Egerváry Research Group

 on Combinatorial Optimization

TECHNICAL REPORTS

TR-2016-06. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Base polyhedra and the linking property

Tamás Király

Base polyhedra and the linking property

Tamás Király*

Abstract

An integer polyhedron $P \subseteq \mathbb{R}^{n}$ has the linking property if for any $f \in \mathbb{Z}^{n}$ and $g \in \mathbb{Z}^{n}$ with $f \leq g, P$ has an integer point between f and g if and only if it has both an integer point above f and an integer point below g. We prove that an integer polyhedron in the hyperplane $\sum_{j=1}^{n} x_{j}=0$ is a base polyhedron if and only if it has the linking property. The result implies that an integer polyhedron has the strong linking property, as defined in [A. Frank, T. Király, A survey on covering supermodular functions, 2009], if and only if it is a generalized polymatroid.

1 Introduction

The linking property is a powerful and elegant property that appears in several fundamental combinatorial optimization problems. Loosely speaking, it states that if there is a solution satisfying a given lower bound f and there is one satisfying a given upper bound g (where $f \leq g$), then there is a solution satisfying both bounds at the same time. A well-known example is the Mendelsohn-Dulmage theorem [6], which states that if a bipartite graph $G=(S, T ; E)$ has a matching covering a given node set $S^{\prime} \subseteq S$ and also one covering a given $T^{\prime} \subseteq T$, then it has a matching covering $S^{\prime} \cup T^{\prime}$. (To interpret this as upper and lower bounds, we may orient the graph from S to T, so the conditions correspond to upper and lower bounds on the balance.) Another example is the linking property of graph orientations: if a graph has an orientation satisfying some given lower bounds on in-degrees, and it also has one satisfying given upper bounds, then there is an orientation whose in-degrees satisfy both bounds simultaneously. More examples are presented in the book Connections in Combinatorial Optimization by Frank [2].

The linking property of combinatorial problems is typically explained by an underlying polyhedral structure. In fact, the property can be defined explicitly for integer polyhedra. An integer box is a polyhedron of the form $B(f, g)=\left\{x \in \mathbb{R}^{n}: f \leq x \leq g\right\}$ for some $f \in \mathbb{Z}^{n}$ and $g \in \mathbb{Z}^{n}$. The notation $B(f, g)$ will also be used in the case when f and g may have infinite values. An integer polyhedron P has the linking property if for every $f \in \mathbb{Z}^{n}$ and $g \in \mathbb{Z}^{n}$ such that $f \leq g$ and both $P \cap B(f, \infty)$ and $P \cap B(-\infty, g)$ have integer points, the polyhedron $P \cap B(f, g)$ also has an integer point.
*MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C, Budapest, Hungary, H-1117. Email: tkiraly@cs.elte.hu

A notable class of polyhedra having the linking property is the class of generalized polymatroids, or g-polymatroids for short, see e.g. [2, Section 14.3.2]. This class of polyhedra was introduced in [1] and it has many equivalent characterizations; some recent characterization and recognition results are presented in [4. A base polyhedron is a g-polymatroid that lies in the affine hyperplane $\sum_{j=1}^{n} x_{j}=\beta$ for some β. Equivalently, a base polyhedron is a polyhedron defined as $\left\{x \in \mathbb{R}^{n}: \sum_{j \in Z} x_{j} \leq\right.$ $\left.b(Z) \forall Z \subseteq[n], \sum_{j=1}^{n} x_{j}=b([n])\right\}$, where $b:\{0,1\}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a submodular set function.

Not all polyhedra with the linking property are g-polymatroids. For example, the triangle $(0,0),(2,0),(0,1)$ has the linking property but it is not a g -polymatroid. More generally, it is easy to see that any integer polyhedron of the form $\left\{x \in \mathbb{R}^{n}: A x \leq\right.$ $b, x \geq \mathbf{0}\}$, where A is a nonnegative matrix, has the linking property. In contrast to this, we prove that among the integer polyhedra on the affine hyperplane $\sum_{j=1}^{n} x_{j}=\beta$ for some constant β, the linking property holds only for base polyhedra. A useful consequence is that by proving the linking property for a particular combinatorial structure, we automatically get all the other nice properties of base polyhedra, like the greedy algorithm for optimization and the intersection theorem. The result also implies that integer g-polymatroids are characterized by the strong linking property, which is presented in the last section of the paper.

Our proof uses a characterization of base polyhedra in terms of their tangent cones, due to Tomizawa [7]; see also [5, Theorem 17.1] for a proof and discussion. Let e_{i} denote the i th unit vector. The tangent cone of a polyhedron P at point $x \in P$ is the cone $\{\lambda z: \lambda \geq 0, x+z \in P\}$.
Theorem 1.1 ([7]). A polyhedron $P \subseteq \mathbb{R}^{n}$ is a base polyhedron if and only if for each $x \in P$, the tangent cone of P at x has a generating set which is a subset of $\left\{e_{i}-e_{j}: i, j \in[n]\right\}$.

We denote the segment with endpoints u and v by $[u, v]$. If P is a bounded polyhedron and v is a vertex of P, then the tangent cone of P at v is generated by the edge vectors $\{u-v:[u, v]$ is an edge of $P\}$. If $x \in P$ is not a vertex, then the tangent cone at x is generated by the tangent cones at the vertices of the smallest face containing x. Thus tangent cones of bounded polyhedra are always generated by edge vectors; it follows from Theorem 1.1 that a bounded polyhedron P is a base polyhedron if and only if all of its edge vectors are of the form $\mu\left(e_{i}-e_{j}\right)$ for some $i, j \in[n]$ and $\mu \in \mathbb{R}$.

The situation for unbounded but pointed polyhedra is similar, but in addition to the edge vectors, the extreme directions must also be of the form $e_{i}-e_{j}$. If the polyhedron is not pointed, then the characterization in Theorem 1.1 is somewhat less intuitive. Our first result is a lemma that offers a useful alternative characterization in case of integer polyhedra. For a rational polyhedron P, let P_{I} denote the convex hull of $P \cap \mathbb{Z}^{n}$. The size of the support of a vector is the number of non-zero components. Given two vectors u and v in \mathbb{Z}^{n}, let $\min (u, v)(\max (u, v))$ denote the componentwise minimum (maximum) of the two vectors.
Lemma 1.2. If P is an integer polyhedron in the hyperplane $\sum_{j=1}^{n} x_{j}=\beta$ that is not a base polyhedron, then there exist integer points $u, v \in P \cap \mathbb{Z}^{n}$ such that (i) the size of the support of $u-v$ is at least 3, and (ii) $[u, v]$ is an edge of $(P \cap B(\min (u, v), \max (u, v)))_{I}$.

Proof. First observe that if u and v are distinct integer points in P and the size of the support of $u-v$ is at most 2 , then $u-v=\mu\left(e_{i}-e_{j}\right)$ for some i, j and μ, because P lies in the hyperplane $\sum_{j=1}^{n} x_{j}=\beta$.

If P is bounded, then, by Theorem 1.1 and the above argument, it has an edge $[u, v]$ such that the support of $u-v$ has size at least 3 . The segment $[u, v]$ is clearly also an edge of $(P \cap B(\min (u, v), \max (u, v)))_{I}$, so u and v satisfy the conditions. If P is pointed and no such edge exists, then there is a vertex u and an extreme ray $u+\lambda z$ such that the support of z has size at least 3 . There is a value λ for which $v:=u+\lambda z$ is integer; u and v satisfy conditions (i) and (ii).

Assume now that P is not pointed, so it has a characteristic subspace H of dimension $d \geq 1$, and every minimal face is a translate of H. If a point x is on a minimal face of P, then the tangent cone at x is generated by $\{u-x: u$ is on a $(d+1)$-dimensional face containing $x\}$. If $x \in P$ is on a face F that is not minimal, then the tangent cone at x is generated by the tangent cones of the minimal faces of F. By Theorem 1.1, there is a point u on a minimal face F_{1} of P and a $(d+1)$ dimensional face F_{2} containing u such that the linear hull of F_{2} is not generated by vectors having support of size at most 2. Since F_{2} is an integer polyhedron, it has an integer point w not in F_{1}. Let H_{1} be the translate of H containing w; note that $H_{1} \subseteq F_{2}$ and $H_{1} \cap F_{1}=\emptyset$. First, we will show that there is an integer point $v \in H_{1}$ such that $\left(F_{2} \cap B(\min (u, v), \max (u, v))\right)_{I}$ is $(d+1)$-dimensional - note that here we do not require $[u, v]$ to be an edge of this polyhedron.

Let $J=\left\{j \in[n]: \exists x \in H, x_{j} \neq 0\right\}$. Since H is a subspace, it has an integer point z such that $z_{j} \neq 0$ for every $j \in J$. Let $\left\{b^{1}, \ldots, b^{d}\right\}$ be an arbitrary integer basis of H. Choose $\mu \in \mathbb{Z}_{+}$such that $\mu\left|z_{j}\right| \geq\left|w_{j}-u_{j}\right|+\sum_{i=1}^{d}\left|b_{j}^{i}\right|$ for every $j \in J$. Let $v=w+2 \mu z$. We claim that the box $B(\min (u, v), \max (u, v))$ contains $w+\mu z$ and $w+\mu z+b^{i}$ for every i. Indeed, if $z_{j}>0$, then $u_{j} \leq w_{j}+\mu z_{j} \leq w_{j}+2 \mu z_{j}$ and $u_{j} \leq w_{j}+\mu z_{j}+b_{j}^{i} \leq w_{j}+2 \mu z_{j}$ by the choice of μ. Analogously, if $z_{j}<0$, then $u_{j} \geq w_{j}+\mu z_{j} \geq w_{j}+2 \mu z_{j}$ and $u_{j} \geq w_{j}+\mu z_{j}+b_{j}^{i} \geq w_{j}+2 \mu z_{j}$ for every i. Obviously, u is also in the box, so $Q:=\left(F_{2} \cap B(\min (u, v), \max (u, v))\right)_{I}$ is $(d+1)$-dimensional.

The edges of Q generate the linear hull of F_{2}, so Q must have an edge [$\left.u^{\prime}, v^{\prime}\right]$ such that $u^{\prime}-v^{\prime}$ has support of size at least 3 . We claim that u^{\prime} and v^{\prime} satisfy condition (ii) of the lemma. Indeed, $\left[u^{\prime}, v^{\prime}\right]$ is an edge of Q, so it is also an edge of $\left(F_{2} \cap B\left(\min \left(u^{\prime}, v^{\prime}\right), \max \left(u^{\prime}, v^{\prime}\right)\right)\right)_{I}$. Since F_{2} is a face of $P,\left[u^{\prime}, v^{\prime}\right]$ is also an edge of $\left(P \cap B\left(\min \left(u^{\prime}, v^{\prime}\right), \max \left(u^{\prime}, v^{\prime}\right)\right)\right)_{I}$.

2 Proof of the main result

As mentioned before, integer g-polymatroids, and hence base polyhedra, satisfy the linking property. We prove the converse for base polyhedra.

Theorem 2.1. If $P \subseteq\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} x_{j}=\beta\right\}$ is an integer polyhedron having the linking property, then P is a base polyhedron.

Proof. Let $P \subseteq\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} x_{j}=\beta\right\}$ be an integer polyhedron that is not a base polyhedron. By Lemma 1.2, there are integer vectors $u, v \in P \cap \mathbb{Z}^{n}$ such that the size of
the support of $u-v$ is at least 3 , and $[u, v]$ is an edge of $(P \cap B(\min (u, v), \max (u, v)))_{I}$. Choose a pair u, v with these properties such that $\|u-v\|_{1}$ is minimal, and let $P^{\prime}=$ $P \cap B(\min (u, v), \max (u, v)))_{I}$. Let d be the dimension of $B(\min (u, v), \max (u, v))$, i.e. the number of components in which u and v differ. In order to make the notation simpler, we consider P^{\prime} as a polyhedron in \mathbb{R}^{d}.

By the minimality of $\|u-v\|_{1}$, all edge vectors of P^{\prime}, except for $u-v$, are of the form $\mu\left(e_{i}-e_{j}\right)$. As $[u, v]$ is an edge of P^{\prime}, there is a vector $c \in \mathbb{R}^{d}$ such that $c^{T} u=c^{T} v$, and $c^{T} x<c^{T} v$ for every $x \in P^{\prime} \backslash[u, v]$. Let k be an index for which $\left|c_{k}\right|$ is maximal. Our first aim is to show the existence of an index $\ell \neq k$ such that $u_{\ell}-v_{\ell}$ has the same sign as $u_{k}-v_{k}$.

The equations $\sum_{j=1}^{d} u_{j}=\sum_{j=1}^{d} v_{j}$ and $c^{T} u=c^{T} v$ together imply $\sum_{j \neq k}\left(c_{k}-c_{j}\right)\left(u_{j}-\right.$ $\left.v_{j}\right)=0$. If no index ℓ exists such that $u_{\ell}-v_{\ell}$ has the same sign as $u_{k}-v_{k}$, then $u_{j}-v_{j}$ has the same sign for every $j \neq k$, thus $c_{k}=c_{j}$ for every j by the maximality of $\left|c_{k}\right|$. As $d \geq 3$, we can modify the choice of k in this case in such a way that an index ℓ with the desired property exists. We can also assume w.l.o.g. that c_{k} and $u_{k}-v_{k}$ are both positive, because otherwise we can exchange the role of u and v and/or replace P by $-P$ (these operations do not invalidate our choice of k and ℓ).

Let $[v, w]$ be an edge of P^{\prime}, where $w \neq u$. The vector $w-v$ is of the form $\mu\left(e_{i}-\right.$ e_{j}) for some i, j, and $\mu \in \mathbb{Z}_{+}$. On one hand, $j \neq k$ because P^{\prime} is a subset of $B(\min (u, v), \max (u, v))$. On the other hand, $i=k$ would imply $c^{T} w \geq c^{T} v$ by the maximality of $\left|c_{k}\right|$, but this contradicts the choice of c, so $i \neq k$. This means that all edges of P^{\prime} incident to v, apart from $[u, v]$, are in the hyperplane $x_{k}=v_{k}$. In particular, the face $\left\{x \in P^{\prime}: x_{\ell}=v_{\ell}\right\}$ is in the hyperplane $\left\{x_{k}=v_{k}\right\}$, so $\left\{x \in P^{\prime}\right.$: $\left.x_{\ell}=v_{\ell}, x_{k}=u_{k}\right\}=\emptyset$.

Let us define vectors f and g by $f_{k}=g_{k}=u_{k}, f_{\ell}=g_{\ell}=v_{\ell}$, and $f_{j}=\min \left\{u_{j}, v_{j}\right\}$, $g_{j}=\max \left\{u_{j}, v_{j}\right\}$ if $j \neq k, \ell$. By the assumptions $u_{k}>v_{k}$ and $u_{\ell}>v_{\ell}$, we have $u \in P \cap B(f, \infty)$ and $v \in P \cap B(-\infty, g)$, but $P \cap B(f, g)$ does not contain an integer point, because $P \cap B(f, g) \cap \mathbb{Z}^{n} \subseteq\left\{x \in P^{\prime}: x_{k}=u_{k}, x_{\ell}=v_{\ell}\right\}=\emptyset$ (here we slightly abuse notation because we consider P^{\prime} again as a polyhedron in $\left.\mathbb{R}^{n}\right)$. This means that P does not satisfy the linking property.

3 Strong linking property

The characterization of base polyhedra in Theorem 2.1 leads to a characterization of generalized polymatroids in terms of the strong linking property, as defined by Frank [2, 3]. An integer polyhedron P has the strong linking property if the polyhedron $P \cap\left\{x \in \mathbb{R}^{n}: f \leq x \leq g, \alpha \leq \sum_{j=1}^{n} x_{j} \leq \beta\right\}$ has an integer point for all $f \in \mathbb{Z}^{n}$, $g \in \mathbb{Z}^{n}, \alpha \in \mathbb{Z}$, and $\beta \in \mathbb{Z}$ that satisfy
(i) $f \leq g$
(ii) $\alpha \leq \beta$,
(iii) $P \cap\left\{x \in \mathbb{Z}^{n}: x \geq f, \sum_{j=1}^{n} x_{j} \leq \beta\right\} \neq \emptyset$,
(iv) $P \cap\left\{x \in \mathbb{Z}^{n}: x \leq g, \sum_{j=1}^{n} x_{j} \geq \alpha\right\} \neq \emptyset$.

Corollary 3.1. An integer polyhedron has the strong linking property if and only if it is a g-polymatroid.

Proof. Let us associate an $(n+1)$-dimensional polyhedron P^{+}to an n-dimensional integer polyhedron P by the definition

$$
P^{+}=\left\{\left(x,-\sum_{j=1}^{n} x_{j}\right): x \in P\right\} .
$$

It is clear that P^{+}is an integer polyhedron in the hyperplane $\sum_{j=1}^{n} x_{j}=0$. It is also well-known that P is a g-polymatroid if and only if P^{+}is a base polyhedron. The characterization thus follows from Theorem 2.1 by the observation that the strong linking property for P is equivalent to the linking property for P^{+}.

Acknowledgement

The author would like to thank András Frank for raising the question whether gpolymatroids can be characterized using the linking property. The research was supported by the Hungarian National Research, Development and Innovation Office NKFIH, grant number K109240, and by the MTA Bolyai Research Scholarship.

References

[1] A. Frank, Generalized polymatroids, Colloq. Math. Soc. János Bolyai 37 (1984), 285-294.
[2] A. Frank, Connections in Combinatorial Optimization, Oxford Lecture Series in Mathematics and Its Applications 38, Oxford University Press 2011.
[3] A. Frank, T. Király, A survey on covering supermodular functions, in: Research Trends in Combinatorial Optimization, W.J. Cook, L. Lovász, J. Vygen, eds., Springer (2009), 87-126.
[4] A. Frank, T. Király, J. Pap, D. Pritchard, Characterizing and recognizing generalized polymatroids, Mathematical Programming 146 (2014), 245-273.
[5] S. Fujushige, Submodular functions and optimization, 2nd Edition, Annals of Discrete Mathematics 58, Elsevier (2005).
[6] N.S. Mendelsohn, A.L. Dulmage, Some generalizations of the problem of distinct representatives, Can. J. Math. 10 (1958), 230-41.
[7] N. Tomizawa, Theory of hyperspace (XVI) - on the structures of hedrons (in Japanese), Papers of the Technical Group on Circuits and Systems, Institute of Electronics and Communications Engineers of Japan (1983)

