

w3

w4

a

c

b a′ b′
f

b′′ a′′

Figure 3: The operation FSC(a,b′)(u, v), where (x, y, z) = (b′, a′, f) and t = e.

One can see other examples of FSC in Figure 4, FSC(d,g)(v, w2) and FSC(f,a′′′)(w1, w2), where
(a, b, c, x, y, z, t) in Operation 4.9 corresponds to (d, a′, b′, g, a′′′, c, a(4)), and (f, a′, b′′, a′′′, g, c, g′′),
respectively.
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Lemma 4.10. With the notation as in Operation 4.9, every feasible packing in (D,M) extends
to a feasible packing in (D′,M′) except those where the colors of a and x are the same.

Proof. By a ∦ x and {x, y, k} ‖ {a, b, e}, we have {a, b, e} ‖ {x, y, k} ‖ {a, x, t}.
First we prove that feasible packings in the exceptional case of FSC cannot be extended.

Suppose that a and x are of the same color. By Lemma 4.4, each of w1 and w2 gets a base
parallel to {a, x, t}. Since a in w1 and x in w2 are of the same color, by Lemma 4.6, the element
parallel to t should be of the same color at w1 and w2. However, by Lemma 4.8, the element
parallel to t should be of different colors at w1 and w2, which is a contradiction.

Now in the non-exceptional case a and x have different colors, say red and black. Then, by
Lemma 4.4, each of w1 and w2 may get a base parallel to (a, x, t) with colors (red, black, blue).
By Lemmas 4.6 and 4.8, the packing extends to w3 and w4.

b′′
f

e

a′′

e′′

a′′′
g

b′′′

e′

g′a(4)

a(5)

d′

a(6)

a(7)
g′′ g′′′

f ′

g(4)

u v

w1 w2

a′ b′

d

a b

c

Figure 4: The operation SAF(a,b,c)(u, v).

The main operation is the following.

Operation 4.11. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, d} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and {a, d, c} is a line of the
Fano plane. Strong-avoid-flip SAF(a,b,c)(u, v) extends (D,M) to (D′,M′) by adding 14
new vertices to D and 19 new elements to M as follows. First, add 2 new vertices to D and 4
new elements to M by w1 := FC(b′,a′,d)(v) (with new root arcs b′′ and f) and w2 := FC(a,c,b)(u)
(with new root arcs a′′′ and g). Then add the remaining new vertices of D′ and new elements of
M′ by the operations FSC(a,b′′)(u,w1), FSC(d,g)(v, w2) and FSC(f,a′′′)(w1, w2). See Figure 4.

Lemma 4.12. With the notation as in Operation 4.11, a feasible packing in (D,M), where b
and b′ have the same color, extends to a feasible packing in (D′,M′) if and only if the colors
of the pairs (a, a′) and (c, d) are the same.
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Proof. By relabeling the colors we may assume that the base (a, b, c) that v gets is colored by
(red, blue, black).

First, suppose that (a′, b′, d) is colored by (black, blue, red). w1 gets the base (a′, b′′, f) that,
by Lemma 4.10 applied for FSC(a,b′′)(u,w1), cannot be colored by (black, red, blue), so, by
Lemma 4.4, it is colored by (black, blue, red). Similarly, w2 gets the base (a′′′, c, g) that, by
Lemma 4.10 applied for FSC(d,g)(v, w2), cannot be colored by (blue, black, red), so, by Lemma
4.4, it is colored by (red, black, blue). Finally, since f and a′′′ are red, Lemma 4.10 applied for
FSC(f,a′′′)(w1, w2) shows that the packing cannot be extended.

Second, suppose that (a′, b′, d) is colored by (red, blue, black). w1 gets the base (a′, b′′, f)
and w2 gets the base (a′′′, g, c) and both can be colored, by Lemma 4.4, by (red, blue, black).
Lemma 4.10 applied for FSC(a,b′′)(u,w1), FSC(d,g)(v, w2) and FSC(f,a′′′)(w1, w2) shows that the
packing can be extended.

We are now ready to prove Theorem 4.1.

a1 b1

c1

a2

d1

b2

f1

e1

b3

a3

e2

e3

a4 g1

a1 b1

c1

a2

d1

b2

e1

b3

a3

e2

e3

a4 g1

g2a5

a6

d2

a7

a8 g3 g4

f2

g5

b4

e4

b5g6

g7

d4

g8

d5
f3

d3

c2

d6
f4

d7

c3

d8

d9
f5

f6
e5

f7

b6g9

b7

f8

f9

c4

f10

c5

e6

c6
e7

c7

a9

c8

c9
e8

e9

g10

e10

z1 z2

z3

Figure 5: The counterexample shown in the proof of Theorem 4.1.

Proof of Theorem 4.1. We start with a digraph on two vertices, a root s and the other vertex z1,
along with 3 parallel arcs a1, b1 and c1 from s to v. The underlying matroid is the free matroid
on ∂s(v). In the following, the arborescences containing a1, b1 and c1 will be called red, blue
and black, respectively. First, add new vertices z2 := FC(a1,b1,c1)(v) (which gets {a2, b1, d1}),
z3 := FC(d1,b1,a2)(w1) (which gets {b1, c2, d3}). Then apply the operations SAF(a1,b1,c1)(z1, z2),
SAF(d1,b1,a2)(z2, z3) and SAF(c2,b1,d3)(z3, z1). See Figure 5. Applying Lemmas 4.4 and 4.12 twice
shows that the base (a2, b1, d1) that z2 gets is colored by (red, blue, black), the base (b1, c2, d3)
that z3 gets is colored by (blue, red, black). Finally, by Lemma 4.12, no feasible packing exists
in the resulting instance. By Lemma 3.13, the resulting instance is rooted M-arc-connected,
and hence is a counterexample to Conjecture 1.3. This completes the proof of Theorem 4.1.

Now we turn to the proof of Theorem 4.2. Problem 1.4 is in NP in the case where a linear
representation of the matroid is given as input since the packing itself is a witness for the
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problem that can be checked in polynomial time. We will use the well-known 3-SAT (see [12])
to prove the NP-completeness of our problem.

Let us take a 3-CNF formula. Using the previous operations (and a new one) we will construct
a matroid-rooted digraph that has a feasible packing if and only if the formula is satisfiable. In
order to express each clause, our idea is to represent it as a concatenation of majority functions
and implement each majority function by using our operations. We first remark the following
lemma. Recall that the majority function maj(α, β, γ) is a Boolean function that has a value 1
if and only if at least two among α, β, γ have value 1.

Lemma 4.13. Let α, β, γ ∈ {0, 1}. Then

α ∨ β ∨ γ = maj(maj(α, β, 1),maj(α, γ, 1),maj(β, γ, 1)). (5)

Proof. α ∨ β ∨ γ = 1 if and only if at least one of α, β and γ is 1. If, say, α = 1, then
maj(α, β, 1) = 1 and maj(α, γ, 1) = 1 hence the right hand side of (5) is 1. If α = β = γ = 0,
then maj(α, β, 1) = maj(α, γ, 1) = maj(β, γ, 1) = 0 hence the right hand side of (5) is 0.

Operation 4.14. Given (D,M), suppose that v1, v2, v3 ∈ V get the bases {a, b, c}, {a′, b′, c′}
and {a′′, b′′, c′′}, respectively, in every feasible packing where a ‖ a′ ‖ a′′, b ‖ b′ ‖ b′′ and
c ‖ c′ ‖ c′′. Majority MAJ(v1, v2, v3) extends (D,M) to (D′,M′) by adding a new vertex
w with 3 incoming arcs v1w, v2w and v3w. See Figure 6.

Lemma 4.15. With the notation as in Operation 4.14, consider a feasible packing of (D,M)
such that all of b, b′ and b′′ are colored by λ (and hence there are only two types of possible
coloring schemes on each vi). Then the packing extends to a feasible packing of (D′,M′).
Moreover, in every such extension w gets a base formed by parallel copies of a, b, and c with a
coloring of the same type as the majority among the three on v1, v2 and v3. See Figure 6.

Proof. Without loss of generality, we can assume that the colorings of (a, b, c) and (a′, b′, c′)
coincide, say, they are colored by (red, blue, black). As w has an entering arc from each vi, w
always gets a parallel copy of b colored by blue. Moreover, as w has in-arcs from v1 and v2 too,
w gets a parallel copy of a or c from v1 or v2. Hence w gets a parallel copy of a colored by red
or a parallel copy of c colored by black. These two facts already determine the coloring scheme
on w as stated in the lemma.
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c c′ c′′

a a′ a′′

Figure 6: MAJ(v1, v2, v3).

Two more operations are needed in the NP-completeness proof.

Operation 4.16. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Copy-one-
color COCb(u, v) extends (D,M) to (D′,M′) by adding 3 new vertices to D and 2 new
elements to M by operations ADC(u, v), AFa(u, v), and AFc(u, v).
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Lemma 4.17. With the notation as in Operation 4.16, every feasible packing in (D,M) extends
to a feasible packing in (D′,M′) except those where the colors of b and b′ are different.

Proof. Note that any feasible packing of (D,M) satisfies either one of the following: (i) each
pair in (a, a′), (b, b′), and (c, c′) has the same color; (ii) all the pairs (a, a′), (b, b′), and (c, c′)
have different colors; (iii) only (a, a′) has the same color; (iv) only (b, b′) has the same color;
(v) only (c, c′) has the same color. By ADC(u, v), AFa(u, v), and AFc(u, v), the packing is
extendable if and only if (i) or (iv) holds, meaning that (b, b′) has the same color.

Operation 4.18. Given (D,M), suppose that a vertex v ∈ V gets the base {a, b, c} in every
feasible packing. Change-colors CC(a,c)(v) extends (D,M) to (D′,M′) by adding 45 new
vertices to D and 63 new elements to M as follows. First, add new vertices w1 := FC(a,b,c)(v)
(which gets {a′, b, d}), w2 := FC(d,b,a′)(w1) (which gets {b, c′, d′}) and w := FC(c′,b,d′)(w2) (which
gets {a′′, b, c′′}). Then add the remaining new vertices of D′ and new elements of M′ by the
operations SAF(a,b,c)(v, w1), SAF(d,b,a′)(w1, w2) and SAF(c′,b,d′)(w2, w).

Lemma 4.19. With the notation as in Operation 4.18, every feasible packing in (D,M) ex-
tends to a feasible packing in (D′,M′). Moreover, if the base {a, b, c} that v gets is colored by
(λ1, λ2, λ3), then the base {a′′, b, c′′} that w gets is colored by (λ3, λ2, λ1).

Proof. By relabeling the colors we may assume that the base (a, b, c) that v gets is colored by
(red, blue, black). Applying Lemmas 4.4 and 4.12 three times shows that the base (a′, b, d)
that w1 gets is colored by (red, blue, black), the base (b, c′, d′) that w2 gets is colored by
(blue, red, black) and the base (a′′, b, c′′) that w gets is colored by (black, blue, red).

For simplicity, we denote w = CC(a,c)(v) if w is as in Operation 4.18.
Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. We have seen that the problem is in NP, hence we only prove the com-
pleteness. Let us take a 3-CNF formula on variables x1, x2, . . . , xn. First, let V := {v0, . . . , vn}
and take a digraph D on V + s whose arc set consists of only root arcs svi (i = 0, . . . , n), three
copies of each. Take a base {a, b, c} of the Fano matroid and define a parallel extension of the
Fano matroid M on ∂r(V ) such that, for each i ∈ {0, . . . , n}, the three arc svi form a parallel
copy {ai, bi, ci} of {a, b, c}. Next use operation COCbi−1

(vi−1, vi) for i = 1, . . . , n. This ensures
that in every feasible packing the parallel copies of b got by v0, . . . , vn are colored by the same
color, say, blue.

Add v′1, . . . , v
′
n by using operations CC(ai,ci)(vi) for i = 1, . . . , n. Hence, in every feasible

packing, v′i gets the colored base (a′i, bi, c
′
i) with the same coloring as (ci, bi, ai) for i = 1, . . . , n.

In the following construction, vi will represent the variable xi and v′i its negate x̄i for i = 1, . . . , n.
Moreover, v0 will represent 1.

For each clause ψ of the formula, we first add 4 new vertices wψ1 , wψ2 , wψ3 and wψ4 using
operation MAJ so that it represents ψ according to the equation in Lemma 4.13. (In other
words, for a clause, say, for ψ = x1 ∨ x̄2 ∨ x3 we add wψ1 with arcs v1w

ψ
1 , v′2w

ψ
1 and v0w

ψ
1 , wψ2

with arcs v1w
ψ
2 , v3w

ψ
2 and v0w

ψ
2 , wψ3 with arcs v′2w

ψ
3 , v3w

ψ
3 and v0w

ψ
3 , and wψ4 with arcs wψ1w

ψ
4 ,

wψ2w
ψ
4 and wψ3w

ψ
4 .) Finally, to ensure the truth of each clause ψ, we further use operation

AFb0(v0, w
ψ
4 ). See Figure 7.

We claim that the formula is satisfiable if and only if (D,M) admits a feasible packing.
Note that v0 always gets the base {a0, b0, c0}, and without loss of generality we may always
suppose that (a0, b0, c0) is colored by (red, blue, black). Then the claim follows by identifying
the coloring scheme (red, blue, black) (resp., (black, blue, red)) for a parallel copy of (a, b, c)
with a true assignment (resp., a false assignment).
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1 wψ

3wψ
2

wψ
4v0

AFb0

b0

c0

b1 b2 b3CC(a2,c2)

MAJ MAJ MAJ

MAJ

c1 c2 c3c′2

b′′

a0

a1 a2 a3a′2

Figure 7: A part of the construction in the proof of Theorem 4.2.This demonstrates how the
assignment x1 = x2 = x3 = 0 makes the clause ψ = x1 ∨ x̄2 ∨ x3 true in the corresponding
feasible packing. The crossing dashed arcs represent the operation CC and the dotted edges
represent the operation COC.

More formally, suppose that the formula has a true assignment. Then, we first construct a
feasible packing restricted on {s, v0, v1, . . . , vn} such that v0 gets the base (a0, b0, c0) colored by
(red, blue, black) and each vi (1 ≤ i ≤ n) gets the base (ai, bi, ci) colored by (red, blue, black)
if xi = 1 and by (black, blue, red) if xi = 0. By Lemma 4.19, this packing always extends on
{v′1, . . . , v′n} such that each v′i gets a base formed by parallel copies of a, b, and c colored by
black, blue, and red, respectively, if xi = 1 and by red, blue, and black, respectively, if xi = 0.
Since the assignment satisfies the formula, Lemmas 4.15 and 4.8 imply that the packing is
extendable to a feasible packing on the whole vertex set of D.

Conversely, if (D,M) has a feasible packing, then by COCbi−1
(vi−1, vi), bi is colored by

blue on each vi. We set xi in such a way that xi = 1 if and only if (ai, bi, ci) is colored by
(red, blue, black) (as in (a0, b0, c0)). By CC(ai,ci)(vi), coloring of (a′i, c

′
i) is the reverse of the

coloring of (ai, ci). Moreover, since AFb0(v0, w
ψ
4 ) is used for each clause ψ, the base on wψ4 has

the same coloring scheme as that of {a0, b0, c0} on v0 by Lemma 4.8. Thus, by Lemma 4.15,
the formula is satisfied for this assignment.

5 Concluding remarks

All the results presented here have undirected and hypergraphic counterparts. To get an undi-
rected counterpart of our positive results for rank-2, graphic or transversal matroids, one can
use [3, Corollary 1.1] and the proof after that. This extends a result of Katoh and Tanigawa
[14] on these fundamental matroid classes. Moreover, with the techniques of [5], we also have
extensions of these results for dypergraphs (that is, oriented hypergraphs), hypergraphs and
mixed hypergraphs.

On the other hand, Problem 1.3 is NP-complete for dypergraphs as it is NP-complete for
digraphs. Also, the proof of the NP-completeness can be applied even for the undirected case.
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This is because that in the construction of the NP-completeness we only add vertices with
in-degree 3 one by one, and hence the ordering of the vertex addition prescribes the orientation
of each edge in a rooted-tree packing.

A challenging open problem is to give a complete characterization of the class of matroids
for which Conjecture 1.3 is true. A much easier but still interesting question is whether one
can abstract our proof technique for graph matroids to solve wider classes of matroids such as
regular matroids.
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The fourth author was supported by JSPS Postdoctoral Fellowships for Research Abroad and
JSPS Grant-in-Aid for Scientific Research (B) 25280004.

References
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[10] A. Frank, T. Király and M. Kriesell: On decomposing a hypergraph into k con-
nected sub-hypergraphs, Discrete Applied Mathematics, 131-2 (2003), 373–383

[11] S. Fujishige: A note on disjoint arborescences, Combinatorica, 30-2 (2010), 247–252

EGRES Technical Report No. 2016-18



Section 6. APPENDIX – Negative results (original version) 19

[12] M.R. Garey and D.S. Johnson: Computers and Intractability: A Guide to the Theory
of NP-Completeness, Series of books in the mathematical sciences, W.H. Freeman, 1979.

[13] N. Kamiyama, N. Katoh and A. Takizawa: Arc-disjoint in-trees in directed graphs,
Combinatorica, 29-2 (2009), 197–214

[14] N. Katoh and S. Tanigawa: Rooted-tree decomposition with matroid constrains and
the infinitesimal rigidity of frameworks with boundaries, SIAM J. Discrete Math., 27-1
(2013), 155–185
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6 APPENDIX – Negative results (original version)

In Revision 1, we changed the proof of the negative results hence we also present the original
proof. Note that several operations with the same name will be defined differently here.

In this section, we will give a counterexample to Conjecture 1.3 and prove that Problem 1.4
is NP-complete for acyclic digraphs and a certain class of matroids. The precise statements are
given as follows.

Theorem 6.1. There exist an acyclic digraph D = (V + s, A) and a matroid M of rank three
such that (D,M) is a counterexample to Conjecture 1.3.

Theorem 6.2. Problem 1.4 is NP-complete even if D = (V +s, A) is acyclic andM is a linear
matroid of rank three with a given linear representation.

As we noted before, the matroidM used in the construction, that we call a parallel exten-
sion of the Fano matroid, will arise from the Fano matroid by adding some parallel copies
of its elements.

The proof is done by defining several gadget constructions, each of which restricts possible
packings. Each construction step is referred to as an operation below, and we shall define
several distinct operations. In each construction, we insert new vertices one by one together with
three new arcs entering it. A new root arc will always be added keeping the M-independence
as well as the fact thatM is a parallel extension of the Fano matroid (or its submatroid). Thus,
D = (V + s, A) is always acyclic and, by Lemma 3.13, the resulting instance (D,M) will be
rootedM-arc-connected. Hence in the subsequent discussion we omit to mention that (D,M)
is M-independent and rooted M-arc-connected.
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Figure 8: The three elementary operations.

We say that a vertex v ∈ V gets a base B in a feasible packing {T1, T2, T3} if B =
{eT1[s,v], eT2[s,v], eT3[s,v]}. We also say that v gets eTi[s,v] from u if u is on the path Ti[s, v]
(i = 1, 2, 3). T1, T2 and T3 will be called the red, blue and black arborescences, respectively.
We say that an element of M is colored by λ if it is in the arborescence of color λ. In the
following, the elements ofM will be denoted by the first 7 letters of the alphabet and apostro-
phes will be used when we consider a parallel element of a previously used one (that may be
also an identical element to this previous one).

We also remark that, as we will always extend a digraph by adding a vertex of out-degree
zero one by one, every feasible packing of the resulting digraph is an extension of a feasible
packing of the original digraph. By using the following operations, we shall control possible
extensions of packings.

Operation 6.3. Given (D,M), suppose that a vertex v ∈ V gets the base {a, b, c} in every
feasible packing. Force-color FC(a,b,c)(v) extends (D,M) to (D′,M′) by adding a new vertex
w to D along with 2 incoming root arcs a′ and d and one non-root arc vw where a′ ‖ a and
{a, c, d} is a line of the Fano plane. See Figure 8a.

Lemma 6.4. With the notation as in Operation 6.3, every feasible packing of D extends to a
feasible packing of D′ such that w gets the base {a′, b, d}, that is, the arc vw will be in the same
arborescence as the root arc b.

Proof. Consider any possible extension of a feasible packing of D, where we distribute the three
arcs entering w among the three arborescences. From the construction, w always gets a′ and d
from the root. Also, by the assumption of the lemma, v gets {a, b, c}, and w gets one of them
from v. Now, in a feasible extension, w cannot get a from v as a′ ‖ a and cannot get c as
{a′, c, d} is a line. Hence w gets b from v and the packing is feasible as {a′, b, d} is a base.

For simplicity, we also use FC(a,b,c)(v) to denote the new vertex w in Operation 6.3.

Operation 6.5. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, d} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and {a, c, d} is a line.
Avoid-coloring AC(u, v) extends (D,M) to (D′,M′) by adding a new vertex w to D along
with two parallel arcs from u to w and an arc from v to w. See Figure 8b.

Lemma 6.6. With the notation as in Operation 6.5, every feasible packing of D extends to a
feasible packing of D′ except those where (a, b, c) is colored by (λ1, λ2, λ3) and (a′, b′, d) is colored
by (λ3, λ1, λ2) for some distinct three colors λ1, λ2, λ3.
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Proof. Suppose that (a, b, c) is colored by (λ1, λ2, λ3) in a feasible packing of D, and consider
extending it. If the set of colors of {a′, d} is not equal to {λ2, λ3}, the packing is extendable
since w can get b and c from u, and a′ or d from v. If the color of d is equal to λ3, then the
packing is extendable since w can get a and b from u, and d from v. Combining these two
facts, the packing is extendable if (a′, b′, d) is not colored by (λ3, λ1, λ2). Conversely, if (a′, b′, d)
is colored by (λ3, λ1, λ2), then the packing is not extendable as w cannot get a base formed
by three differently colored elements as neither {a, b, a′}, {a, c, d}, nor {b, c, b′} is a base. See
Figure 8b.

We use AC(u, v) to denote the new vertex w in Operation 6.5.

Operation 6.7. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Avoid-
different-coloring ADC(u, v) extends (D,M) to (D′,M′) by adding a new vertex w to D
along with two parallel arcs from u to w and an arc from v to w. See Figure 8c.

Lemma 6.8. With the notation as in Operation 6.7, every feasible packing in D extends to
a feasible packing in D′ except those where all the parallel pairs (a, a′), (b, b′) and (c, c′) have
different colors.

Proof. By symmetry, we may assume without loss of generality, that w gets a and b from u in
a feasible packing in D′. Then w should get c′ from v, which is possible if and only if the color
of c′ is equal to that of c. Thus the claim follows as any feasible packing in D′ is an extension
of that in D.

For simplicity, we use ADC(u, v) to denote the new vertex w in Operation 6.7.

Operation 6.9. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Avoid-
flip AFa(u, v) extends (D,M) to (D′,M′) by adding 5 new vertices w1, . . . , w5 to D and 4
new elements to M by w1 := FC(a′,b′,c′)(v) (with new root arcs a′′ and d), w2 := AC(w1, u),
w3 := FC(c,b,a)(u) (with new root arcs d′ and c′′), w4 := AC(v, w3), w5 := AC(w1, w3). See
Figure 9.

Lemma 6.10. With the notation as in Operation 6.9, every feasible packing in D extends to
a feasible packing in D′ except those where a and a′ have the same color and the colors of the
pairs (b, b′) and (c, c′) are different.

Proof. First we prove that feasible packings in the exceptional case cannot be extended. Assume
for a contradiction that, say, a and a′ are colored by red, b and c′ are colored by blue, and b′

and c are colored by black. Then by FC, in the base that w1 gets, b′ is also black. Moreover,
as w2 is an AC-vertex, (a′′, b′, d) cannot be colored by (blue, black, red) hence it is colored by
(red, black, blue). By FC, we know that b is colored by blue in the base that w3 gets. However,
by the two AC-vertices w4 and w5, we know that this base (b, c′′, d′) can neither be colored by
(blue, red, black) nor by (blue, black, red), a contradiction. See Figure 9.

Next observe that it is obvious that the feasible packing can be extended to D′ when b and
b′ have the same color as in the exceptional case of AC the colors of the parallel elements, that
the two input vertices get, are different. The remaining cases are solved in Figure 10.

By the previous two operations, we get the following.
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Figure 9: The proof of AFa(u, v) for the exceptional case. A dashed arc represents an FC
operation where the forced element is underlined.

Operation 6.11. Given (D,M), suppose that vertices u, v ∈ V get the bases {a, b, c} and
{a′, b′, c′} in every feasible packing, respectively, where a′ ‖ a, b′ ‖ b and c′ ‖ c. Copy-one-
color COCb(u, v) extends (D,M) to (D′,M′) by adding 1 + 2 · 5 = 11 new vertices to D and
2 · 4 = 8 new elements to M by operations ADC(u, v), AFa(u, v), and AFc(u, v).

Lemma 6.12. With the notation as in Operation 6.11, every feasible packing in D extends to
D′ except those where the colors of b and b′ are different.

Proof. Note that any feasible packing of D satisfies either one of the following: (i) each pair
in (a, a′), (b, b′), and (c, c′) has the same color; (ii) all the pairs (a, a′), (b, b′), and (c, c′) have
different colors; (iii) only (a, a′) has the same color; (iv) only (b, b′) has the same color; (v) only
(c, c′) has the same color. By ADC(u, v), AFa(u, v), and AFc(u, v), the packing is extendable
if and only if (i) or (iv) holds, meaning that (b, b′) has the same color.

The main operation is the following.

Operation 6.13. Given (D,M), suppose that a vertex v ∈ V gets the base {a, b, c} in every
feasible packing. Strong-force-coloring SFC(a,b,c)(v) extends (D,M) to (D′,M′) by adding
9+2·11+5+1 = 37 new vertices to D and 9·2+2·8+4 = 38 new elements toM as follows. First,
add 9 new vertices to D and 9 · 2 new elements to M by w1 := FC(a,b,c)(v) (with new root arcs
a′ and d), w2 := FC(b,a′,d)(w1) (with new root arcs b′ and f), w3 := FC(b,a,c)(v) (with new root
arcs b′′ and e), w4 := FC(a,b′′,e)(w3) (with new root arcs a′′ and f ′), w5 := FC(a,c,b)(v) (with new
root arcs a′′′ and g), w6 := FC(a′′′,g,c)(w5) (with new root arcs a(4) and d′), w7 := FC(a′,d,b)(w1)
(with new root arcs a(5) and g′), w8 := FC(a′,f,b′)(w2) (with new root arcs a(6) and g′′), and
w9 := FC(g,a′′′,c)(w5) (with new root arcs g′′′ and f ′′). Then add the remaining 2 · 11 + 5 + 1
new vertices and 2 · 8 + 4 new elements of M′ by the operations COCb′(w2, w4), COCg(w6, w7),
ADC(w8, w9), and AFg′′(w8, w9). See Figure 11.

Lemma 6.14. With the notation as in Operation 6.13, every feasible packing of D extends to
a feasible packing of D′. Moreover, if the base (a, b, c) that v gets is colored by (λ1, λ2, λ3), then
the base (a′, b, d) that w1 gets is colored by (λ1, λ2, λ3).

Proof. By relabeling the colors we can assume that (a, b, c) is colored by (red, blue, black). It
is straightforward to check that such an extension always exists, by coloring the parallel copies
of a by red, the parallel copies of b and g by blue and the parallel copies of d, e and f by black
(see Figure 11). Hence we only prove that no other extension is possible.
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Figure 10: The proof of AFa(u, v) for the non-exceptional cases where b′ has different color as
b.

Assume for a contradiction that (a′, b, d) is colored by (black, blue, red). (As the color of b is
forced this is the only other possible coloring of (a′, b, d).) Hence, in the base {a′, b′, f} that w2

gets, a′ is forced to be black and hence b′ cannot be black. On the other hand, b′′ cannot be red
as a is forced to be red in the base {a, b′′, e} got by w3. Since the colors of b′ and b′′ coincide
by COCb′(w2, w4), b

′ is blue as it is neither black nor red. Therefore,

w2 gets (a′, b′, f) colored by (black, blue, red). (6)

Next we turn to determine the coloring of the base {a′′′, c, g} got by w5. We know that c is
forced to be black hence g is not black. Thus g is not black in the base {a(4), d′, g} got by w6.
On the other hand, in the base {a(5), d, g′} got by w7, d is forced to be red by our assumption
hence g′ is not red. By COCg(w6, w7), the colors of g and g′ coincide. Thus the color of g is
blue, as it is neither black nor blue. Therefore,

w5 gets (a′′′, c, g) colored by (red, black, blue). (7)
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Finally, f is colored by red in the base got by w8 by (6) and a′′′ is colored by red in the base
got by w9 by (7). Hence the colors of g′′ and g′′′ must coincide by ADC(w8, w9). Therefore, we
get a contradiction with AFg′′(w8, w9). See Figure 12.
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Figure 11: There always exists an extension of a feasible packing in SFCa,b,c(v).
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Figure 12: The proof that shows the color of the base that w1 gets cannot be the other possibility
in SFCa,b,c(v).

Operation 6.15. Given (D,M), suppose that a vertex v ∈ V gets the base {a, b, c} in every
feasible packing. Change-colors CCa,c(v) extends (D,M) to (D′,M′) by adding 3 ·37 = 111
new vertices to D and 3 ·38 = 114 new elements toM as follows. First, construct a new vertex
w1 by SFCa,b,c(v), which gets {a′, b, d}. Next construct a new vertex w2 by SFCd,b,a′(w1), which
gets {b, c′, d′}. Finally construct a new vertex w by SFCc′,b,d′(w2) which gets {a′′, b, c′′}. See
Figure 13.

EGRES Technical Report No. 2016-18



Section 6. APPENDIX – Negative results (original version) 25

Lemma 6.16. With the notation as in Operation 6.15, every feasible packing in D extends to
a feasible packing in D′. Moreover, if the base (a, b, c) that v gets is colored by (λ1, λ2, λ3), then
the base (a′′, b, c′′) that w gets is colored by (λ3, λ2, λ1).

Proof. Since each step is done by SFC, the coloring is determined as shown in Figure 13 by
Lemma 6.14.
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Figure 13: CCa,c(v). The parallel dashed arcs represent the operation SFC.

For simplicity, we denote w = CCa,c(v) if w is as in Operation 6.15. We are now ready to
prove Theorem 6.1.

Proof of Theorem 6.1. We start with a digraph on two vertices, a root s and the other vertex
v, along with 3 parallel arcs a, b and c from s to v. The underlying matroid is the free
matroid on ∂s(v). We extend this by using the operations defined above. In the following, the
arborescences covering a, b and c will be called red, blue and black, respectively. By using
CCa,b(v), the instance is extended such that w = CCa,b(v) gets a base (a′′, b, c′′) with elements
parallel to the elements of a, b and c and colors (black, blue, red) by Lemma 6.16. We further
extend the instance by AFb(v, w). Then, by Lemma 6.10, no feasible packing exists in the
resulting instance. By Lemma 3.13, the resulting instance is rooted M-arc-connected, and
hence is a counterexample to Conjecture 1.3. This completes the proof of Theorem 6.1.

Now we turn to the proof of Theorem 6.2. Problem 1.4 is in NP in the case where a linear
representation of the matroid is given as input since the packing itself is a witness for the
problem that can be checked in polynomial time. We will use the well-known 3-SAT (see [12])
to prove the NP-completeness of our problem.

Let us take a 3-CNF formula. Using the previous operations (and a new one) we will construct
a matroid-rooted digraph that has a feasible packing if and only if the formula is satisfiable. In
order to express each clause, our idea is to represent it as a concatenation of majority functions
and implement each majority function by using our operations. We first remark the following
lemma. Recall that the majority function maj(α, β, γ) is a Boolean function that has a value 1
if and only if at least two among α, β, γ have value 1.

Lemma 6.17. Let α, β, γ ∈ {0, 1}. Then

α ∨ β ∨ γ = maj(maj(α, β, 1),maj(α, γ, 1),maj(β, γ, 1)). (8)

Proof. α ∨ β ∨ γ = 1 if and only if at least one of α, β and γ is 1. If, say, α = 1, then
maj(α, β, 1) = 1 and maj(α, γ, 1) = 1 hence the right hand side of (8) is 1. If α = β = γ = 0,
then maj(α, β, 1) = maj(α, γ, 1) = maj(β, γ, 1) = 0 hence the right hand side of (8) is 0.

Operation 6.18. Given (D,M), suppose that v1, v2, v3 ∈ V get the bases {a, b, c}, {a′, b′, c′}
and {a′′, b′′, c′′}, respectively, in every feasible packing where a ‖ a′ ‖ a′′, b ‖ b′ ‖ b′′ and
c ‖ c′ ‖ c′′. Majority MAJ(v1, v2, v3) extends (D,M) to (D′,M′) by adding a new vertex
w with 3 incoming arcs v1w, v2w and v3w. See Figure 14.
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Lemma 6.19. With the notation as in Operation 6.18, consider a feasible packing of D such
that all of b, b′ and b′′ are colored by λ (and hence there are only two types of possible coloring
schemes on each vi). Then the packing extends to a feasible packing of D′. Moreover, in every
such extension w gets a base formed by parallel copies of a, b, and c with a coloring of the same
type as the majority among the three on v1, v2 and v3. See Figure 14.

Proof. Without loss of generality, we can assume that the colorings of (a, b, c) and (a′, b′, c′)
coincide, say, they are colored by (red, blue, black). As w has an entering arc from each vi, w
always gets a parallel copy of b colored by blue. Moreover, as w has in-arcs from v1 and v2 too,
w gets a parallel copy of a or c from v1 or v2. Hence w gets a parallel copy of a colored by red
or a parallel copy of c colored by black. These two facts already determine the coloring scheme
on w as stated in the lemma.
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Figure 14: MAJ(v1, v2, v3).

Now we are ready to prove Theorem 6.2.

Proof of Theorem 6.2. We have seen that the problem is in NP, hence we only prove the com-
pleteness. Let us take a 3-CNF formula on variables x1, x2, . . . , xn. First, let V := {v0, . . . , vn}
and take a digraph D on V + s whose arc set consists of only root arcs svi (i = 0, . . . , n), three
copy of each. Take a base {a, b, c} of the Fano matroid and define a parallel extension of the
Fano matroid M on ∂r(V ) such that, for each i ∈ {0, . . . , n}, the three arc svi form a parallel
copy {ai, bi, ci} of {a, b, c}. Next use operation COCbi−1

(vi−1, vi) for i = 1, . . . , n. This ensures
that in every feasible packing the parallel copies of b got by v0, . . . , vn are colored by the same
color, say, blue.

Add v′1, . . . , v
′
n by using operations CCai,ci(vi) for i = 1, . . . , n. Hence, in every feasible

packing, v′i gets the colored base (a′i, b
′
i, c
′
i) with the same coloring as (ci, bi, ai) for i = 1, . . . , n.

In the following construction, vi will represent the variable xi and v′i its negate x̄i for i = 1, . . . , n.
Moreover, v0 will represent 1.

For each clause ψ of the formula, we first add 4 new vertices wψ1 , wψ2 , wψ3 and wψ4 using
operation MAJ so that it represents ψ according to the equation in Lemma 6.17. (In other
words, for a clause, say, for ψ = x1 ∨ x̄2 ∨ x3 we add wψ1 with arcs v1w

ψ
1 , v′2w

ψ
1 and v0w

ψ
1 , wψ2

with arcs v1w
ψ
2 , v3w

ψ
2 and v0w

ψ
2 , wψ3 with arcs v′2w

ψ
3 , v3w

ψ
3 and v0w

ψ
3 , and wψ4 with arcs wψ1w

ψ
4 ,

wψ2w
ψ
4 and wψ3w

ψ
4 .) Finally, to ensure the truth of each clause ψ, we further use operation

AFb0(v0, w
ψ
4 ). See Figure 15.

We claim that the formula is satisfiable if and only if (D,M) admits a feasible packing.
Note that v0 always gets the base {a0, b0, c0}, and without loss of generality we may always
suppose that (a0, b0, c0) is colored by (red, blue, black). Then the claim follows by identifying
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the coloring scheme (red, blue, black) (resp., (black, blue, red)) for a parallel copy of (a, b, c)
with a true assignment (resp., a false assignment).

More formally, suppose that the formula has a true assignment. Then, we first construct a
feasible packing restricted on {s, v0, v1, . . . , vn} such that v0 gets the base (a0, b0, c0) colored by
(red, blue, black) and each vi (1 ≤ i ≤ n) gets the base (ai, bi, ci) colored by (red, blue, black)
if xi = 1 and by (black, blue, red) if xi = 0. By Lemma 6.16, this packing always extends on
{v′1, . . . , v′n} such that each v′i gets a base formed by parallel copies of a, b, and c colored by
black, blue, and red, respectively, if xi = 1 and by red, blue, and black, respectively, if xi = 0.
Since the assignment satisfies the formula, Lemmas 6.19 and 6.10 imply that the packing is
extendable to a feasible packing on the whole vertex set of D.

Conversely, if (D,M) has a feasible packing, then by COCbi−1
(vi−1, vi), bi is colored by

blue on each vi. We set xi in such a way that xi = 1 if and only if (ai, bi, ci) is colored by
(red, blue, black) (as in (a0, b0, c0)). By CCai,ci(vi), each b′i is colored by blue and the coloring

of (a′i, c
′
i) is different from that of (ai, ci). Moreover, since AFb0(v0, w

ψ
4 ) is used for each clause

ψ, the base on wψ4 has the same coloring scheme as that of {a0, b0, c0} on v0 by Lemma 6.10.
Thus by Lemma 6.19 the formula is satisfied for this assignment.
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Figure 15: A part of the construction in the proof of Theorem 6.2. This demonstrates how the
assignment x1 = x2 = x3 = 0 makes the clause ψ = x1 ∨ x̄2 ∨ x3 true in the corresponding
feasible packing. The crossing dashed arcs represent the operation CC.

EGRES Technical Report No. 2016-18


	Introduction
	Contribution and key ideas
	Related works

	Definitions
	Positive results
	Overview of the proof of Theorem 1.2
	Matroids of rank at most 2
	Graphic matroids
	Transversal matroids
	Fano matroid – when D is acyclic

	Negative results
	Concluding remarks
	APPENDIX – Negative results (original version)

