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Base polyhedra and the linking property

Tamás Király?

Abstract

An integer polyhedron P ⊆ Rn has the linking property if for any f ∈ Zn

and g ∈ Zn with f ≤ g, P has an integer point between f and g if and only
if it has both an integer point above f and an integer point below g. We
prove that an integer polyhedron in the hyperplane

∑n
j=1 xj = 0 is a base

polyhedron if and only if it has the linking property. The result implies that an
integer polyhedron has the strong linking property, as de�ned in [A. Frank, T.
Király, A survey on covering supermodular functions, 2009], if and only if it is
a generalized polymatroid.

1 Introduction

The linking property, a notion introduced by Ford and Fulkerson [1], is a powerful
and somewhat surprising feature of several fundamental combinatorial optimization
problems. Loosely speaking, it means that if there is a solution satisfying a given lower
bound f and there is one satisfying a given upper bound g (where f ≤ g), then there
is a solution satisfying both bounds at the same time. A well-known example is the
Mendelsohn�Dulmage theorem [8], which states that if a bipartite graph G = (S, T ;E)
has a matching covering a given node set S ′ ⊆ S and also one covering a given
T ′ ⊆ T , then it has a matching covering S ′ ∪ T ′. (To interpret this as upper and
lower bounds, we may orient the graph from S to T , so the conditions correspond to
upper and lower bounds on the balance.) Another example is the linking property of
graph orientations: if a graph has an orientation satisfying some given lower bounds
on in-degrees, and it also has one satisfying given upper bounds, then there is an
orientation whose in-degrees satisfy both bounds simultaneously. The same is true for
strong orientations, and, more generally, for k-arc-connected orientations. However,
the linking property does not hold for strong orientations of mixed graphs. Further
examples are presented in the book Connections in Combinatorial Optimization by
Frank [3].
The linking property of combinatorial problems is typically explained by an under-

lying polyhedral structure. In fact, the property can be de�ned explicitly for integer
polyhedra. An integer box is a polyhedron of the form B(f, g) = {x ∈ Rn : f ≤ x ≤ g}
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for some f ∈ Zn and g ∈ Zn. The notation B(f, g) will also be used in the case when
f and g may have in�nite values. An integer polyhedron P has the linking property if
for every f ∈ Zn and g ∈ Zn such that f ≤ g and both P ∩B(f,∞) and P ∩B(−∞, g)
have integer points, the polyhedron P ∩B(f, g) also has an integer point.
A notable class of polyhedra having the linking property is the class of generalized

polymatroids, or g-polymatroids for short, see e.g. [3, Section 14.3.2]. This class
of polyhedra was introduced in [2], and it has many equivalent characterizations;
some recent characterization and recognition results are presented in [5]. A base
polyhedron is a g-polymatroid that lies in the a�ne hyperplane

∑n
j=1 xj = β for some

β. Equivalently, a base polyhedron is a polyhedron de�ned as {x ∈ Rn :
∑

j∈Z xj ≤
b(Z) ∀Z ⊆ [n],

∑n
j=1 xj = b([n])}, where b : {0, 1}n → R ∪ {∞} is a submodular set

function, and [n] denotes the set {1, 2, . . . , n}.
Not all polyhedra with the linking property are g-polymatroids. For example, the

triangle (0, 0), (2, 0), (0, 1) has the linking property but it is not a g-polymatroid. More
generally, it is easy to see that any integer polyhedron of the form {x ∈ Rn : Ax ≤
b, x ≥ 0}, where A is a nonnegative matrix, has the linking property. In contrast to
this, we prove that among the integer polyhedra on the a�ne hyperplane

∑n
j=1 xj = β

for some constant β, the linking property holds only for base polyhedra. A practical
consequence of this result is that a proof of the linking property for a particular
combinatorial structure automatically implies all the other useful features of base
polyhedra, like the greedy algorithm for optimization and the intersection theorem.
Our result also has the corollary that integer g-polymatroids are characterized by the
so-called strong linking property (see Section 3).
Our proof uses a characterization of base polyhedra in terms of their tangent cones,

due to Tomizawa [9]; see also [6, Theorem 17.1] for a proof and discussion. Let ei
denote the ith unit vector. The tangent cone of a polyhedron P at point x ∈ P is
coneP (x) = {λz : λ ≥ 0, x+ z ∈ P}.

Theorem 1.1 ([9]). A polyhedron P ⊆ Rn is a base polyhedron if and only if for
each x ∈ P , the tangent cone of P at x has a generating set which is a subset of
{ei − ej : i, j ∈ [n]}.

We denote the segment with endpoints u and v by [u, v]. If P is a bounded polyhe-
dron and v is a vertex of P , then the extreme directions of the tangent cone of P at
v are the edge vectors {u − v : [u, v] is an edge of P}. If x ∈ P is not a vertex, then
the tangent cone at x is generated by the tangent cones at the vertices of the smallest
face containing x. Thus tangent cones of bounded polyhedra are always generated
by edge vectors; it follows from Theorem 1.1 that a bounded polyhedron P is a base
polyhedron if and only if all of its edge vectors are of the form µ(ei − ej) for some
i, j ∈ [n] and µ ∈ R.
The characterization is somewhat less intuitive for unbounded polyhedra, so we rely

on the following property of tangent cones. A proof is included for completeness.

Lemma 1.2. Let P ⊆ Rn be a polyhedron, and let u be a point in the relative interior
of a non-minimal face F . Then coneP (u) is generated by

∪{coneP (y) ∪ −coneF (y) : y is on a face of F}.
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Proof. It is easy to check that coneP (y) and −coneF (y) are contained in coneP (u).
For a set X ⊆ Rn, let lin(X) denote the linear hull of X. Clearly, lin(F ) is generated
by ∪{coneF (y) ∪ −coneF (y) : y is on a face of F}, since F is not a minimal face. It
remains to show that lin(F ) ∪ {coneP (y) : y is on a face of F} generates coneP (u).
Let Ax ≤ b be a linear description of P , and let A= be the submatrix formed by
the active rows for F . Let z ∈ coneP (u), i.e. A

=z ≤ 0. Let a be a row of A that
determines a facet F ′ of F , let A′ be the matrix obtained by appending the row a to
A=, and let y be a point in the relative interior of F ′. There exists q ∈ lin(F ) such
that A′(z + q) ≤ 0, and therefore z + q ∈ coneP (y), which proves the claim.

Corollary 1.3. If P ⊆ Rn is not a base polyhedron, then it has a point x on a minimal
face such that coneP (x) is not generated by vectors of the form {ei − ej : i, j ∈ [n]}.

Proof. Immediate from Theorem 1.1 and Lemma 1.2.

We need another lemma that o�ers a useful alternative characterization in case
of integer polyhedra. For a rational polyhedron P , let PI denote the convex hull of
P ∩ Zn. The size of the support of a vector is the number of non-zero components.
Given two vectors u and v in Zn, let min(u, v) (max(u, v)) denote the componentwise
minimum (maximum) of the two vectors.

Lemma 1.4. If P is an integer polyhedron in the hyperplane
∑n

j=1 xj = β that is not a
base polyhedron, then there exist integer points u, v ∈ P∩Zn such that (i) the size of the
support of u−v is at least 3, and (ii) [u, v] is an edge of (P∩B(min(u, v),max(u, v)))I .

Proof. First, observe that if u and v are distinct integer points in P and the size of
the support of u− v is at most 2, then u− v = µ(ei− ej) for some i, j and µ, because
P lies in the hyperplane

∑n
j=1 xj = β.

If P is pointed, then, by Corollary 1.3, there exists a vertex u such that coneP (u)
is not generated by vectors of the form {ei− ej : i, j ∈ [n]}. This implies that there is
an edge or extreme ray incident to u, and an integer point v on the edge or extreme
ray, such that the size of the support of u− v is at least 3. Clearly, [u, v] is an edge of
(P ∩B(min(u, v),max(u, v)))I , because it is an edge of P ∩B(min(u, v),max(u, v)).
Assume now that P has a characteristic subspace H of dimension d ≥ 1, so every

minimal face is a translate of H. First, we consider the case when H is not generated
by vectors having support of size at most 2. Let J = {j ∈ [n] : ∃ x ∈ H, xj 6= 0}.
Since H is a subspace, it has an integer point z such that zj 6= 0 for every j ∈ J .
Let {b1, . . . , bd} be an arbitrary integer basis of H, and choose µ ∈ Z+ such that
µ|zj| ≥

∑d
i=1 |bij| for every j ∈ J . Let u be an integer point on a minimal face F

of P , and let v = u + 2µz. We claim that the box B(min(u, v),max(u, v)) contains
u+ µz and u+ µz + bi for every i. Indeed, if zj > 0, then uj ≤ uj + µzj ≤ uj + 2µzj
and uj ≤ uj + µzj + bij ≤ uj + 2µzj by the choice of µ. Analogously, if zj < 0,
then uj ≥ uj + µzj ≥ uj + 2µzj and uj ≥ uj + µzj + bij ≥ uj + 2µzj for every
i. As a consequence, Q := (F ∩ B(min(u, v),max(u, v)))I is d-dimensional, and the
edges of Q generate H. By our assumption, Q has an edge [u′, v′] such that u′ − v′
has support of size at least 3. Now u′ and v′ satisfy condition (ii) of the lemma,
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because [u′, v′] is an edge of (F ∩B(min(u′, v′),max(u′, v′)))I , and hence also an edge
of (P ∩B(min(u′, v′),max(u′, v′)))I .
The remaining case is when H is generated by vectors having support of size at

most 2. By Corollary 1.3, there is a point u on a minimal face F1 whose tangent
cone is not generated by vectors having support of size at most 2. By the integrality
of P , we can assume that u is integer. As coneP (u) is generated by the vectors
{y − u : y is on a (d+ 1)-dimensional face containing u}, there must be a (d + 1)-
dimensional face F2 containing u such that lin(F2) is not generated by vectors having
support of size at most 2 (here we use the assumption that H itself can be generated
by such vectors).
Since F2 is an integer polyhedron, it has an integer point w not in F1. Let H1 be

the translate of H containing w; note that H1 ⊆ F2 and H1 ∩ F1 = ∅. As in the
previous case, let J = {j ∈ [n] : ∃ x ∈ H, xj 6= 0}, let z be an integer point such
that zj 6= 0 for every j ∈ J , and let {b1, . . . , bd} be an integer basis of H. Choose

µ ∈ Z+ such that µ|zj| ≥ |wj − uj|+
∑d

i=1 |bij| for every j ∈ J . Let v = w + 2µz. We
claim that the box B(min(u, v),max(u, v)) contains w+ µz and w+ µz+ bi for every
i. If zj > 0, then uj ≤ wj + µzj ≤ wj + 2µzj and uj ≤ wj + µzj + bij ≤ wj + 2µzj
by the choice of µ. Analogously, if zj < 0, then uj ≥ wj + µzj ≥ wj + 2µzj and
uj ≥ wj + µzj + bij ≥ wj + 2µzj for every i. Obviously, u is also in the box, so
Q := (F2 ∩B(min(u, v),max(u, v)))I is (d+ 1)-dimensional.
The edges of Q generate lin(F2), so Q must have an edge [u′, v′] such that u′−v′ has

support of size at least 3. We claim that u′ and v′ satisfy condition (ii) of the lemma.
Indeed, [u′, v′] is an edge of Q, so it is also an edge of (F2∩B(min(u′, v′),max(u′, v′)))I .
Since F2 is a face of P , [u

′, v′] is also an edge of (P ∩B(min(u′, v′),max(u′, v′)))I .

2 Proof of the main result

As mentioned before, integer g-polymatroids, and hence base polyhedra, satisfy the
linking property. We prove the converse for base polyhedra.

Theorem 2.1. If P ⊆ {x ∈ Rn :
∑n

j=1 xj = β} is an integer polyhedron having the
linking property, then P is a base polyhedron.

Proof. Let P ⊆ {x ∈ Rn :
∑n

j=1 xj = β} be an integer polyhedron that is not a base
polyhedron. By Lemma 1.4, there are integer vectors u, v ∈ P∩Zn such that the size of
the support of u−v is at least 3, and [u, v] is an edge of (P ∩B(min(u, v),max(u, v)))I .
Choose a pair u, v with these properties such that ‖u− v‖1 is minimal, and let P ′ =
P ∩B(min(u, v),max(u, v)))I . Let d be the dimension of B(min(u, v),max(u, v)), i.e.
the number of components in which u and v di�er. In order to make the notation
simpler, we consider P ′ as a polyhedron in Rd.
By the minimality of ‖u − v‖1, all edge vectors of P ′, except for u − v, are of the

form µ(ei−ej). As [u, v] is an edge of P ′, there is a vector c ∈ Rd such that cTu = cTv,
and cTx < cTv for every x ∈ P ′ \ [u, v]. Let k be an index for which |ck| is maximal.
Our �rst aim is to show the existence of an index ` 6= k such that u`−v` has the same
sign as uk − vk.
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The equations
∑d

j=1 uj =
∑d

j=1 vj and c
Tu = cTv together imply

∑
j 6=k(ck−cj)(uj−

vj) = 0. If no index ` exists such that u`−v` has the same sign as uk−vk, then uj−vj
has the same sign for every j 6= k, thus ck = cj for every j by the maximality of |ck|.
As d ≥ 3, we can modify the choice of k in this case in such a way that an index `
with the desired property exists. We can also assume w.l.o.g. that ck and uk − vk are
both positive, because otherwise we can exchange the role of u and v and/or replace
P by −P (these operations do not invalidate our choice of k and `).
Let [v, w] be an edge of P ′, where w 6= u. The vector w − v is of the form µ(ei −

ej) for some i, j, and µ ∈ Z+. On one hand, j 6= k because P ′ is a subset of
B(min(u, v),max(u, v)). On the other hand, i = k would imply cTw ≥ cTv by the
maximality of |ck|, but this contradicts the choice of c, so i 6= k. This means that
all edges of P ′ incident to v, apart from [u, v], are in the hyperplane xk = vk. In
particular, the face {x ∈ P ′ : x` = v`} is in the hyperplane {xk = vk}, so {x ∈ P ′ :
x` = v`, xk = uk} = ∅.
Let us de�ne vectors f and g by fk = gk = uk, f` = g` = v`, and fj = min{uj, vj},

gj = max{uj, vj} if j 6= k, `. By the assumptions uk > vk and u` > v`, we have
u ∈ P ∩B(f,∞) and v ∈ P ∩B(−∞, g), but P ∩B(f, g) does not contain an integer
point, because P ∩ B(f, g) ∩ Zn ⊆ {x ∈ P ′ : xk = uk, x` = v`} = ∅ (here we slightly
abuse notation because we consider P ′ again as a polyhedron in Rn). This means that
P does not satisfy the linking property.

3 Strong linking property

The characterization of base polyhedra in Theorem 2.1 leads to a characterization of
generalized polymatroids in terms of the strong linking property, as de�ned by Frank
[3, 4]. An integer polyhedron P has the strong linking property if the polyhedron
P ∩ {x ∈ Rn : f ≤ x ≤ g, α ≤

∑n
j=1 xj ≤ β} has an integer point for all f ∈ Zn,

g ∈ Zn, α ∈ Z, and β ∈ Z that satisfy

(i) f ≤ g

(ii) α ≤ β,

(iii) P ∩ {x ∈ Zn : x ≥ f,
∑n

j=1 xj ≤ β} 6= ∅,

(iv) P ∩ {x ∈ Zn : x ≤ g,
∑n

j=1 xj ≥ α} 6= ∅.

Corollary 3.1. An integer polyhedron has the strong linking property if and only if
it is a g-polymatroid.

Proof. Let us associate an (n + 1)-dimensional polyhedron P+ to an n-dimensional
integer polyhedron P by the de�nition

P+ =

{(
x,−

n∑
j=1

xj

)
: x ∈ P

}
.
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It is clear that P+ is an integer polyhedron in the hyperplane
∑n

j=1 xj = 0. It is also
well-known [7] that P is a g-polymatroid if and only if P+ is a base polyhedron. The
characterization thus follows from Theorem 2.1 by the observation that the strong
linking property for P is equivalent to the linking property for P+.
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