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Finding strongly popular matchings in certain

bipartite preference systems

Tamás Király? and Zsuzsa Mészáros-Karkus??

Abstract

The computational complexity of the popular matching problem in bipartite
preference systems with ties depends greatly on the structure of ties. If one side
has strict preferences while nodes on the other side are indi�erent (but prefer to
be matched), then a popular matching can be found in polynomial time [Cseh,
Huang, Kavitha, 2015]. However, as the same paper points out, the problem
becomes NP-complete if one side has strict preferences while the other side can
have both indi�erent nodes and nodes with strict preferences. We show that
the problem of �nding a strongly popular matching is polynomial-time solvable
even in the latter case.

1 Introduction

A bipartite preference system with ties consists of a bipartite multigraph G = (S, T ;E)
and partial orders �v on the edges incident to v, for every node v ∈ S ∪ T . Given
a bipartite preference system with ties, a node prefers a matching M1 to a matching
M2 if either it is matched in M1 but not in M2, or it is matched by a better edge in
M1 than in M2. A matching M1 is more popular than matching M2 if the number
of nodes preferring M1 to M2 is strictly larger than the number of nodes preferring
M2 to M1. This relation is not transitive; it is possible that M1 is more popular than
M2, M2 is more popular than M3, and M3 is more popular than M1 [2]. A matching
M is popular if no matching is more popular than M , and it is strongly popular if
M is more popular than any other matching. These notions were �rst introduced by
Gärdenfors [8], who showed that a) every strongly popular matching is stable and b)
in case of no ties, all stable matchings are popular.
Obviously, an instance cannot have two strongly popular matchings, because both

of them would be more popular than the other, which is impossible. Furthermore, a
strongly popular matching must be a unique popular matching; however, there are

?MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University,
Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. Email: tkiraly@cs.elte.hu

??Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest,
Hungary, H-1117. Email: karkuszsuzsi@gmail.com

November 2016



Section 1. Introduction 2

instances where the popular matching is unique but it is not strongly popular (see the
full version of [2] for an example).
Algorithmic questions about popular matchings have generated a lot of interest

lately; see Section 1.1 for a short summary of recent results. Here we just mention
that for any preference system with ties (even non-bipartite), it can be decided in
polynomial time if a given matching is popular or strongly popular [2]. This means
that the decision problem for popular matchings is in the complexity class NP, while
the decision problem for strongly popular matchings is in the lesser-known complex-
ity class UP (Unambiguous Polynomial-time). The latter class, introduced by Valiant
[15], consists of the decision problems solvable by an NP machine such that all wit-
nesses are rejected in a �no� instance, while exactly one witness is accepted in a �yes�
instance. The strongly popular matching problem belongs to this class because in a
�yes� instance there is a unique strongly popular matching and it can be veri�ed in
polynomial time.
In this paper we consider bipartite preference systems with two types of nodes:

nodes with strict preferences, where the preference order �v is a total order, and
indi�erent nodes, where every incident edge is equally good (but who still prefer to be
matched). If all nodes have strict preferences, then every stable matching is popular
[8]. On one hand, this implies that there always exists a popular matching and one can
be found using the well-known Gale-Shapley algorithm [7]. On the other hand, we can
decide if a strongly popular matching exists by �nding an arbitrary stable matching
and checking whether it is strongly popular (this also works in non-bipartite preference
systems without ties [2]).
The problems become more complex when indi�erent nodes are also allowed on one

of the sides. If nodes on one side have strict preferences while those on the other
side are all indi�erent, then the existence of a popular matching can still be decided
in polynomial time, as shown by Cseh, Huang, and Kavitha [4]. However, they also
showed that the problem becomes NP-complete if one side has strict preferences while
the other side may feature both indi�erent nodes and nodes with strict preferences;
see the full version of [4] and [5] for proofs.
The main result of the present paper is that the existence of a strongly popular

matching can be decided in polynomial time even in the latter case.

Theorem 1.1. Given a bipartite preference system (G = (S, T ;E),�) where nodes
in S have strict preferences and each node in T is either indi�erent or has strict
preferences, it can be decided in polynomial time if there is a strongly popular matching.

The algorithm succesively �nds edges that cannot be in a strongly popular matching
or must be in any strongly popular matching, and also maintains a directed graph
related to the possible structure of the strongly popular matching. The set of possible
candidates keeps shrinking until, at the end, we can either conclude that there is no
strongly popular matching, or we have exactly one candidate. We can then check in
polynomial time whether this matching is strongly popular.

EGRES Technical Report No. 2016-16



1.1 Other related work 3

1.1 Other related work

There is a lot of ongoing research about the computational complexity of the popular
matching problem. For bipartite preference systems with no ties, Huang and Kavitha
[9] showed that a maximum size popular matching can be found in polynomial time,
while Cseh and Kavitha [6] gave an algorithm for deciding if a given edge belongs to a
popular matching. The former result can also be extended to the Hospitals-Residents
problem, where more than one residents can be matched to a hospital [3, 14]. On
the other hand, the complexity of deciding the existence of a popular matching in a
non-bipartite preference system without ties is still open. Huang and Kavitha [10]
introduced the notion of unpopularity factor, and showed that, for any positive ε, it
is NP-hard to compute a matching with unpopularity factor within 4

3
− ε of optimal.

Several recent results concern a slightly di�erent, one-sided model (also called the
House Allocation model), where one side has preference lists, while nodes on the
other side do not vote at all and do not prefer to be matched. Abraham et al. [1]
gave a polynomial-time algorithm for �nding a popular matching in this model. If
the preference lists are strict, then optimal popular matchings can also be found for
various notions of optimality [12, 13].

2 Proof of the main theorem

In this section we prove Theorem 1.1. We are given a bipartite multigraph G =
(S, T ;E), and the node set T is partitioned into two parts, TP and TI . The nodes
in S ∪ TP have strict preference orders �v over their incident edges, while the nodes
in TI are indi�erent but prefer to be matched. We give a polynomial-time algorithm
which decides if the instance admits a strongly popular matching (SPM for short).

2.1 Preliminaries

Before going into the details, we give an overview of the main ideas of the proof.
During the algorithm, we modify the instance using the following two operations.

1. We remove edges that cannot appear in an SPM of the current instance,

2. We �x edges that must belong to the SPM of the current instance (if it exists).
Fixed edges are removed together with their two endnodes. The set of �xed
edges is denoted by F .

Let Gk = (Sk, T k;Ek) be the current instance after performing k of the above opera-
tions, and let F be the set of edges �xed so far.

Lemma 2.1. If the original instance has an SPM M , then F ⊆M , and M \F is an
SPM of Gk.

Proof. We prove by induction on k; let Gk−1 be the instance before the last operation.
If the last operation was the removal of an edge st, then, by induction, M contains
F , M \ F is an SPM of Gk−1, and st /∈M . Thus M \ F is an SPM of Gk.
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If we �xed an edge st in the last operation, then M \ (F −st) is an SPM of Gk−1 by
induction, and st ∈ M \ (F − st) because we only �x edges with this property. This
implies that st ∈M , and therefore M \ F is an SPM of Gk.

Note that it is possible that Gk has an SPM even if G does not have one. However,
this is not a problem: if we eventually obtain an empty graph by repeating the
operations, then F is the only candidate for an SPM, and we can check in polynomial
time if it is an SPM of G or not. On the other hand, if we obtain a graph Gk that
has no SPM, then G also has none.
An edge st ∈ E is called a blocking edge with respect to a matching M if both s

and t prefer the edge st to their partner in the matching (this includes the case when
t ∈ TI and it is unmatched). If M is an SPM, then there is no blocking edge with
respect to M ; indeed, if M ′ is the matching obtained from M by adding a blocking
edge st and removing the original edges incident to s and t, then M is not more
popular than M ′. We will use the term �blocking edge� in another sense for parallel
edges: if e and e′ are parallel edges and one endpoint prefers e to e′, then e blocks
any matching M containing e′, since M − e′ + e is at least as popular as M .
In addition to blocking edges, we will use alternating paths and cycles to show that

certain matchings cannot be strongly popular. Given a matchingM and an alternating
path or cycle w.r.t. M , let M ′ be the matching obtained from M by exchanging along
the path or cycle (if we exchange along a path whose �rst or last edge is not in M ,
then we also remove the edge of M covering the corresponding endpoint of the path).
If we can show that M ′ is at least as popular as M , then M is not an SPM.

2.2 First phase of the algorithm

The algorithm starts with a �rst phase that is reminiscent of the �rst phase of Irving's
algorithm for the stable roommates problem [11]. We repeat the following steps.

• From every node in S ∪ TP we draw a directed edge to its �rst choice.

• If there is a directed edge to a node v ∈ S∪TP , then we delete the edges incident
to v which are worse according to �v than the incoming directed edge. We also
delete the edges parallel to the directed edge. If we deleted a node's �rst choice,
then we draw a directed edge to its �rst choice among its remaining neighbors.

Claim 2.2. The deleted edges cannot belong to an SPM.

Proof. Suppose that uv belongs to an SPM and it was deleted because of a directed
edge wv. Then wv is a blocking edge with respect to the SPM, a contradiction.

Claim 2.3. If at some point there is only one directed edge st entering a node in TI ,
then st belongs to the SPM if there is one.

Proof. Suppose that the SPM M does not contain st; then t has to be matched to a
node u 6= s, otherwise st would be blocking. Consider the path that starts with s and
alternates between directed edges and edges of M . (The �rst edge is st, the second is
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tu.) If we reach a node t′ ∈ TI , then by exchanging along the path we get a matching
which is as popular as M : the nodes of S on the path all get a better partner, while
the only nodes that may prefer M are the nodes of T in the path except for t and
t′, and the partners of t′ and s in M . This contradicts the assumption that M is an
SPM.
If we return to s, then exchanging along the cycle yields a matching at least as

popular as M . See Figure 1 for an illustration of both cases.

Figure 1: The black edges belong to the SPM.

Claim 2.3 means that we can �x the edge st to be in F , and delete s and t from
the graph.

Claim 2.4. If at some point there is a node t ∈ TI which is not an endpoint of
a directed edge but there is an edge st which has not been deleted, then an edge su
cannot belong to the SPM if s prefers st over su.

Proof. Suppose that su is in the SPM. The node t has to be matched to some node
v, since otherwise st would be blocking. Consider the path which starts with us, st,
tv and then alternates between directed edges and edges of the SPM. Similarly to the
proof of Claim 2.3, if we reach a node in TI , then exchanging the edges along the path
yields a matching preferred by the same number of nodes as the original SPM, while
if the path returns to u, then by exchanging along the cycle we get a new matching
that is as popular as the SPM, a contradiction.

It follows from the claim that we can delete such edges su, and continue phase 1.
We can also delete the nodes in S ∪ TP which become isolated. If the graph becomes
empty at the end of phase 1, then we can check whether the set F of �xed edges is an
SPM in the original graph G, so we are done by Lemma 2.1. Otherwise we proceed
to phase 2, which is described below.

2.3 Second phase of the algorithm

Let D′ denote the directed graph obtained at the end of phase 1, and let G′ be the
bipartite graph consisting of all nodes and edges that have not been deleted in the
�rst phase. D′ can have three types of components:
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• directed cycles;

• in-arborescences with a root-node (sink) in TI having in-degree at least 2. The
other nodes of the arborescence are in S ∪ TP and they have out-degree 1 and
in-degree at most 1. Therefore, each arborescence consists of disjoint directed
paths leading to the root-node; the �rst nodes of these paths are called leaves.

• isolated nodes that are in TI (note that these nodes are not isolated in G′).

Let T1 denote the nodes in TI which are root-nodes of one of the arborescences, and
let T2 denote the isolated nodes in D′.

Lemma 2.5. If uv is an edge in G′[S ∪ TP ∪ T1] and it is not a directed edge in any
direction, then uv cannot belong to the SPM.

Proof. Suppose uv is in the SPM M . If u ∈ T1, then there is a directed edge su in D′,
for some s 6= v. Consider the path starting with su, uv and then alternating between
directed edges and edges of M . Similarly to the proof of Claim 2.3, we either reach
a node in TI or return to s, and exchanging along the obtained path or cycle yields
a matching that is preferred by at least as many nodes as the number of nodes that
prefer M .
Now consider the case where u ∈ TP . Consider the path starting with vu and then

alternating between directed edges and edges of M . If we return to v without reaching
a node in T1, then exchanging along the cycle yields a matching that is at least as
popular as M . If we reach a node in T1, then there is another directed edge pointing
to this node, which we add to the path. Let this path be denoted by P . We continue
P from v with edges alternating between directed edges and edges of M . If we reach
a node in TI , then exchanging along the path yields a matching that is at least as
popular as M ; see Figure 2 for an illustration of this case. If we return to a node
in P , then, again, exchanging along the obtained cycle yields a matching at least as
popular as M . (One of the endpoints of each edge in M is better o� with the new
matching except for maybe one edge, but u and v are both better o�.)

Figure 2: The black edges belong to the SPM.

The lemma implies that only the edges of D′ and edges of G′ with one endpoint in
T2 can belong to the SPM. Therefore we can delete the other edges. From Claim 2.4,
it follows that for every node s ∈ S there can be only one edge between s and T2.
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Lemma 2.6. If there is a cycle of length more than 2 in D′ then there is no SPM.

Proof. Suppose that there is an SPM M . If one of the nodes v of the cycle is matched
to a node t ∈ T2 in M , then node v prefers its predecessor u in the cycle (because of
Claim 2.4), and therefore uv is a blocking edge with respect to M .
If every node of the cycle is matched along the cycle, then we can exchange along

the cycle to get a matching at least as popular as M .

A cycle of length 2 in D′ corresponds to a single edge that must belong to the SPM,
so we can �x these edges and delete their endpoints.

Claim 2.7. In the SPM, only the leaves (i.e. the nodes of in-degree 0 and out-degree
1 in D′) can be matched to nodes in T2.

Proof. Suppose u is matched to t ∈ T2 in the SPM and u is not a leaf; therefore, there
is a node v such that vu is in the arborescence. Because of Claim 2.4, vu is a blocking
edge.

By the claim, we can delete the edges between T2 and any node which is not a leaf.

Claim 2.8. Every leaf is matched in the SPM.

Proof. Let M be the SPM, and suppose there is a leaf s ∈ S that is not matched
in M . The other nodes of the branch containing s, except for the root, must be
matched along the branch. By exchanging the edges along the branch such that the
edge incident to s and the edge incident to the root belong to the new matching, we
obtain a matching that is as popular as M .
Now suppose there is an unmatched leaf t ∈ T . Again, the other nodes of the

branch must be matched along the branch, and now the root also has to be matched
in this branch, otherwise there is a blocking edge. We exchange the edges along the
branch and add to the matching another edge pointing to the root (here we use the
property that the in-degree of the root is at least 2). If the tail of this edge is covered
by M , then we remove the edge covering it from the matching. It is easy to check
that the new matching is at least as popular as M .

If there is an arborescence with all leaves in T , then all of its nodes have to be
matched along the arborescence, and from the above claim all of its nodes have to be
matched. But the arborescence has an odd number of nodes, therefore there cannot
be an SPM.
If an arborescence has only one leaf in S, then its nodes have to be matched along

the arborescence, and there is a unique way to match them (see Figure 3). Therefore
we can �x these edges and delete the arborescence.

Claim 2.9. If a node t ∈ T2 has degree 1 in G′, then it has to be matched in the SPM.

Proof. Suppose that t is not matched in the SPM. Let ts be the only edge incident to
t in G′, and let r be the root of the arborescence that s belongs to. By Claim 2.7, s is
a leaf of this arborescence. If r is not matched along the branch of s, then s cannot be
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Figure 3: The red edges give the only possible SPM.

matched, and therefore st is blocking. If r is matched along the branch of s, then we
exchange the edges along the branch and add ts and vr to the new matching, where
vr is an edge of the arborescence from another branch; we also remove the original
matching edge covering v. The new matching is at least as popular as the SPM, a
contradiction.

By the claim, if a node t ∈ T2 has a single neighbor s in G′, then we can �x ts and
every second edge of the branch of s, and delete this branch and t. Suppose that this
creates an arborescence with a single branch; then the original arborescence had two
leaves, both in S (as we have already removed arborescences with only one leaf in
S), and since the root cannot be matched on the branch of s, there is a unique way
to match the whole arborescence. So in this case we can �x the matching on both
branches and remove the whole arborescence, maintaining the property that every
arborescence has at least two branches.
After performing all the above operations, the following hold.

• there are no parallel edges in G′;

• every arborescence has at least two leaves in S;

• every leaf in S has at most one neighbor in T2;

• every node in T2 has degree at least 2;

• every node of each arborescence is matched in the SPM.

These properties can be satis�ed only if every arborescence has exactly 2 leaves in S,
every leaf in S has exactly one neighbor in T2, and every node in T2 has degree 2. This
means that the graph contains a cycle if it is nonempty, and, in addition, every second
edge in this cycle must be in the SPM. However, we can exchange along the cycle to
get a new matching at least as popular as the SPM, which is a contradiction. We
can conclude that the remaining graph is empty, which means that the only possible
candidate for an SPM is F , i.e. the set of edges that we �xed. We can check in
polynomial time if this is an SPM or not.
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Remark 2.10. It is easy to see that we can apply the above algorithm with slight
modi�cations to the case where nodes in S have strict preferences, and the preference
lists of nodes in T can contain one tie, of arbitrary length, at the end.

3 Conclusion

We proved that in case of strict preferences on one side and both strict preferences
and indi�erence on the other side, the existence of a strongly popular matching can
be decided in polynomial time. This is a clear indication that the strongly popular
matching problem is signi�cantly easier than the popular matching problem. It seems
to be di�cult to complement this with hardness results; as mentioned in the introduc-
tion, the strongly popular matching problem is in the complexity class UP, for which
no complete problems are known. Therefore the more promising direction is to prove
polynomial-time solvability for other types of preference systems. In praticular, the
decision problem for strongly popular matchings is open in the following two cases:

• bipartite preference systems with strict preference and indi�erence allowed on
both sides,

• bipartite preference systems with strict preferences on one side, and arbitrary
preferences on the other side.

Our techniques do not seem to extend easily to these problems.
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