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Finding equilibria in linear service-providing games

Tamás Király? and Júlia Pap

Abstract

A fundamental problem of algorithmic game theory is to determine the hard-
ness of computing equilibria in various classes of games. In this paper, we ex-
amine a class of LP-based generalized Nash equilibrium problems where the in-
teraction of players is limited to providing services to each other at �xed prices.
This limited interaction between players enables the study of computational
complexity as a function of the structure of provider-customer relationships.
We show that the problem of computing an equilibrium is PPAD-complete in
general, but it is in P if every strong component of the digraph describing the
provider-customer relationships is a simple directed cycle. The proof is based
on a new result on approximating �xed points in a special case of Kakutani's
�xed point theorem.

We also give su�cient conditions for the existence of service prices under
which any socially optimal solution is in equilibrium. If such prices exist, then
an equilibrium can be computed in polynomial time. This generalizes an earlier
result of Agarwal and Ergun on service networks [Agarwal, Ergun, Mechanism
design for a multicommodity �ow game in service network alliances, 2008].

1 Introduction

The complexity of computing equilibria is one of the fundamental problems of algo-
rithmic game theory. A sequence of results, culminating in the breakthrough paper
of Chen, Deng and Teng [6], showed that Nash-equilibrium is PPAD-hard to approx-
imate, even for two players, sparse payo� matrices [6], and 0-1 payo� [1]. However,
there are important classes of problems, like some market equilibrium problems [20, 21]
and certain types of congestion games [2], where an equilibrium can be computed ef-
�ciently. For detailed surveys on these topics, see [10, 19].
One approach to capture the structural properties of interactions in games is to

consider graphical games, where each player has only two possible strategies, and the
payo�s of players depend only on the strategies of their neighbours (and themselves)
in a given graph. It was shown by Elkind, Goldberg and Goldberg [8] that Nash
equilibrium is computable in polynomial time if the graph has maximum degree 2,
but the problem is PPAD-complete for maximum degree 3 and constant pathwidth.
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1.1 Description of the linear service-providing game 2

In this paper we follow a di�erent approach to study the relationship between the
structure of interactions and the complexity of computing equilibria. We consider
a special case of the so-called Generalized Nash Equilibrium Problem that was in-
troduced by Arrow and Debreu [4] (under the name of �abstract economy�). In our
problem, the strategy space of each player is a bounded polyhedron, and interactions
between players are restricted to services being provided to each other at �xed prices,
which can be expressed using linear equations. This structure guarantees that if equi-
libria exist, then they form the union of faces of a polyhedron, as in the case of bimatrix
games. Furthermore, best-response strategies can be computed in polynomial time
using linear programming.
Under some natural conditions, equilibria are guaranteed to exist, and we show

that �nding one is PPAD-complete. However, we manage to give a polynomial-time
algorithm if the structure of services is su�ciently simple.
For the general case, when equilibria may not exist, we study whether service prices

can be changed in such a way that socially optimal solutions (which can be computed
in polynomial time) become equilibria.
Some of these results can be seen as a generalization of previous work on multicom-

modity �ow games. The study of �ow problems with sel�sh agents dates back to the
papers of Kalai and Zemel [13, 14], and the multicommodity version was studied by
Derks and Tijs [7]. Agarwal and Ergun [3] introduced multicommodity �ow games
where each agent owns a given fraction of each arc of the network. An agent also has
a set of demands, and revenue is generated by satisfying a fraction of these demands.
Instead of the usual concept of transferable utilities, only a restricted form of transfer
is allowed: agents pay speci�ed capacity exchange prices for the use of arc capacities,
divided proportionally among the owners of the arc. In [3], a method was proposed
for determining capacity exchange prices which provide incentives for agents to route
according to the optimal �ow. The results were further generalized in [11].
Another precedent to our model is the multiplayer multicommodity �ow problem

introduced by the present authors with co-authors [5]. As in the model of Agarwal and
Ergun, each agent controls a subnetwork, but instead of the exchange of arc capacities,
there are bilateral agreements specifying source�destination pairs where one agent
undertakes to route the tra�c of another in exchange for a speci�ed payment.
As we show in Section 1.5, the LP-based model considered in this paper includes

the above problems. From another viewpoint, it can be seen as a linear special case of
the Generalized Nash Equilibrium Problem (see [9] for a comprehensive survey on this
topic). Thus our results shed some light on the computational complexity of linear
Generalized Nash Equilibrium with limited interactions.
An earlier version of the present paper, containing a subset of the results, appeared

as a technical report [15].

1.1 Description of the linear service-providing game

The game involves a set of players, denoted by [n] = {1, . . . , n}, and a set S of services.
Each service may have several providers and several customers. The set of services
where Player i is a possible provider (resp. customer) is denoted by Si (resp. T i). We
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1.2 Feasible and weakly feasible solutions 3

do not require Si and T i to be disjoint, unless explicitly stated. Each provider of a
service is required to contribute a �xed share of the service. These service ratios are
given as non-negative rationals ris for every service s and agent i with s ∈ Si, and they
satisfy

∑
i:s∈Si ris = 1. In addition, each service s ∈ S has a per-unit service price ps.

The strategy space of Player i is a bounded polyhedron P i ⊆ Rdi . Here di ≥
|Si|+ |T i|, and P i given in the form

Ai1x
i + Ai2y

i + Ai3z
i ≤ bi, (1)

xi ≥ 0, (2)

yi ≥ 0, (3)

where xi ∈ RSi
, yi ∈ RT i

, and the matrices Ai1, A
i
2, A

i
3 can be arbitrary except that

Ai1 is assumed to be non-negative. There is also a cost vector ci ∈ Rdi . We use the
notation cis for the cost of variable x

i
s. The three types of variables can be interpreted

as follows:

• xis, for s ∈ Si, represents the amount of service s provided by Player i,

• yis, for s ∈ T i, is the amount of service s bought by Player i,

• zi is a vector of additional variables.

Let P× denote the direct product P 1× · · · ×P n, the combined strategy space. The
social cost of a strategy vector (x, y, z) ∈ P× is cT(x, y, z).
In addition to the social cost, players have to pay the prices of services to each

other. For a given service s, a customer j with s ∈ T j pays psyjs for service s, while
the income of provider i from service s ∈ Si is psxis. To account for these transfers,
we de�ne the modi�ed cost vector cp by decreasing the cost of variable xis by ps for all
s ∈ Si, and increasing the cost of variable yis by ps for all s ∈ T i. Using this notation,
the personal interest of Player i is to minimize (cip)

T(xi, yi, zi) on P i.
The reader may notice that, up to this point, the model does not guarantee that

the total amount bought of service s is the same as the total amount sold. The equa-
tions corresponding to these conditions are called service equations, and are described
below.

1.2 Feasible and weakly feasible solutions

Strategy vectors in P× do not necessarily adhere to the given service ratios; they
do not even satisfy the condition that the total amount provided of a given service
should equal the total amount bought. These conditions are captured by the notions
of feasibility and weak feasibility. A strategy vector (x, y, z) ∈ P× is feasible for Player
i if

xis = ris
∑
j:s∈T j

yjs for every s ∈ Si.

The equation for a given s ∈ Si is called the personal service equation of agent i for
service s. A strategy vector is feasible if it is feasible for every player. We also use a
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1.3 Equilibria 4

weaker version of these conditions: a strategy vector (x, y, z) ∈ P× is weakly feasible
if the following weak feasibility equations hold:∑

i:s∈Si

xis =
∑
j:s∈T j

yjs for every s ∈ S.

The polyhedron of feasible solutions is denoted by Pfeas, while the polyhedron of
weakly feasible solutions is Pweak. Clearly, weakly feasible solutions are feasible for
some service ratios, but not necessarily for the prescribed ones.
A socially optimal solution is a feasible solution that is optimal for the cost vector

c in Pfeas. We say that r is a socially optimal service ratio vector if socially optimal
solutions are also optimal in Pweak for c. In other words, the service ratios are socially
optimal if no other service ratios can achieve lower social cost.
Not every instance of the problem has a feasible or even a weakly feasible solution.

However, there is a natural condition that turns out to be su�cient for feasibility.
An instance of the problem is called safe if for any (x, y, z) ∈ P× and any i ∈ [n]
we can replace (xi, yi, zi) by a vector (x̂i, ŷi, ẑi) ∈ P i such that the resulting strat-
egy vector (x̂i, ŷi, ẑi, x−i, y−i, z−i) is feasible for Player i (here x−i, y−i, z−i denote the
strategy vectors for all players except for Player i). We will see that safe instances are
guaranteed to have an equilibrium, which implies that they have a feasible solution.

1.3 Equilibria

A feasible solution is an equilibrium if players cannot increase their pro�t without
violating one of their personal service equations, provided that the strategies of other
players are �xed. More formally, (x, y, z) ∈ Pfeas is an equilibrium if there is no
i ∈ [n] and (x̂i, ŷi, ẑi) ∈ P i such that ciTp (x̂i, ŷi, ẑi) < ciTp (xi, yi, zi) and the strategy
vector (x̂i, ŷi, ẑi, x−i, y−i, z−i) satis�es all personal service equations of Player i. This
corresponds to the notion of generalized Nash equilibrium (see [9]), because if we �x
the strategies of all players except i, then the set of available responses of Player i
can be de�ned as the set of elements in P i that satisfy the personal service equations
of i with respect to the �xed strategies of others.
It should be noted that this notion of equilibrium is stronger than the equilib-

rium notion in constrained games (see e.g. Rosen [18]). Indeed, if we consider the
constrained game with the feasible set Pfeas, then the feasible response of a player
must satisfy the personal service equations of all players, while here it has to satisfy
only their own personal service equations. This means that if a player is a customer
of a service but not a provider, then they can choose the amount of service to buy
irrespective of how much other players buy.
We include another characterization of equilibria using the a�ne subspaces de�ned
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1.4 Summary of the results 5

by personal service equations. For i ∈ [n] and y ∈ RT 1 × · · · × RTn
, let

Φi(y) = {(x̂i, ŷi, ẑi) : x̂i, ŷi satisfy

x̂is = ris ( ŷis +
∑

j 6=i:s∈T j

yjs ) if s ∈ Si ∩ T i and (4)

x̂is = ris
∑
j:s∈T j

yjs if s ∈ Si \ T i}.

In other words, Φi(y) is an a�ne subspace consisting of the vectors (x̂i, ŷi, ẑi) that
satisfy the personal service equations of Player i with respect to y−i. Let Φ(y) =
Φ1(y) × · · · × Φn(y). Observe that lin(Φ(y)), the linear hull of Φ(y), is the same for
every y.
By de�nition, a vector (x, y, z) ∈ P× is feasible if and only if it is in Φ(y). Moreover,

(x, y, z) ∈ Pfeas is an equilibrium if and only if it is optimal in P×∩Φ(y) for the objective
function cp.
It is easy to construct instances where no equilibrium exists. However, existence

of equilibria in safe instances can be proved by a standard application of Kakutani's
�xed point theorem.

Theorem 1.1. In a safe instance there always exists an equilibrium.

Proof. Let C = {y : ∃x, z s.t. (x, y, z) ∈ P×}. Note that C is compact and convex,
and safeness of the instance means that P× ∩ Φ(y) is non-empty for any y ∈ C. For
y ∈ C, let

ϕ(y) = {ŷ ∈ C : ∃x̂, ẑ s.t. (x̂, ŷ, ẑ) is optimal for cp in P× ∩ Φ(y)}.

Since the instance is safe, ϕ(y) is nonempty for every y ∈ C. The set ϕ(y) is the
projection of a face of P× ∩ Φ(y), so it is convex. It remains to show that the
graph of ϕ is closed. If ak is a convergent sequence in C with limk→∞ ak = a, then
limk→∞Φ(ak) = Φ(a). Suppose that bk ∈ ϕ(ak) and limk→∞ bk = b. Since the polyhe-
dra are bounded, there exist convergent sequences limk→∞ x̂k = x̂ and limk→∞ ẑk = ẑ
such that (x̂k, bk, ẑk) is optimal for cp in P× ∩ Φ(ak). The convergence implies that
(x̂, b, ẑ) is optimal for cp in P× ∩ Φ(a), and thus b ∈ ϕ(a).
By Kakutani's Theorem, there exists a vector y with y ∈ ϕ(y). By the de�nition of

ϕ, there exist x, z such that (x, y, z) is optimal in P×∩Φ(y) for the objective function
cp. This means that (x, y, z) is an equilibrium.

1.4 Summary of the results

In Section 2 we investigate the structure of equilibria. We �rst show that the set of
equilibria is always the (perhaps empty) union of some faces of Pfeas. If the service
ratios are socially optimal, then we can modify service prices in such a way that
every socially optimal feasible solution becomes an equilibrium. In fact, we prove a
stronger statement: every socially optimal feasible solution becomes optimal for the
cost vector cp in the polyhedron P×, so not even a coalition can pro�t from changing
their behaviour. This is a generalization of the result of Agarwal and Ergun [3] on
capacity exchange prices in service network alliances (see Section 1.5.1).
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1.4 Summary of the results 6

Theorem 1.2. Suppose that the service ratios are socially optimal. Then it is possible
to compute service prices p in polynomial time such that every socially optimal solution
(x, y, z) ∈ Pfeas is optimal for the cost vector cp in the polyhedron P×. If cis ≥ 0 for
every i, then the price ps can be chosen to be nonnegative.

In case of sub-optimal service ratios, it may be impossible to �nd prices for which
there exists an equilibrium. However, as the following result shows, this can happen
only if some players are both providers and customers of the same service.

Theorem 1.3. If Si ∩ T i = ∅ for every player i, then there are prices for which all
socially optimal solutions are in equilibrium.

In Section 3, we prove that �nding an equilibrium is PPAD-complete, even if there
are only two players.

Theorem 1.4. It is PPAD-complete to �nd an equilibrium in a safe instance of the
two-player linear service-providing game.

In Section 4 we present a polynomial-time algorithm for �nding an equilibrium
in the special case when each strong component of the digraph D∗ representing the
provider-customer relationships is a simple cycle. The digraph D∗ = ([n], A∗) has
arcs from the providers of each service to the customers, with possible parallel arcs
but excluding loops. A pair of oppositely directed arcs is also considered as a simple
cycle.

Theorem 1.5. An equilibrium can be found in polynomial time in safe instances
where every strong component of D∗ is a simple directed cycle.

Our polynomial algorithm follows from a new result on the approximation of �xed
points in a certain class of �xed-point problems. Given m interval-valued functions
ϕ1, . . . , ϕm on the unit interval, all with the closed graph property, Kakutani's �xed
point theorem implies that there is a vector x such that xi+1 ∈ ϕi(xi) (i = 1, . . . ,m−1)
and x1 ∈ ϕm(xm) (a cyclically �xed vector). We show an algorithm for �nding m
arbitrarily small intervals such that their direct product contains a cyclically �xed
vector.

Theorem 1.6. Let ϕi : [0, 1] → P([0, 1]) (i ∈ [m]) be given as above with a function
evaluation oracle, and let 0 < ε < 1. In O(m2 log(1

ε
)) steps, we can �nd intervals

I1, . . . , Im ⊆ [0, 1] of length at most ε such that there is a cyclically �xed vector x with
xi ∈ Ii (i ∈ [m]).

We present another polynomial-time solvable case in Section 5.

Theorem 1.7. An equilibrium can be found in polynomial time in safe instances
where Player 1 is the sole customer of service s1, and is the sole provider of all other
services.

In view of these results, the study of other special cases might o�er new insights on
the borderline between polynomially solvable and PPAD-complete equilibrium prob-
lems. The results imply that �nding an equilibrium is in P if D∗ has 3 arcs, but the
case of 4 arcs remains open.
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1.5 Relationship to multicommodity �ow games 7

1.5 Relationship to multicommodity �ow games

In this section we brie�y describe how our model generalizes previous work on games
involving multicommodity �ows and services.

1.5.1 Service network alliances

Agarwal and Ergun [3] gave the following model for multicommodity �ow games in
service network alliances. There are n agents, and a common directed graph D =
(V,A). Each arc a ∈ A has a capacity ua, and given ownership ratios ria (i ∈ [n])
with

∑n
i=1 r

i
a = 1. Each agent i has a demand set Qi, where a demand q ∈ Qi is

characterized by a source sq, a sink tq, a per-unit revenue wq, and an upper bound
uq. Agent i should have a �ow of size fq ≤ uq from sq to tq; the revenue generated by
this �ow is wqfq. The total �ow traversing arc a should not exceed the capacity ua.
The main result of [3] is a mechanism that distributes the bene�ts of collaboration

by assigning a capacity exchange price pa to each arc a ∈ A. If the total �ow of agent
i on arc A is f ia, then i has to pay an amount of paf ia, which is distributed among
the agents according to the ratios rja (j ∈ [n]). Since the payment to themselves can
be ignored, agent i actually pays an amount of (1− ria)paf ia to the other agents. The
paper shows that, given a socially optimal multicommodity �ow f ∗, it is possible to
compute capacity exchange prices with the property that no agent is motivated to
deviate from f ∗.
We can model this problem in the framework of the present paper by assigning a

service to each arc a ∈ A, i.e. S = A. All agents are potential customers of all services,
while the providers of service a are the agents with ria > 0. The service ratios are
determined by the values ria. In order to de�ne the polyhedron P i, we consider the
vector variable zi to be composed of vector variables ziq for each demand q ∈ Qi. In
P i, the variables ziq (q ∈ Qi) describe the multicommodity �ow polyhedron of agent i,
with cost de�ned as the opposite of revenue. The variable yia equals the total �ow of
agent i on arc a (as expressed by the appropriate z variables), and it is upper bounded
by ua. The variable xia has the single constraint 0 ≤ xia ≤ riaua; the variables x and y
have cost 0.
With these de�nitions, feasibity is the same as in the original problem, and the

cip-cost of agent i represents the opposite of his pro�t in the original problem. It is
easy to see that the service ratios are always socially optimal in this case. Indeed, the
only conditions on the variables x are 0 ≤ xia ≤ riaua for every i and a, so any weakly
feasible solution can be transformed into a feasible solution of the same social cost
by appropriately modifying the values of the x variables without changing

∑
i:ria>0 x

i
a

for any arc a. Therefore Theorem 1.2 implies the result of Agarwal and Ergun on
capacity exchange prices.

1.5.2 The Multiplayer Multicommodity Flow (MMF) Problem

In the MMF problem de�ned in [5], n agents have separate networks Di = (V,Ai)
on a common node set. Each arc a has a cost ca and a capactity ua. Each agent i
has a set Qi of hard demands. A demand q ∈ Qi is characterized by a source sq, a
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Section 2. Structure of equilibria and price modi�cations 8

sink tq and a size dq. The aim of agent i is to satisfy all his demands at minimum
cost. A subset of arcs Bi ⊆ Ai are so-called contractual arcs, each with a designated
agent called the provider. A contractual arc has a price pa and a multiplier γa. If
a = uv ∈ Bi and the total �ow of agent i on a is f ia, then an additional demand of size
γaf

i
a from u to v appears in the network of the provider of a (a contractual demand).

In exchange, i pays an amount of f iapa to the provider.
The MMF problem can be modeled in our framework by assigning a service to

each contractual arc, thus each service has one customer and one provider. Let Ri be
the set of contractual demands of agent i. We consider the vector variable zi to be
composed of vector variables ziq for each demand q ∈ Qi ∪ Ri. In P i, the variables ziq
describe the multicommodity �ow polyhedron of agent i, with the modi�cation that
if q ∈ Ri, then the size of demand q is γa(q)xia(q), where a(q) is the contractual arc
corresponding to q. The variable yia for a contractual arc a ∈ Bi is equal to the total
�ow of agent i on arc a. This way, we obtain the same notion of equilibrium as in [5].

2 Structure of equilibria and price modi�cations

In this section we prove Theorems 1.2 and 1.3, and give an example where no prices
can guarantee an equilibrium. We start by explaining the polyhedral tools used in
the proofs.
For a polyhedron P and a face F of P , let opt.cone(F, P ) denote the set of objective

vectors c for which every point of F is optimal in P , that is, the optimal cone of F in
P . The tangent cone of a point in P is the set of feasible directions from the point.
The relative interior of a set X ⊆ Rn is denoted by relint(X), while lin(X) is the
linear translation of the a�ne hull of X. The following lemma is a direct consequence
of Farkas's Lemma.

Lemma 2.1. Let P1 be a polyhedron, Π an a�ne subspace, and P2 = P1 ∩Π. Let F2

be a face of P2 and let F1 be the smallest face of P1 that contains F2. Then

(i) opt.cone(F2, P2) = opt.cone(F1, P1) + lin(Π)⊥,

(ii) relint(opt.cone(F2, P2)) = relint(opt.cone(F1, P1)) + lin(Π)⊥.

Proof. To prove the �⊇� containment in part (i), let w ∈ opt.cone(F1, P1) and a ∈
lin(Π)⊥. Then for any x ∈ F2 and x′ ∈ P2, (w + a)Tx = wTx + aTx ≥ wTx′ + aTx =
(w + a)Tx′, so w + a ∈ opt.cone(F2, P2).
For the �⊆� containment suppose that w ∈ opt.cone(F2, P2) but w is not in the

cone opt.cone(F1, P1) + lin(Π)⊥. By Farkas' Lemma, the latter implies that there is
a vector y for which wTy > 0 but (w′ + a)Ty ≤ 0 for every w′ ∈ opt.cone(F1, P1)
and a ∈ lin(Π)⊥. Clearly, y ∈ lin(Π). Let x∗ be a vector in relint(F2). Then
opt.cone(F1, P1) is generated by the normal vectors of the facets of P1 that x∗ satis�es
with equality. This means that y is in the tangent cone of P1 in x∗, thus, since
y ∈ lin(Π), y is also in the tangent cone of P2 in x∗. This contradicts wTy > 0.
Part (ii) follows from part (i).
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Section 2. Structure of equilibria and price modi�cations 9

The �rst application of the lemma is a proof that if a vector in Pfeas is an equilibrium,
then the minimal face containing it consists of equilibria. Recall the de�nition of Φ(y)
in (4).

Lemma 2.2. The set of equilibria is the (perhaps empty) union of some faces of Pfeas.
As a consequence, the set of equilibria is either empty, or there is an equilibrium that
is a vertex of Pfeas and hence its bit-complexity is polynomial in the input size.

Proof. Let (x, y, z) ∈ P× ∩ Φ(y) be an equilibrium, i.e. optimal in P× ∩ Φ(y) for
the objective function cp, and let F2 be the minimal face of P× ∩ Φ(y) containing
it. If we apply Lemma 2.1 with P1 = P×, Π = Φ(y), and F2, we obtain that cp ∈
opt.cone(F2, P×∩Φ(y)) = opt.cone(F1, P×)+lin(Φ(y))⊥, where F1 is the minimal face
of P× containing (x, y, z).
Suppose that (x′, y′, z′) is on the minimal face of Pfeas containing (x, y, z). Then

on the one hand (x′, y′, z′) ∈ F1, and on the other hand (x′, y′, z′) ∈ P× ∩ Φ(y′).
But lin(Φ(y′))⊥ = lin(Φ(y))⊥, and therefore cp ∈ opt.cone(F1, P×) + lin(Φ(y′))⊥ ⊆
opt.cone((x′, y′, z′), P× ∩ Φ(y′)), so (x′, y′, z′) is also an equilibrium.

Next we show that if the service ratios are socially optimal, then there is a price
vector such that every socially optimal feasible solution is optimal for cp in the poly-
hedron P×.

Proof of Theorem 1.2. We assume that Pfeas is non-empty. Let Fopt be the optimal
face in Pweak minimizing the cost c. By the assuption that service ratios are optimal,
all socially optimal solutions are on Fopt. Let F× be the minimal face of P× which
contains Fopt. Let furthermore H be the subspace determined by the equations∑

i:s∈Si

xis =
∑
j:s∈T j

yjs for every s ∈ S.

We apply Lemma 2.1, with the de�nitions P1 = P×, Π = H, P2 = Pweak, F1 = F×,
and F2 = Fopt. By consequence, there is a vector h ∈ lin(H)⊥ for which c + h is in
relint(opt.cone(F×, P×)). Note that h can be computed in polynomial time by linear
programming. By the de�nition of H, there is a vector p ∈ RS such that

• The component of h corresponding to xis is −ps,

• the component of h corresponding to yis is ps,

• the components of h corresponding to z are 0.

Let the price of service s be ps. Since c+h = cp, it follows that any socially optimal
solution (x, y, z) ∈ Fopt ⊆ F× is optimal for objective function cp in the polyhedron
P×.
To prove the second part of the theorem, assume that cis is nonnegative for every

i. Suppose that ps is negative, and let (x, y, z) be a socially optimal solution. Since
cis−ps is positive, the cp-cost decreases if we decrease xis. Since the describing matrices
Ai1 are nonnegative, the modi�ed vector is also in P× if xis ≥ 0. Therefore ps < 0
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Section 2. Structure of equilibria and price modi�cations 10

implies that xis = 0 for every i in every socially optimal solution. We claim that if
p′ is obtained from p by setting p′s = 0, then p′ also satis�es the properties in the
theorem. Indeed, there is a vector (x′, y′, z′) of minimum cp′-cost in P× for which
x′is = 0 for every i, because we can decrease x′is without increasing the cp′-cost. Now
cTp (x′, y′, z′) ≤ cTp′(x

′, y′, z′) by the de�nition of p′. On the other hand, the cp-cost of a
socially optimal solution (x, y, z) is the same as its cp′-cost because xis = 0 and yis = 0
for every i, hence cTp′(x, y, z) = cTp (x, y, z) ≤ cTp (x′, y′, z′) ≤ cTp′(x

′, y′, z′), which means
that (x, y, z) is optimal for cp′ in P×.

We now show that if the service ratios are not socially optimal, then in general
we cannot even expect to �nd prices that guarantee the existence of an equilibrium.
Consider the following example with two services and two players, each player being a
customer and a provider of both services. For sake of simplicity, we use the notation
S = {1, 2}, so we have variables x11, x12, x21, x22 and y11, y12, y21, y22. The possible strategies
of the two players are de�ned by the two polyhedra

P 1 ={(x1, y1) : x1 ≥ 0, y1 ≥ 0, x11 ≤ 1, y11 + y12 = 2, 2x11 ≤ y11},
P 2 ={(x2, y2) : x2 ≥ 0, y2 ≥ 0, x22 ≤ 1, y22 + y21 = 2, 2x22 ≤ y22}.

Let r11 = r12 = r21 = r22 = 1
2
. The costs of the x variables are 0, while the costs of the

y variables are de�ned by c(y11) = 1, c(y12) = −1, c(y21) = −1, c(y22) = 1.
It is easy to see that the only feasible solution is x11 = x12 = x21 = x22 = 1, y11 = 2,

y12 = 0, y21 = 0, y22 = 2. If p1 > p2 − 4, then this is not an equilibrium because Player
1 is better o� decreasing x11 and y

1
1 to 0 and increasing x12 and y

1
2 to 2.

On the other hand, if p2 > p1−4, then Player 2 pro�ts by decreasing x22 and y
2
2 to 0

and increasing x21 and y
2
1 to 2. Therefore there are no prices for which an equilibrium

exists.
We now prove Theorem 1.3, which shows that examples like the above are only

possible if there are players who are both providers and customers of the same service.

Proof of Theorem 1.3. As in the proof of Theorem 1.2, let H be the subspace de�ned
by the weak feasibility equations. Let furthermore

P1 = P× ∩ {(x, y, z) : xis = ris
∑
j:s∈Sj

xjs for every i and s ∈ Si}.

Notice that Pfeas = P1 ∩H. Let Fopt be the optimal face in Pfeas minimizing the cost
c. Let F1 be the minimal face of P1 that contains Fopt.
We apply Lemma 2.1 with the de�nitions P1, Π = H, P2 = Pfeas, F1, and F2 =

Fopt. By consequence, there is a vector h ∈ lin(H)⊥ for which c + h is a member of
relint(opt.cone(F1, P1)). Since h is in lin(H)⊥, there are prices p such that

• The component of h corresponding to xis is −ps,

• the component of h corresponding to yis is ps,

• the components of h corresponding to z are 0.
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Section 3. PPAD-completeness 11

Since c + h = cp, any socially optimal solution (x, y, z) ∈ Fopt ⊆ F1 is optimal for
objective function cp in the polyhedron P1. Now we are done by the observation that
since Si ∩ T i = ∅ for each player i, a strategy change by Player i preserving their
personal service equations actually preserves all values of xi, so the obtained vector
remains in P1. This means that every socially optimal solution is in equilibrium
because it is optimal for cp in P1.

3 PPAD-completeness

In this section we show that the problem of �nding an equilibrium in a safe instance is
PPAD-complete. Membership in PPAD follows from the fact that the computational
version of Kakutani's �xed point theorem is in PPAD, as shown by Papadimitriou
[17]. The proof in [17] is a reduction to Sperner's Lemma (via Brouwer's �xed point
theorem), and it only works if the set-valued function ϕ has the following property:
given a su�ciently small simplex that is known to contain a �xed point of ϕ, we can
compute a �xed point in polynomial time. This property holds for the function ϕ
de�ned in the proof of Theorem 1.1 because equilibria form the union of faces of Pfeas

by Lemma 2.2.
PPAD-hardness is shown by a reduction of two-player Nash equilibrium to our

problem. To be more precise, we reduce approximate 2-Nash, so we use the following
fundamental result of Chen, Deng, and Teng [6].

Theorem 3.1 ([6]). For any α > 0, the problem of computing an m−α-approximate
Nash equilibrium of a two-player game is PPAD-complete, where m is the number of
strategies.

We need a couple of remarks about this theorem. First, it is well-known that the
problem of �nding two-player Nash equilibria can be reduced to �nding symmetric
Nash equilibria in symmetric games, so we will assume that the game is symmetric,
with utility matrix A ∈ Qm×m. We can also assume without loss of generality that
the entries of A are positive. Second, there are several ways to de�ne approximate
equilibria; we use a de�nition in [6]: x∗ is an ε-well supported approximate symmetric
Nash equilibrium if x∗j > 0 implies

∑m
k=1 ajkx

∗
k > maxi∈[m]

∑m
k=1 aikx

∗
k − ε. Finally, it

is convenient to set α = 1. To sum up, we use the following form of the theorem.

Corollary 3.2 ([6]). The problem of computing a 1
m
-well supported approximate sym-

metric Nash equilibrium of a symmetric two-player game is PPAD-complete.

The above problem will be called 1
m
-approximate 2-Nash in this paper.

Proof of Theorem 1.4. We have to reduce 1
m
-approximate 2-Nash to �nding an

equilibrium in a safe instance of the linear service-providing game. Given a symmetric
game de�ned by a matrix A ∈ Qm×m

+ , we construct a safe instance with two players,
with the property that any equilibrium of the safe instance corresponds to a 1

m
-well

supported approximate symmetric Nash equilibrium. This is enough for showing
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Section 3. PPAD-completeness 12

hardness, since an algorithm for �nding an equilibrium in safe instances would solve
1
m
-approximate 2-Nash.
The construction involves two players and 2m services; services 1, . . . ,m are pro-

vided by Player 2 to Player 1, while services m+ 1, . . . , 2m are provided by Player 1
to Player 2. For simplicity, we will denote the variables associated to the j-th service
by x2j , y

1
j (j = 1, . . . ,m) and x1j , y

2
j (j = m+ 1, . . . , 2m). All service prices are 0. The

linear system of Player 1 is the following.

m∑
j=1

y1j = 1

z1j ≥ y1j + x1m+j − 1 (j = 1, . . . ,m)

x1, y1, z1 ≥ 0

min
m∑
j=1

z1j

Player 2 has the following linear system.

z2j ≥
m∑
k=1

ajkx
2
k (j = 1, . . . ,m)

z20 ≥ z2j (j = 1, . . . ,m)

y2m+j = m(z20 − z2j ) (j = 1, . . . ,m)

x2, y2, z2 ≥ 0

min
m∑
j=0

z2j

Suppose that (x̂, ŷ, ẑ) is an equilibrium. In particular, (x̂, ŷ, ẑ) is feasible, so x̂2j = ŷ1j
and x̂1m+j = ŷ2m+j (j = 1, . . . ,m). Let M = maxj∈[m]

∑m
k=1 ajkx̂

2
k. Since Player 2

cannot improve, ẑ2j must be equal to
∑m

k=1 ajkx̂
2
k, and ẑ20 must be equal to M . Let

i ∈ [m] be an index for which
∑m

k=1 aikx̂
2
k = M ; then ŷ2m+i = 0, so x̂1m+i = 0.

We know that Player 1 cannot improve the cost if the values of the variables x1m+j

are �xed to x̂1m+j (j = 1, . . . ,m). In particular, we can consider the feasible strategy of
Player 1 obtained by setting y1i to 1, y

1
j to 0 (j 6= i), z1i to 0, and z1j to max{0, x̂1m+j−1}

(j 6= i). The cost of this solution is
∑

j 6=i max{0, x̂1m+j−1}, which should not be lower
than

∑m
j=1 ẑ

1
j =

∑m
j=1 max{0, ŷ1j + x̂1m+j−1}. This means that ŷ1j + x̂1m+j ≤ 1 for every

index j such that ŷ1j > 0. Let x∗j = y1j (j = 1, . . . ,m); then x∗ satis�es the following
properties.

(i)
∑m

j=1 x
∗
j = 1

(ii) x∗ ≥ 0

(iii) maxj∈[m]

∑m
k=1 ajkx

∗
k = M

(iv) x∗j +m(M −
∑m

k=1 ajkx
∗
k) ≤ 1 for every index j such that x∗j > 0.
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Section 4. Polynomial-time algorithm for simple cycles 13

By the �rst two properties, x∗ is a strategy vector for the Nash equilibrium problem,
while the last property implies that M −

∑m
k=1 ajkx

∗
k ≤

1−x∗j
m
≤ 1

m
for every index

j such that x∗j > 0. Thus x∗ is a 1
m
-well supported approximate symmetric Nash

equilibrium.

4 Polynomial-time algorithm for simple cycles

In the PPAD-completeness proof in Section 3, we reduced approximate 2-Nash to
2-player safe instances with both players providing many services to the other. One
may ask if this leaves room for an interesting class of service con�gurations where an
equilibrium can be found in polynomial time.
A natural candidate is the class of problems where the customer-provider relation-

ships form an acyclic digraph, and indeed it is not hard to show that an equilibrium
can be computed e�ciently in that case. The main result of this section is an e�cient
algorithm for a broader class of problems. Let us consider an auxiliary directed graph
D∗ = ([n], A∗) on the set of players, in which there are |Si ∩ T j| parallel ij arcs for
every i, j with i 6= j (so D∗ does not have loops).
With this de�nition, the directed graph corresponding to the hard instance con-

structed in the proof of Theorem 1.4 is a 2-cycle with many parallel arcs. In contrast
to this, Theorem 1.5 states that if the strongly connected components of D∗ are sim-
ple directed cycles, then there is a polynomial-time algorithm to �nd an equilibrium.
Note that a pair of oppositely directed arcs is also considered to be a simple cycle.
The main tool of the proof is an algorithm for �nding approximate �xed points for

a special class of set-valued functions, as described in Theorem 1.6. Let ϕi : [0, 1] →
P([0, 1]) (i ∈ [m]) be a set-valued function such that ϕi(t) is a non-empty interval for
every t ∈ [0, 1], and the graph of ϕi is closed. We are interested in �nding a �xed
point of the function (x1, x2, . . . , xm) 7→ (ϕm(xm), ϕ1(x1), . . . , ϕm−1(xm−1)). In other
words, we are looking for a vector x = (x1, . . . , xm) for which xi+1 ∈ ϕi(xi) for every
i ∈ [m]. Here and later in this section, unless otherwise stated, we consider the indices
modulo m, i.e. xm+1 = x1 and ϕm = ϕ0.

De�nition. A vector x = (x1, . . . , xm) that satis�es xi+1 ∈ ϕi(xi) for every i ∈ [m] is
called a cyclically �xed vector.

In order to have a meaningful de�nition of running time, we use the following oracle
model: there is an evaluation oracle which, given t ∈ [0, 1] and i ∈ [m], returns some
z ∈ ϕi(t) in one step. We also count basic arithmetic operations as one step. Of
course, it is impossible to compute a cyclically �xed vector exactly in this oracle
model. However, as stated in Theorem 1.6, we can approximate it in a polynomial
number of steps, in the sense that we can �nd arbitrarily small intervals whose direct
product contains a cyclically �xed vector.

Proof of Theorem 1.6. The algorithm itself is quite simple and its time complexity is
straightforward, the more involved part being the proof of its correctness. During the
algorithm we always follow the rule that if at some point the oracle returns z ∈ ϕi(t),
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Section 4. Polynomial-time algorithm for simple cycles 14

then the triplet (i, t, z) is stored, and we use the value z in all subsequent evaluations
of ϕi(t).
The intervals are determined successively in reverse order. To determine Im, initially

let am = 0 and bm = 1. Let ψm = ϕm−1 ◦ ϕm−2 ◦ · · · ◦ ϕ1 ◦ ϕm. The function ψm is
an interval-valued function with a closed graph, since it is the composition of such
functions.
Let t = (am + bm)/2. We can compute a value z ∈ ψm(t) by m successive oracle

calls. If z ≤ t, then let bm = t. If z ≥ t, then let am = t. These steps are repeated
until bm − am ≤ ε. Let Im = [am, bm].
Suppose that we have already determined Ii+1 = [ai+1, bi+1]. We modify the func-

tion ϕi as follows.

ϕ′i(t) =


ϕi(t) ∩ Ii+1 if ϕi(t) ∩ Ii+1 6= ∅,
ai+1 if z < ai+1 for every z ∈ ϕi(t),
bi+1 if z > bi+1 for every z ∈ ϕi(t).

Note that this modi�cation can be implemented simply by modifying the value re-
turned by the oracle after each oracle call for ϕi: if the returned value is smaller than
ai+1, then we change it to ai+1, and if it is greater than bi+1, then we change it to
bi+1.
In order to compute Ii, initially let ai = 0 and bi = 1, and let ψi = ϕi−1 ◦ ϕi−2 ◦
· · · ◦ ϕ0 ◦ ϕ′m−1 ◦ · · · ◦ ϕ′i+1 ◦ ϕ′i.
In a general step, let t = (ai + bi)/2, and let us compute a value z ∈ ψi(t) by m

oracle calls.

De�nition. The sequence of the returned values of these m oracle calls is called the
itinerary of the pair (i, t).

Let bi = t if z ≤ t, and let ai = t if z ≥ t. The above steps are repeated until
bi − ai ≤ ε, in which case we �x Ii to be the interval [ai, bi]. We can observe the
following.

Observation 4.1. The m-th step of the itinerary of (i, ai) is not smaller than ai, and
the m-th step of the itinerary of (i, bi) is not greater than bi.

The algorithm described above computes the interval Ii in O(m log(1
ε
)) steps for

a given i, so the total number of steps is O(m2 log(1
ε
)). It remains to show that the

intervals contain a cyclically �xed vector.
Let us de�ne functions ϕ∗i : Ii → P(Ii+1) for each i ∈ [m] by ϕ∗i (t) = ϕi(t) ∩ Ii+1.

Note that the image for a value t is either a closed interval or the empty set. We
also de�ne for any positive integer k (this time not taken modulo m) the function
ψ∗k = ϕ∗k ◦ϕ∗k−1 ◦ · · · ◦ϕ∗1. We can observe that ψ∗m+k(I1) ⊆ ψ∗k(I1) for any k. We de�ne
ψ∗0 to be the identity function.

Claim 4.2. The set ψ∗k(I1) is non-empty for every k.

Proof. Indirectly, suppose that im + k (where 1 ≤ k ≤ m) is the smallest integer for
which ψ∗im+k(I1) = ∅. We may assume w.l.o.g. that ϕk ◦ ψ∗im+k−1(t) > bk+1 for every
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t ∈ I1. This implies that bk+1 ∈ ψ∗(i−1)m+k(I1) (provided that (i − 1)m + k ≥ 0),
because ϕk ◦ ψ∗(i−1)m+k−1(t) is an interval that contains bk+1.
Let us examine the itinerary of (k + 1, bk+1). We claim that, for any j < m, the

j-th step of the itinerary is in ψ∗(i−1)m+k+j(I1), provided that (i − 1)m + k + j ≥ 0.
We show this by induction on j, �rst for j < m − k. In this case ψ∗(i−1)m+k+j(I1) is
non-empty and so the set ϕ′k+j ◦ψ∗(i−1)m+k+j−1(I1), which contains the j-th step of the
itinerary, is equal to ψ∗(i−1)m+k+j(I1).
Next, we show that the j-th step of the itinerary is in ψ∗(i−1)m+k+j(I1) also for

m − k ≤ j < m. The di�culty here is that the itinerary proceeds according to
the function ϕk+j, which, as opposed to ϕ′k+j, may have values outside of Ik+j+1.
Suppose that the j-th step is the �rst to be outside of Ik+j+1; we can assume w.l.o.g.
that it is greater than bk+j+1. This means that bk+j+1 is in ψ∗(i−1)m+k+j(I1) (because
ψ∗(i−1)m+k+j(I1) is non-empty), so the itinerary of (k + j + 1, bk+j+1) leads to bk+1,
after which it takes the same steps as the itinerary of (k + 1, bk+1) � here we use
that the evaluation oracle cannot return di�erent values for the same input. Thus the
m-th step of the itinerary of (k + j + 1, bk+j+1) is greater than bk+j+1, contradicting
Observation 4.1.
We can conclude that the (m − 1)-th step of the itinerary of (k + 1, bk+1) is in

ψ∗im+k−1(I1). Therefore the m-th step of the itinerary is greater than bk+1 by our
assumption, again contradicting Observation 4.1.

Since the set ψ∗im(I1) is a non-empty closed interval for every i, and ψ∗(i+1)m(I1) ⊆
ψ∗im(I1), we have that

R = ∩∞i=1ψ
∗
im(I1) is a non-empty interval [a, b].

Claim 4.3. R contains a �xed point of ψ∗m.

Proof. It is easy to see that ψ∗m(R) = R. For k ∈ [m], let

Rk = {t ∈ R : ψ∗k(t) = ∅, but ψ∗j (t) 6= ∅ for j < k},

and let R∗ = R \ ∪mj=1Rj. Our aim is to �nd an interval I∗ = [a∗, b∗] ⊆ R∗ such
that ψ∗m(I∗) = R. To do this, we show that for every k ∈ [m], there is an interval
I∗k = [a∗k, b

∗
k] ⊆ R \ ∪kj=1Rj such that ψ∗m(I∗k) = R. We can start with I∗0 = R; suppose

that we have already determined I∗k−1. If t ∈ Rk ∩ I∗k−1, then either ψ∗k([a
∗
k−1, t]) ⊆

ψ∗k([t, b
∗
k−1]) or vice versa because both are sub-intervals of Ik+1 containing the same

endpoint of Ik+1. Consequently, either ψ∗m([a∗k−1, t]) = R or ψ∗m([t, b∗k−1]) = R. We
may assume w.l.o.g. that there is at least one t for which ψ∗m([t, b∗k−1]) = R. Let
a∗k = sup{t ∈ I∗k−1 : ψ∗m([t, b∗k−1]) = R}.
Because of the closed graph property, a∗k /∈ Rk and ψ∗m([a∗k, b

∗
k−1]) = R holds. If

Rk ∩ [a∗k, b
∗
k−1] = ∅, then we can set b∗k = b∗k−1. Otherwise, by the choice of a∗k, we have

that ψ∗m([t, b∗k−1]) 6= R for every t ∈ Rk ∩ ([a∗k, b
∗
k−1]. On the other hand, for such a

t both ψ∗k([a
∗
k, t]) and ψ

∗
k([t, b

∗
k−1]) contain the same endpoint of Ik+1, so one of them

contains the other. Since ψ∗m([a∗k, t])∪ψ∗m([t, b∗k−1]) = R, it follows that ψ∗m([a∗k, t]) = R.
Let b∗k = inf{Rk ∩ [a∗k, b

∗
k−1]}; then ψ∗m([a∗k, b

∗
k]) = R, and [a∗k, b

∗
k]∩Rk = ∅, as required.
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We obtained an interval I∗ = [a∗, b∗] ⊆ R∗ such that ψ∗m(I∗) = R. Now it follows
from the closed graph property of ψ∗m on I∗ that it has a �xed point in I∗.

By de�nition, a �xed point of ψ∗m implies the existence of a cyclically �xed vector
x with xi ∈ Ii (i ∈ [m]). This concludes the proof of the theorem.

We now show that if the graph of each function ϕi is a 2-dimensional polyhedral
complex that can be described by inequalities of bit-size M , then an exact cyclically
�xed vector can be computed in a number of steps polynomial in M .

Corollary 4.4. Let ϕi : [0, 1]→ P([0, 1]) (i ∈ [m]) be given as in Theorem 1.6, with
the additional property that the graph of each function ϕi is a 2-dimensional polyhedral
complex that can be described by inequalities of bit-size M . Then in O(m2M2) steps
we compute a cyclically �xed vector.

Proof. Let ε = exp(−M2). Since the graph of the function ϕi is a 2-dimensional
polyhedral complex of bit-size M , the choice of ε guarantees that all vertices of this
polyhedral complex in the interior of Ii× [0, 1] (if they exist at all) have the same �rst
coordinate t, which can be computed in polynomial time. We modify the algorithm
in the proof of Theorem 1.6 the following way: after achieving bi − ai ≤ ε, we make
an additional step with the above t in place of t = (ai + bi)/2. This way we obtain
intervals Ii such that the graph of ϕi has no vertex in the interior of Ii×[0, 1] (i ∈ [m]).
This means that the set-valued functions ϕi are �linear� on these intervals in the sense
that their graph is of the form αixi ≤ xi+1 ≤ βixi, and a �xed point can be found by
solving an LP.

We are now ready to prove that if the strongly connected components of D∗ are
simple directed cycles, then an equilibrium in a safe instance of the linear service-
providing game can be found in polynomial time.

Proof of Theorem 1.5. Let us consider a safe instance where every strong component
of D∗ is a simple directed cycle. Let C1, . . . , Cq be the family of strong components
in reverse topological order, and, for 1 ≤ k ≤ q, let Vk denote the set of players in Ck.
In the kth phase, we will compute a solution (xi, yi, zi) ∈ P i of each player i ∈ Vk,
in such a way that the personal service equations of all players in Vk are satis�ed.
Because of the reverse topological order, these equations are not modi�ed in later
phases of the algorithm, so the solution obtained at the end is feasible.
Suppose that we have already determined the solutions of players up to Vk−1. Let

i1, . . . , im denote the players in Vk, in reverse order of the cycle Ck. Let sj be the
unique element of Sij+1 ∩ T ij , and let

[`j, uj] = {t ∈ R : P ij ∩ {(xij , yij , zij) : yijsj = t} 6= ∅}.

The function ϕj assigns to each t ∈ [`j, uj] a nonempty subinterval of [`j+1, uj+1] the
following way. If we �x y

ij
sj at t, then, by the de�nition of safeness, there exists a

vector (x̂ij+1 , ŷij+1 , ẑij+1) ∈ P ij+1 such that, together with the values already �xed,
it satis�es all personal service equations of player ij+1. Let us take the set of such
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Section 5. Another solvable case 17

vectors that have minimum cp-cost, and let ϕj(t) consist of the possible ŷij+1
sj+1 values

in these vectors. This is a non-empty subinterval of [`j+1, uj+1]. A value in ϕj(t)
can be computed using linear programming, and the graph of ϕj is a 2-dimensional
polyhedral complex describable by inequalities of bit-size O(M), where M is the size
of the input.
We can use Corollary 4.4 (by appropriately scaling the functions ϕj) to �nd a cycli-

cally �xed vector of ϕ1, . . . , ϕm. This means that we have found vectors (xi, yi, zi) ∈ P i

(i ∈ Vk) such that the personal service equations of all players in Vk are satis�ed, and
for each i ∈ Vk, if we �x the solutions of other agents, then (xi, yi, zi) has minimum
cp-cost among the vectors in P i that satisfy the personal service equations of i.
The end result is a feasible solution because all personal service equations are sat-

is�ed, and it is an equilibrium by the above argument.

5 Another solvable case

The simplest case not covered by Theorem 1.5 is when there are two players and three
services, each with one provider and one customer. In this section we prove Theorem
1.7, which covers this particular case. We consider a safe instance where Player 1 is
the sole customer of service s1, and is the sole provider of all other services.

Proof of Theorem 1.7. The set {t ∈ R : t = y1s1 for some (x1, y1, z1) ∈ P 1} is clearly
an interval; let us denote it by [`, u]. For t ∈ [`, u], let

P (t) = {(x−1, y−1, z−1) ∈ P2 × · · · × Pn : xis1 = ris1t for every i with s1 ∈ S
i},

and let Q = ∪t∈[`,u]P (t); observe that Q is a polytope. We de�ne a set-valued function
ϕ1 : [`, u]→ P(P2 × · · · × Pn) by

ϕ1(t) = {(x−1, y−1, z−1) ∈ P (t) : (x−1, y−1, z−1) is optimal for cp in P (t)}.

It follows from Lemma 2.1 that ϕ1(t) is the intersection of P (t) with a face of Q, and
∪t∈[`,u]ϕ1(t) is the union of some faces of Q. We also de�ne the polyhedron

P 1(y−1) = {(x1, y1, z1) ∈ P 1 :

(x1, y1, z1) satis�es the personal service equations of Player 1 w.r.t y−1},

and an interval-valued function ϕ2 : Q→ P([u, v]) by

ϕ2((x
−1, y−1, z−1)) = {t ∈ [`, u] : ∃ (x1, y1, z1) optimal for cp in P

1(y−1) s.t. y1s1 = t}.

Finally, let ψ = ϕ2 ◦ ϕ1.
Intuitively, if we �x y1s1 at t, then the other players can �nd an optimal (x̂−1, ŷ−1, ẑ−1)

for cp, since they are not providers of the other services; these optimal solutions form
ϕ1(t). Now if we �x (x̂−1, ŷ−1, ẑ−1), then Player 1 can �nd an optimal (x̂1, ŷ1, ẑ1) for
cp, and ψ(t) consists of the possible values of ŷ1s1 that arise this way. Since the instance
is safe, ψ(t) is nonempty for every t ∈ [`, u]. The graph of ψ is closed because ϕ1 and
ϕ2 both have the closed graph property.
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The algorithm for �nding an equilibrium will have two phases. The �rst phase is
similar to the algorithm in Section 4. Let ε = exp(−M2), where M is the size of the
input. Initially, let a = `, b = u, and t = (a+b)/2. We compute a value t̂ ∈ ψ(t) by �rst
computing a vector (x̂−1, ŷ−1, ẑ−1) ∈ ϕ1(t), and then a value t̂ ∈ ϕ2((x

−1, y−1, z−1));
both of these can be done by linear programming. If t̂ ≤ t, then let b = t; otherwise
let a = t. These steps are repeated until b− a ≤ ε.
As in the proof of Corollary 4.4, we make an additional step in the algorithm.

Since the polytope Q has vertices of bit-size M , the choice of ε guarantees that if
Q has vertices in P (t) for some t ∈ [a, b], then all of these vertices are in the same
P [t∗]. Furthermore, this t∗ can be computed in polynomial time. We compute a value
t̂ ∈ ψ(t∗). If t̂ ≤ t∗, then let b = t∗; otherwise let a = t∗. This is the end of the �rst
phase, and at this point the following properties hold.

(i) There is a face F of Q such that, for any t ∈ [a, b], ϕ1(t) = F ∩P (t) (this is due
to the choice of t∗).

(ii) We have already computed a vector (x, y, z) such that (x−1, y−1, z−1) ∈ ϕ1(a),
(x1, y1, z1) is optimal for cp in P 1(y−1), and y1s1 ≥ a.

(iii) We have already computed a vector (x̂, ŷ, ẑ) such that (x̂−1, ŷ−1, ẑ−1) ∈ ϕ1(b),
(x̂1, ŷ1, ẑ1) is optimal for cp in P 1(ŷ−1), and ŷ1s1 ≤ b.

Property (i) implies that if t = λa + (1 − λ)b for some 0 ≤ λ ≤ 1, then ϕ′1(t) :=
λ(x−1, y−1, z−1) + (1− λ)(x̂−1, ŷ−1, ẑ−1) is in ϕ1(t). Let ϕ′2 be the restriction of ϕ2 to
the segment S between the points (x−1, y−1, z−1) and (x̂−1, ŷ−1, ẑ−1). By properties
(ii), (iii) and Kakutani's �xed point theorem, there exists t ∈ [`, u] and s ∈ S such
that s ∈ ϕ′1(t) and t ∈ ϕ′2(s). By Corollary 4.4, we can �nd such t and s in polynomial
time, and this gives an equilibrium.

6 Open questions

A notable open question is the computational complexity of �nding an equilibrium
when the number of services is constant. The answer is unknown even in the following
simple setting: there are two players and only four services, two of them o�ered by
Player 1 to Player 2, and two o�ered by Player 2 to Player 1. Another promising
direction is to �nd a common generalization of Theorems 1.5 and 1.7.
From the point of view of mechanism design, it would be interesting to �nd bar-

gaining mechanisms that lead to prices satisfying the property in Theorem 1.2 or at
least some approximate version of it.
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