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Viktória E. Kaszanitzky? and Bernd Schulze??

Abstract

In [2] we gave necessary conditions for a symmetric d-picture (i.e., a sym-
metric realization of an incidence structure in Rd) to be minimally flat, that is,
to be non-liftable to a polyhedral scene without having redundant constraints.
These conditions imply very simply stated restrictions on the number of those
structural components of the picture that are fixed by the elements of its sym-
metry group. In this paper we show that these conditions on the fixed structural
components, together with the standard non-symmetric counts, are also suffi-
cient for a plane picture which is generic with three-fold rotational symmetry
C3 to be minimally flat. This combinatorial characterization of minimally flat
C3-generic pictures is obtained via a new inductive construction scheme for sym-
metric sparse hypergraphs. We also give a sufficient condition for sharpness of
pictures with C3 symmetry.

1 Introduction

1.1 Background and motivation

The vertical projection of a spatial polyhedral scene with flat faces yields a straight line
drawing of the corresponding incidence structure in the projection plane. Conversely,
given an incidence structure S and a straight line drawing of S in the plane, one may
ask whether this drawing can be ‘lifted’ to a polyhedral scene, i.e., whether it is the
vertical projection of a spatial polyhedral scene. This is a well studied question in
Discrete Geometry which has some beautiful connections to areas such as Geometric
Rigidity Theory and Polytope Theory [6–10]. Moreover, this problem has important
applications in Artificial Intelligence, Computer Vision and Robotics [4, 5].
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1.2 Basic definitions 2

A fundamental result in Scene Analysis is Whiteley’s combinatorial characterization
of all incidence structures which are ‘minimally flat’ if realized generically in the
plane, where a realization of an incidence structure is called minimally flat if it is
non-liftable to a spatial polyhedral scene, but the removal of any incidence yields a
liftable structure. This characterization was conjectured by Sugihara in 1984 [3] and
proved by Whiteley in 1989 [7], and it is given in terms of sparsity counts on the
number of vertices, faces and incidences of the given incidence structure.

Since symmetry is ubiquitous in both man-made structures and structures found in
nature, it is natural to consider the impact of symmetry on the liftability properties
of straight line drawings of incidence structures. Recently, we used methods from
group representation theory to derive additional necessary conditions for a symmetric
realization of an incidence structure to be minimally flat [2]. These conditions can be
formulated in a very simple way in terms of the numbers of vertices, faces and inci-
dences that are fixed under the various symmetries of the structure. We conjectured
in [2] that these added conditions, together with the standard Sugihara-Whiteley
counts are also sufficient for a symmetric incidence structure to be minimally flat,
provided that it is realized generically with the given symmetry group.

In this paper we verify this conjecture for the symmetry group C3 which is gen-
erated by a three-fold rotation (i.e., a rotation by 120 degrees) in the plane. This
result is obtained via a new symmetry-adapted recursive construction for symmetric
sparse hypergraphs. Moreover, we give a sufficient condition for C3-symmetric generic
incidence structures to lift to a sharp polyhedral scene (i.e., a scene where each pair
of faces sharing a vertex lie in separate planes). Finally, we provide some observations
regarding extensions of these results to other symmetry groups in the plane.

1.2 Basic definitions

A (polyhedral) incidence structure S is an abstract set of vertices V , an abstract set
of faces F , and a set of incidences I ⊆ V × F .

A (d−1)-picture is an incidence structure S together with a corresponding location
map r : V → Rd−1, ri = (xi, yi, . . . , wi)

T , and is denoted by S(r).
A d-scene S(p, P ) is an incidence structure S = (V, F ; I) together with a pair

of location maps, p : V → Rd, pi = (xi, . . . , wi, zi)
T , and P : F → Rd, P j =

(Aj . . . , Cj, Dj)T , such that for each (i, j) ∈ I we have Ajxi+ . . .+Cjwi+zi+Dj = 0.
(We assume that no hyperplane is vertical, i.e., is parallel to the vector (0, . . . , 0, 1)T .)

A lifting of a (d− 1)-picture S(r) is a d-scene S(p, P ), with the vertical projection
Π(p) = r. That is, if pi = (xi, . . . , wi, zi)

T , then ri = (xi, . . . , wi)
T = Π(pi).

A lifting S(p, P ) is trivial if all the faces lie in the same plane. Further, S(p, P ) is
folded (or non-trivial) if some pair of faces have different planes, and is sharp if each
pair of faces sharing a vertex have distinct planes. A picture is called sharp if it has
a sharp lifting. Moreover, a picture which has no non-trivial lifting is called flat (or
trivial). A picture with a non-trivial lifting is called foldable.

The lifting matrix for a picture S(r) is the |I| × (|V | + d|F |) coefficient matrix
M(S, r) of the system of equations for liftings of a picture S(r): For each (i, j) ∈ I,
we have the equation Ajxi + Bjyi + . . . + Cjwi + zi + Dj = 0, where the variables
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1.3 Symmetric incidence structures and pictures 3

are ordered as [. . . , zi, . . . ; . . . , A
j, Bj, . . . , Dj, . . .]. That is the row corresponding to

(i, j) ∈ I is:

i
j︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

Theorem 1.1 (Picture Theorem). [7,9] A generic picture of an incidence structure
S = (V, F ; I) with at least two faces has a sharp lifting, unique up to lifting equivalence,
if and only if |I| = |V |+ d|F | − (d+ 1) and |I ′| ≤ |V ′|+ d|F ′| − (d+ 1) for all subsets
I ′ of incidences with at least two faces.

A generic picture of S has independent rows in the lifting matrix if and only if for
all non-empty subsets I ′ of incidences, we have |I ′| ≤ |V ′|+ d|F ′| − d.

Note that it follows from the Picture Theorem that a generic picture of an incidence
structure S = (V, F ; I) is minimally flat, i.e. flat with independent rows in the lifting
matrix, if and only if |I| = |V |+ d|F | − d and |I ′| ≤ |V ′|+ d|F ′| − d for all non-empty
subsets I ′ of incidences.

1.3 Symmetric incidence structures and pictures

An automorphism of an incidence structure S = (V, F ; I) is a pair α = (π, σ), where
π is a permutation of V and σ is a permutation of F such that (v, f) ∈ I if and only
if (π(v), σ(f)) ∈ I for all v ∈ V and f ∈ F . For simplicity, we will write α(v) for π(v)
and α(f) for σ(f).

The automorphisms of S form a group under composition, denoted Aut(S). An
action of a group Γ on S is a group homomorphism θ : Γ → Aut(S). The incidence
structure S is called Γ-symmetric (with respect to θ) if there is such an action. For
simplicity, if θ is clear from the context, we will sometimes denote the automorphism
θ(γ) simply by γ.

Let Γ be an abstract group, and let S be a Γ-symmetric incidence structure (with
respect to θ). Further, suppose there exists a group representation τ : Γ→ O(Rd−1).
Then we say that a picture S(r) is Γ-symmetric (with respect to θ and τ) if

τ(γ)(ri) = rθ(γ)(i) for all i ∈ V and all γ ∈ Γ. (1)

In this case we also say that τ(Γ) = {τ(γ)| γ ∈ Γ} is a symmetry group of S(r), and
each element of τ(Γ) is called a symmetry operation of S(r).

Let Γ be a group, and let S(r) be a Γ-symmetric (d − 1)-picture (with respect to
θ and τ) with n vertices. Then S(r) is said to be Γ-generic if the set of coordinates
of the image of r are algebraically independent over QΓ, where QΓ denotes the field
generated by Q and the entries of the matrices in τ(Γ). In other words, S(r) is Γ-
generic if there does not exist a polynomial h(x1, . . . , x(d−1)n) with coefficients in QΓ

such that h((r1)1, . . . , (rn)d−1) = 0. Clearly, the set of all Γ-generic realizations of
S is a dense (but not open) subset of all Γ-symmetric realizations of S. Moreover,
all Γ-generic realizations of S share the same lifting properties. We say that S is
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1.4 Notation 4

Γ-generically (minimally) flat in Rd−1 if all Γ-generic realizations of S in Rd−1 are
(minimally) flat.
|Vn(S)|, |Fn(S)|, and |In(S)| denote the numbers of vertices, faces, and incidences

of S that are fixed by an n-fold rotation Cn, n ≥ 2, respectively. Similarly, |Vs(S)|,
|Fs(S)|, and |Is(S)| denote the numbers of vertices, faces, and incidences that are
fixed by a reflection s. The incidence structure S may be dropped from this notation
if it is clear from the context.

1.4 Notation

Let H = (V, F ) be a hypergraph. For a set X ⊆ V let H[X] denote the subhypergraph
induced by the set X. The number of hyperedges in H[X] is denoted by eH(X). The
degree of a vertex in H is denoted by dH(v). The set of neighbours of v in a hypergraph
H is denoted by NH(v). d(z, v) denotes the number of hyperedges containing both z
and v. The deficiency of X ⊆ V in a hypergraph H is the value |X| − 3 − eH(X),
and is denoted by defH(X). If |X| ≤ 3, then the deficiency of X is simply |X| − 3.
The subscripts may be omitted if the hypergraph is clear from the context.

For a Γ-symmetric picture (H, r) and v ∈ V , γ ∈ Γ, γv denotes the vertex u ∈ V
for which τ(γ)(r(v)) = r(u). Similarly, for X ⊆ V γX = {γv : v ∈ X}, while for
X ⊆ V and Γ′ ⊆ Γ, Γ′X = {γv : v ∈ X, γ ∈ Γ′}.
Cn (Cs) denotes the group generated by an n-fold rotation (reflection, respectively).

We will use the notation C3 = {id, γ, γ2}, that is, γ denotes a three-fold rotation.

2 Symmetry extended counting rule for 2-pictures

The following theorem gives necessary conditions for a (d−1)-picture to be minimally
flat.

Theorem 2.1. [2] Let S(r) be a (d − 1)-picture which is Γ-symmetric with respect
to θ and τ . If S(r) is minimally flat, then we have

χ(PI) = χ(PV ⊕ (τ̂ ⊗ PF ))− χ((PV ⊕ (τ̂ ⊗ PF ))(T )). (2)

We refer the reader to [2] for further details.
From Theorem 2.1 we obtain the following necessary conditions for a Γ-symmetric

2-picture (with respect to θ and τ) to be minimally flat:

identity: |I| = |V |+ 3|F | − 3 (3)

half-turn: |I2| = |V2| − |F2|+ 1 (4)

reflection: |Is| = |Vs|+ |Fs| − 1 (5)

n-fold rotation, n > 2: |In| = |Vn|+ (|Fn| − 1)
(

1 + 2 cos
2π

n

)
(6)
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Section 3. Constructive characterization of C3-tight hypergraphs 5

where a given equation applies when the corresponding symmetry operation is present
in τ(Γ). We will call (3), (4), (5) and (6) the symmetry extended counting rule.
In [2] we conjectured that the symmetry extended counting rule together with the
standard (non-symmetric) sparsity condition is sufficient for a symmetric picture to
be minimally flat.

Conjecture 2.2. [2] A Γ-generic (d− 1)-picture S(r) is minimally flat if and only
if

(i) |I| = |V | + d|F | − d and |I ′| ≤ |V ′| + d|F ′| − d for all nonempty subsets I ′ of
incidences;

(ii) S satisfies the conditions for Γ in the symmetry extended counting rule;

(iii) For every subset I ′ of I which induces a Γ′-symmetric incidence structure S ′

with |I ′| = |V ′| + d|F ′| − d (where Γ′ ⊆ Γ), S ′ satisfies the conditions for Γ′ in
the symmetry extended counting rule.

In the present paper we prove Conjecture 2.2 for d = 3 and Γ = C3. For the group
C3 the symmetry extended counting rule simplifies to (3) and to

|I3| = |V3| (7)

which is the special case of (6) for n = 3. Note that for Γ = C3 condition (ii) implies
(iii). There are two cases. First, if |V3(S)| = 0 then |I3(S)| = 0 must hold, and
this implies that |V3(S ′)| = |I3(S ′)| = 0 for every C3-symmetric substructure. If
|V3(S ′)| = 1, then |I3(S ′)| = 1, because if for a C3-symmetric substructure S ′ which
contains the fixed vertex, |I ′| = |V ′|+ 3|F ′| − 3 holds, then S ′ must contain the fixed
incidence, too. Thus S ′ satisfies the symmetry-extended counting rule in both cases.

The following example shows that there exist incidence structures that are min-
imally flat in the generic setting but become foldable if realized as C3-symmetric
pictures. Let V = {v∗, v0, . . . , v11} and let F have two different types of faces. The
fixed faces are fi = {v∗, vi, vi+4, vi+8} for 0 ≤ i ≤ 3 and the rest of the faces have the
form gj = {v2j−2, v2j−1, v2j, v2j+1} for 1 ≤ j ≤ 6, where we compute modulo 12. This
example is minimally flat when realized as a generic picture by Theorem 1.1 but does
not satisfy (7), and hence is C3-symmetrically foldable.

3 Constructive characterization of C3-tight hyper-

graphs

In order to characterize minimally flat C3-symmetric incidence structures in the plane
we will first reduce the problem to the special case where every face of the incidence
structure S is incident with exactly four vertices.

In this section v0 denotes the fixed vertex and f0 denotes the fixed hyperedge (note
that v0 and f0 may not exist).
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3.1 Symmetric derived 4-hypergraphs 6

3.1 Symmetric derived 4-hypergraphs

Let S = (V, F ; I) be a C3-symmetric incidence structure. We will define its C3-
symmetric 4-hypergraph H3(S) = (V,

⋃
C3Ej) as follows. Fix an ordering of the vertex

orbits of S under the C3 action. Choose a representative element from every face orbit.
For a representative element fj ∈ F on the vertices v1, v2, v3, . . . , v3+m which is not
a fixed face, the set Ej consists of the edges v1, v2, v3, v3+k for 1 ≤ k ≤ m. If fj is a
fixed face then we can assume that it contains C3v1 where v1 is not a fixed vertex. In
this case Ej consists of |fj| − 3 4-tuples of the form {C3v1, vi} for every vi ∈ fj −C3v1.

Lemma 3.1. Let S be a C3-symmetric incidence structure. The following are equiv-
alent:

(i) S satisfies |I| = |V |+3|F |−3, |I ′| ≤ |V ′|+3|F ′|−3 for every subset of incidences
|I ′| with at least one face and |I3(S)| = |V3(S)|.

(ii) H3(S) is (1, 3)-tight1 and |I3(H3(S))| = |V3(H3(S))|.

Proof: The number of fixed vertices and fixed incidences does not change during
the modification, and hence |I3(S)| = |V3(S)| holds if and only if |I3(H3(S))| =
|V3(H3(S))| holds. It follows from a simple calculation that the conditions |I| =
|V |+3|F |−3, |I ′| ≤ |V ′|+3|F ′|−3 for every subset of incidences |I ′| with at least one
face are equivalent to |I(H3(S))| = |V (H3(S))|+3|F (H3(S))|−3, |I(H ′)| ≤ |V (H ′)|+
3|F (H ′)|− 3 for every subhypergraph H ′ of H3(S) with at least one hyperedge. Then
using the fact that H3(S) is 4-uniform we get that the latter is equivalent to the
(1, 3)-tightness of H3(S).

We will say that a 4-uniform hypergraph H is C3-tight if it is (1,3)-tight and satisfies
|I3(H)| = |V3(H)|.

3.2 A constructive characterization for 4-uniform (1, 3)-tight
hypergraphs

In this section we define the operations used for constructing (non-symmetric) 4-
uniform (1, 3)-tight hypergraphs and summarize the results in [1].

Let H = (V,E) be a 4-uniform hypergraph and let v ∈ V be a vertex with d(v) ≥ j.
The j-extension operation at vertex v picks j hyperedges e1, e2, ..., ej incident with v,
adds a new vertex z to H as well as a new hyperedge e of size 4 incident with both
v and z, and replaces ei by ei − v + z for all 1 ≤ i ≤ j. Thus the new vertex z has
degree j + 1 in the extended hypergraph. Note that a 0-extension operation simply
adds a new vertex z and a new hyperedge of size 4 incident with z.

The inverse of the j-extension operation can be described as follows. Let z be a
vertex with d(z) = j+1 and let v be a neighbour of z with d(z, v) = 1. Let e, e1, ..., ej
be the edges incident with z, where e is the edge which is incident with v, too. The
j-reduction operation at vertex z with neighbour v deletes e and replaces ei by ei−z+v

1A hypergraph H = (V, F ) is called (1, 3)-sparse or sparse for short if |F ′| ≤ |V (F ′)|−3 for every
∅ 6= F ′ ⊆ F . H is called (1, 3)-tight or simply tight if it is (1,3)-sparse and satisfies |F | = |V | − 3.

EGRES Technical Report No. 2015-17



3.2 A constructive characterization for 4-uniform (1, 3)-tight hypergraphs 7

for all 1 ≤ i ≤ j. A j-reduction is called admissible if the hypergraph obtained as the
result of the j-reduction is (1,3)-sparse. See Figure 1 for examples.

v

(a)

v

e

z

(b)

v
e1

(c)

v
e′1

e
z

(d)

v

e1

e2

(e)

v

e′1
e′2

e

z

(f)

Figure 1: Extensions performed at a degree three vertex v of a 4-uniform hypergraph
H. When there are no hyperedges chosen (a) the 0-extension adds a new vertex z and
a new hyperedge incident with both v and z (b). Let the unique chosen hyperedge
be e1, denoted with a dashed line (c). The 1-extension adds a new vertex z, replaces
v with z in e1 and leaves the rest of the hyperedges incident with v unchanged. It
also adds a hyperedge e incident with both v and z (d). When there are two chosen
hyperedges e1 and e2, denoted by dashed and dotted lines, respectively (e), the 2-
extension adds a new vertex z, replaces v with z in e1 and e2, leaves the rest of the
hyperedges unchanged and adds a new hyperedge e incident with both v and z (f).
Note that the two vertices of e different from v and z can be arbitrary; they may or
may not be adjacent with v in H.

Theorem 3.2. [1] Let H = (V,E) be a 4-uniform hypergraph. H is (1,3)-tight if
and only if it can be obtained from a single hyperedge of size four by a sequence of
j-extensions, where 0 ≤ j ≤ 2.

We shall also use the next lemma which is the key in the proof of Theorem 3.2.

Lemma 3.3. [1] Let H = (V,E) be a (1, 3)-tight 4-uniform hypergraph and let z ∈ V
be a vertex with d(z) = j for some 1 ≤ j ≤ 3. Then there is an admissible j-reduction
at z.
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3.3 Preliminary lemmas 8

3.3 Preliminary lemmas

Lemma 3.4. If H is a (1, 3)-tight 4-uniform hypergraph then H has at least four
vertices with degree at most three. Furthermore if there are exactly four vertices with
degree at most three, then they must have degree one.

Proof: Since H is 4-uniform with |V |−3 edges, the sum of degrees in H is 4|V |−12.
Every vertex is incident with at least one hyperedge, by (1,3)-tightness. If there are
at most three vertices with degree at most three, then the total degree in H is at least
4(|V | − 3) + 3, which is a contradiction. From a similar simple calculation the second
part of the statement also follows.

Lemma 3.5. The def function is submodular, that is, def(X) + def(Y ) ≥ def(X ∪
Y ) + def(X ∩ Y ) for every X, Y ⊆ V .

From now on we will assume that H is C3-tight. The next lemma follows immedi-
ately from Lemma 3.5.

Lemma 3.6. For X ⊆ V , we have

def(C3X) ≤ 3def(X)− def(X ∩ γX)− def(γ2X ∩ (X ∪ γX)).

Lemma 3.7. Suppose that X ⊆ V is such that def(X ∩ γX) ≥ def(X) and def(Z) ≥
def(X) for any Z ⊇ X. Then def(X) = def(C3X).

Proof: By the symmetry of H, Lemma 3.5, and the conditions of the lemma we
obtain:

2def(X) = def(X) + def(γX) ≥ def(X ∪ γX) + def(X ∩ γX) ≥ 2def(X).

This implies that def(X ∪ γX) = def(X). Furthermore,

2def(X) = 2def(X ∪ γX) = def(X ∪ γX) + def(γX ∪ γ2X) ≥

≥ def(C3X) + def((X ∪ γX) ∩ (γX ∪ γ2X)) ≥ 2def(X)

from which def(X) = def(C3X) follows.

Lemma 3.8. def(C3X) ≡ 0, 1 (mod 3) for every X ⊆ V .

Proof: By definition, |C3X| − 3 − e(C3X) = def(C3X). The C3 symmetry implies
|C3X| ≡ 0, 1 (mod 3) and e(C3X) ≡ 0, 1 (mod 3). But e(C3X) ≡ 1 (mod 3) implies
|C3X| ≡ 1 (mod 3), and hence def(C3X) ≡ 2 (mod 3) is not possible.

3.4 Reducing low degree vertices

In this section we will define symmetric reductions for C3-tight hypergraphs. We will
also prove that a C3-symmetric reduction that preserves sparsity always exists.

From now on we will suppose that |V | ≥ 7. Let u ∈ V be a vertex not incident with
f0. Suppose that d(u, v) = 1 for some v ∈ V −C3u. Reduce u on v then reduce γu on
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3.4 Reducing low degree vertices 9

γv and then γ2u on γ2v. This operation (that consists of three successive reductions)
will be called a symmetric reduction. We will say that we reduce C3u on C3v. If
the resulting hypergraph H ′ is (1,3)-sparse then the symmetric reduction is called
admissible. The inverse operations of symmetric reductions will be called symmetric
extensions.

Lemma 3.9. Let H be a C3-symmetric 4-uniform hypergraph and let u ∈ V be a vertex
not incident with f0. The hypergraph H ′ obtained from a C3-symmetric reduction is
C3-symmetric.

Proof: It suffices to show that for every hyperedge f ∈ E(H ′) we have γf, γ2f ∈
E(H ′). This is clearly true for every hyperedge in E(H) ∩ E(H ′).

If an edge f1 ∈ E(H) is incident with both u and v then f1, γf1, γ
2f1 are deleted

during the reductions. If an edge f2 ∈ E(H) is incident with u but is not incident with
v, then in f2 the vertex u (γu and γ2u) is replaced with v (γv and γ2v, respectively),
and it is not difficult to see that γf ′2, γ

2f ′2 ∈ E(H ′) holds.

u

a2a1

γuγ2u

(a)

γa1

γuγ2u

(b)

γ2a1
γ2u

(c)

H − C3u

(d)

Figure 2: Example for a symmetric admissible reduction for the case d(u) = 2 and
d(C3(u) = 3. The hypergraph H is shown in (a). There are two possible ways to
reduce u. We can either reduce it on a1 or on a2; the figure shows the former. We
first reduce u on a1 (b), then γu on γa1 (c) and finally γ2u on γ2a1 (d) which gives
the hypergraph H −C3u. The first two reductions are 1-reductions and the third one
is a 0-reduction.

The main result of this section is that we can always find a symmetric set of three
vertices for which an admissible symmetric reduction exists. Our first task is to find
a vertex u with d(u) ≤ 3 that is not incident with f0. By Lemma 3.4 the vertices of
f0 are the only vertices with degree at most four if and only if they all have degree
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3.4 Reducing low degree vertices 10

one. But then H has four vertices only. Hence we can always find an appropriate u
if |V | > 6.

Lemma 3.10. If d(C3u) = 3 then there is an admissible symmetric reduction at C3u.

Proof: The result of an arbitrary symmetric reduction is the deletion of C3u together
with the incident hyperedges. This reduction is clearly admissible.

Note that if d(C3u) = 3 then either d(u) = 1 or d(u) = 2 and there is a hyperedge
incident with both u and γu. Lemma 3.10 covers both of these cases.

3.4.1 Blockers for symmetric reductions

By Lemma 3.10, there is an admissible symmetric reduction if d(C3u) = 3. From now
on we will focus on the cases d(C3u) = 6 or 9. These imply 2 ≤ d(u) ≤ 3. We will
denote the hyperedges incident with u by e1, e2 (and e3 if d(u) = 3) and we will also
use the notation êj = ej − u.

Let a1, . . . , al denote the neighbours of u in V −C3u for which d(u, ai) = 1, 1 ≤ i ≤ l.
Note that d(u) ≤ 3 implies l ≥ 1. We will also use the notation N1(u) = {a1, . . . , al}.
We will prove that for every u with d(u) ≤ 3, there exists an index i for which the
reduction of C3u on C3ai yields a (1,3)-tight hypergraph.

The reduced hypergraph H ′ is not (1,3)-sparse if and only if there is a set of
hyperedges F ⊆ E(H ′) − E(H) for which V (F ) ⊆ X ⊆ V (H) − C3u with some
def(X) ≤ |F | − 1. We will call such a set X a blocker for the symmetric reduction
or a blocker for short. Now we describe the blockers for symmetric reductions. The
blocker of ai will be denoted by Xi.

We will divide blockers into three groups to simplify the discussion. Let Xi be a
blocker of ai, i.e., a blocker for the symmetric reduction of C3u on C3ai. We may
assume that ai ∈ Xi, because C3ai ∩ Xi 6= ∅ must hold, and if ai 6∈ Xi, then we can
replace Xi with γXi or γ2Xi to obtain a blocker that contains ai.

Vertices u and γu may or may not share a hyperedge. First suppose that there is
no hyperedge incident to both u and γu. In this case we cannot reduce C3u on C3ai if
and only if one of the three following cases occurs.

(i) After reducing u on ai the resulting hypergraph H1 has a vertex set that violates
sparsity and does not contain γu and γ2u. Such a vertex set is a blocker and
will be called a type 1 blocker.

(ii) There is no type 1 blocker and after the reduction of γu on γai in H1 the resulting
hypergraph H2 has a vertex set that violates sparsity and does not contain γ2u.
Such a vertex set is also a blocker which will be called a type 2 blocker.

(iii) There is no type 1 or type 2 blocker but after the reduction of γ2u on γ2ai in
H2 the resulting hypergraph has a vertex set that violates sparsity. Such a set
is also a blocker and will be called a type 3 blocker.

It follows from the definitions of type 1, 2 and 3 blockers that if X is a type 2 (or
type 3) blocker, then X must contain the vertex set of at least one (at least two)
previously reduced hyperedge(s).
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3.4 Reducing low degree vertices 11

Consider first the case d(u) = 2. In this case there are three different types of
blockers. Let et for 1 ≤ t ≤ 2 be the edge not incident with ai. If Xi is type 1 then
def(Xi) = 0 and êt+ai ⊆ Xi. If Xi is type 2 then def(Xi) = 1 and (êt+ai)∪γ(êt+ai) ⊆
Xi. Finally, if Xi is type 3 then def(Xi) = 2 and C3(êt + ai) ⊆ Xi.

Now suppose that d(u) = 3. This implies that d(C3u) = 9. To simplify notation we
will assume that ai ∈ e1.

If Xi is type 1, then def(Xi) = 0 or 1. In the former case, êt + ai ⊆ Xi for some
2 ≤ t ≤ 3, and in the latter case, ê1 ∪ ê2 + ai ⊆ Xi.

If Xi is type 2, then 1 ≤ def(Xi) ≤ 3. We have that ai, γai ∈ Xi, and Xi contains
at least one of the sets ê2 and ê3, at least one of γê2 and γê3, and at least def(Xi) + 1
of these four vertex sets. There are two kinds of type 2 blockers that will play an
important role in the proofs. The first one has def(Xi) = 1 and êt∪γêt ⊆ Xi for some
2 ≤ t ≤ 3. We will call such an Xi a type 2a blocker. If def(Xi) = 1 and êt ∪ γês ⊆ Xi

for {s, t} = {2, 3} then Xi is called a type 2b blocker.
Finally, if Xi is type 3, then 2 ≤ def(Xi) ≤ 5. We have that C3ai ⊆ Xi, and Xi

contains at least one of the sets ê2 and ê3, at least one of γê2 and γê3, and at least
one of γ2ê2 and γ2ê3. Xi contains at least def(Xi) + 1 of these six vertex sets.

In the final case, we have d(u) = 3, and u and γu share an edge. d(u) ≤ 3 implies
that u and γu cannot share more than one edge. In this case, instead of e1, e2, e3 we
will use a different notation for the edges incident with u. Let f be the unique edge
incident with both u and γu, and so the edges incident with u are f, γ2f, g for some
g ∈ F . We will use the notation f̂ = f − u − γu and ĝ = g − u. If f̂ ∩ γf̂ = ∅ then
(f̂ ∪ γf̂)∩N1(u) 6= ∅ and in this case we will reduce C3u on C3ai for some ai ∈ f̂ ∪ γf̂ .
If f̂ ∩γf̂ 6= ∅ then either f = {u, γu, w, γw} or f = {u, γu, w, v0} for some w ∈ V −v0.
In this case the (1,3)-sparsity implies that g ∩ N1(u) 6= ∅ and we will reduce C3u on
C3ai for some ai ∈ ĝ.

We will apply the same method as in the case before, that is, we will reduce u on
some of its neighbours ai ∈ N1(u), then reduce γu on γai, and finally reduce γ2u
on γ2ai. Note that the first reduction is a 2-reduction but the other ones may be
1-reductions. In either case this sequence of three operations results in adding exactly
three hyperedges to H − C3u in a symmetric way. If ai ∈ f̂ then let hi = ĝ + ai, and
if ai ∈ ĝ then let hi = f̂ + ai + γai. The three new hyperedges are C3hi.

If the reduction is not admissible then again we have three types of blockers. Xi ⊆
V − C3u is a blocker of ai if one of the following holds:

(i) hi ⊆ Xi and def(Xi) = 0;

(ii) hi ∪ γhi ⊆ Xi and def(Xi) = 1;

(iii) C3hi ⊆ Xi and def(Xi) = 2.

If u, γu share an edge then we will call these blockers type 1, 2 and 3, respectively.

We shall also use the following property of (1,3)-sparse symmetric hypergraphs
throughout this section. Let U ⊆ V − C3u be a vertex set. If U + u spans k edges
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3.4 Reducing low degree vertices 12

incident with u then def(U) ≥ k − 1 and if dU+C3u(C3u) = l then def(U) ≥ l − 3. We
will call this the (∗) property.

From now on we will suppose that ai has a blocker Xi for every 1 ≤ i ≤ l and Xi

will be a blocker with the smallest possible deficiency among blockers of ai. Note that
it follows from the definition of type 1, 2 and 3 blockers that if Xi is type h then there
is no type k blocker of ai with k < h.

3.4.2 Case d(u) = 2 and d(C3(u)) = 6

Lemma 3.11. If d(C3u) = 6 and d(u) = 2 then there is an admissible symmetric
reduction at C3u.

Proof: Suppose for a contradiction that there is no symmetric reduction at C3u.
Then there is a blocker Xi for every ai.

First we will show that every Xi is type 1 or type 2. Suppose for a contradiction that
Xi is type 3. By our assumption def(Y ) ≥ 2 for every Y ⊇ Xi and def(Xi ∩ γXi) ≥ 2
and hence we can use Lemma 3.7. We get that def(C3Xi) = 2, which contradicts
Lemma 3.8. Thus, Xi is type 1 or type 2, as we claimed.

Now suppose that Xi is type 2 for some 1 ≤ i ≤ l. If Xi ∩ γXi is tight then it is
a type 1 blocker of ai which is not possible. Thus, we must have def(Xi ∩ γXi) ≥ 1.
We can again use Lemma 3.7 to obtain def(C3Xi) = 1.

By Lemma 3.3, it is not possible that every blocker is type 1. Therefore, we can
assume that X1 is type 2. Assume further that a1 ∈ e1. Suppose first that Xj is
type 1 for every aj ∈ e2. Then, by Lemma 3.5,

⋃
aj∈e2 Xj is a tight set and contains

every neighbour of u, which contradicts the (∗) property. It follows that there must
be an a2 ∈ e2 for which X2 is type 2. Consider the sets C3X1 and C3X2. We have
def(C3X1) = def(C3X2) = 1 and |C3X1∩C3X2| ≥ 4. This implies def(C3X1∪C3X2) ≤ 2
by Lemma 3.5. Thus, C3X1 ∪ C3X2 violates the (∗) property. This completes the
proof.

3.4.3 Case d(u) = 3 and d(C3(u)) = 9

Claim 3.12. Suppose Xi is type 3. Then def(Xi) ≤ 4, and if C3êt ⊆ Xi for some
1 ≤ t ≤ 3, then def(Xi) ≥ 3.

Proof: Suppose that there is a type 3 blocker Xi with def(Xi) = 5 or with C3êt ⊆ Xi

for some 1 ≤ t ≤ 3 and def(Xi) = 2. In both of these cases we can use Lemma 3.7 to
deduce that def(C3Xi) = def(Xi), which contradicts Lemma 3.8.

The next claim follows easily from Lemma 3.7.

Claim 3.13. If Xi is a type 2a blocker then def(C3Xi) = 1.

Lemma 3.14. Suppose that Y ⊆ V is such that def(C3Y ) ≤ 4 and C3(êt ∪ ês) ⊆ Y
for some pair 1 ≤ t, s ≤ 3. If ai 6∈ êt ∪ ês then def(C3Y ∪ C3Xi) ≤ 4.

Proof: It suffices to show that def(C3Y ∪ C3Xi) ≤ 5 because the statement then
follows from Lemma 3.8.
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3.4 Reducing low degree vertices 13

If Xi is type 1 and tight, then we can use Lemma 3.5 three times to deduce that
def(C3Y ∪C3Xi) ≤ def(C3Y ). If Xi is type 1 with def(Xi) = 1 then def(C3Y ∩Xi) ≥ 1
must hold by the (∗) property. Similarly to the previous case, using Lemma 3.5 three
times, we may deduce that def(C3Y ∪ C3Xi) ≤ def(C3Y ).

If Xi is type 2a, then def(C3Xi) = 1 by Claim 3.13, and hence def(C3Y ∪ C3Xi) ≤
def(C3Y )+1 ≤ 5, by Lemma 3.5. If Xi is type 2b, then def(C3Y ∪Xi) ≤ def(C3Y )+1.
We also have def((C3Y ∪ Xi) ∩ γXi) ≥ 1 because ai has no type 1 blocker, and
def((C3Y ∪Xi∪γXi)∩γ2Xi) ≥ 1. These imply def(C3Y ∪C3Xi) ≤ def(C3Y ∪Xi∪γXi) ≤
def(C3Y ∪Xi) ≤ def(C3Y ) + 1.

If Xi is not type 1, type 2a, or type 2b, then def(Xi) ≥ 2 holds.

Claim 3.15. If def(Xi) ≥ 2 then def(C3Xi) ≤ 4 holds.

Proof: Again, it suffices to show that def(C3Xi) ≤ 5. We split the proof into several
cases. In each case we will use Lemma 3.6 and the fact that Xi is a blocker with the
smallest deficiency.

If Xi is type 2 and def(Xi) = 2, then def(C3Xi) ≤ 6 − 1 − 1. If def(Xi) = 3, then
def(C3Xi) ≤ 9− 2− 2.

Now suppose that Xi is type 3. If def(Xi) = 2, then we have def(C3Xi) ≤ 6−1−1.
If def(Xi) = 3, then there are two cases. We can assume in the first case that Xi

contains C3êt, ês, while in the second case it contains êt, ês, γês, γ
2êt. In the first case

we have def(C3Xi) ≤ 9− 3− 3 and in the second case we have def(C3Xi) ≤ 9− 2− 2.
Finally, if def(Xi) = 4, then def(C3Xi) ≤ 12− 4− 4. By Claim 3.12, def(Xi) = 5 is

not possible. This completes the proof.
If def(Xi) ≥ 2, then def(C3Xi) ≤ 4, by Claim 3.15. In this case def(C3Y ∩C3Xj) ≥ 3

follows from the (∗) property. Then, by Lemma 3.5, def(C3Y ∪C3Xj) ≤ 4 + 4−3, and
the proof is complete.

Lemma 3.16. Suppose there is a set Y ⊆ V with def(C3Y ) ≤ 4 and C3(êt ∪ ês) ⊆ Y
for some pair 1 ≤ t, s ≤ 3. Then H is not (1,3)-sparse.

Proof: Using Lemma 3.14 we get that def(C3Y
⋃
j:aj∈N1(u)\C3Y C3Xj) ≤ 4, and hence

the set C3Y
⋃
j:aj∈N1(u)\C3Y C3Xj violates sparsity by the (∗) property.

Lemma 3.17. For every blocker Xi, we have def(Xi) ≤ 1. Further, if def(Xi) = 1,
then Xi is type 2.

Proof: Suppose for a contradiction that def(Xi) ≥ 2 for some 1 ≤ i ≤ l with ai ∈ ê1.
Then def(C3Xi) ≤ 4, by Claim 3.15. If Xi is type 2, then it must contain at least
three of the vertex sets ê2, ê3, γê2, γê3. Thus, C3(ê2∪ ê3) ⊆ C3Xi. We can use a similar
argument to deduce that C3(ê2 ∪ ê3) ⊆ C3Xi if Xi is type 2 with def(Xi) ≥ 3. If Xi

is type 2 with def(Xi) = 2, then by Claim 3.12 we get that C3Xi contains C3ê2 and
C3ê3. Then, using Lemma 3.16, we get a contradiction.

To prove the second part of the statement, suppose that Xi is type 1 with def(Xi) =
1. Suppose ai ∈ ê1. If Xj is type 1 for every aj ∈ ê1, i 6= j, then, using Lemma 3.5
and the (∗) property, it can easily be seen that def(

⋃
j:aj∈ê1 Xj) ≤ 1, which is a

contradiction. Hence there is some ak ∈ ê1 with a type 2 blocker Xk. If Xk is type
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3.4 Reducing low degree vertices 14

2a, then def(C3Xk) = 1, by Claim 3.13. This implies def(C3(Xi ∪ Xk)) ≤ 4, which
contradicts Lemma 3.16. If Xk is type 2b, then consider the set Xi ∪ Xk. We have
def(Xi ∪Xk) ≤ 2, def((Xi ∪Xk)∩ γ(Xi ∪Xk)) ≥ 0 and def((Xi ∪Xk)∪ γ(Xi ∪Xk)∩
γ2(Xi∪Xk)) ≥ 1. Hence, using Lemmas 3.6 and 3.8, def(C3(Xi∪Xk)) ≤ 4, and again
we get a contradiction using Lemma 3.16. This completes the proof.

We have shown so far that every blocker has to be a tight type 1 blocker, a type 2a
blocker or a type 2b blocker. We shall also use the following lemma.

Lemma 3.18. Suppose that |êj ∩ êk| ≥ 1 and êk ⊆ Xi for some ai ∈ êj. Then Xi is
not type 2a.

Proof: Suppose for a contradiction that Xi is type 2a. Then def(C3Xi) = 1 by
Claim 3.13. Thus def(C3(Xi ∪ êj)) ≤ 4, which is a contradiction by Lemma 3.16.

Now we will show that if there is a blocker Xi of ai for every 1 ≤ i ≤ l then H
cannot be (1, 3)-sparse.

Lemma 3.19. If d(u) = 3, and u and γu do not share a hyperedge, then there is an
admissible symmetric reduction at C3u.

Proof: Suppose for a contradiction that there is no admissible symmetric reduction
at C3u. Then ai has a blocker for every 1 ≤ i ≤ l. By Lemma 3.17, Xi is a tight
type 1 or type 2a or type 2b blocker for every 1 ≤ i ≤ l. By Lemma 3.3, there is a
(non-symmetric) admissible reduction at u, and hence we may assume that a1 has no
type 1 blocker. Thus, X1 is a type 2 blocker.
Case 1: Suppose first that every blocker is either type 1 or type 2a.

Claim 3.20. Suppose that Xj is type 1 or type 2a for every aj ∈ ês and ês ∪ êt ⊆⋃
aj∈ês Xj. Then êt 6⊆

⋂
aj∈ês Xj.

Proof: Suppose the contrary for a contradiction. If Xi is type 2a for some ai ∈ ês,
then def(C3Xi) ≤ 1 by Claim 3.13. We can easily deduce that def(

⋃
aj∈ês C3Xj) ≤ 3

using Lemma 3.5, and then we get a contradiction using Lemma 3.16. If Xj is type
1 for every j, then we have def(

⋃
aj∈ês Xj) ≤ 1, which contradicts sparsity by the (∗)

property.
We first claim that |êj∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3. Suppose for a contradiction

that ê1 ∩ (ê2 ∪ ê3) = ∅. Then ê1 = {ai, aj, ak} for some triple 1 ≤ i, j, k ≤ l. It follows
from Claim 3.20 that Xi ∩ Xj ∩ Xk ⊇ êt is not possible if t ∈ {2, 3}. Hence we can
assume that Xi + ê2 and Xj + ê3. Assume Xk ⊇ ê2. ê1 ∩ (ê2 ∪ ê3) = ∅ implies
|ê2 ∩ N1(u)| ≥ 1, and hence am ∈ ê2 for some 1 ≤ m ≤ l. If Xm ⊇ ê1, then we
claim that Xj ∪ Xk ∪ Xm violates sparsity. If Xj, Xk, Xm are type 1 blockers, then
Xj ∪ Xk ∪ Xm is tight and hence violates sparsity. If at least one of Xj, Xk, Xm is
type 2a, then def(C3(Xj ∪Xk ∪Xm)) ≤ 3 by Lemma 3.5 and the (∗) property, which
violates sparsity by Lemma 3.14.

Hence Xm ⊇ ê3 for every am ∈ ê2. But this contradicts Claim 3.20. We deduce
that |êj ∩N1(u)| ≤ 2 for every 1 ≤ j ≤ 3, which implies |N(u)| ≤ 7. There is a type
2a blocker, and hence êj ∩ êk = ∅ for some pair 1 ≤ j, k ≤ 3 by Lemma 3.18. This
implies |N(u)| ≥ 6.
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If |N(u)| = 6 then l ≥ 3. Consider the sets X1, X2. X1 is type 2a by our assumption,
and hence def(C3X1) = 1 by Claim 3.13. If N(u) ⊆ X1 ∪ X2, then |X1 ∩ X2| ≥
2. Hence, if X2 is type 1, then def(C3(X1 ∪ X2)) ≤ 4, and if X2 is type 2a, then
def(C3(X1 ∪ X2)) ≤ 2 by Lemma 3.5. In both of these cases we get a contradiction
using the (∗) property. If |N(u) ∩ (X1 ∪X2)| = 5, then |X1 ∩X2| ≥ 3. If X2 is type
1, then def(C3(X1 ∪ X2)) = 1, and hence def(C3(N(u) ∪ X1 ∪ X2)) ≤ 4, while if X2

is type 2a, then def(C3(X1 ∪ X2)) ≤ 2, and hence def(C3(N(u) ∪ X1 ∪ X2)) ≤ 5 by
Lemma 3.5. These contradict sparsity by the (∗) property.

The remaining case is |N(u)| = 7 and |êj ∩ N1(u)| ≤ 2 for every 1 ≤ j ≤ 3. The
only possible configuration is ê1 ∩ ê2 ∩ ê3 = ∅ and |ê1 ∩ ê2| = |ê2 ∩ ê3| = 1. Thus,
|ê2 ∩ N1(u)| = 1 and |ê1 ∩ N1(u)| = |ê3 ∩ N1(u)| = 2. If a1 ∈ ê2 then we get a
contradiction by Lemma 3.18. Hence we can assume that a1 ∈ ê1 and ê3 ⊆ X1. (If
ê2 ⊆ X1 then Claim 3.13 and the (∗) property give a contradiction.) By Claim 3.20,
there is an aj ∈ ê3 with ê1 ⊆ Xj. If Xj is type 1, then def(C3(X1 ∪Xj)) ≤ 4, and if
Xj is type 2a, then def(C3(X1 ∪ Xj)) ≤ 2. Both lead to a contradiction by Lemma
3.16.
Case 2: It remains to consider the case where X1 is a type 2b blocker. We may
assume that ê3 ∪ γê2 ⊆ X1 and a1 ∈ ê1.

Claim 3.21. If Xi is type 2b, then |Xi ∩ γXi| = 1.

Proof: Suppose that |Xi ∩ γXi| ≥ 2 for a type 2b blocker Xi. Then, by Lemma
3.6, def(C3Xi) ≤ 3 + 1 + 1, and hence def(C3Xi) ≤ 4 by Lemma 3.8. Then we get a
contradiction using Lemma 3.14.

We have ê2 ∩ ê3 = ∅ by Claim 3.21. We first claim that there is a vertex a2 ∈ ê2

for which X2 is type 2b. Suppose that Xj is type 1 or type 2a for every vertex
aj ∈ ê2 ∩ N1(u). Then, by Claim 3.20, there must be an ak ∈ ê2 for which ê3 ⊆ Xk.
But if Xk is type 1, then X1 ∪ Xk is a type 2b blocker of a1, which contradicts
Claim 3.21, and if Xk is type 2a, then by Claim 3.13 def(C3Xk) = 1, and hence
def(C3(X1 ∪ Xk)) ≤ 4, which contradicts Lemma 3.16. Hence there is a vertex, say
a2 ∈ ê2, for which X2 is type 2b. Using a similar argument we can conclude that there
is an a3 ∈ ê3 with a type 2b blocker X3.

Then, by Claim 3.21, the sets ê1, ê2, ê3 are pairwise disjoint, and hence |N1(u)| = 9.
It also follows from the argument above that every blocker must be type 2b.

Now suppose that ê2 ∪ γê3 ⊆ X4 for some a4 ∈ ê1. Then def(X1 ∪ γX4) ≤ 2,
def((X1 ∪ γX4) ∩ γ(X1 ∪ γX4)) ≥ 0, and def(γ2(X1 ∪ γX4) ∩ ((X1 ∪ γX4) ∪ γ(X1 ∪
γX4))) ≥ 2 by Lemma 3.5. This implies def(C3(X1 ∪ X4)) ≤ 4 by Lemma 3.6,
which contradicts Lemma 3.16. Hence ê3 ∪ γê2 ⊆ X1 ∩ X4 ∩ X7, with the notation
ê1 = {a1, a4, a7}.

We can use a similar argument as above if ê3 ∪ γê1 ⊆ X2 for a2 ∈ ê2 to deduce
that def(C3(X1 ∪ X2)) ≤ 4 and to get a contradiction. Hence ê1 ∪ γê3 ⊆ X2 is the
only possible case. Consider C3X2 ∪ X1 ∪ γX4 ∪ γ2X7 which contains C3N(u). We
will prove that this set violates sparsity. We have def(X2 ∪ γX4) ≤ 2, and by adding
the sets γX2, γ

2X7, γ
2X2 (in this order), we can easily conclude that def(X2 ∪ γX4 ∪

γX2 ∪ γ2X7 ∪ γ2X2) ≤ 5, because each set intersects the union of the previous ones
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in at least three vertices. We have ê3 + a1 ⊆ (X2 ∪ γX4 ∪ γX2 ∪ γ2X7 ∪ γ2X2) ∩X1,
and hence def(C3X2 ∪X1 ∪ γX4 ∪ γ2X7) ≤ 5.

In each case we got a contradiction, and hence we can always perform a symmetric
reduction, as we claimed.

3.4.4 Case d(u) = 3 and d(C3(u)) = 6

Lemma 3.22. Suppose that d(u) = 3 and that the hyperedges incident with u are
f, γ2f, g. Then there is a vertex ai ∈ N1(u) such the reduction of C3u on C3ai is
admissible. Moreover, ai can be chosen such that if f̂ ∩ γ2f̂ = ∅ then ai ∈ f̂ ∪ γ2f̂ ,
and if f̂ ∩ γ2f̂ 6= ∅ then ai ∈ ĝ.

Proof: Suppose for a contradiction that there is a blocker Xi for every 1 ≤ i ≤ l.
It follows easily from Lemmas 3.8 and 3.7 that every blocker is type 1 or type 2.
Suppose first that f̂ ∩ γ2f̂ = ∅. Consider the blockers for every ai ∈ f̂ ∪ γ2f̂ . Let
Y =

⋃
i:ai∈f̂∪γ2f̂ Xi. N(u) − {γu, γ2u} ⊆ Y , and hence def(C3Y ) ≥ 3 must hold by

the (∗) property. But if Xi is type 1 for every ai ∈ f̂ ∪ γ2f̂ , then Y is tight and
def(C3Y ) ≤ 1 by Lemma 3.5. If there is some ai ∈ f̂ ∪ γ2f̂ for which Xi is type 2,
then def(C3Y ) ≤ 2 follows easily from Lemmas 3.5 and 3.8. So in both cases we get
a contradiction.

Now suppose that f̂ ∩ γ2f̂ 6= ∅. Consider the blockers Xi for every ai ∈ ĝ. In this
case, by using Lemma 3.6, we may deduce that def(C3Xi) ≤ 1 for every ai ∈ ĝ. Thus,
we have def(

⋃
i:ai∈ĝXi) ≤ 2 by Lemmas 3.5 and 3.8, which is a contradiction. This

completes the proof.
If we combine the results of Lemmas 3.10, 3.11, 3.19 and 3.22 we get the following:

Theorem 3.23. Let H = (V, F ) be a C3-tight hypergraph with |V | > 6. Let u ∈ V be
a vertex with d(u) ≤ 3 not incident to f0. Then there is a C3-symmetric admissible
reduction at C3u.

There are three non-isomorphic C3-tight hypergraphs with |V | ≤ 6. H4 is the
smallest possible hypergraph with these properties; it has four vertices and one hy-
peredge and satisfies |I3(H4)| = |V3(H4)| = 1. The hypergraph can also have six
vertices and three hyperedges. Hence we have two vertex orbits, C3v1 and C3v2.
There are two possible hypergraphs with these properties. For the first one, which
we will denote by H6, F = C3{C3v1 + v2}, and for the second one, which we will
denote by H ′6, F = C3{v1, v2, γv1, γv2}. They satisfy |I3(H6)| = |V3(H6)| = 0 and
|I3(H ′6)| = |V3(H ′6)| = 0.

We will call H4, H6 and H ′6 the base graphs. As a corollary of the above observations
and Theorem 3.23 we get the main result of this section:

Theorem 3.24. H = (V, F ) is a C3-tight hypergraph if and only if it can be obtained
from one of the base graphs with a sequence of symmetric j-extensions for 0 ≤ j ≤ 2.
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4 Characterization of C3-generic minimally flat 4-

uniform hypergraphs

4.1 j-extensions preserve independence in the lifting matrix

Recall that the j-extension operation at vertex v picks j hyperedges e1, e2, ..., ej inci-
dent with v, adds a new vertex z to H as well as a new hyperedge e of size 4 incident
with both v and z, and replaces ei by ei − v + z for all 1 ≤ i ≤ j. The lifting matrix
for a picture S(r) is the |I| × (|V |+ d|F |) coefficient matrix M(S, r) in which the row
correspoding to (i, j) ∈ I is:

i
j︷ ︸︸ ︷

(i, j) 0 . . . 0 1 0 . . . 0 0 . . . 0 ri 1 0 . . . 0︸ ︷︷ ︸
|V |

︸ ︷︷ ︸
d|F |

In this section we show that if H is a 4-uniform hypergraph with an independent
2-picture and H ′ is obtained from H by a j-extension for some j ≥ 0, then H ′ also
has an independent 2-picture.

Theorem 4.1. Let (H, r) be an independent 2-picture, where H = (V, F ) is a 4-
uniform hypergraph, and r : V → R2 is a location map. Let H ′ = (V ′, F ′) be the
hypergraph obtained from H by performing a j-extension at v ∈ V such that V ′ = V +z
and {a, b, v, z} ∈ F ′. Put r(z) = r(v). If r(a), r(b), r(v) do not lie on a line, then
(H ′, r) is an independent 2-picture.

Proof: (H, r) is an independent 2-picture if and only if the rows of M(H, r) are inde-
pendent. We have to show that the rows of M(H ′, r) are also independent. M(H ′, r)
is given by

z v a b
e′i︷ ︸︸ ︷ e︷ ︸︸ ︷

? ?
(z, e′i) 1 0 0 0 0. . . 0 0. . . 0 r(z) 1 0. . . 0 0 0

? ?
(z, e) 1 0 0 0

0 0

r(z) 1
(v, e) 0 1 0 0 r(v) 1
(a, e) 0 0 1 0 r(a) 1
(b, e) 0 0 0 1 r(b) 1

M(H ′, r) can be constructed from M(H, r) as follows. First, add 4 zero columns,
one of which corresponds to z and the rest of them correspond to e. Clearly, this
operation results in a row-independent matrix. Then add the rows of incidences
(v, e), (a, e), (b, e). The rows of the matrix obtained are independent since r(a), r(b), r(v)
do not lie on a line. Then adding the row of (z, e) preserves the independence because
no other row has a non-zero element in the first column.
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4.2 Minimally flat C3-symmetric 4-uniform hypergraphs 18

Now, observe that what is left is to modify the rows corresponding to the incidences
(v, ei) for 0 ≤ i ≤ j. We can obtain the desired row of (z, e′i) by subtracting the row
of (v, e) and adding the row of (z, e). These operations also preserve independence.
This completes the proof.

4.2 Minimally flat C3-symmetric 4-uniform hypergraphs

First we shall see that the lifting matrices corresponding to the base graphs have full
rank. Observe that for H4 the first four columns of M(H, r) form an identity matrix
and hence its rows are independent.

If H is isomorphic to H6 or H ′6, then we will construct a row-independent C3-
symmetric realization using Theorem 4.1. Let r(v1) 6= (0, 0) be arbitrary, and place
C3v1 symmetrically.

For H6, start with the hyperedge {C3vi, v2} and put r(v1) = r(v2). Then add
{C3vi, γv2} with r(γv1) = r(γv2), and finally add {C3vi, γ

2v2} with r(γ2v1) = r(γ2v2).
This realization is row-independent by Theorem 4.1.

For H ′6, we put r(v2) = r(γv1) (and then r(γv2) = r(γ2v1), r(γ2v2) = r(v1)). We
start again with the hyperedge {C3vi, γv2}. Then apply a 1-extension at γ2v1. This
results in deleting the only edge and adding {v1, v2, γv1, γv2} and {C3vi, γv2}. After
one more 1-extension at v1 we obtain hypergraph H ′6. Both of these extensions satisfy
the conditions of Theorem 4.1, and hence we can conclude that this realization is
row-independent.

We shall prove that the symmetric extensions defined in Section 3.4 preserve the
row-independence of the lifting matrix.

Lemma 4.2. Every C3-symmetric extension preserves the (C3-generic) independence
of the rows of the lifting matrix.

Proof: If we apply three j-extensions on H such that the 3 new vertices do not
share an edge, then we can apply Theorem 4.1 three times to see that the resulting
symmetric hypergraph has an independent symmetric 2-picture.

In the second case we can use a similar argument since the new hyperedge always
satisfies the conditions of Theorem 4.1.

As a corollary we obtain the following.

Theorem 4.3. A C3-symmetric 4-uniform hypergraph H is C3-generically minimally
flat if and only if it is C3-tight.

4.3 Minimally flat C3-symmetric incidence structures

Theorem 4.4. A C3-symmetric incidence structure S = (V, F ; I) is C3-generically
minimally flat if and only if |I| = |V | + 3|F | − 3, |I ′| ≤ |V ′| + 3|F ′| − 3 for every
subset of incidences |I ′| with at least one face and |I3(S)| = |V3(S)|.

Proof: By Lemma 3.1, S satisfies the conditions of the theorem if and only if H3(S)
is C3-tight.
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Consider the edge set Ej that corresponds to the face fj = {v1, v2, v3, . . . ,
vm+3}. (See Section 3.1 for definitions.) Put {v1, v2, v3, vi} = ei for every 4 ≤ i ≤
m + 3. We will delete vertex vi from the hyperedge ei and add vi to e4 for every
5 ≤ i ≤ m + 3 successively. Thus, at the end of the process, we obtain the face fj
and m− 1 copies of the face {v1, v2, v3} from the set Ej. We will observe that moving
every vertex results in an independent structure. The faces of size three can then be
deleted.

Let Mi,l denote the row of M(S, r) corresponding to the incidence between vi and
el. By our assumption, r is symmetry-generic, and hence ri is in the affine span of
r1, r2, r3 for every 4 ≤ i ≤ m+ 3. Equivalently, there are coefficients α1i, α2i, α3i with
α1i(r1, 1) + α2i(r2, 1) + α3i(r3, 1) = (ri, 1).

The next matrix shows the rows of M(S, r) corresponding to the edges e4 and ei.

v1 v2 v3 v4 vi
e4︷ ︸︸ ︷ ei︷ ︸︸ ︷

(v1, e4) 1 0 0 0 0

0

r1 1

0

= M1,4

(v2, e4) 0 1 0 0 0 r2 1 = M2,4

(v3, e4) 0 0 1 0 0 r3 1 = M3,4

(v4, e4) 0 0 0 1 0 r4 1 = M4,4

(v1, ei) 1 0 0 0 0

0 0

r1 1 = M1,i

(v2, ei) 0 1 0 0 0 r2 1 = M2,i

(v3, ei) 0 0 1 0 0 r3 1 = M3,i

(vi, ei) 0 0 0 0 1 ri 1 = Mi,i

If we replace the row Mi,i with Mi,i +
∑3

k=1 αki(Mk,4 − Mk,i), then we get the
following:

v1 v2 v3 v4 vi
e4︷ ︸︸ ︷ ei︷ ︸︸ ︷

(vi, e4) 0 0 0 0 1 0. . . 0 ri 1 0. . . 0 0 0

The rows of the resulting matrix are linearly independent and it corresponds to
the incidence structure in which vi is deleted from ei and is added to e4. Observe
that we only used the fact that v1, v2, v3 are in general position and are contained
in both e4 and ei. Hence the above argument also works for fixed edges and edges
with larger cardinality. Now we delete the rows M1,iM2,iM3,i, and then the columns
corresponding to ei only contain zeros, so that the deletion of these columns also
preserves independence.

We can apply the same method for every 1 ≤ j ≤ |V | − 3 to construct S and see
that it is independent. This completes the proof.

5 Sharp C3-symmetric pictures

In this section we give a sufficient condition for sharpness of C3-generic pictures. We
will first need the definition of deficiency for incidence structures. For S = (V, F ; I)
the deficiency of a vertex set X ⊆ V is defined by def(X) = |X| + 3f(X) − i(X)
where f(X) and i(X) denote the number of faces and the number of incidences in

EGRES Technical Report No. 2015-17



Section 5. Sharp C3-symmetric pictures 20

S[X]. We may apply the same proof method as for Lemmas 3.7 and 3.8 to obtain the
following two results:

Lemma 5.1. Suppose that X ⊆ V is such that def(X ∩ γX) ≥ def(X) and def(Z) ≥
def(X) for any Z ⊇ X. Then def(X) = def(C3X).

Lemma 5.2. def(C3X) ≡ 0, 1 (mod 3) for every X ⊆ V .

As a corollary of Theorem 4.4 we get a sufficient condition for independence of
C3-generic incidence structures.

Corollary 5.3. Suppose that for the C3-symmetric incidence structure S = (V, F ; I)
we have |I ′| ≤ |V ′|+ 3|F ′| − 3 for every subset of incidences |I ′| with at least one face
and |I3(S)| = |V3(S)|. Then S is C3-generically independent.

Proof: We may assume that |I| ≤ |V | + 3|F | − 4, for otherwise S is C3-generically
minimally flat and hence independent by Theorem 4.4. We will prove that S is a
substructure of a C3-generically minimally flat incidence structure. Observe that by
the symmetry of S and |I3(S)| = |V3(S)|, |I| ≤ |V |+ 3|F | − 6 must hold. Hence there
is an incidence (v, f) 6∈ I with v 6= v0 for which the (non-symmetric) 2-picture S1(r),
where S1 = (V, F, I + (f, v)), does not violate the sparsity condition.

Consider the symmetric C3-generic structure S2(r), where S2 = (V, F, I2) and I2 =
I + C3(f, v). Note that |I3(S2)| = |V3(S2)|. Suppose that S2(r) is not independent,
that is, there is a substructure S ′ = (V ′, F ′, I ′) of S2 with |I ′| > |V ′|+ 3|F ′| − 3. Let
S ′ be minimal. By the sparsity of S1 this can happen in two ways. The first case
is f, γf ∈ F ′, defS(V ′) = 1, and the second case is C3f ∈ F ′, defS(V ′) = 2. In the
second case we get a contradiction using Lemmas 5.1 and 5.2.

The first case can only occur if v0 ∈ V ′ and f0 6∈ F ′. If for every vertex v 6∈ f ,
v 6= v0, we can find such a substructure, then it is not difficult to see that the union of
these substructures violate sparsity. Thus S2 is independent for some v 6∈ f , v 6= v0,
and so is its substructure S.

Theorem 5.4. Let S = (V, F, I) be a C3-symmetric incidence structure with |I ′| ≤
|V ′|+ 3|F ′| − 4 for every substructure of S with at least two faces.

(i) If |V3(S)| = 0 then S is C3-generically sharp.

(ii) If |V3(S)| = |I3(S)| = 1 and |I ′| ≤ |V ′|+ 3|F ′| − 6 holds for every C3-symmetric
substructure of S with at least two faces, then S is C3-generically sharp.

Proof: Without loss of generality we may assume that every face contains at least
four vertices. Let S(r) be a C3-generic 2-picture. First we would like to show that
for every pair (f1, f2) of its faces, there is a lifting S(p, P ) in which f1 and f2 lie in a
different plane.

Note that two faces f1, f2 cannot have the same plane in a lifting if there is a vertex
u ∈ f2 − f1 which is not in the plane of f1. It follows from the sparsity condition of
the theorem and from the assumption that every face contains at least four vertices
that f2 − f1 6= ∅. Hence for every pair f1, f2 ∈ F , there is a vertex u for which
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S1 = (V, F, I + (f1, u)) satisfies |I ′| ≤ |V ′|+ 3|F ′| − 3. We shall see that the structure
S2 = (V, F, I + C3(f1, u)) satisfies the same count. Note that in case (i) it follows
easily that S satisfies |I ′| ≤ |V ′|+ 3|F ′| − 6 for every C3-symmetric substructure with
at least two faces.

Suppose for a contradiction that there is a substructure S ′ = (V ′, F ′, I ′) of S2 with
|I ′| > |V ′|+ 3|F ′| − 3 and let S ′ be minimal. Then we may assume that f1, γf1 ∈ F ′
and defS(V ′) = 1 or C3f1 ∈ F ′ and defS(V ′) = 2. Both of these lead to a contradiction
using Lemma 5.1. Then, by Corollary 5.3, S2(r) is independent, and so is S1(r).

Hence the dimension of the solution space of the matrix M(S, r) is larger than
that of M(S1, r). Thus, it must contain a solution which places u out of the plane
of f1, that is, f1, f2 are not in the same plane. Such a solution exists for every pair
f1, f2 ∈ F . An appropriate linear combination of these solutions gives a sharp lifting.
This completes the proof.

6 Concluding remarks

In this paper we characterized C3-generically minimally flat incidence structures. How-
ever, we note that there are flat C3-symmetric incidence structures without a span-
ning minimally flat C3-symmetric substructure. Hence our result does not give a
complete characterization for C3-generically flat (but not necessarily minimally flat)
incidence structures. (Consider the following example: V = {v0, v1, . . . , v6} and
F = {{v0, vi, vj, vk} : 1 ≤ i, j, k ≤ 6}. This structure is clearly C3-generically flat,
but it does not have a minimally flat spanning incidence structure with C3 symmetry,
because none of its spanning substructures satisfy (7).) Finding a characterization for
the class of C3-generically flat incidence structures is a direction for future research.

We also gave a sufficient condition for sharpness of C3-symmetric 2-pictures. How-
ever, the problem of giving a full characterization remains open.

It is of course also natural to try to prove a constructive characterization for Γ-
generically minimally flat structures with respect to other symmetry groups τ(Γ).
However, our proof for C3 cannot directly be transferred to these other groups. In
particular, considering symmetric derived 4-uniform hypergraphs is in general not
useful for symmetry groups different from C3. In other words, a statement equivalent
to Lemma 3.1 does in general not exist.

For example, consider the half-turn symmetry group C2 and the C2-symmetric inci-
dence structure S = (V, F ; I), where V = {v0, C2v1, C2v2} and F = {{v0, C2v1, C2v2}}.
Clearly, S is C2-generically minimally flat and satisfies all the necessary conditions
for minimal flatness. There are two possibilities to construct a C2-symmetric derived
4-uniform hypergraph of S. Both hypergraphs have two hyperedges which share three
collinear vertices, and hence are foldable. Also, neither of them satisfies (4).
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