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Base polyhedra and the linking property

Tamás Király?

Abstract

An integer polyhedron P ⊆ Rn has the linking property if for any f ∈ Zn

and g ∈ Zn with f ≤ g, P has an integer point between f and g if and only
if it has both an integer point above f and an integer point below g. We
prove that an integer polyhedron in the hyperplane

∑n
j=1 xj = 0 is a base

polyhedron if and only if it has the linking property. The result implies that an
integer polyhedron has the strong linking property, as de�ned in [A. Frank, T.
Király, A survey on covering supermodular functions, 2009], if and only if it is
a generalized polymatroid.

1 Introduction

The linking property is a powerful and elegant property that appears in several fun-
damental combinatorial optimization problems. Loosely speaking, it states that if
there is a solution satisfying a given lower bound f and there is one satisfying a given
upper bound g (where f ≤ g), then there is a solution satisfying both bounds at the
same time. A well-known example is the Mendelsohn�Dulmage theorem [6], which
states that if a bipartite graph G = (S, T ;E) has a matching covering a given node
set S ′ ⊆ S and also one covering a given T ′ ⊆ T , then it has a matching covering
S ′ ∪ T ′. (To interpret this as upper and lower bounds, we may orient the graph
from S to T , so the conditions correspond to upper and lower bounds on the bal-
ance.) Another example is the linking property of graph orientations: if a graph has
an orientation satisfying some given lower bounds on in-degrees, and it also has one
satisfying given upper bounds, then there is an orientation whose in-degrees satisfy
both bounds simultaneously. More examples are presented in the book Connections
in Combinatorial Optimization by Frank [2].
The linking property of combinatorial problems is typically explained by an under-

lying polyhedral structure. In fact, the property can be de�ned explicitly for integer
polyhedra. An integer box is a polyhedron of the form B(f, g) = {x ∈ Rn : f ≤ x ≤ g}
for some f ∈ Zn and g ∈ Zn. The notation B(f, g) will also be used in the case when
f and g may have in�nite values. An integer polyhedron P has the linking property if
for every f ∈ Zn and g ∈ Zn such that f ≤ g and both P ∩B(f,∞) and P ∩B(−∞, g)
have integer points, the polyhedron P ∩B(f, g) also has an integer point.
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A notable class of polyhedra having the linking property is the class of generalized
polymatroids, or g-polymatroids for short, see e.g. [2, Section 14.3.2]. This class
of polyhedra was introduced in [1], and it has many equivalent characterizations;
some recent characterization and recognition results are presented in [4]. A base
polyhedron is a g-polymatroid that lies in the a�ne hyperplane

∑n
j=1 xj = β for some

β. Equivalently, a base polyhedron is a polyhedron de�ned as {x ∈ Rn :
∑

j∈Z xj ≤
b(Z) ∀Z ⊆ [n],

∑n
j=1 xj = b([n])}, where b : {0, 1}n → R ∪ {∞} is a submodular set

function.
Not all polyhedra with the linking property are g-polymatroids. For example, the

triangle (0, 0), (2, 0), (0, 1) has the linking property but it is not a g-polymatroid. More
generally, it is easy to see that any integer polyhedron of the form {x ∈ Rn : Ax ≤
b, x ≥ 0}, where A is a nonnegative matrix, has the linking property. In contrast to
this, we prove that among the integer polyhedra on the a�ne hyperplane

∑n
j=1 xj = β

for some constant β, the linking property holds only for base polyhedra. A useful
consequence is that by proving the linking property for a particular combinatorial
structure, we automatically get all the other nice properties of base polyhedra, like
the greedy algorithm for optimization and the intersection theorem. The result also
implies that integer g-polymatroids are characterized by the strong linking property,
which is presented in the last section of the paper.
Our proof uses a characterization of base polyhedra in terms of their tangent cones,

due to Tomizawa [7]; see also [5, Theorem 17.1] for a proof and discussion. Let ei
denote the ith unit vector. The tangent cone of a polyhedron P at point x ∈ P is the
cone {λz : λ ≥ 0, x+ z ∈ P}.
Theorem 1.1 ([7]). A polyhedron P ⊆ Rn is a base polyhedron if and only if for
each x ∈ P , the tangent cone of P at x has a generating set which is a subset of
{ei − ej : i, j ∈ [n]}.
We denote the segment with endpoints u and v by [u, v]. If P is a bounded polyhe-

dron and v is a vertex of P , then the tangent cone of P at v is generated by the edge
vectors {u−v : [u, v] is an edge of P}. If x ∈ P is not a vertex, then the tangent cone
at x is generated by the tangent cones at the vertices of the smallest face containing
x. Thus tangent cones of bounded polyhedra are always generated by edge vectors; it
follows from Theorem 1.1 that a bounded polyhedron P is a base polyhedron if and
only if all of its edge vectors are of the form µ(ei − ej) for some i, j ∈ [n] and µ ∈ R.
The situation for unbounded but pointed polyhedra is similar, but in addition to

the edge vectors, the extreme directions must also be of the form ei − ej. If the
polyhedron is not pointed, then the characterization in Theorem 1.1 is somewhat less
intuitive. Our �rst result is a lemma that o�ers a useful alternative characterization in
case of integer polyhedra. For a rational polyhedron P , let PI denote the convex hull
of P ∩Zn. The size of the support of a vector is the number of non-zero components.
Given two vectors u and v in Zn, let min(u, v) (max(u, v)) denote the componentwise
minimum (maximum) of the two vectors.

Lemma 1.2. If P is an integer polyhedron in the hyperplane
∑n

j=1 xj = β that is not a
base polyhedron, then there exist integer points u, v ∈ P∩Zn such that (i) the size of the
support of u−v is at least 3, and (ii) [u, v] is an edge of (P∩B(min(u, v),max(u, v)))I .
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Proof. First observe that if u and v are distinct integer points in P and the size of
the support of u− v is at most 2, then u− v = µ(ei− ej) for some i, j and µ, because
P lies in the hyperplane

∑n
j=1 xj = β.

If P is bounded, then, by Theorem 1.1 and the above argument, it has an edge
[u, v] such that the support of u− v has size at least 3. The segment [u, v] is clearly
also an edge of (P ∩B(min(u, v),max(u, v)))I , so u and v satisfy the conditions. If P
is pointed and no such edge exists, then there is a vertex u and an extreme ray u+λz
such that the support of z has size at least 3. There is a value λ for which v := u+λz
is integer; u and v satisfy conditions (i) and (ii).
Assume now that P is not pointed, so it has a characteristic subspace H of di-

mension d ≥ 1, and every minimal face is a translate of H. If a point x is on a
minimal face of P , then the tangent cone at x is generated by {u − x : u is on a
(d + 1)-dimensional face containing x}. If x ∈ P is on a face F that is not minimal,
then the tangent cone at x is generated by the tangent cones of the minimal faces
of F . By Theorem 1.1, there is a point u on a minimal face F1 of P and a (d + 1)-
dimensional face F2 containing u such that the linear hull of F2 is not generated by
vectors having support of size at most 2. Since F2 is an integer polyhedron, it has
an integer point w not in F1. Let H1 be the translate of H containing w; note that
H1 ⊆ F2 and H1 ∩ F1 = ∅. First, we will show that there is an integer point v ∈ H1

such that (F2 ∩ B(min(u, v),max(u, v)))I is (d + 1)-dimensional � note that here we
do not require [u, v] to be an edge of this polyhedron.
Let J = {j ∈ [n] : ∃ x ∈ H, xj 6= 0}. Since H is a subspace, it has an integer

point z such that zj 6= 0 for every j ∈ J . Let {b1, . . . , bd} be an arbitrary integer

basis of H. Choose µ ∈ Z+ such that µ|zj| ≥ |wj − uj| +
∑d

i=1 |bij| for every j ∈ J .
Let v = w + 2µz. We claim that the box B(min(u, v),max(u, v)) contains w + µz
and w + µz + bi for every i. Indeed, if zj > 0, then uj ≤ wj + µzj ≤ wj + 2µzj and
uj ≤ wj + µzj + bij ≤ wj + 2µzj by the choice of µ. Analogously, if zj < 0, then
uj ≥ wj +µzj ≥ wj +2µzj and uj ≥ wj +µzj + bij ≥ wj +2µzj for every i. Obviously,
u is also in the box, so Q := (F2 ∩B(min(u, v),max(u, v)))I is (d+ 1)-dimensional.
The edges of Q generate the linear hull of F2, so Q must have an edge [u′, v′]

such that u′ − v′ has support of size at least 3. We claim that u′ and v′ satisfy
condition (ii) of the lemma. Indeed, [u′, v′] is an edge of Q, so it is also an edge of
(F2 ∩ B(min(u′, v′),max(u′, v′)))I . Since F2 is a face of P , [u′, v′] is also an edge of
(P ∩B(min(u′, v′),max(u′, v′)))I .

2 Proof of the main result

As mentioned before, integer g-polymatroids, and hence base polyhedra, satisfy the
linking property. We prove the converse for base polyhedra.

Theorem 2.1. If P ⊆ {x ∈ Rn :
∑n

j=1 xj = β} is an integer polyhedron having the
linking property, then P is a base polyhedron.

Proof. Let P ⊆ {x ∈ Rn :
∑n

j=1 xj = β} be an integer polyhedron that is not a base
polyhedron. By Lemma 1.2, there are integer vectors u, v ∈ P∩Zn such that the size of
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the support of u−v is at least 3, and [u, v] is an edge of (P ∩B(min(u, v),max(u, v)))I .
Choose a pair u, v with these properties such that ‖u− v‖1 is minimal, and let P ′ =
P ∩B(min(u, v),max(u, v)))I . Let d be the dimension of B(min(u, v),max(u, v)), i.e.
the number of components in which u and v di�er. In order to make the notation
simpler, we consider P ′ as a polyhedron in Rd.
By the minimality of ‖u − v‖1, all edge vectors of P ′, except for u − v, are of the

form µ(ei−ej). As [u, v] is an edge of P ′, there is a vector c ∈ Rd such that cTu = cTv,
and cTx < cTv for every x ∈ P ′ \ [u, v]. Let k be an index for which |ck| is maximal.
Our �rst aim is to show the existence of an index ` 6= k such that u`−v` has the same
sign as uk − vk.
The equations

∑d
j=1 uj =

∑d
j=1 vj and c

Tu = cTv together imply
∑

j 6=k(ck−cj)(uj−
vj) = 0. If no index ` exists such that u`−v` has the same sign as uk−vk, then uj−vj
has the same sign for every j 6= k, thus ck = cj for every j by the maximality of |ck|.
As d ≥ 3, we can modify the choice of k in this case in such a way that an index `
with the desired property exists. We can also assume w.l.o.g. that ck and uk − vk are
both positive, because otherwise we can exchange the role of u and v and/or replace
P by −P (these operations do not invalidate our choice of k and `).
Let [v, w] be an edge of P ′, where w 6= u. The vector w − v is of the form µ(ei −

ej) for some i, j, and µ ∈ Z+. On one hand, j 6= k because P ′ is a subset of
B(min(u, v),max(u, v)). On the other hand, i = k would imply cTw ≥ cTv by the
maximality of |ck|, but this contradicts the choice of c, so i 6= k. This means that
all edges of P ′ incident to v, apart from [u, v], are in the hyperplane xk = vk. In
particular, the face {x ∈ P ′ : x` = v`} is in the hyperplane {xk = vk}, so {x ∈ P ′ :
x` = v`, xk = uk} = ∅.
Let us de�ne vectors f and g by fk = gk = uk, f` = g` = v`, and fj = min{uj, vj},

gj = max{uj, vj} if j 6= k, `. By the assumptions uk > vk and u` > v`, we have
u ∈ P ∩B(f,∞) and v ∈ P ∩B(−∞, g), but P ∩B(f, g) does not contain an integer
point, because P ∩ B(f, g) ∩ Zn ⊆ {x ∈ P ′ : xk = uk, x` = v`} = ∅ (here we slightly
abuse notation because we consider P ′ again as a polyhedron in Rn). This means that
P does not satisfy the linking property.

3 Strong linking property

The characterization of base polyhedra in Theorem 2.1 leads to a characterization of
generalized polymatroids in terms of the strong linking property, as de�ned by Frank
[2, 3]. An integer polyhedron P has the strong linking property if the polyhedron
P ∩ {x ∈ Rn : f ≤ x ≤ g, α ≤

∑n
j=1 xj ≤ β} has an integer point for all f ∈ Zn,

g ∈ Zn, α ∈ Z, and β ∈ Z that satisfy

(i) f ≤ g

(ii) α ≤ β,

(iii) P ∩ {x ∈ Zn : x ≥ f,
∑n

j=1 xj ≤ β} 6= ∅,

(iv) P ∩ {x ∈ Zn : x ≤ g,
∑n

j=1 xj ≥ α} 6= ∅.
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Corollary 3.1. An integer polyhedron has the strong linking property if and only if
it is a g-polymatroid.

Proof. Let us associate an (n + 1)-dimensional polyhedron P+ to an n-dimensional
integer polyhedron P by the de�nition

P+ =

{(
x,−

n∑
j=1

xj

)
: x ∈ P

}
.

It is clear that P+ is an integer polyhedron in the hyperplane
∑n

j=1 xj = 0. It is also
well-known that P is a g-polymatroid if and only if P+ is a base polyhedron. The
characterization thus follows from Theorem 2.1 by the observation that the strong
linking property for P is equivalent to the linking property for P+.
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