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Base polyhedra and the linking property

Tamas Kiraly*

Abstract

An integer polyhedron P C R™ has the linking property if for any f € Z"
and g € Z" with f < g, P has an integer point between f and g if and only
if it has both an integer point above f and an integer point below g. We
prove that an integer polyhedron in the hyperplane 2?21 z; = 0 is a base
polyhedron if and only if it has the linking property. The result implies that an
integer polyhedron has the strong linking property, as defined in [A. Frank, T.
Kiraly, A survey on covering supermodular functions, 2009, if and only if it is
a generalized polymatroid.

1 Introduction

The linking property is a powerful and elegant property that appears in several fun-
damental combinatorial optimization problems. Loosely speaking, it states that if
there is a solution satisfying a given lower bound f and there is one satisfying a given
upper bound g (where f < g), then there is a solution satisfying both bounds at the
same time. A well-known example is the Mendelsohn—Dulmage theorem [6], which
states that if a bipartite graph G = (S,T; F) has a matching covering a given node
set S C S and also one covering a given 7" C T, then it has a matching covering
S"UT'. (To interpret this as upper and lower bounds, we may orient the graph
from S to T, so the conditions correspond to upper and lower bounds on the bal-
ance.) Another example is the linking property of graph orientations: if a graph has
an orientation satisfying some given lower bounds on in-degrees, and it also has one
satisfying given upper bounds, then there is an orientation whose in-degrees satisfy
both bounds simultaneously. More examples are presented in the book Connections
in Combinatorial Optimization by Frank [2].

The linking property of combinatorial problems is typically explained by an under-
lying polyhedral structure. In fact, the property can be defined explicitly for integer
polyhedra. An integer box is a polyhedron of the form B(f,g) = {z e R*: f <z < g}
for some f € Z" and g € Z". The notation B(f,g) will also be used in the case when
f and g may have infinite values. An integer polyhedron P has the linking property if
for every f € Z™ and g € Z™ such that f < g and both PN B(f,00) and PN B(—0o0, g)
have integer points, the polyhedron P N B(f,g) also has an integer point.
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A notable class of polyhedra having the linking property is the class of generalized
polymatroids, or g-polymatroids for short, see e.g. [2, Section 14.3.2]. This class
of polyhedra was introduced in [I], and it has many equivalent characterizations;
some recent characterization and recognition results are presented in [4]. A base
polyhedron is a g-polymatroid that lies in the affine hyperplane Z?Zl x; = 3 for some
f. Equivalently, a base polyhedron is a polyhedron defined as {x € R™ : }_ jez i <
b(Z)VZ C[n], > 25_ x; = b([n])}, where b: {0,1}" — RU {oo} is a submodular set
function.

Not all polyhedra with the linking property are g-polymatroids. For example, the
triangle (0,0), (2,0), (0, 1) has the linking property but it is not a g-polymatroid. More
generally, it is easy to see that any integer polyhedron of the form {z € R" : Az <
b, x > 0}, where A is a nonnegative matrix, has the linking property. In contrast to
this, we prove that among the integer polyhedra on the affine hyperplane Z;;l x; =3
for some constant 3, the linking property holds only for base polyhedra. A useful
consequence is that by proving the linking property for a particular combinatorial
structure, we automatically get all the other nice properties of base polyhedra, like
the greedy algorithm for optimization and the intersection theorem. The result also
implies that integer g-polymatroids are characterized by the strong linking property,
which is presented in the last section of the paper.

Our proof uses a characterization of base polyhedra in terms of their tangent cones,
due to Tomizawa [7]; see also [B, Theorem 17.1] for a proof and discussion. Let e;
denote the ¢th unit vector. The tangent cone of a polyhedron P at point x € P is the
cone {A\z: A>0, z+ 2z € P}.

Theorem 1.1 ([7]). A polyhedron P C R"™ is a base polyhedron if and only if for
each x € P, the tangent cone of P at x has a generating set which is a subset of
{e;—e; 1,7 €[n]}.

We denote the segment with endpoints u and v by [u,v]. If P is a bounded polyhe-
dron and v is a vertex of P, then the tangent cone of P at v is generated by the edge
vectors {u—wv : [u,v] is an edge of P}. If x € P is not a vertex, then the tangent cone
at x is generated by the tangent cones at the vertices of the smallest face containing
x. Thus tangent cones of bounded polyhedra are always generated by edge vectors; it
follows from Theorem that a bounded polyhedron P is a base polyhedron if and
only if all of its edge vectors are of the form pu(e; — e;) for some 7,5 € [n] and p € R.

The situation for unbounded but pointed polyhedra is similar, but in addition to
the edge vectors, the extreme directions must also be of the form e; — e;. If the
polyhedron is not pointed, then the characterization in Theorem is somewhat less
intuitive. Our first result is a lemma that offers a useful alternative characterization in
case of integer polyhedra. For a rational polyhedron P, let P; denote the convex hull
of PNZ"™. The size of the support of a vector is the number of non-zero components.
Given two vectors u and v in Z", let min(u, v) (max(u,v)) denote the componentwise
minimum (maximum) of the two vectors.

Lemma 1.2. If P is an integer polyhedron in the hyperplane Z?:1 x; = (8 that is not a
base polyhedron, then there exist integer points u,v € PNZ"™ such that (i) the size of the
support of u—wv is at least 3, and (i1) [u,v] is an edge of (PN B(min(u,v), max(u,v)));.
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Proof. First observe that if u and v are distinct integer points in P and the size of
the support of u — v is at most 2, then v — v = p(e; — e;) for some 4, j and p, because
P lies in the hyperplane > 7 z; = 3.

If P is bounded, then, by Theorem and the above argument, it has an edge
[u, v] such that the support of u — v has size at least 3. The segment [u,v] is clearly
also an edge of (P N B(min(u,v), max(u,v))), so u and v satisfy the conditions. If P
is pointed and no such edge exists, then there is a vertex u and an extreme ray v+ \z
such that the support of z has size at least 3. There is a value A for which v := u+ \z
is integer; u and v satisfy conditions (i) and (ii).

Assume now that P is not pointed, so it has a characteristic subspace H of di-
mension d > 1, and every minimal face is a translate of H. If a point x is on a
minimal face of P, then the tangent cone at = is generated by {u — z : u is on a
(d + 1)-dimensional face containing z}. If x € P is on a face F' that is not minimal,
then the tangent cone at x is generated by the tangent cones of the minimal faces
of F. By Theorem , there is a point u on a minimal face F} of P and a (d + 1)-
dimensional face F5 containing u such that the linear hull of F5, is not generated by
vectors having support of size at most 2. Since Fj is an integer polyhedron, it has
an integer point w not in Fy. Let H; be the translate of H containing w; note that
H, C F, and Hy N F; = (). First, we will show that there is an integer point v € H;
such that (F, N B(min(u,v), max(u,v)))s is (d + 1)-dimensional — note that here we
do not require [u,v] to be an edge of this polyhedron.

Let J ={j € [n]: 32 € H, z; # 0}. Since H is a subspace, it has an integer
point z such that z; # 0 for every j € J. Let {b',... 0%} be an arbitrary integer
basis of H. Choose pu € Z, such that u|z;| > |w; —u;| + 30, |b%] for every j € J.
Let v = w + 2pz. We claim that the box B(min(u,v), max(u,v)) contains w + pz
and w + pz + b for every i. Indeed, if z; > 0, then u; < w; + pz; < w; + 2uz; and
uj < wj+ pzy + b; < wj; + 2pz; by the choice of p1. Analogously, if z; < 0, then
u; > wj+ pzy > wji+2pz; and u; > w; 4 pzy 405 > wj+ 2uz; for every i. Obviously,
u is also in the box, so @ := (F» N B(min(u, v), max(u,v)))s is (d + 1)-dimensional.

The edges of @) generate the linear hull of F,, so ) must have an edge [u', V']
such that «' — v’ has support of size at least 3. We claim that «' and v’ satisfy
condition (ii) of the lemma. Indeed, [u’,v'] is an edge of @, so it is also an edge of
(Fy N B(min(v',v"), max(u/,v")));. Since Fy is a face of P, [u/,v'] is also an edge of
(P N B(min(u',v"), max(v',v")));. O

2 Proof of the main result

As mentioned before, integer g-polymatroids, and hence base polyhedra, satisfy the
linking property. We prove the converse for base polyhedra.

Theorem 2.1. If P C {z € R" : Y77 | x; = B} is an integer polyhedron having the

linking property, then P 1is a base polyhedron.

Proof. Let P C {x € R": Y77 | x; = B} be an integer polyhedron that is not a base

polyhedron. By Lemmal|l.2] there are integer vectors u, v € PNZ" such that the size of
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the support of u—v is at least 3, and [u, v] is an edge of (PN B(min(u, v), max(u,v)))s.
Choose a pair u,v with these properties such that ||u — v||; is minimal, and let P’ =
PN B(min(u,v), max(u,v)));. Let d be the dimension of B(min(u,v), max(u,v)), i.e.
the number of components in which v and v differ. In order to make the notation
simpler, we consider P’ as a polyhedron in R%.

By the minimality of ||u — v]|;, all edge vectors of P’ except for u — v, are of the
form p(e;—e;). As [u,v] is an edge of P’, there is a vector ¢ € R? such that ¢’u = "o,
and 'z < cT'v for every x € P\ [u,v]. Let k be an index for which |c;| is maximal.
Our first aim is to show the existence of an index ¢ # k such that u, — vy, has the same
sign as uy — V.

The equations Z?Zl u; = 2?21 vj and ¢"u = ¢’ together imply >, (cx —cj)(u; —
vj) = 0. If no index ¢ exists such that u, —v, has the same sign as uy — vy, then u; — v,
has the same sign for every j # k, thus ¢, = ¢; for every j by the maximality of |c|.
As d > 3, we can modify the choice of k in this case in such a way that an index ¢
with the desired property exists. We can also assume w.l.o.g. that c; and uy — vy are
both positive, because otherwise we can exchange the role of v and v and/or replace
P by —P (these operations do not invalidate our choice of k and /).

Let [v,w] be an edge of P’, where w # u. The vector w — v is of the form pu(e; —
e;) for some i,j, and p € Z;. On one hand, j # k because P’ is a subset of
B(min(u,v), max(u,v)). On the other hand, i = k would imply ¢’w > c’v by the
maximality of |cg|, but this contradicts the choice of ¢, so ¢ # k. This means that
all edges of P’ incident to v, apart from [u,v], are in the hyperplane x; = v;. In
particular, the face {x € P’ : 4 = vy} is in the hyperplane {z; = v}, so {z € P’ :
Ty = Vyp, T = uk} = @

Let us define vectors f and g by fr = g = uk, fr = gr = vy, and f; = min{u;, v;},
g; = max{u;,v;} if j # k,f. By the assumptions u;, > v, and u, > vy, we have
ue€ PNB(f,00) and v € PN B(—o00,g), but PN B(f,g) does not contain an integer
point, because PN B(f,g) NZ" C {x € P': ), = ug, xy = vy} = O (here we slightly
abuse notation because we consider P’ again as a polyhedron in R™). This means that
P does not satisfy the linking property. ]

3 Strong linking property

The characterization of base polyhedra in Theorem leads to a characterization of
generalized polymatroids in terms of the strong linking property, as defined by Frank
[2, B]. An integer polyhedron P has the strong linking property if the polyhedron
Pn{zreR": f<x<g, a<) 7 x; <P} has an integer point for all f € Z",
gEZ" a€Z,and [ € Z that satisfy

i) f<g
(i

(i

)
) a < B,

) PN{zeZr x> f, Y0 x;<B}#0,
) x; > a} # 0.

(iv) Pn{zeZ:x<g, >

Jj=1
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Corollary 3.1. An integer polyhedron has the strong linking property if and only if
it 18 a g-polymatroid.

Proof. Let us associate an (n + 1)-dimensional polyhedron P* to an n-dimensional
integer polyhedron P by the definition

p:{<_z> %p}.

It is clear that P is an integer polyhedron in the hyperplane 7 | x; = 0. It is also
well-known that P is a g-polymatroid if and only if P* is a base polyhedron. The
characterization thus follows from Theorem by the observation that the strong
linking property for P is equivalent to the linking property for PT. O]
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