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Kristóf Bérczi∗ and András Frank†

Abstract

The main result of the paper is motivated by the following two, apparently

unrelated graph optimization problems: (A) as an extension of Edmonds' dis-

joint branchings theorem, characterize digraphs comprising k disjoint branchings

Bi each having a speci�ed number µi of arcs, (B) as an extension of Ryser's

maximum term rank formula, determine the largest possible matching number

of simple bipartite graphs complying with degree-constraints. The solutions to

these problems and to their generalizations will be obtained from a new min-max

theorem on covering a supermodular function by a simple degree-constrained bi-

partite graph. A speci�c feature of the result is that its minimum cost extension

is already NP-complete and therefore classical polyhedral tools do not help.

1 Introduction

Network �ow theory provides a basic tool to treat conveniently various graph charac-
terization and optimization problems such as the degree-constrained subgraph prob-
lem in a bipartite graph (or bigraph, for short) or the k edge-disjoint st-paths problem
in a digraph. Another general framework in graph optimization is matroid theory. For
example, the problem of extending k given subtrees of a graph to k disjoint spanning
trees can be solved with the help of matroids, as well as the problem of �nding a
cheapest rooted k-edge-connected subgraph of a digraph.
A common generalization of these two big branches of combinatorial optimization

is the theory of submodular �ows, initiated by Edmonds and Giles [9]. This covers not
only the basic results on maximum �ows and min-cost circulations from network �ow
theory and weighted (poly)matroid intersection or matroid partition from matroid
theory but also helps solving signi�cantly more complex graph optimization problems
such as the one of �nding a minimum dijoin in a digraph (the classic theorem of
Lucchesi and Younger) or �nding a k-edge-connected orientation of a mixed graph.
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Section 1. Introduction 2

However general is the framework of submodular �ows, it leaves open one of the
most signi�cant unsolved questions of matroid optimization concerning the existence
of k (or just 2) disjoint common bases of two matroids. This is settled only in special
cases, among them the most important one is a theorem of Edmonds [8] on the exis-
tence of disjoint spanning arborescences of common root in a digraph. This version is
sometimes called the weak form of Edmonds' theorem while its strong form charac-
terizes digraphs admitting k disjoint spanning branchings with prescribed root-sets.
Due to the speci�c position of Edmonds' theorem within combinatorial optimization,
it is particularly important to investigate its extensions and variations. For example,
the problem of �nding k disjoint spanning arborescences with no requirements on the
location of their roots is a nicely tractable version [13], and even more generally, one
may impose upper and lower bounds for each node v to constrain the number of ar-
boresences rooted at v. By using analogous techniques, one can characterize digraphs
comprising k disjoint spanning branchings each having µ arcs.
A characteristic feature of submodular �ows is that the corresponding linear system

is totally dual integral and therefore the weighted (or minimum cost) versions of the
graph theoretic applications are typically also tractable. For example, not only the
minimum cardinality dijoin problem can be solved in polynomial time but its minimum
cost version as well. Or, via submodular �ows, there is a polynomial time algorithm
to �nd a cheapest k-edge-connected orientation of a 2k-edge-connected graph.
More generally, a great majority of min-max theorems and good characterizations

in combinatorial optimization has a polyhedral background that makes possible to
manage weighted or min-cost versions (see, for example non-bipartite matchings) In
this view, it is quite interesting that around the same time when submodular �ows
were introduced, pretty natural graph optimization problems showed up in which the
minimum cardinality case was shown to be polynomially solvable while the weighted
version turned out to beNP-complete. For example, Eswaran and Tarjan [10] found a
min-max formula and an algorithm to make a digraph strongly connected by adding
a minimum number of new arcs but the minimum cost version of the problem is
clearly NP-complete as the directed Hamiltonian circuit problem is a special case.
Therefore no polyhedral approach can exist for this augmentation problem. (Note
that the original cardinality version of Eswaran and Tarjan has nothing to do with
the problem of packing common bases of two matroids.)
Recently, it turned out that the roots of a somewhat similar phenomenon go back

to as early as 1958 when Ryser [33] solved the maximum term rank problem (which
is equivalent to �nding a simple bipartite graph G with a speci�ed degree sequence so
that G has a matching with cardinality at least a speci�ed number `, or equivalently,
the matching number ν(G) of G is as large as possible). The minimum cost version of
this problem had not been settled for a long time. Ford and Fulkerson, for example,
considered a natural attempt by using network �ows but they concluded in their book
[12] that the �ow approach did not seem to work in this case. (For the exact citation,
see Section 7.) Recently, however, it was shown ([25], [30], [31]) that this min-cost
version of the maximum term rank problem is NP-complete.
Therefore the failure of using network �ows to attack the maximum term rank

problem was not by chance at all, and the same NP-completeness result shows that
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even submodular �ows could not be able to help. The sharp borderline between
the problem of �nding a degree-speci�ed simple bipartite graph and the problem of
�nding a degree-speci�ed simple bipartite graph with matching number at least ` is
best clari�ed by the fact that �though both problems are in P� the natural extension
of the �rst problem, when a degree-speci�ed subgraph of an initial bipartite graph is
to be found, is still in P, while the analogous extension of the second problem, when
a degree-speci�ed subgraph with matching number at least ` of an initial bipartite
graph is to be found, is already NP-complete.
In a paper by the second author [15], a min-max theorem was developed solve

the general edge-connectivity augmentation problem of digraphs. It was shown in
[16], that the digraph edge-connectivity augmentation problem could be embedded
in an abstract framework concerning optimal arc-covering of supermodular functions.
That min-max theorem seems to be the very �rst appearance of a min-max result on
sub- or supermodular functions in which the weighted version included NP-complete
problems.
Frank and Jordán [18] generalized this result further and proved a min-max theo-

rem on optimally covering a so-called supermodular bi-set function by digraphs. We
shall refer to the main result of [18] (and its equivalent reformulation, too) as the
supermodular arc-covering theorem. It should be emphasized that this framework
characteristically di�ers from previous models using sub- or supermodular functions,
such as polymatroids or submodular �ows, since it solves such cardinality optimiza-
tion problems for which the corresponding weighted versions are NP-complete. One
of the most important applications was a solution to the minimum directed node-
connectivity augmentation problem but several other problems could be treated in
this way. For example, with its help, the degree-sequences of k-edge-connected and
k-node-connected digraphs could be characterized (without requiring simplicity of the
realizing digraph). Also, it implied (an extension of) Gy®ri's [22] beautiful theorem
on covering a vertically convex polyomino by a minimum number of rectangles. Yet
another application described a min-max formula for Kt,t-free t-matchings of a bi-
partite graph [14]. In a recent application, Soto and Telha [35] described an elegant
extension of Gy®ri's theorem.
One may consider analogous problems concerning simple digraphs covering super-

modular functions. Unfortunately, it turned out recently that the problem of super-
modular coverings with simple digraph includesNP-complete special cases. Therefore
there is no hope to develop a general version of the min-max theorem of Frank and
Jordán where the covering digraph is requested to be simple.
The present work is the �rst member of a series of three papers. Our general goal

is to describe special cases where simplicity can successfully be treated. Here a new
min-max theorem is developed on covering an intersecting supermodular function
with a simple degree-constrained bipartite graph. One application is a new theorem
on disjoint branchings which provides a necessary and su�cient condition for the
existence of k disjoint spanning branchings B1, . . . , Bk in a digraph such that the
cardinality of each |Bi| lies between prescribed lower and upper bounds fi and gi and
such the in-degree %F (v) of each node v ∈ V lies between speci�ed lower and upper
bounds fin(v) and gin(v), where F = B1 ∪ · · · ∪Bk. As another consequence, we shall
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1.1 Notions and notation 4

show that Ryser's maximum term rank problem nicely �ts this new framework and
not only the original maximum term rank formula can be derived but its extension as
well to determine the maximum of the matching number of degree-constrained simple
bigraphs.
In Part II [1] of the series, matroidal generalization of the new framework is de-

scribed which gives rise to a matroidal extension of Ryser's maximum term rank
theorem. We also develop the more general augmentation version of Ryser' max term
rank formula, when some edges of the graph (correspondingly, some 1's of the matrix)
are speci�ed.
In Part III [2], yet another special case of the supermodular arc-covering theorem

is analysed where simplicity of the covering digraph is tractable, and we derive there,
among others, a characterization of degree-sequences of simple k-node-connected di-
graphs, providing in this way a straight generalization of a recent result of Hong, Liu,
and Lai [24] on the characterization of degree-sequences of simple strongly connected
digraphs.

Acknowledgements We are grateful to Richard Brualdi for the correspondence in
which he always promptly provided us with extremely useful background information
on the history of the topic.
The research was supported by the Hungarian Scienti�c Research Fund - OTKA,

No K109240. The work of the �rst author was �nanced by a postdoctoral fellowship
provided by the Hungarian Academy of Sciences.

1.1 Notions and notation

We close this introductory section by mentioning notions and notation.
For a number x, let x+ := max{x, 0}. For a function m : V → R, the set-function

m̃ is de�ned by m̃(X) =
∑

[m(v) : v ∈ X]. A set-function p can analogously extended
to families F of sets by p̃(F) =

∑
[p(X) : X ∈ F ].

Two subsets X and Y of a ground-set V are comparable if X ⊆ Y or Y ⊆ X,
intersecting if X ∩ Y 6= ∅, properly intersecting if they are non-comparable and
intersecting, crossing if none of the sets X − Y, Y −X,X ∩ Y, V − (X ∪ Y ) is empty.
For two non-empty subsets S and T of V , the subsets X, Y are ST -independent

if X ∩ Y ∩ T = ∅ or S − (X ∪ Y ) = ∅, ST -crossing if they are non-comparable,
X ∩Y ∩T 6= ∅, and S− (X ∪Y ) 6= ∅. X and Y are T -intersecting if X ∩Y ∩T 6= ∅,
and properly T -intersecting if they are non-comparable and X ∩ Y ∩ T 6= ∅.
Typically, we do not distinguish between a one-element set {v}, called a singleton,
and its only element v.
For an arc f = uv, node v is the head of f and v is its tail. The arc uv enters or

covers a subset X ⊂ V if u ∈ V −X and v ∈ X. Given a digraph D = (V,A), the
in-degree of a subset X ⊆ V is the number of arcs entering X, denoted by %D(X)
or %A(X). The out-degree δD(X) = δA(X) is the number of arcs leaving X. An arc
st is an ST -arc if s ∈ S and t ∈ T .
An arc with coinciding head and tail is called a loop. Two arcs from s to t are

called parallel. A digraph with no loops and parallel arcs is simple. Simplicity of
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1.1 Notions and notation 5

an undirected graph is de�ned analogously.
A digraph D = (V,A) covers a set-function p on V if %D(X) ≥ p(X) holds for

every subset X ⊆ V .
Let G = (S, T ;E) a bipartite graph. For a subset Y ⊆ T , let

ΓG(Y ) = {s ∈ S : there is an edge st ∈ E with t ∈ Y },

that is, ΓG(Y ) is the set of neighbours of Y . We say that G covers a set-function pT
on T if

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T . (1)

Even if it is not mentioned explicitly, we assume throughout that each set-function is
zero on the empty set. Also, the empty sum is de�ned to be zero. A set-function p
on T is monotone non-decreasing if p(X) ≥ p(Y ) whenever ∅ ⊂ X ⊆ Y ⊆ T .
For a set-function b on ground-set V ,

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) (2)

is called the submodular inequality on X, Y ⊆ V .
The function b is fully (respectively, intersecting, crossing) submodular if (2)

holds for each (resp., intersecting, crossing) sets X and Y . Fully submodular functions
will often be mentioned simply as submodular. A set-function p is supermodular if
−p is submodular, positively intersecting (crossing, ST -crossing) supermodular
if the supermodular inequality

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

holds for intersecting (crossing, ST -crossing) subsets for which p(X) > 0 and p(Y ) >
0. The complementary function p of a set-function b with �nite b(V ) is de�ned by

p(X) := b(V )− b(V −X).

Clearly, b is submodular if and only if p is supermodular. For a pair (p, b) of set-
functions,

b(X)− p(Y ) ≥ b(X − Y )− p(X ∪ Y ) (3)

is called the cross-inequality on X, Y ⊆ V . The pair is called paramodular (in-
tersecting paramodular) if b is (intersecting) submodular, p is (intersecting) su-
permodular and the cross-inequality holds for every (properly intersecting) X and Y .
For a paramodular pair (p, b), the polyhedron

Q(p, b) = {x ∈ RV : p ≤ x̃ ≤ b}

is called a generalized polymatroid or g-polymatroid. By convention, the empty
set is also considered a g-polymatroid. For a submodular function b with b(V ) �nite,
the polyhedron B(b) := {x ∈ RV : x̃ ≤ b, x̃(V ) = b(V )} is called a base-polyhedron
and we speak of a 0-base-polyhedron if b(V ) = 0. For a supermodular function p
with �nite p(V ), the polyhedron B′(p) := {x ∈ RV : x̃ ≥ p, x̃(V ) = p(V )} is also a
base-polyhedron since B′(p) = B(b) holds for the complementary function b of p.

All the notions, notation, and terminology not mentioned explicitly in the paper
can be found in the book of the second author [17].
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Section 2. Background results 6

2 Background results

2.1 Degree-speci�ed and degree-constrained bipartite graphs

2.1.1 Subgraph problems

Let S and T be two disjoint sets and V := S ∪ T . Our starting point is the classic
Hall theorem:

Theorem 2.1. A bigraph G = (S, T ;E) has a matching covering T if and only if

|ΓG(Y )| ≥ |Y | for every subset Y ⊆ T . (4)

G has a perfect matching if and only if |S| = |T | and (4) holds.

For a given non-negative integer-valued function m : V → Z+, its restrictions to
S and to T are denoted by mS and mT , respectively. We also use the notation m =
(mS,mT ). It is assumed throughout that m̃S(S) = m̃T (T ) and this common value
will be denoted by γ. We say that m or the pair (mS,mT ) is a degree-speci�cation
and that a bipartite graph G = (S, T ;E) �ts or meets this degree-speci�cation if
dG(v) = m(v) holds for every node v ∈ V .

Theorem 2.2 (Ore [29]). Let G0 = (S, T ;E0) be a bipartite graph andm = (mS,mT )
a degree-speci�cation for which m̃S(S) = m̃T (T ) = γ. There is a subgraph G =
(S, T ;E) of G0 �tting the degree-speci�cation m if and only if

m̃S(X) + m̃T (Y )− dG0(X, Y ) ≤ γ whenever X ⊆ S, Y ⊆ T (5)

where dG0(X, Y ) denotes the number of edges connecting X and Y .

Let gS : S → Z+ and gT : T → Z+ be upper bound functions while fS : S → Z+

and fT : T → Z+ lower bound functions. Let fV = (fS, fT ) and gV = (gS, gT ) and
assume that fV ≤ gV . Call a bipartite graph G = (S, T ;E) (fT , gS)-feasible if

dG(s) ≤ gS(s) for every s ∈ S and dG(t) ≥ fT (t) for every t ∈ T (6)

and call G (fV , gV )-feasible if fS(s) ≤ dG(s) ≤ gS(s) for every s ∈ S and fT (t) ≤
dG(t) ≤ gT (t) for every t ∈ T , or for short, fV ≤ dG ≤ gV . G = (S, T ;E) (and its
degree function dG) is said to comply with or degree-constrained by (fV , gV ) if
fV (v) ≤ dG(v) ≤ gV (v) holds for every node v ∈ V .

Theorem 2.3 (Linking property, Ford and Fulkerson). Let G0 = (S, T ;E0) be a
bipartite graph. Let gS : S → Z+ and gT : T → Z+ be upper bound functions while
fS : S → Z+ and fT : T → Z+ lower bound functions. There is an (f, g)-feasible
subgraph G of G0 if and only if there is an (fS, gT )-feasible subgraph G′ of G0 and
there is an (fT , gS)-feasible subgraph G′′ of G0. •

With standard techniques, such as network �ows or total unimodularity, the fol-
lowing theorem can also be derived.
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2.1 Degree-speci�ed and degree-constrained bipartite graphs 7

Theorem 2.4. Suppose that a bigraph G0 has a subgraph degree-constrained by
(fV , gV ). G0 has a degree-constrained subgraph G = (S, T ;E):
(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + dG0(X, Y ) ≥ α for X ⊆ S, Y ⊆ T , (7)

(B) for which |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− dG0(X, Y ) ≤ β for X ⊆ S, Y ⊆ T , (8)

(AB) for which α ≤ |E| ≤ β if and only if both (7) and (8) hold.

2.1.2 Synthesis problems

When the initial graph G0 is the complete bipartite graph on S and T , the theorems
can be simpli�ed. Let G(mS,mT ) denote the set of simple bipartite graphs �tting
(mS,mT ). Gale [21] and Ryser [32] found, in an equivalent form, the following char-
acterization.

Theorem 2.5 (Gale and Ryser). There is a simple bipartite graph G �tting the
degree-speci�cation m if and only if

m̃S(X) + m̃T (Y )− |X||Y | ≤ γ whenever X ⊆ S, Y ⊆ T. (9)

Moreover, (9) holds if the inequality is required only whenX consists of the i elements
of S having the i largest values of mS and Y consists of the j elements of T having
the j largest values of mT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).

Theorem 2.6. Let gS : S → Z+ be an upper bound function on S and let fT : T →
Z+ be a lower bound function on T . There is a simple bipartite graph G for which
dG(s) ≤ gS(s) for every s ∈ S and dG(t) ≥ fT (t) for every t ∈ T if and only if

g̃S(X) + f̃T (Y )− |X||Y | ≤ g̃S(S) whenever X ⊆ S, Y ⊆ T. (10)

Moreover, (10) holds if the inequality is required only when X consists of elements
with the i largest values of mS and Y consists of elements with the j largest values
of mT (i = 1, . . . , |S|, j = 1, . . . , |T |).

The linking property formulated in Theorem 2.3 can also be specialized to the case
when G0 is the complete bipartite graph G∗ = (S, T ;E∗).

Theorem 2.7. If there is a simple (fT , gS)-feasible bipartite graph and there is a sim-
ple (fS, gT )-feasible bipartite graph, then there is a simple (fV , gV )-feasible bipartite
graph.

When G0 is the complete bigraph on S∪T , Theorem 2.4 specializes to the following
synthesis-type problem.
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Theorem 2.8. Suppose that there is simple bigraph degree-constrained by (fV , gV ).
There is a simple bigraph degree-constrained by (fV , gV ):
(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + |X||Y | ≥ α for X ⊆ S, Y ⊆ T, (11)

(B) for which |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− |X||Y | ≤ β for X ⊆ S, Y ⊆ T , (12)

(AB) for which α ≤ |E| ≤ β if and only if both (11) and (12) hold.

2.1.3 Synthesis versus subgraph problems

The synthesis problem of degree-constrained and degree-speci�ed simple bigraphs is
just a special case of the corresponding subgraph problems. It turns out, however,
that several other synthesis problems cannot be attacked in this way since the more
general subgraph problem is already NP-complete. For example, it is trivial to decide
if there is a connected bigraph G = (S, T ;E) with degree-speci�cation identically 2
since this is jut a bipartite Hamilton circuit and therefore the only requirement is
|S| = |T | ≥ 2. On the other hand, it is known to be NP-complete to decide if an
initial bigraph G0 includes a Hamilton circuit.
At other occasions the situation is more complicated. For example, one may con-

sider the synthesis problem of �nding a simple, perfectly matchable degree-speci�ed
bigraph. This problem is solvable but its subgraph version where a perfectly match-
able degree-speci�ed subgraph of an initial bigraph G0 has to be found is already
NP-complete ([25], [30], [31]).

2.2 Covering supermodular functions with digraphs and bi-

graphs

2.2.1 Covering by bigraphs

We call a set-function p on a ground-set T element-subadditive if p(Y ) + p(t) ≥
p(Y + t) holds whenever Y ⊆ T and t ∈ T . The following early result on bipartite
graphs and supermodular functions is due to Lovász [27].

Theorem 2.9. Let G0 = (S, T ;E0) be a simple bipartite graph and pT a positively
intersecting supermodular function on T which is, in addition, element-subadditive.
There is a subgraph G of G0 covering pT for which dG(t) = p(t) whenever t ∈ T if
and only if

|ΓG0(Y )| ≥ pT (Y ) holds for every subset Y ⊆ T. (13)

This was extended by Frank and Tardos [20] as follows.

Theorem 2.10. Let G0 = (S, T ;E0) be a simple bipartite graph and pT a positively
intersecting supermodular function on T . Let gT : T → Z+ be an upper bound
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2.2 Covering supermodular functions with digraphs and bigraphs 9

function. There is a subgraph G of G0 covering pT for which dG(t) ≤ gT (t) whenever
t ∈ T if and only if

|ΓG0(Z)| ≥ pT (Y ∪ Z)− g̃T (Y ) holds for disjoint subsets Y, Z ⊆ T . (14)

It should be noted that the problem in Theorem 2.9 can be formulated as a matroid
intersection problem while the problem in Theorem 2.10 can be cast into the submod-
ular �ow framework. Therefore the minimum cost versions of both cases are also
tractable. However, both problems become NP-complete if there is an upper-bound
gS, as well, for the degrees of G in S.

2.2.2 Covering by digraphs

Let p be a positively ST -crossing supermodular function. A basic tool in our investi-
gations is the following general result of Frank and Jordán [18].

Theorem 2.11 (Supermodular arc-covering, set-function version). Function p can be
covered by γ ST -arcs if and only if p̃(I) ≤ γ holds for every ST -independent family
I of subsets of V .

The theorem can be used [18] to describe characterizations for the existence of
degree-speci�ed (and even degree-constrained) digraphs covering p. It has a great
many applications in graph optimization and it serves as the major tool for the present
work. It signi�cantly di�ers from the framework of Lovász above (or from submodular
�ows) in that its min-cost version includes NP-complete special cases such as the
directed Hamilton circuit problem.
The existing applications give rise to a natural demand to develop a variation of

Theorem 2.11 in which no parallel arcs of the covering digraph are allowed. Unfortu-
nately, this is hopeless since the general problem includes NP-complete special cases,
as we point out below. This fact underpins the signi�cance and the di�culties of
the present work that explores special cases of Theorem 2.11 where simplicity can be
involved.

2.2.3 NP-completeness

THEOREM 2.12. (A) It is NP-complete to decide for two given degree speci�ca-
tions m′ ≤ m on V = S ∪ T whether there exists a simple bigraph G �tting m which
includes a subgraph �tting m′.
(B) The problem in Part (A) can be formulated as a special case of the problem

of �nding a minimal simple digraph covering an ST -crossing supermodular function.

Proof. (A) By choosing m′′ = m − m′, Part (A) follows immediately from the
following elegant NP-completeness result of Dürr, Guinez, and Matamala [7].

Lemma 2.13. It is NP-complete to decide whether, given two degree-speci�cations
m′ = (m′S,m

′
T ) and m′′ = (m′′S,m

′′
T ), there is a simple bigraph G = (S, T ;E) which

can be partitioned into two subgraphs G′ = (S, T ;E ′) and G′′ = (S, T ;E ′′) so that G′

�ts m′ and G′′ �ts m′′.
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Section 3. Bipartite graphs covering supermodular functions 10

(B) Consider Theorem 2.2 with m′ in place of m. This can be restated as follows.

Claim 2.14. A bipartite graph G = (S, T ;E) admits a subgraph G′ �tting m′ if and
only if

%D(X ∪ Y ) ≥ m̃′T (Y )− m̃′S(X) whenever X ⊆ S, Y ⊆ T (15)

where D is the digraph arising from G by orienting each arc from S toward T .

Let γ′ = m̃′S(S) = m̃′T (T ) and γ = m̃S(S) = m̃T (T ) and de�ne a set-function p on
V as follows.

p(V ′) :=


m̃′T (Y )− m̃′S(X) if Y ⊆ T,X ⊆ S, V ′ = X ∪ Y, 1 < |V ′| < |V | − 1

mT (t) if V ′ = {t} for some t ∈ T
mS(s) if V ′ = V − s for some s ∈ S.

(16)
Then p′ is ST -crossing supermodular. Furthermore there is a simple digraph D =
(V,A) consisting of γ ST -arcs covering p if and only if there exists a simple bigraph
G = (S, T ;E) �tting m so that (15) holds. By Claim 2.14, (15) in turn is equivalent
to the solvability of the problem in Part (A). •

3 Bipartite graphs covering supermodular functions

3.1 Covering pT with simple degree-speci�ed bipartite graphs

Let pT be a set-function pT on T . Recall that a bipartite graph G = (S, T ;E) is said
to covers pT if

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T . (17)

For example, if pT (Y ) = |Y | (Y ⊆ T ), then (17) is the Hall-condition. Therefore
Hall's theorem implies that G = (S, T ;E) covers pT if and only if G has a matching
covering T . Another special case is when pT (Y ) := |Y | + 1 (∅ ⊂ Y ⊆ T ). By a
theorem of Lovász [27], a bigraph G = (S, T ;E) covers this pT if and only if G has a
forest in which the degree of every node in T is 2. This result is a direct consequence
of Theorem 2.9.
We are interested in �nding simple bipartite graphs covering pT which meet some

degree-constraints (that is, upper and lower bounds) or exact degree-speci�cations. If
no such constraints are imposed at all, then the existence of a bigraph covering pT is
obviously equivalent to the requirement that

pT (Y ) ≤ |S| for each Y ⊆ T . (18)

Indeed, this condition is clearly necessary and it is also su�cient as the complete
bipartite graph G∗ = (S, T ;E∗) covers a set-function pT meeting (18). Therefore we
suppose throughout that (18) holds.
Our plan is the following. First we characterize the situation when there is a degree-

prescription only on S. This is then used to settle the case when a degree-speci�cation
(mS,mT ) is given on the whole node-set V = S ∪ T . In Section 4.1, with the help of
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3.1 Covering pT with simple degree-speci�ed bipartite graphs 11

a novel construction, we introduce a base-polyhedron B and prove that (mS,mT ) is
realizable by a simple bigraph covering pT precisely if the associated vector (mS,−mT )
is in B. As the intersection of a base-polyhedron with a box and with a plank is also
a g-polymatroid whose non-emptiness is characterized in the literature, this result
can �nally be used to handle upper and lower bounds on the degrees of G and on its
edge-number.

3.1.1 Degree-speci�cation on S

Our �rst goal is to characterize the situation when there is a degree-speci�cation only
on S.

THEOREM 3.1. Let mS be a degree-speci�cation on S for which m̃S(S) = γ. Let
pT be a positively intersecting supermodular function on T with pT (∅) = 0. Suppose
that

mS(s) ≤ |T | for every s ∈ S. (19)

The following statements are equivalent.

(A) There is a simple bipartite graph G = (S, T ;E) covering pT and �tting the
degree-speci�cation mS.

(B1)

m̃S(X) + p̃T (T )− |T ||X| ≤ γ for X ⊆ S and subpartition T of T . (20)

(B2)

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q} for every subpartition T = {T1, . . . , Tq} of T .

(21)

Proof. (A)⇒ (B1) Suppose that there is a simple bipartite graph G meeting (17).
We claim that the number dG(Ti, S −X) of edges between Ti and S −X is at least
pT (Ti)− |X|. Indeed,

pT (Ti) ≤ |ΓG(Ti)| = |ΓG(Ti) ∩X|+ |ΓG(Ti)−X| ≤ |X|+ dG(Ti, S −X),

that is, dG(Ti, S − X) ≥ pT (Ti) − |X|. Therefore the total number γ of edges is at
least m̃S(X) +

∑
i[pT (Ti)− |X|] from which (20) follows.

(B1) ⇒ (B2) Suppose that (B2) is violated and there is a subpartition T =
{T1, . . . , Tq} of T for which

∑q
i=1 pT (Ti) >

∑
s∈S min{mS(s), q}. Let X := {s ∈ S :

mS(s) > q}. Then
q∑

i=1

pT (Ti) >
∑
s∈S

min{mS(s), q} =
∑

[mS(s) : s ∈ S −X] + q|X| =

m̃S(S −X) + q|X| = γ − m̃S(X) + q|X|
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from which

m̃S(X) +

q∑
i=1

[pT (Ti)− |X|] > γ,

that is, (B1) is violated.

(B2) ⇒ (B1) Suppose that X and T = {T1, . . . , Tq} violate (20), that is, m̃S(X) +∑q
i=1[pT (Ti) − |X|] > γ. We can assume that mS(s) > q for every s ∈ X for if

mS(s) ≤ q for some s ∈ X, then X ′ := X − s and T would also violate (20).
Furthermore, we can assume that mS(s) ≤ q for every s ∈ S −X for if mS(s) > q for
some s ∈ S −X, then X ′ := X + s would also violate (20).
Therefore∑

s∈S

min{mS(s), q} = m̃S(S −X) + q|X| = γ − m̃S(X) + q|X|.

By combining this with m̃S(X) +
∑q

i=1 pT (Ti)− q|X| > γ we have

q∑
i=1

pT (Ti) > γ − m̃S(X) + q|X| =
∑
s∈S

min{mS(s), q},

that is, (B2) is violated.

(B1)⇒ (A) The following simple observation indicates that we need not concentrate
on the simplicity of G.

Claim 3.2. If there is a not-necessarily simple bipartite graph G = (S, T ;E) covering
pT for which dG(s) ≤ |T | for each s ∈ S, then there is a simple bipartite graph H
covering pT for which dG(s) = dH(s) for each s ∈ S.

Proof. Suppose G has two parallel edges e and e′ connecting s and t for some s ∈ S
and t ∈ T . Since dG(s) ≤ |T |, there is a node t′ ∈ T which is not adjacent with
s. By replacing e′ with an edge st′, we obtain another bipartite graph G′ for which
ΓG′(Y ) ⊇ ΓG(Y ) for each Y ⊆ T , dG′(s) = dG(s) for each s ∈ S, and the number
of parallel edges in G′ is smaller than in G. By repeating this procedure, �nally we
arrive at a requested simple graph. •
A subset V ′ of V := S∪T is ST -trivial if no ST -arc enters it, which is equivalent to

requiring that T ∩V ′ = ∅ or S ⊆ V ′. We say that a subset V ′ ⊆ V is fat if V ′ = V −s
for some s ∈ S (that is, there are |S| fat sets). The non-fat subsets of V will be called
normal. An ST -independent family I of subsets is strongly ST -independent if
any two of its normal members are T -independent, that is, the intersections of the
normal members of I with T form a subpartition of T .
De�ne a set-function p0 on V by

p0(V
′) = pT (Y )− |X| where V ′ = X ∪ Y for X ⊆ S and Y ⊆ T . (22)

Note that p0 is positively T -intersecting since if p0(V ′) is positive, then so is pT (Y ).
Furthermore, when (20) is applied to X = S, q = 1 and T1 = Y , we obtain that
pT (Y ) ≤ |X| and hence p0(V ′) can be positive only if X 6= S and Y 6= ∅, that is,
when V ′ is not ST -trivial.
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Claim 3.3. mS(s) ≥ p0(V − s) holds for every s ∈ S.

Proof. By applying (9) to X = S−s and T = {T}, we obtain that mS(s) ≥ pT (T )−
|S − s| = p0(V − s). •

De�ne a set-function p1 on V by modifying p0 so as to lift its value on fat subsets
V − s from p0(V − s) to mS(s) (s ∈ S), that is,

p1(V
′) :=

{
mS(s) if V ′ = V − s for some s ∈ S,
p0(V

′) otherwise.
(23)

Note that the supermodular inequality

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) (24)

holds for T -intersecting normal sets with p1(V1) > 0 and p1(V2) > 0.
By Claim 3.3, p1 ≥ p0. As p0 is positively T -intersecting supermodular, p1 is

positively ST -crossing supermodular. Let ν1 denote the maximum total p1-value of
a family of ST -independent sets. We call a family attaining the maximum a p1-
optimizer.

Claim 3.4. If I is a p1-optimizer of minimum cardinality, then I is strongly ST -
independent.

Proof. Clearly, p1(V ′) ≥ 0 for each V ′ ∈ I for otherwise I would not be a p1-
optimizer. Moreover, p1(V ′) > 0 also holds for if we had p1(V ′) = 0, then I − {V ′}
would also be a p1-optimizer contradicting the minimality of I.
Suppose indirectly that I has two properly T -intersecting normal members V1 and

V2. Then (24) holds and since I is ST -independent, we must have S ⊆ V1 ∪ V2 from
which p1(V1 ∪ V2) ≤ 0 follows. Then

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) ≤ p1(V1 ∩ V2).

Now I ′ = I − {V1, V2} + {V1 ∩ V2} is also ST -independent and p̃1(I ′) ≥ p̃1(I), but
we must have here equality by the optimality of I, that is I ′ is also a p1-minimizer,
contradicting the minimality of |I|. •

Claim 3.5. Let I be a strongly ST -independent p1-optimizer. There exists a subset
X and a subpartition T = {T1, . . . , Tq} of T such that I = {V − s : s ∈ X} ∪ {X ∪
Ti : i = 1, . . . , q} for which

ν1 = p1(I) = m̃S(X) + p̃1(T )− T |X|. (25)

Proof. Let X := {s ∈ S : V − s ∈ I} and let I1 = {V − s : V − s ∈ I}.
Let I2 := I − I1 and let V1, . . . , Vq denote the members of I2. Furthermore, let
Ti := T ∩ Vi and Xi = S ∩ Vi (i = 1, . . . , q). By the strong ST -independence, the
family T = {T1, . . . , Tq} is a subpartition of T , and we also have X ⊆ Xi for each i.
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De�ne V ′i := Ti ∪X for i = 1, . . . , q and let I ′2 = {V ′1 , . . . , V ′q}. Then I ′ = I1 ∪ I ′2
is also ST -independent. Since p1(V ′i ) = p1(Vi) + |Xi −X| and I is a p1-optimizer, we
must have Xi = X for each i = 1, . . . , q. The formula in (25) follows from

ν1 = p̃1(I) = p̃1(I1) + p̃1(I2) =∑
[mS(s) : V − s ∈ I1] + [p̃1(T )− T |X|] = m̃S(X) + p̃1(T )− T |X|. •

Claim 3.6. ν1 = γ.

Proof. Since the family L = {V − s : s ∈ S} is ST -independent, ν1 ≥ p̃1(L) =
m̃S(S) = γ from which ν1 ≥ γ. Let I be a strongly ST -independent p1-optimizer for
which |I| is minimum. It follows from (25) in Claim 3.5 and from the hypothesis (20)
that ν1 ≤ γ and hence ν1 = γ. •
By Theorem 2.11, there is a digraph D = (V,A) on V with ν1 = γ (possibly

parallel) ST -arcs that covers p1, that is, %D(V ′) ≥ p1(V
′) for every subset V ′ ⊆ V .

Let G = (S, T ;E) denote the underlying bipartite graph of D.

Claim 3.7. dG(s) = mS(s) for every s ∈ S.
Proof. Since dG(s) = δD(s) = %D(V − s) ≥ p1(V − s) = mS(s) for every s ∈ S, we
have γ = |E| =

∑
[dG(s) : s ∈ S] ≥ m̃S(S) = γ, from which dG(s) = mS(s) follows

for every s ∈ S. •
Claim 3.8. |ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T .

Proof. Let X := ΓG(Y ) and V ′ := X ∪ Y . Then 0 = %D(V ′) ≥ p1(V
′) ≥ p0(V

′) =
pT (Y )− |X| = pT (Y )− |ΓG(Y )|, as required. •
Therefore the bipartite graph G meets all the requirements of the theorem apart

possibly from simplicity. By Lemma 3.2, G can be chosen to be simple. • •

3.2 Covering pT with degree-speci�cation on S ∪ T
In the next problem we have degree-speci�cation not only on S but on T as well.
When the degree-speci�cation was given only on S, we have observed that it su�ced
to concentrate on �nding a not-necessarily simple graph covering pT because such a
graph could easily be made simple. Based on this, it is tempting to conjecture that
if there is a simple bipartite graph �tting a degree-speci�cation mV = (mS,mT ) and
there is a (not-necessarily simple) one �tting mV and covering pT , then there is a
simple bipartite graph �tting mV and covering pT . The following example shows,
however, that this statement fails to hold.
Let S = {e, f, g, h} and let the mS-values on S, respectively, be 4, 4, 3, 2. Let

T = {a, b, c, d} and let themT -values on T , respectively, be 4, 4, 3, 2. Let pT (t) = mT (t)
for t ∈ T . Let pT ({c, d}) = 4 and pT ({y, z} = 1 whenever {y, z} 6= {c, d}, {y, z} ⊂ T .
Let pT ({a, c, d}) = pT ({b, c, d} = 3, and pT ({a, b, c}) = pT ({a, b, d}) = 2. Finally, let
pT (T ) = 4. Here there is a unique simple bipartite graph G �tting mV , but G does not
cover pT since |ΓG({c, d})| = |{e, f, g}| = 3 6≥ 4 = pT ({c, d}). On the other hand the
bipartite graphG′ = (S, T ;E ′) with E ′ = {ae, ae, af, ag, be, bf, bf, bh, ce, cf, cg, dg, dh}
�ts mV and covers pT .

EGRES Technical Report No. 2016-09



3.2 Covering pT with degree-speci�cation on S ∪ T 15

THEOREM 3.9. Let S and T be disjoint sets and let mV = (mS,mT ) be a degree-
speci�cation for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting
supermodular function on T for which pT (∅) = 0 and pT (Y ) ≤ |S| for Y ⊆ T . There
is a simple bigraph G = (S, T ;E) covering pT and �tting the degree-speci�cation mV

if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ γ

for X ⊆ S, Y ⊆ T , and subpartition T of T − Y (26)

holds including the special case T = ∅ (when the condition is exactly (9)). When
pT is fully supermodular, it su�ces to require (26) for |T | ≤ 1. When pT is fully
supermodular and monotone non-decreasing, it su�ces to require (26) only for T = ∅
and T = {T − Y }.

Proof. Necessity. Suppose that there is a requested bigraph G. Let T = {T1, . . . , Tq}
be a subpartition of V −Y . We claim that the number dG(Ti, S−X) of edges between
Ti and S −X is at least pT (Ti)− |X|. Indeed,

pT (Ti) ≤ |ΓG(Ti)| ≤ |ΓG(Ti)∩X|+|ΓG(Ti−X)| ≤ |X|+|Ti−X| ≤ |X|+dG(Ti, S−X),

that is, dG(Ti, S − X) ≥ pT (Ti) − |X|. Therefore the total number γ of edges is at
least the number of edges between X and Y plus the number of edges between ∪iTi
and S −X. Here the �rst summand is at least m̃S(X) + m̃T (Y ) − |X||Y | while the
second one is at least

∑
i[pT (Ti)− |X|] from which (26) follows.

Su�ciency. Let t be an element of T . By applying (26) to X = ∅, Y = T − t, q =
1, T1 = {t}, we obtain that m̃T (T − t) + pT (t) ≤ γ, that is, pT (t) ≤ mT (t).
De�ne a set-function p+T on T by revising pT so as to lift its value on each single-

ton {t} to mT (t) (t ∈ T ). As pT (t) ≤ mT (t) and pT is positively T -intersecting
supermodular, so is p+T .
Let s be an element of S. By applying (26) to X = {s}, Y = T , and q = 0, we

obtain that mS(s) + m̃T (T )− |T | ≤ γ, that is, mS(s) ≤ |T |, implying that (19) holds.

Claim 3.10. Condition (20) holds for p+T in place of pT .

Proof. Let X ⊆ S and let T ′ = {T1, T2, . . . , Tq′} be a sub-partition of T . Let
T1, T2, . . . , Tq denote those members of T ′ for which p+T (Ti) = pT (Ti) and let T =
{T1, T2, . . . , Tq}. Then each of the remaining members Tj in T ′ is a singleton {zj}
(j = q + 1, · · · , q′) for which p+T (Tj) = mT (zj). By letting Y = {zq+1, . . . , zq′}, we
have |Y | = q′ − q. By applying (26) to this choice of (X, Y, T ), we obtain that

m̃S(X) +
∑

[p+(Ti)− |X| : i = 1, . . . , q′] =

m̃S(X) +
∑

[pT (Ti)− |X| : i = 1, . . . , q] +
∑

[mT (zj)− |X| : j = q + 1, . . . , q′] =

m̃S(X) +
∑

[pT (Ti)− |X| : i = 1, . . . , q] + m̃T (Y )− |X||Y | ≤ γ,

that is, condition (20) holds indeed for p+T .
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By applying Theorem 3.1 to p+T , we obtain that there is a simple bipartite graph
�tting the degree-speci�cation mS for which |ΓG(Y )| ≥ p+T (Y ) ≥ pT (Y ) for every
subset Y ⊆ T . In particular, this implies for Y = {t} that dG(t) = |ΓG(t)| ≥ p+T (t) =
mT (t). Therefore γ =

∑
[dG(t) : t ∈ T ] ≥

∑
[mT (t) : t ∈ T ] = m̃T (T ) = γ and hence

we must have dG(t) = mT (t) for every t ∈ T , making the proof of the main part of
the theorem complete.

Suppose now that pT is fully supermodular. Assume that X, Y , and T violate
(26) and T = {T1, . . . , Tq} has a minimum number of members. If q ≥ 2, then
pT (T1) − |X| + pT (T2) − |X| ≤ pT (T1 ∪ T2) − |X| and hence the unchanged X, Y
and the subpartition T ′ := {T1 ∪ T2, T3, . . . , Tq} also violate (26), contradicting the
minimal choice of q.
Finally, investigate the case when pT is fully supermodular and monotone non-

decreasing. If there are sets X, Y and a subpartition T of T −Y violating (26) so that
T = {T1}, then X, Y , and T ′ = {T −Y } also violates (26) since pT (T −Y ) ≥ pT (T1).
• • •

Corollary 3.11. Let S, T,mS,mT , γ, and pT be the same as in Theorem 3.9 and
assume that pT is non-decreasing and fully supermodular. There is a simple bigraph
covering pT and �tting the (mS,mT ) if and only if

m̃S(X) + m̃T (Y )− |X||Y | ≤ γ for X ⊆ S, Y ⊆ T (27)

and

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T − Y )− |X| ≤ γ for X ⊆ S, Y ⊂ T. • (28)

Proof. Recall that the members of T in (26) are non-empty, in particular, if T =
{T − Y }, then Y ⊂ T . By the last part of Theorem 3.9, the corollary follows.

In the example above, the subsets X = {e, f}, Y = {a, b} and the subpartition
T = {{c, d}} consisting of a single set (that is, q = 1) do violate the necessary
condition (26) since m̃S(X) + m̃T (Y )−|X||Y |+

∑q
i=1[pT (Ti)−|X|] = 8 + 8− 4 + [4−

2] = 14 6≤ 13 = 4 + 4 + 3 + 2 = γ.

The essence of the next corollary of Theorem 3.1 is that it su�ces to require (26)
only for subsets X ⊆ S with the j largestmS-values. We leave out the straightforward
proof which consists of pointing out the equivalence of (29) and (26).

Corollary 3.12. Let S, T, pT , and mV = (mS,mT ) be the same as in Theorem 3.9.
There is a simple bipartite graph G = (S, T ;E) covering pT and �tting mV if and
only if

m̃T (Y ) +

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), |Y |+ q} (29)

holds for every subset Y ⊆ T and subpartition {T1, . . . , Tq} of T − Y , (including the
special case when q = 0 or Y = ∅). •
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3.2.1 An NP-complete extension

One may be wondering if the synthesis problem solved in Theorem 3.1 could possi-
bly be extended to the corresponding subgraph problem, That is, the problem is to
characterize the situation when the requested bigraph G (covering pT ) is a subgraph
of an initial bipartite graph G0 = (S, T ;E0). However such an extension is unlikely
to exist since it includes NP-complete problems.
To see this, let G0 = (S, T ;E0) be a bipartite graph in which |S| = |T |+ 1. De�ne

mT to be identically 2 on T and mS to be identically 2 on S apart from two speci�ed
nodes s1, s2 ∈ S where mS(s1) = mS(s2) = 1. De�ne pT (Y ) = |Y | + 1 for each
non-empty Y ⊆ T and let pT (∅) = 0. Clearly, pT is intersecting supermodular.

Lemma 3.13. A subgraph G = (S, T ;E) of G0 covers pT and �ts mV = (mS,mT ) if
and only if G is a Hamilton path connecting s1 and s2.

Proof. A Hamilton path G contains a matching covering T and hence |ΓG(Y )| ≥ |Y |
for every Y ⊆ T . If indirectly G does not cover pT , then there is a non-empty subset
Y of T for which |ΓG(Y )| = |Y |. But then the subgraph of G induced by Y ∪ ΓG(Y )
has exactly 2|Y | = |Y ∪ΓG(Y )| edges, contradicting the assumption that G is a path.
Suppose now that G covers pT and �ts mV . Then G has 2|T | = |S ∪ T | − 1 edges.

It cannot comprise a circuit C since then we would have |ΓG(Y )| = |Y | for Y = T ∩C
contradicting the assumption that G covers pT . Therefore G is a spanning tree, and
since G �ts mV , it must be a Hamilton circuit connecting s1 and s2. •
Since the Hamilton path problem is NP-complete, so is the equivalent problem of

�nding a subgraph of G0 that covers pT and �ts mV .

4 The master base-polyhedron associated with real-

izable

degree-speci�cations

As before, S and T are two disjoint non-empty sets, V := S ∪ T , and m = (mS,mT )
is a degree-speci�cation for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively
intersecting supermodular set-function on T for which

pT (Y ) ≤ |S| for every subset Y ⊆ T . (30)

This implies that the complete bipartite graph (S, T ;E∗) is a simple bigraph covering
pT . Recall Theorem 3.9 which stated that there is a simple bigraph covering pT and
�tting m if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ γ

for X ⊆ S, Y ⊆ T , T a subpartition of T − Y . (31)

We allow throughout the empty subpartition with the convention p̃T (∅) = 0. For
brevity we call such a degree-speci�cation realizable (with respect to pT ). In this
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section, we investigate the problem when, rather than an exact degree speci�cation
m, lower and upper bounds are prescribed for the degrees of the requested simple
bigraph covering pT . Instead of attacking the problem directly, we exhibit �rst a
novel construction for a submodular function b0 and show that there is a simple one-
to-one correspondence between the realizable degree-speci�cations and the integral
elements of the base-polyhedron B0 = B(b0). Because of its central role, we call B0

the master base-polyhedron associated with pT and S.
Recall that for a submodular function b with b(V ) �nite, the polyhedron B(b) :=
{x ∈ RV : x̃ ≤ b, x̃(V ) = b(V )} is called a base-polyhedron, and we speak of a 0-
base-polyhedron if b(V ) = 0. Given this correspondence at hand, we can apply some
known characterizations for the non-emptiness of the intersection of a g-polymatroid
with a box and with a plank. This approach enables us to treat situations when, in
addition to degree-constraints, upper and lower bounds for the total number of edges
can also be prescribed.

4.1 A new submodular function

With each vector m = (mS,mT ), we associate the vector m′ = (mS,−mT ). Note that
the property m̃S(S) = m̃T (T ) is equivalent to m̃′(V ) = 0. The condition (31) for the
realizability of m is equivalent to the following.

m̃′(X ∪ Z) ≤ |T − Z||X| − p̃T (T ) + |T ||X|
for X ⊆ S,Z ⊆ T , T a subpartition of Z. (32)

De�ne a set-function b0 on V as follows. For X ⊆ S and Z ⊆ T , let

b0(X ∪ Z) := min{|T − Z||X| − p̃T (T ) + |T ||X| : T a subpartition of Z}. (33)

Clearly, (32) is equivalent to

m̃′(U) ≤ b0(U) whenever U ⊆ V . (34)

Claim 4.1. b0(∅) = 0 and b0(V ) = 0.

Proof. When Z = ∅, a subpartition of Z is also empty, and hence b0(∅) is indeed
zero.
For X = S and Z = T , we have b0(V ) = min{−p̃T (T )+ |T ||S| : T a subpartition of

T}. By choosing T to be empty, we see that the minimum is at most 0. On the other
hand −p̃T (T ) + |T ||S| ≥ 0 holds for every subpartition T of T since (30) implies that
p̃T (T ) ≤ |T ||S|. Therefore b0(V ) = 0. •

THEOREM 4.2. b0 is fully submodular.

Proof. Let V1 = X1 ∪ Z1 and V2 = X2 ∪ Z2 be two subsets of V with Xi ⊆ S and
Zi ⊆ T (i = 1, 2). Let Ti de�ne the optimizer subpartition in the de�nition of b0(Vi),
that is,

b0(Vi) = |T − Zi||Xi| − p̃T (Ti) + |Ti||Xi|.
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Let F0 denote the multi-union of T1 and T2, that is, each member of T1 and T2
occurs in F0, and if X is in both T1 and T2, then two copies of X occur in F0. Hence
|T1|+ |T2| = |F0|.
An uncrossing step consists of replacing two properly intersecting members A and

B with pT (A) > 0, pT (B) > 0 by their union and intersection. The uncrossing
procedure starts with F0 and repeatedly performs uncrossing steps. It is known that
the uncrossing procedure is �nite (as the number of sets does not change while to total
sum of the squares of cardinalities strictly increases). Let F0,F1,F2, . . . ,Fq denote
the subsequent families, that is, Fj+1 arises by applying the uncrossing step to two
properly intersecting members of Fj.

Claim 4.3. Every family Fj (j=0,. . . ,q) covers each element of Z1 ∩ Z2 at most
twice, each element of the symmetric di�erence Z1	Z2 at most once, and no element
outside Z1 ∪ Z2.

Proof. The property clearly holds for j = 0 and it is maintained throughout since
an uncrossing step does not a�ect the number of sets containing any given element of
T . •

Claim 4.4. If the family Fh for some h = 0, . . . , q contains two copies of a set W ,
then each family Fj (j = 0, . . . , q) contains two copies of W . In particular, W ∈ T1
and W ∈ T2.

Proof. By induction, it su�ces to show that both Fh+1 and Fh−1 contain two copies
of W .
By Claim 4.3, no member of Fh can intersect properlyW , and therefore both copies

of W belong to Fh+1. Similarly, Claim 4.3 implies that both copies of W must be in
Fh−1 since if the second copy of W in Fh arises as the intersection or the union of two
properly intersecting members A and B of Fh−1, then the elements of A ∩ B would
belong to A,B, and W . •

Claim 4.5. Let W be a member of Fj+1 arising as the intersection of two properly
intersecting members A and B of Fj, and let Y be any member of Fj+1 ∪ · · · ∪ Fq

intersecting W . Then W ⊂ Y .

Proof. We say that a pair of elements of T is non-separated by a family of sets if
no member of the family contains exactly one of the two elements. Clearly, if a pair
is non-separated, then it remains so after an uncrossing step.
By Claim 4.4, W does not occur in two copies and hence Y 6= W . By Claim 4.3,

any two elements of A∩B are non-separated by Fj and hence by each of Fj+1, . . . ,Fq,
as well. Therefore, as Y intersects W , it must properly include W . •

Claim 4.6. Let W be a member of Fj+1 arising as the union of two properly inter-
secting members A and B of Fj. Then W has a subset belonging to T1 and W has a
subset belonging to T2.

Proof. Suppose the claim fails to hold and let j be the smallest index occurring in
a counter-example. If both A and B would belong to F0, then one of them is in T1
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while the other one in T2, as these families are subpartitions. But in this case the pair
(W, j) would not be a counter-example.
Therefore at least one of A and B, say A, is not in F0. By Claim 4.5, A could not

arise as an intersection at an uncrossing step, that is, A arose as the union of two sets.
By the minimality of j, A has a subset belonging to T1 and A has a subset belonging
to T2. As W is a superset of A, W also has a subset belonging to T1 and a subset
belonging to T2. •
Let L denote the subfamily Fq consisting of those membersW for which pT (W ) > 0.

Clearly, L is laminar. Let P1 consist of the minimal members of L which are subsets
of Z1 ∩ Z2, with the convention that if two copies of a set W ⊆ Z1 ∩ Z2 belong to L,
then one of them is placed in P1. Let P2 consist of the members of L which are not
in P1.

Claim 4.7. P1 is a subpartition of Z1 ∩ Z2 and P2 is a subpartition of Z1 ∪ Z2.

Proof. Since L is laminar, its minimal members are disjoint and hence P1 is indeed
a subpartition.
To see that P2 is also a subpartition, assume indirectly that two members A and B

of P2 are not disjoint. Then the laminarity of L implies that one of A and B includes
the other, say, A ⊆ B. We must have A ⊂ B for if we had A = B, then one of A
and B would belong to P1 by the de�nition of P1. Because each element of Z1 	 Z2

belongs to at most one member of L, we have A ⊆ Z1 ∩ Z2. But A is not in P1, that
is, A is not a minimal member of L, contradicting the property that each element of
T belongs to at most two members of L. •

Claim 4.8. Let W be a member of P2. If W ⊆ Zi (i = 1, 2), then W has a subset
belonging to Ti.

Proof. Since the indices 1 and 2 play a symmetric role, we prove the claim only for
i = 1. That is, we assume that W ⊆ Z1 and will show that there is a subset of W
belonging to T1. If W is in P1, as well, that is, if two copies of W occur in L, then
we are done by Claim 4.4. Therefore, we can assume that W 6∈ P1.
By Claim 4.6, we are done if W has arisen as a union during the uncrossing proce-

dure. Suppose now that W arises as an intersection of A and B during the uncrossing
procedure. Then Claim 4.3 implies that W = A∩B ⊆ Z1 ∩Z2. Since W is not in P1,
there must be a set Y ∈ L for which Y ⊂ W , contradicting Claim 4.5.
In the remaining case, W belongs each of the families F0,F1, . . . ,Fq. In particular,

W is in F0. Since we are done if W ∈ T1, we can assume that W ∈ T2. In this case,
W − Z2 = ∅, that is, W ⊆ Z1 ∩ Z2. Since W is not in P1, there must be a set Y ∈ L
for which Y ⊂ W . Since W belongs to each Fj, Y could not arise as an intersection
or a union during the uncrossing procedure, and therefore Y is also a member of F0.
Since T2 is a subpartition, Y cannot be in T2, that is, Y ∈ T1. •
For simplifying calculations, we introduce the following four parameters.

τ1 := |T − Z1|+ |T1| and τ2 := |T − Z2|+ |T2|,

π1 := |T − (Z1 ∩ Z2)|+ |P1| and π2 := |T − (Z1 ∪ Z2)|+ |P2|.
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Claim 4.9. π2 ≤ τ1 and π2 ≤ τ2.

Proof. Since the role of τ1 and τ2 is symmetric, we prove only the �rst inequality.
Since P2 is a subpartition, P2 has at most |Z1 − Z2| members intersecting Z1 − Z2,
and, by Claim 4.8, P2 has at most T1 members not intersecting Z1 − Z2. Therefore
|P2| ≤ |Z2 − Z1| + |T1|. By adding this to the identity |T − (Z1 ∪ Z2)| = |T − Z1| −
|Z2 − Z1|, we obtain the required π2 ≤ τ1. •

Claim 4.10.
τ1 + τ2 ≥ π1 + π2

and
p̃T (T1) + p̃T (T2) ≤ p̃T (P1) + p̃T (P2).

Proof. Clearly, |T1| + |T2| = |F0| = |Fq| ≥ |L| = |P1| + |P2|. By adding this to
|T − Z1|+ |T − Z2| = |T − (Z1 ∩ Z2)|+ |T − (Z1 ∪ Z2)|, the �rst inequality follows.
Since pT is positively intersecting supermodular, an uncrossing step cannot decrease

the pT -sum of the current family. Hence p̃T (T1) + p̃T (T2) = p̃T (F0) ≤ p̃T (Fq) ≤
p̃T (L) = p̃T (P1) + p̃T (P2). •
For i = 1, 2, we have:

b0(Vi) = |T − Zi||Xi| − p̃T (Ti) + |Ti||Xi| = τi|Xi| − p̃T (Ti). (35)

Since P1 is a subpartition of Z1 ∩ Z2, we have

b0(V1∩V2) ≤ |T−(Z1∩Z2)||X1∩X2|− p̃T (P1)+|P1||X1∩X2| = π1|X1∩X2|− p̃T (P1).
(36)

Since P2 is a subpartition of Z1 ∪ Z2, we have

b0(V1∪V2) ≤ |T−(Z1∪Z2)||X1∪X2|− p̃T (P2)+|P2||X1∪X2| = π2|X1∪X2|− p̃T (P2).
(37)

By combining these inequalities, we obtain:

b0(V1) + b0(V2) = [τ1|X1| − p̃T (T1)] + [τ2|X2| − p̃T (T2)] =

τ1|X1 −X2|+ τ2|X2 −X1|+ (τ1 + τ2)|X1 ∩X2| − p̃T (T1)− p̃T (T2) ≥
π2|X1 −X2|+ π2|X2 −X1|+ (π1 + π2)|X1 ∩X2| − p̃T (P1)− p̃T (P2) =

[π1|X1 ∩X2| − p̃T (P1)] + [π2|X1 ∪X2| − p̃T (P2)] ≥
b0(V1 ∩ V2) + b0(V1 ∪ V2),

that is, the function b0 is indeed fully submodular. • •

Corollary 4.11. An integral vector m = (mS,mT ) is the degree-vector of a simple
bigraph covering pT if and only if the associated vector m′ = (mS,−mT ) belongs to
the 0-base-polyhedron B(b0) := {x ∈ RV : x̃ ≤ b0, x̃(V ) = 0}. •

Corollary 4.12. There is an integral g-polymatroid QS in RS so that a vector mS :
S → Z+ belongs to QS if and only if there is a simple bigraph covering pT for which
dG(s) = mS(s) for every s ∈ S.

Proof. Take QS to be the projection of B(b0) to S. •
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5 Degree and edge-number constraints

5.1 Basic properties of generalized polymatroids

In what follows, we make use of some basic notions and theorems of the theory of
generalized polymatroids. (For a background, see for example [19] or Chapter 14 in
book [17].) Let (p, b) be a fully paramodular (or, for short, paramodular) pair of
set-functions p and b de�ned on a ground-set V . By de�nition, this means that

b(X)− p(Y ) ≥ b(X − Y )− p(Y −X)

holds for every pair of subsets X, Y of V . The polyhedron Q(p, b) := {x ∈ RV :
p ≤ x̃ ≤ b} is called a g-polymatroid and (p, b) is its border pair. Here we con-
sider only integer-valued functions p and b. The empty set is also considered as a
g-polymatroid, though it cannot be de�ned with the help of a paramodular pair. A
special g-polymatroid is a box T (f, g) = {x ∈ RV : f ≤ x ≤ g} where f : V → Z ∪
{−∞}, g : V → Z ∪ {+∞} with f ≤ g. Another special g-polymatroid is a plank
K(α, β) = {x ∈ RV : α ≤ x̃(V ) ≤ β} where α ∈ Z ∪ ∪{−∞}, β ∈ Z ∪ {∞} with
α ≤ β.
With a submodular function b with �nite b(V ), we can associate the complementary

set-function p de�ned for U ⊆ V by p(U) := b(V ) − b(V − U). We list some basic
properties.

Claim 5.1. If p is the complementary function of a submodular function b, then (p, b)
is paramodular and B(b) = Q(p, b).

Claim 5.2. A g-polymatroid de�ned by an integral paramodular pair is a non-empty
integral polyhedron.

Claim 5.3. A non-empty g-polymatroid Q uniquely determines its de�ning paramod-
ular pair (p, b), namely,

p(U) = min{x̃(U) : x ∈ Q} and b(U) = max{x̃(U) : x ∈ Q}.

Claim 5.4. The intersection of two integral g-polymatroids is an integral polyhedron.
Q(p1, b1) ∩Q(p2, b2) is non-empty if and only if p1 ≤ b2 and p2 ≤ b1.

Claim 5.5. The intersection of a g-polymatroid, a box, and a plank is a g-polymatroid.

Claim 5.6. The intersection Q′ of a g-polymatroid Q = Q(p, b) and a box T = T (f, g)

is non-empty if and only if f̃ ≤ b and p ≤ g̃. When Q′ is non-empty, its unique border
pair (p′, b′) is given by

p′(U) = max{p(U ′)− g̃(U ′ − U) + f̃(U − U ′) : U ′ ⊆ V }, (38)

b′(U) = min{b(U ′)− f̃(U ′ − U) + g̃(U − U ′) : U ′ ⊆ V }. (39)
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Claim 5.7 (Linking property of g-polymatroids). If a g-polymatroid Q = Q(p, b) has
an element x′ with x′ ≥ f , and Q has an element x′′ with x′′ ≤ g, then Q has an
element x with f ≤ x ≤ g. In addition, x can be chosen to be integral if p, b, f, g are
integral.

Claim 5.8. The intersection Q′ of g-polymatroid Q = Q(p, b) and a plank K(α, β) is
non-empty if and only if α ≤ b(S) and p(S) ≤ β. In particular, if Q has an element
x′ with x̃′(V ) ≥ α and Q has an element x′′ with x̃′′(V ) ≤ β, then Q has an element
x with α ≤ x̃(V ) ≤ β. Moreover, if p, b, α, β are integral, then Q′ is an integral
polyhedron.

Claim 5.9. Given a non-empty subset S ⊂ V, the projection Q′ of a g-polymatroid
Q = Q(p, b) to RS (or, for short, to S) is the g-polymatroid Q(p|S, b|S) where p|S and
b|S are the restriction of p and b, respectively, on S. Each integral element of Q′ is
the projection of an integral element of Q.

5.2 Degree constraints

We are given a lower bound function fV = (fS, fT ) and an upper bound function
gV = (gS, gT ) on V = S ∪ T for which −∞ ≤ fV ≤ gV ≤ +∞.

THEOREM 5.10. Let pT be an intersecting supermodular function on T for which
pT (Y ) ≤ |S| for every Y ⊆ T . There is a simple bigraph G = (S, T ;E) covering pT
and degree-constrained by (f, g) if and only if

f̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃S(S −X)

for X ⊆ S, Y ⊆ T , T a subpartition of T − Y (40)

and

f̃S(X)− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃T (T − Y )

for X ⊆ S, Y ⊆ T , T a subpartition of T − Y . (41)

If pT is fully supermodular, then it su�ces to require the two conditions only for
subpartitions T having at most one member. If pT is fully supermodular and monotone
non-decreasing, then it su�ces to require the two conditions only for T = {∅} and
T = {T − Y }.

Proof. Let
f ′ := (fS,−gT ) and g′ := (gS,−fT ). (42)

Recall the submodular function b0 and let p0 denote its complementary function (that
is, p0(U) = −b0(V −U)). Then B(b0) = Q(p0, b0) and, by Corollary 4.11, the requested
bigraph exists if and only if the intersection Q′ = Q(p0, b0) ∩ T (f ′, g′) is non-empty.
By Claim 5.6, Q′ is non-empty precisely if f̃ ′ ≤ b0 and p0 ≤ g̃′. We are going to show
that f̃ ′ ≤ b0 is equivalent to (41) and that p0 ≤ g̃′ is equivalent to (40).
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By (33), f̃ ′ ≤ b0 is equivalent to requiring the following inequality for every pair of
subsets X ⊆ S, Z ⊆ T :

f̃ ′(X ∪ Z) ≤ |T − Z||X| − p̃T (T ) + |T ||X| whenever T is a subpartition of Z.

By taking Y := T − Z and observing that f̃ ′(X ∪ Z) = f̃S(X) − g̃T (Z) = f̃S(X) −
g̃T (T − Y ), we conclude that f̃ ′ ≤ b0 is equivalent to

f̃S(X)− g̃T (T − Y ) ≤ |Y ||X| − p̃T (T ) + |T ||X|

for X ⊆ S, Y ⊆ T , T a subpartition of T − Y,
which is the same as (41).
Let us prove not the equivalence p0 ≤ g̃′ and (40). By taking Y := T − Z and

X ′ := S −X, we have g̃′(X ′ ∪ Y ) = g̃S(X ′)− fT (Y ) = g̃S(S −X)− f̃T (Y ) and

p0(X
′ ∪ Y ) = −b0(X ∪ Z) =

−min{|T − Z||X| − p̃T (T ) + |T ||X| : T a subpartition of Z}.

Condition g′ ≥ p0 means that g′(X ′ ∪ Y ) ≥ p0(X
′ ∪ Y ) for every pair of sets X ′ ⊆

S, Y ⊆ T , and this is equivalent to requiring

g̃S(S −X)− f̃T (Y ) ≥ −[|Y ||X| − p̃T (T ) + |T ||X|]

for every subpartition T of T − Y , and this inequality is the same as the one in (40).
The last part of the theorem concerning fully supermodular pT follows exactly the

same way how the analogous statement was derived in the proof of Theorem 3.9. •
Corollary 5.11. Let pT be an intersecting supermodular function on T for which
pT (Y ) ≤ |S| for Y ⊆ T .

(A) There is a simple bigraph G′ covering pT and degree-constrained by (fT , gS) if
and only if (40) holds.

(B) There is a simple bigraph G′′ covering pT and degree-constrained by (fS, gT ) if
and only if (41) holds.

(AB) There is a simple bigraph G covering pT and degree-constrained by (fV , gV ) if
and only if both G′ and G′′ exist (that is, both (40) and (41) hold).

When pT is fully supermodular, it su�ces to require the two conditions only for
subpartitions T having at most one member. If pT is fully supermodular and monotone
non-decreasing, then it su�ces to require the two conditions only for T = {∅} and
T = {T − Y }.
Proof. (A) De�ne fS :≡ −∞ and gT :≡ +∞, and observe that (41) automatically
holds when X 6= ∅ or Y ⊂ T . If X = ∅ and Y = T , then T is empty and the
requirement in (41) becomes void. Hence Theorem 5.10 implies Part (A).
(B) De�ne fT :≡ −∞ and gS :≡ +∞, and observe that (40) automatically holds

when X ⊂ S or Y 6= ∅. If X = S and Y = ∅, then (41) reduces to p̃T (T ) ≤ |T ||S| for
every subpartition T of T , but this follows from the hypothesis that pT (Y ) ≤ |S| for
every Y ⊆ T . Hence Theorem 5.10 implies Part (B).
(AB) Theorem 5.10 implies immediately Part (AB). •
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Corollary 5.12. Let S and T be disjoint sets and let mS be a degree-speci�cation
on S for which m̃S(S) = γ. Let gT : T → Z+ be an upper bound function for which
gT (t) ≤ |S| for every t ∈ T . Let pT be a positively intersecting supermodular function
on T with pT (∅) = 0. There is a simple bigraph covering pT and �tting mS for which

dG(t) ≤ gT (t) whenever t ∈ T (43)

if and only if

m̃S(X) + p̃T (T )− |T ||X| ≤ γ for X ⊆ S and subpartition T of T (44)

and

m̃S(X)− |X||Y |+ p̃T (T )− |T ||X| ≤ g̃T (T − Y )

for X ⊆ S, Y ⊆ T , and subpartition T of T − Y (45)

where each of X, Y , and T may be empty.

Proof. (outline) De�ne fS := mS gS := mS, fT := −∞, and apply Theorem 5.10. •

Corollary 5.13. Let pT be an intersecting supermodular function on T for which
pT (Y ) ≤ |S| for Y ⊆ T . There is a simple bigraph G = (S, T ;E) covering pT and
degree-constrained by (fS, gS) if and only if

fS(s) ≤ |T | for s ∈ S. (46)

and

p̃T (T )− |T ||X| ≤ g̃S(S −X) for X ⊆ S, T a subpartition of T (47)

Proof. De�ne fT (t) ≡ −∞ and gT (t) ≡ +∞ and apply Theorem 5.10. Observe
that condition (40) automatically holds when Y 6= ∅. When Y = ∅, (40) is just (47).
Similarly, condition (41) automatically holds when Y 6= T . When Y = T , then T = ∅
and (41) requires fS(X) ≤ |X||T | for every X ⊆ S but this is equivalent to (46). •

Corollary 5.14. Let pT be an intersecting supermodular function on T for which
pT (Y ) ≤ |S| for Y ⊆ T . Let gT : T → Z+ be a function for which gT (t) ≤ |S| for
t ∈ T . There is a simple bigraph G = (S, T ;E) covering pT and degree-constrained
by gT if and only if

pT (Y ) ≤ g̃T (Y ) for Y ⊆ T . (48)

Proof. De�ne fV :≡ −∞ and gS :≡ +∞. Then (40) holds automatically (as we
showed this in the proof of Part (B) of Corollary 5.11). Condition (41) holds auto-
matically when X 6= ∅. If X = ∅, then (41) transforms to

p̃T (T ) ≤ g̃T (T − Y ) for Y ⊂ T , T = {V1, . . . , Vq} a subpartition of T − Y .

By Condition (48), pT (Vi) ≤ g̃(Vi) from which p̃T (T ) ≤
∑q

i=1 g̃T (Vi) ≤ g̃T (T −
Y ). Therefore the conditions of Theorem 5.10 hold and hence the required degree-
constrained bigraph exists. •
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Remark Corollary 5.14 is not particularly exciting since it can actually be formulated
in a more general form when G is a subgraph of an initial bipartite graph G0. That
was the content of Theorem 2.10. To derive Corollary 5.14, choose G0 to be the
complete bipartite graph G∗ = (S, T,E∗) and observe that (14) holds automatically
when Z 6= ∅. For Z = ∅, (14) is just (48).

5.3 Edge-number constraints

Suppose now that there exists a simple bigraph covering pT and constrained by (f, g),
that is, conditions (40) and (41) hold. Our next goal is to characterize the situation
when, in addition to the degree constraints (f, g), there are lower and upper bounds
α ≤ β for the number of edges, as well, where α and β are non-negative integers.

THEOREM 5.15. Suppose that conditions (40) and (41) hold. There is simple
bigraph G = (S, T ;E) covering pT and degree-constrained by (f, g) for which (A)

α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + |X||Y | − [p̃T (T )− |X||T |] ≥ α

for X ⊆ S, Y ⊆ T, T a subpartition of T − Y , (49)

(B) |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− |X||Y |+ p̃T (T )− |X||T | ≤ β

for X ⊆ S, Y ⊆ T, T a subpartition of T − Y , (50)

(AB) α ≤ |E| ≤ β if and only if both (49) and (50) hold.

When pT is fully supermodular, it su�ces to require the two conditions only for
subpartitions T having at most one member. If pT is fully supermodular and monotone
non-decreasing, then it su�ces to require the two conditions only for T = {∅} and
T = {T − Y }.

Proof. Consider the functions f ′ and g′ de�ned in (42). As we proved above, there is
a simple bigraph covering pT and constrained by (f, g) if and only if the g-polymatroid
Q′ = Q(p0, b0)∩T (f ′, g′) is non-empty. By our hypothesis Q′ is non-empty. Let (p′, b′)
denote the unique border pair of Q′ which can be obtained by applying Claim 5.6 to
p0, b0, f

′, g′.
Let Q′S denote the projection of Q′ to S. By Claim 5.9 the unique border pair of Q′S

is (p′|S, b′|S), and any integral element of Q′S is the projection of an integral element
of Q′. Therefore the requested bigraph exists if and only of the intersection of Q′S and
the plank KS(α, β) in RS is non-empty. By Claim 5.8 this intersection is non-empty
if and only if p′(S) ≤ β and α ≤ b′(S).
By applying (39) to U = S and U ′ = X ∪ Z (where X ⊆ S, Z ⊆ T ), we obtain

that α ≤ b′(S) is equivalent to requiring

α ≤ [|T − Z||X| − p̃T (T ) + |T ||X|]− f̃ ′(Z) + g̃′(S −X)
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for X ⊆ S,Z ⊆ T, T a subpartition of Z.

By letting Y = T−Z and observing that −f̃ ′(Z)+g̃′(S−X) = g̃T (T−Y )+g̃S(S−X),
we conclude that α ≤ b′(S) is equivalent to (49).
Let U = S, Y = T −Z, X = S −X ′, U ′ = X ′ ∪ Y . Then V −U ′ = X ∪Z, U ′−

S = Y, S − U ′ = X, and p0(U ′) = −b0(V − U ′) = −b0(X ∪ Z) = −b0(X ∪ (T − Y )).
Furthermore

p′(S) = max{p0(U ′)− g̃′(U ′ − S) + f̃ ′(S − U ′) : U ′ ⊆ V } =

= max{−b0(X ∪ (T − Y )) + f̃T (Y ) + f̃S(X) : X ⊆ S, Y ⊆ T}.

Hence β ≥ p′(S) is equivalent to

β ≥ −[|Y ||X| − p̃T (T ) + |T ||X|] + f̃T (Y ) + f̃S(X)

for every X ⊆ S, Y ⊆ T , T a subpartition of T − Y ,

and this is just (50). •

Corollary 5.16. Provided that there is simple bigraph covering pT and degree-
constrained by (f, g), the minimum number of edges of such a bigraph is

max{f̃S(X) + f̃T (Y )− |X||Y |+ p̃T (T )− |X||T | :
X ⊆ S, Y ⊆ T, T a subpartition of T − Y }. (51)

Analogous theorem can be formulated for the minimum number of edges, as well.

6 Packing branchings and arborescences

Let D = (V,A) be a digraph on n nodes. An arborescence is a directed tree in which
one node, its root-node, has no entering arc and the in-degree of all other nodes is 1.
A branching (V,B) of D is a directed forest consisting of arborescences. Its root-set
R(B) is the set of nodes of in-degree zero. By the size of a branching we mean the
number of its arcs while the root-size is |R(B)|. Obviously, |B| + |R(B)| = n. In
what follows the same term B will be used for a branching and its set of arcs.
D is called rooted k-edge-connected with respect to a root-node r0 if %D(X) ≥ k

for every ∅ ⊂ X ⊆ V − r0. By Menger, this is equivalent to requiring that there are
k edge-disjoint paths from r0 to v for every node v ∈ V .

6.1 Background

A major open problem in combinatorial optimization is to �nd a good characterization
for the existence of k disjoint common bases of two matroids. This is solved only in
special cases. For example, µ-element matchings of a bipartite graph form the common
bases of two matroids. Folkman and Fulkerson [11] proved the following.
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Theorem 6.1. A bigraph G = (S, T ;E) includes k disjoint matchings of size µ if and
only if

k(µ+ |Z| − |S ∪ T |) ≤ iG(Z) for Z ⊆ S ∪ T
where iG(Z) denotes the number of edges induced by Z.

As the branchings of a digraph form the common independent sets of two matroids,
the problems of �nding k disjoint spanning arborescences or k disjoint branchings of
size µ can also be viewed as special cases of the disjoint common bases problem. This
matroidal aspect particularly underpins the signi�cance of the following fundamental
result of Edmonds [8].

Theorem 6.2 (Edmonds). Let D = (V,A) be a digraph. (Weak form) D includes
k disjoint spanning arborescences with a speci�ed root-node r0 if and only if D is
rooted k-edge-connected. (Strong form) D includes k disjoint branchings with
speci�ed root-sets R1, R2, . . . , Rk if and only if %D(X) ≥ k− pR(X) for X ⊆ V where
pR(X) denotes the number of root-sets disjoint from X when X 6= ∅ and pR(∅) = 0.

Though Lovász [28] found a short proof relying on submodular functions and also a
great number of variations and generalizations have been developed (see the book of
Schrijver [34] or a recent survey by Kamiyama [26]), Edmonds' theorem and the topic
of disjoint branchings remained rather isolated from general frameworks like the one
of submodular �ows. Due to its speci�c position within combinatorial optimization,
it is particularly important to investigate extensions and variations.
An early variation of the weak form was proved in [13].

Theorem 6.3. A digraph D has k disjoint spanning arborescences with unspeci�ed
roots (that is, k disjoint branchings of size |V | − 1) if and only of∑q

i=1 %D(Vi) ≥ k(q − 1) for every subpartition {V1, . . . , Vq} of V .

The following extension is due to Cai [6] and Frank [13] (see also Theorem 10.1.11
in the book [17]).

Theorem 6.4. Let f : V → Z+ and g : V → Z+ be lower and upper bounds for
which f ≤ g. A digraph D = (V,A) includes k disjoint spanning arborescences so
that each node v is the root of at least f(v) and at most g(v) of these arborescences
if and only if f̃(V ) ≤ k,∑q

i=1 %D(Vi) ≥ k(q − 1) + f̃(V0) for every partition {V0, V1, . . . , Vq} of V

where q ≥ 1 and only V0 can be empty, and

g̃(X) ≥ k − %D(X) for every subset ∅ ⊂ X ⊆ V.

With similar techniques, the following generalization of Theorem 6.3 can also be
derived (though, to our best knowledge, it was not explicitly formulated earlier.)

THEOREM 6.5. A digraph D has k disjoint branchings of size µ if and only if∑q
i=1 %D(Vi) ≥ k[q − (n− µ)] for every subpartition {V1, . . . , Vq} of V.
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6.2 Packing branchings with prescribed sizes

The following possible extension emerges naturally for branchings and matchings,
as well. What is a necessary and su�cient condition for the existence of k disjoint
branchings in a digraph (respectively, k disjoint matchings in a bigraph) having pre-
scribed sizes µ1, µ2, . . . , µk? A bit surprisingly, the answer in the two cases is quite
di�erent. For bipartite matchings the problem was shown to be NP-complete even
for k = 2 ([25], [30], [31]). On the other hand, for branchings we have the following
straight generalization of Theorem 6.5.

THEOREM 6.6. Given k positive integers µ1, µ2, . . . , µk (µj ≤ n − 1), a digraph
D = (V,A) on n nodes has k disjoint branchings B1, . . . , Bk of sizes |Bj| = µj (j =
1, . . . , k) if and only if∑q

i=1 %D(Vi) ≥
∑k

j=1[q − (n− µj)]
+ for every subpartition P = {V1, . . . , Vq} of V .

(52)

Proof. Necessity. The root-set Rj of a branching Bj of size µj has mj := n − µj

elements. If Bj has no arc entering Vi, then Rj has an element in Vi, therefore there are
at least (q−mj)

+ arcs of Bj entering a member of the subpartition P = {V1, . . . , Vq},
implying that the total number

∑q
i=1 %D(Vi) of arcs entering some members of P is at

least
∑k

j [q−(n−µj)]
+. (Note that the assumption (µj ≤ n−1) is actually super�uous

since (52), when applied to q = 1 and P = {V }, implies that 0 = %D(V ) ≥
∑k

j=1[1−
(n−µj)]

+ from which each summand [1−(n−µj)]
+ must be zero, that is, 1 ≤ n−µj.)

Su�ciency. Let S = {s1, s2, . . . , sk} be a set of k elements. We may consider S as
the index set of the k branchings to be found. De�ne mS : S → Z+ by mS(sj) := mj

(j = 1, . . . , k). Let T := V and de�ne a set-function pT on T as follows.

pT (Y ) :=

{
k − %D(Y ) if ∅ ⊂ Y ⊆ T

0 if Y = ∅.
(53)

Then pT is intersecting supermodular. From (52), we have

q∑
i=1

%D(Vi) ≥
k∑

j=1

(q −mj)
+ =

k∑
j=1

max{q −mj, 0} =

kq +
k∑

j=1

max{−mj,−q} = kq −
k∑

j=1

min{mj, q}

from which

q∑
i=1

pT (Vi) =

q∑
i=1

[k − %D(Vi)] ≤
k∑

j=1

min{mj, q} =
∑
s∈S

min{mS(s), q}.

Therefore (21) holds and Theorem 3.1 implies that there is a simple bigraph G =
(S, T ;E) covering pT for which dG(s) = mS(s) for every s ∈ S.
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For sj ∈ S let Rj denote the set of neighbours of sj in G. Then |Rj| = mj for
j = 1, . . . , k. Since each non-empty subset Y of V has at least pT (Y ) = k − %D(Y )
neighbours, the number of non-neighbours is at most %D(Y ), that is, the number of
sets Rj's disjoint form Y is at most %D(Y ). The strong form of Edmonds' theorem
implies that there are k disjoint branchings B1, . . . , Bk with root sets R1, . . . , Rk,
respectively. By the de�nition of mj, we have |Bj| = n− |Rj| = n−mj = µj. •

With a similar approach, we can characterize the situation when not only the sizes
of the k disjoint branchings are speci�ed but the indegree of each node in their union,
as well.

THEOREM 6.7. Let D = (V,A) be a digraph on n nodes, min : V → Z+ an in-
degree prescription with 0 ≤ min(v) ≤ %D(v) and min(v) ≤ k for each v ∈ V . Let
µ1, µ2, . . . , µk be k positive integers such that µ1 + · · · + µk = m̃in(V ). There is a
subgraph (V, F ) of D which is the union of k disjoint branchings B1, . . . , Bk of sizes
|Bj| = µj (j = 1, . . . , k) and for which

%F (v) = min(v) for each v ∈ V

if and only if

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥
k∑

j=1

[q + |Y | − (n− µj)]
+ (54)

for every subset Y ⊆ V and every subpartition {V1, . . . , Vq} of V − Y .

Proof. Necessity. Suppose that the requested k branchings B1, . . . , Bk exist and let
F = B1 ∪ · · · ∪ Bk. Let Y ⊆ V and P = {V1, . . . , Vq} a subpartition of V − Y . As
before, mj = n− µj is the cardinality of the root-set Rj of Bj. Therefore the number
of non-root nodes in Y (= |Y − Rj|) plus the number of Vi's disjoint from Rj is at
least |Y |+ q −mj, and hence the number of arcs of Bj entering a node of Y plus the
number of arcs of Bj entering a member of P is at least (|Y |+ q −mj)

+. Hence

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥ m̃in(Y ) +

q∑
i=1

%F (Vi) =

k∑
j=1

[
∑
v∈Y

%Bj
(v) +

q∑
i=1

%Bj
(Vi)] ≥

k∑
j=1

(|Y |+ q −mj)
+,

and (54) follows.
Su�ciency. Let S, T , and mS be the same as in the preceding proof. De�ne a

set-function pT on T as follows.

pT (Y ) :=


k − %D(Y ) if Y ⊆ T, |Y | ≥ 2

k −min(v) if Y = {v}, v ∈ V }
0 if Y = ∅.

(55)
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The hypothesis min(v) ≤ %D(v) implies that k −min(v) ≥ k − %D(v) and hence pT is
intersecting supermodular. Let T = {V1, . . . , Vq, Vq+1, . . . , Vq′} be a subpartition of V
so that the �rst q members are of cardinalities at least two while the subsequent mem-
bers are singletons. Let P = {V1, . . . , Vq} and let Y denote the union of Vq+1, . . . , V

′
q

(that is, |Y | = q′ − q).
By (54), we have

m̃in(Y ) +

q∑
i=1

%D(Vi) ≥
k∑

j=1

[q′ − (n− µj)]
+ =

k∑
j=1

max{q′ −mj, 0} =

kq′ +
k∑

j=1

max{−mj,−q} = kq′ −
k∑

j=1

max{mj, q
′}

from which

q′∑
i=1

pT (Vi) =
∑
v∈Y

[k −min(v)] +
k∑

i=1

[k − %D(Vi)] = k(|Y |+ q)− m̃in(Y )−
k∑

i=1

%D(Vi) =

kq′ − m̃in(Y )−
k∑

i=1

%D(Vi) ≤
k∑

j=1

max{mj, q
′} =

k∑
j=1

max{mS(sj), q
′}.

Therefore (21) holds with q′ in place of q and with Vi in place of Ti, and Theorem 3.1
implies that there is a simple bigraph G = (S, T ;E) covering pT for which dG(s) =
mS(s) for every s ∈ S. Since G covers pT , it follows that dG(v) ≥ pT (v) = k−min(v).
Hence

∑
v∈V

[k −min(v)] ≤
∑
v∈V

dG(v) =
∑
s∈S

dG(s) =
∑
s∈S

mS(s) =
k∑

j=1

(k − µj)

But here we must have equality since we assumed that µ1 + · · ·+ µk = m̃in(V ). This
implies that dG(v) = k −min(v) for each v ∈ V .
For sj ∈ S let Rj denote the set of neighbours of sj in G. Then |Rj| = mj for

j = 1, . . . , k. Since each non-empty subset Y of V has at least pT (Y ) = k − %D(Y )
neighbours, the number of non-neighbours is at most %D(Y ), that is, the number of
sets Rj's disjoint form Y is at most %D(Y ). The strong form of Edmonds' theorem
implies that there are k disjoint branchings B1, . . . , Bk with root sets R1, . . . , Rk,
respectively. By the de�nition of mj, we have |Bj| = n− |Rj| = n−mj = µj.
Let F := B1 ∪ · · · ∪ Bk. As dG(v) is the number of Rj's containing v, the indegree

%F (v) is k − dG(v) = min(v), as required. •

Note that the indegree %F (v) in the union F of k disjoint branchings is exactly
k minus the number of root-sets not containing v. Therefore Theorem 6.7 could be
described in an equivalent form when, instead of the indegree of each node v in the
union of k branchings with speci�ed sizes, the number of root-sets containing v is
prescribed.
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6.3 Packing branchings with bounds on sizes, on total inde-

grees, and on total size

Suppose now that, instead of exact prescription µj for the size of the branchings Bj,
we are given a lower bound ϕj and an upper bound γj with 0 ≤ ϕj ≤ γj ≤ n − 1
(j = 1, . . . , k). Furthermore, instead of the exact prescription min(v) for the indegree
%F (v) (v ∈ V ), where F denotes the union of the k branchings, we are given a lower
bound fin(v) and an upper bound gin(v) for which 0 ≤ fin(v) ≤ gin(v) ≤ k. Moreover,
we impose a lower bound αF and an upper bound βF for the cardinality of the union
of the k branchings.
The proof of Theorem 6.6 relied on a one-to-one correspondence between simple

bigraphs G = (S, T ;E) covering the function pT de�ned in (53) (where T = V and
S = {s1, . . . , sk} is a k-element index set of the k branchings to be found) and the
families R = {R1, . . . , Rk} of k root-sets satisfying the necessary condition in the
strong form of Edmonds' theorem (which required that %D(Y ) is at least the number
of Ri's disjoint from Y for each non-empty Y ⊆ V ). Let B1, . . . , Bk denote the k
disjoint branchings ensured by Edmonds' theorem for which R(Bj) = Rj, and let
F = B1 ∪ · · · ∪Bk.
In this correspondence, the degree of a node sj ∈ S is the cardinality of Rj, that is,

dG(sj) = |Rj| = n− |Bj|.

Furthermore, the degree of a node v ∈ V = T is the number of root-sets Rj's contain-
ing v, that is,

dG(v) = k − %F (v).

Finally, for the total number of edges of G, we have

|E| =
k∑

j=1

dG(sj) =
k∑

j=1

|Rj| =
k∑

j=1

(n− |Bj|) = nk − |F |.

De�ne
fS(sj) := n− γj and gS(sj) = n− ϕj for sj ∈ S,

fT (v) := k − gin(v) and gT (v) := k − fin(v) for v ∈ T = V ,

α := kn− βF and β := kn− αF .

By this vocabulary, ϕj ≤ |Bj| ≤ γj if and only if fS(sj) ≤ dG(sj) ≤ gS(sj) (sj ∈ S).
Furthermore, fin(v) ≤ %F (v) ≤ gin(v) if and only if fT (v) ≤ dG(v) ≤ gT (v) (v ∈ T ).
Finally, αF ≤ |B1 ∪ · · · ∪ Bk| ≤ βF if and only if α ≤ |E| ≤ β. By aggregating
Theorems 5.10 and 5.15, we obtain the following.

THEOREM 6.8. In a digraphD = (V,A) on n nodes, there are k disjoint branchings
B1, . . . , Bk for which ϕj ≤ |Bj| ≤ γj (j = 1, . . . , k), for which fin(v) ≤ %F (v) ≤ gin(v)
(v ∈ V ), and for which αF ≤ |F | ≤ βF , where F = B1 ∪ · · · ∪ Bk, if and only if
the conditions (40), (41), (49), and (50) hold for the choice of fT , gT , fS, gS, α, β
de�ned above. •
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7 Maximum term rank problems

7.1 Degree-speci�ed max term rank

The members of G(mS,mT ) (that is, simple bigraphs �tting the degree-speci�cation
(mS,mT )) can be identi�ed with (0, 1)-matrices of size |S||T | with row sum vector
mS and column sum vector mT . Let M(mS,mT ) denote the set of these matrices.
Ryser [33] de�ned the term rank of a (0, 1)-matrix M by the maximum number
of independent 1's which is the matching number of the bipartite graph correspond-
ing to M . Ryser developed a formula for the maximum term rank of matrices in
M(mS,mT ). The maximum term rank problem is equivalent to �nding a bipartite
graph G in G(mS,mT ) whose matching number ν(G) is as large as possible. Although,
we use graph terminology, the original name "term rank" for the problem will be kept
throughout. In graphical terms, Ryser's theorem is equivalent to the following.

Theorem 7.1 (Ryser). Let ` ≤ |T | be an integer. Suppose that G(mS,mT ) is non-
empty, that is, Condition (9) holds. Then G(mS,mT ) has a member G with matching
number ν(G) ≥ ` if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ (`− |X| − |Y |) ≤ γ whenever X ⊆ S, Y ⊆ T. (56)

Moreover, (56) holds if the inequality in it is required only when X consists of the i
largest values of mS and Y consists of the j largest values of mT (i = 0, 1, . . . , |S|, j =
0, 1, . . . , |T |).

Observe that the conditions (56) and (9) in Theorem 7.1 can be united as follows.

m̃S(X) + m̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ γ whenever X ⊆ S, Y ⊆ T, (57)

that is, assuming this inequality, we do not need to impose explicitly the non-emptiness
of G(mS,mT ).
Note that the strengthening formulated in the second part of the theorem is nothing

but a straightforward observation. Beyond the aesthetic joy, a practical advantage is
that such simpli�ed condition can easily be checked in polynomial time since there are
only a few ((|S| + 1)(|T | + 1)) inequalities to be checked. This will be crucial in the
algorithm described below for the degree-constrained max term rank problem. Note
that the original proof of Ryser gives rise to a polynomial time algorithm to compute
the matrix itself. Also, Brualdi and Ross [5] described a simpler proof and this results
in a simple algorithm.
We also remark that there is a characterization given by Haber [23] for the minimum

term rank of the graphs in G(mS,mT ) but we deal only with the maximum term rank
problem.

7.1.1 Relation to network �ows

As the bipartite matching problem and the more general degree-prescribed subgraph
problem can be treated with network �ow technique, one may be wondering if Ryser's
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theorem could also be derived via network �ows. Ford and Fulkerson, for example,
remarked in their classic book ([12], p. 89) that:

"Neither term rank problem appears amenable to �ow approach".

Such a link could help solving the weighted and the subgraph version of the max
term rank problem. But recently it turned out that the failure of the attempt of Ford
and Fulkerson was was not just by chance. It was proved ([25], [30], [31]) that the
problem of deciding whether an initial bigraph G0 has a perfectly matchable degree-
speci�ed subgraph is NP-complete. Therefore both the weighted and the subgraph
versions of the max term rank problem is NP-complete, showing that even the theory
of submodular �ows cannot help. The �rst goal of this section is to show that Ryser's
theorem immediately follows from the general result on covering a supermodular func-
tion by simple bigraphs developed in Section 3.
Unfortunately not only weighted, but quite natural unweighted extensions also

turned out to be NP-complete. For example, �nding a member of G(mS,mT ) in
which there is a subgraph with speci�ed degrees is equivalent to �nding two disjoint
simple bipartite graphs on the same node-set, and this latter problem was shown to
be NP-complete by Dürr, Guinez, and Matamala [7] (see Proposition 2.13).
In the light of the NP-complete problems in the close neighbourhood, it is pleasing

to realize that there are nicely tractable extensions of the max term rank problem.
In the present section, we shall extend Ryser's theorem to the case when the bigraph
with high matching number is degree-constrained and edge-number constrained, not
just degree-speci�ed.
In paper [1], we shall develop an augmentation and a matroidal generalization. In

the �rst one, a given initial bigraph is to be augmented to get a simple degree-speci�ed
bigraph with matching number at least `. In matrix terms, this means that some of
the entries of the (0, 1)-matrix are speci�ed to be 1. This is in sharp contrast with
the NP-completeness of that version when some entries of the matrix are speci�ed to
be 0. In the matroidal extension of Ryser's theorem, there are matroids on S and on
T and we want to �nd a degree-speci�ed simple bigraph including a matching that
covers bases in both matroids.

7.1.2 Proof of Ryser's theorem

Proof. Necessity. Let G be a bipartite graph with the requested properties. Since G
is simple, it has at least m̃S(X) + m̃T (Y )−|X||Y | edges having at least one end-node
in X∪Y . Moreover, since G has a matching of ` edges, there are at least (|X∪Y |−`)
edges connecting S −X and S − Y . Therefore the total number γ of edges is at least
m̃S(X) + m̃T (Y )− |X||Y |+ `− |X ∪ Y |, that is, (56) is indeed necessary.
Su�ciency. We need the following de�ciency form of Hall's theorem.

Lemma 7.2 (Hall and Ore). Let G = (S, T ;E) be a bipartite graph and ` ≤ |T | an
integer. The matching number ν(G) is at least ` (that is, there is a matching of `
edges) if and only if

|Γ(Y )| ≥ `− |T − Y | holds for every Y ⊆ T. (58)
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De�ne a set-function pT on T by

pT (Y ) :=

{
`− (|T − Y |) if ∅ ⊂ Y ⊆ T

0 if Y = ∅.
(59)

Then pT is fully supermodular and monotone non-decreasing. If there is a simple
bipartite graphG = (S, T ;E) covering pT and �tting (mS,mT ), thenG has a matching
of size ` by Lemma 7.2, and we are done. Suppose now that no such a G exists. Since
G(mS,mT ) assumed to be non-empty, (27) holds. By Corollary 3.11, there are subsets
X ⊆ S and Y ⊂ T violating (27), that is,

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T − Y )− |X| > γ.

By p̃T (T − Y ) = ` − |Y |, we have m̃S(X) + m̃T (Y ) − |X||Y | + ` − |Y | − |X| > γ,
contradicting (56). •

7.2 Degree and edge-number constrained max term rank

Our goal is to extend Ryser's theorem for the case when upper or lower bounds are
given for the degrees rather than exact prescriptions. Bounds for the total number
of edges can also be incorporated. Let fV = (fS, fT ) and gV = (gS, gT ) be lower and
upper bound functions with 0 ≤ fV ≤ gV . As we are interested in simple bigraphs,
we may suppose that gS(s) ≤ |T | for every s ∈ S and gT (t) ≤ |S| for every t ∈ T .
Ryser's theorem was derived above by applying Corollary 3.11 to the set-function

pT de�ned in (59). By applying Corollary 5.11 to the same pT , we obtain the following
extension.

THEOREM 7.3. Let ` ≤ |T | be an integer, fV = (fS, fT ) and gV = (gS, gT ) bounds
with fV ≤ gV .

(A) There is a simple bigraph G′ = (S, T ;E ′) with matching number ν(G) ≥ ` and
degree-constraints (fT , gS) if and only if

f̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ g̃S(S −X) whenever X ⊆ S, Y ⊆ T. (60)

Moreover, (60) holds if the inequality in it is required only when X consists of the i
largest values of gS and Y consists of the j largest values of fT (i = 0, 1, . . . , |S|, j =
0, 1, . . . , |T |).
(B) There is a simple bigraph G′′ = (S, T ;E ′′) with matching number ν(G) ≥ ` and
degree-constraints (fS, gT ) if and only if

f̃S(X)− |X||Y |+ (`− |X| − |Y |)+ ≤ g̃T (T − Y ) whenever X ⊆ S, Y ⊆ T. (61)

Moreover, (61) holds if the inequality in it is required only when X consists of the i
largest values of fS and Y consists of the j largest values of gT (i = 0, 1, . . . , |S|, j =
0, 1, . . . , |T |).
(AB) There is a simple bigraph G = (S, T ;E) with matching number ν(G) ≥ ` and
degree-constraints (fV , gV ) if and only if both G′ and G′′ exist (that is, both (60) and
(61) hold). •
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By applying Theorem 5.15 to the same pT de�ned in (59), we obtain the following
extension.

THEOREM 7.4. Suppose that there is a simple bigraph with matching number
at least ` which is degree-constrained by (fV , gV ) (that is, conditions (60) and (61)
hold). There is simple bigraph G = (S, T ;E) with matching number at least ` which
is degree-constrained by (fV , gV ):

(A) for which α ≤ |E| if and only if

g̃S(S −X) + g̃T (T − Y ) + |X||Y | − (`− |X| − |Y |)+ ≥ α for X ⊆ S, Y ⊆ T, (62)

Moreover, (62) holds if the inequality in it is required only when X consists of the i
largest values of gS and Y consists of the j largest values of gT (i = 0, 1, . . . , |S|, j =
0, 1, . . . , |T |).
(B) |E| ≤ β if and only if

f̃S(X) + f̃T (Y )− |X||Y |+ (`− |X| − |Y |)+ ≤ β for X ⊆ S, Y ⊆ T, (63)

Moreover, (63) holds if the inequality in it is required only when X consists of the i
largest values of fS and Y consists of the j largest values of fT (i = 0, 1, . . . , |S|, j =
0, 1, . . . , |T |).
(AB) α ≤ |E| ≤ β if and only if both (62) and (63) hold. •

7.2.1 Algorithmic aspects

As already indicated above, the original proof of Ryser is algorithmic. Using this
as a subroutine, we describe an algorithm to �nd a degree-constrained bigraph with
matching number at least `. A speci�c feature of the algorithm is that it makes use of
Theorem 7.3 (and does not re-prove it). Another basic constituent is the observation
that conditions (60) and (61) can easily be checked in polynomial time, as stated in the
theorem, since it su�ces to check the inequalities in question only for (|S|+1)(|T |+1)
cases. The algorithm starts by checking (60) and (61), and terminates if anyone of
them fails to hold. Suppose now that both conditions do hold.
Assume that there is a loose node v meaning that fV (v) < gV (v). We can check

in polynomial time whether fV (v) can be increased by 1 without destroying (60) and
(61), and if it can, increase fV (v) by 1. By repeating this operation as long as possible,
we arrive at a situation where fV (v) cannot be increased any more at any loose node.
By Theorem 7.3, there is a simple bigraph G with ν(G) ≥ ` and degree-constrained

by (fV , gV ). Then dG(v) = fV (v) clearly holds for a node with fV (v) = gV (v), but
dG(v) = fV (v) holds for a loose node v, as well, since if we had fV (v) < dG(v), then
fV (v) could be increased without destroying the conditions. We can conclude that
mV := fV and γ := fS(S) satisfy (56) and therefore Ryser's algorithm (or the simpler
algorithm by Brualdi and Ross) can be applied to construct the requested G.

The same approach works in the case when, in addition to the degree-constraints
(fV , gV ), there is a lower bound α and an upper bound β for the number of edges.
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First, we can check in polynomial time if each of conditions (60), (61), (62), and
(63) holds. If any of them is violated, the algorithm terminates. Suppose that these
conditions hold. We can also check in polynomial time if there is a loose node v for
which fV (v) can be increased by 1 without violating any of these conditions, and we
make these liftings of fT as long as possible. Therefore the �nal fV and gV continue
to meet the four conditions. By Theorem 7.3, there is a bigraph G satisfying the
requirements.
By Theorem 7.4, there is a simple bigraph G = (S, T ;E) with ν(G) ≥ ` and

α ≤ |E| ≤ β which is degree-constrained by (fV , gV ). Then dG(v) = fV (v) clearly
holds for a node with fV (v) = gV (v), but dG(v) = fV (v) holds for a loose node v, as
well, since if we had fV (v) < dG(v), then fV (v) could be increased without destroying
the conditions. We can conclude that mV := fV and γ := fS(S) satisfy (56).

With a little care, it can be shown that the complexity of the algorithm above to
construct the degree-speci�cation mV satisfying (56) for which fV ≤ mV ≤ gV and
α ≤ m̃S(S) ≤ β is O(n2 log n).

7.3 Further matching-type requirements

A special case of the max term rank problem characterizes degree-speci�cations which
can be realized by a perfectly matchable bipartite graph. Brualdi [4] characterized
degree-speci�cations which can be realized by elementary bipartite graphs. (A per-
fectly matchable bigraph is elementary if it has a perfect matching after removing
any one of its edges.) His result is extended in the [2] to so-called k-elementary
bigraphs.
In this section, we describe yet another model for degree-speci�ed bigraphs. By a

T2-forest we mean a bigraph (S, T ;F ) which is a forest with dF (t) = 2 for every t ∈ T .
Lovász originally developed Theorem 2.9 to characterize bigraphs G0 = (S, T ;E0)
including a T2-forest.

Theorem 7.5. In a bigraph G = (S, T ;E), there exists a T2-forest if and only if

|ΓG(Y )| ≥ |Y |+ 1 for ∅ 6= Y ⊆ T. (64)

Lovász used this result to prove a conjecture of Erd®s on 2-colourability of hyper-
graphs with the strong Hall inequality. Here we show another application.

THEOREM 7.6. Let S and T be disjoint sets with |S| ≥ |T |+ 1 and let V = S ∪T .
Let mV = (mS,mT ) be a degree-speci�cation for which m̃S(S) = m̃T (T ) = γ and
mT (t) ≥ 2 for every t ∈ T . There exists a simple bigraph G = (S, T ;E) �tting mV

and including a T2-forest if and only if (9) holds and

m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ |T |+ 1 ≤ γ for ∅ 6= X ⊆ S, Y ⊆ T. (65)
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Proof. Necessity. Theorem 2.5 stated that (9) was the necessary and su�cient
condition for the realizability of (mS,mT ).
Suppose that there is a simple bigraph G = (S, T ;E) realizing mV and including a

T2-forest F . The graph has at least m̃S(X) + m̃T (Y )− |X||Y | edges with at least one
end in X ∪ Y . Forest F has exactly 2|T − Y | edges ending in T − Y . Among these
edges, at most |X|+ |T − Y | − 1 are induced by X ∪ (T − Y ) since F is a forest (and
X is non-empty). Therefore F has at least

2|T − Y | − (|X|+ |T − Y | − 1) = |T | − |X| − |Y |+ 1

edges connecting T − Y and T − X. By combining these observations, we conclude
that the left hand side of the inequality in (65) is indeed a lower bound for the number
γ of edges of G.
Su�ciency. De�ne a set-function pT on T by

pT (Y ) :=

{
|Y |+ 1 if ∅ ⊂ Y ⊆ T

0 if Y = ∅.
(66)

Then pT is intersecting supermodular and monotone non-decreasing. If there is a
simple bigraph G covering pT and �tting mV , then Theorem 7.5 implies that G has a
T2-forest and we are done. If no such G exists, then Theorem 3.9 implies that there
are subsets X ⊆ S, Y ⊆ T and a subpartition T = {T1, . . . , Tq} of T − Y for which

m̃S(X) + m̃T (Y )− |X||Y |+ p̃T (T )− |T ||X| > γ,

that is,

m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ (67)

We cannot have q = 0, that is, T cannot be empty because of (9).
We cannot have X = ∅, for otherwise

m̃T (Y ) + |T − Y |+ |T − Y | ≥ m̃T (Y ) +

q∑
i=1

(|Ti|+ 1) =

m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ,

from which 2|T − Y | > γ − m̃(T ) = m̃T (T − Y ), contradicting the hypothesis that
mT (t) ≥ 2 for each t ∈ T . Therefore X 6= ∅. Since q ≤ |T − Y | and |X| ≥ 1, we have
q(|X| − 1) ≤ |T − Y |(|X| − 1) from which

−|X| − |Y |+ |T |+ 1 = |T − Y | − (|X| − 1) ≥ |T − Y | − q(|X| − 1) =

|T − Y |+ q − q|X| ≥
q∑

i=1

(|Ti|+ 1)− q|X|.
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This and (67) imply

m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ |T |+ 1 ≥

m̃S(X) + m̃T (Y )− |X||Y |+
q∑

i=1

(|Ti|+ 1)− q|X| > γ,

contradicting (65), •
Actually, Theorem 2.9 implies the following more general form of Theorem 7.5 in

which the forest has a speci�ed degree (not necessarily identically 2) at each node in
T .

Theorem 7.7. Let mF : T → Z+ be a degree speci�cation. In a bigraph G =
(S, T ;E), there exists a forest F with dF (t) = mF (t) (t ∈ T ) if and only if

|ΓG(Y )| ≥ m̃F (Y )− |Y |+ 1 for ∅ 6= Y ⊆ S. (68)

Consequently, Theorem 7.6 can also be generalized in such a way that the simple
bigraph should �t a degree speci�cation mV and should include a forest with speci�ed
degrees in the nodes in T .

THEOREM 7.8. Let S and T be disjoint sets and V := S ∪T . Let mV = (mS,mT )
be a degree-speci�cation for which m̃S(S) = m̃T (T ) = γ, and let mF : T → Z+

be a degree speci�cation on T for which mF ≤ mT . There exists a simple bigraph
G = (S, T ;E) �tting mV and including a forest F with dF (t) = mF (t) (t ∈ T ) if and
only if (9) holds and

m̃S(X)+m̃T (Y )−|X||Y |+m̃F (T−Y )−|T−Y |−|X|+1 ≤ γ for ∅ 6= X ⊆ S, Y ⊆ T. •
(69)

We also remark that the results of Section 4 can be used in a similar way to gen-
eralize Theorem 7.6 so as to have upper and lower bounds for the degrees of the
nodes.

7.4 Wooded hypergraphs

A hypergraph is called wooded if it can be trimmed to a graph which is a forest, that
is, if it is possible to select two distinct elements from each hyperedge in such a way
that the selected pairs, as graph edges, form a forest. Suppose we have a hypergraph
H = (S, T ) on node-set S. It is well known that H can be represented with a simple
bipartite graph GH = (S, T ;E) where the elements of T corresponds to the hyperedges
and the set of neighbours of t ∈ T in GH is just the hyperedge corresponding to t.
Obviously, H is wooded precisely if the associate bipartite graph GH has a T2-tree.
In this terminology, Theorem 7.5 assets that a hypergraph is wooded if and only if
the union of any j > 0 hyperedges has at least j + 1 elements.
Theorem 7.6 can also be reformulated in terms of wooded hypergraphs but here we

do this only for the special case when the hypergraph is `-uniform where ` ≥ 2.
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Corollary 7.9. Let mS be a degree-speci�cation on S with m̃S(S) = γ and let ` ≥ 2
be an integer. There is an `-uniform wooded hypergraph �tting mS if and only if
τ := γ/` is an integer and

mS(s) ≤ τ ≤ |S+| − 1 for s ∈ S+ (70)

where S+ = {s ∈ S : mS(s) > 0}.
Proof. As the necessity of the conditions is straightforward, we consider only su�-
ciency. Since nodes s ∈ S with mS(s) = 0 will not belong to any hyperedge, we can
delete them, and thus assume that S+ = S. Note that (70) implies that m̃S(X) ≤ τ |X|
for every X ⊆ S.
Let T be a set of τ elements. De�ne mT (t) := ` for each t ∈ T and let pT be a set-

function on T de�ned in (66). If there is a simple bigraph G = (S, T ;E) covering pT
and complied with (mS,mT ), then G is wooded and the hypergraph on S associated
with G is an `-uniform wooded hypergraph, in which case we are done.
Suppose that the requested bigraph does not exist. Then one of the conditions in

Theorem 7.6 fails to hold. Suppose �rst that there are sets X ⊆ S, Y ⊆ T violating
(9), that is, m̃S(X) + m̃T (Y )− |X||Y | > γ, implying

m̃S(X) + |Y |(`− |X|) = m̃S(X) + `|X| − |X||Y | > γ = τ`.

If ` ≥ |X|, then

m̃S(X) + τ(`− |X|) = m̃S(X) + |T |(`− |X|) ≥ m̃S(X) + |Y |(`− |X|) > τ`,

from which m̃S(X) > τ |X|, a contradiction.
If ` < |X|, then

γ = m̃S(S) ≥ m̃S(X) ≥ m̃S(X) + |Y |(`− |X|) > γ,

a contradiction again, showing that (9) holds.
Consider now the case when there are sets ∅ 6= X ⊆ S, Y ⊆ T violating (65), that

is,
m̃S(X) + m̃T (Y )− |X||Y | − |X| − |Y |+ τ + 1 > γ

from which

m̃S(X)+|Y |(`−|X|−1)−|X|+τ+1 = m̃S(X)+`|Y |−|X||Y |−|X|−|Y |+τ+1 > γ = τ`.

If ` > |X|+ 1, then

m̃S(X) + τ(`− |X| − 1)− |X|+ τ + 1 ≥ m̃S(X) + |Y |(`− |X| − 1)− |X|+ τ + 1 > τ`

from which m̃S(X)− τ |X| − |X|+ 1 > 0, and hence τ |X| ≥ m̃S(X) > τ |X|+ |X| − 1,
implying that X = ∅, a contradiction.
Suppose now that ` ≤ |X| + 1. Since mS(s) is positive for every s ∈ S, we have

m̃S(S)− |S| ≥ m̃S(X)− |X|. Hence

m̃S(S)−|S|+τ+1 ≥ m̃S(X)−|X|+τ+1 ≥ m̃S(X)+|Y |(`−|X|−1)−|X|+τ+1 > τ`

from which
τ`− |S|+ 1 = m̃S(S)− |S|+ 1 > τ`− τ,

that is, τ > |S| − 1, contradicting (70). •
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