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Hardness results for stable exchange problems

Zsuzsa Karkus?

Abstract

In this paper we study variants of the stable exchange problem which can
be viewed as a model for kidney exchange. The b-way stable l-way exchange
problem is a generalization of the stable roommates problem. For b = l = 3 Biró
and McDermid proved that the problem is NP-complete and asked whether a
polynomial time algorithm exists for b = 2, l = 3. We prove that the problem
is NP-complete and it is W[1]-hard with the number of 3-cycles in the exchange
as a parameter. We answer a question of Biró by proving that it is NP-hard
to maximize the number of covered nodes in a stable exchange. We also prove
some related results.

1 Introduction

Given a simple digraph D = (V,A), a set of disjoint directed cycles is called an
exchange. In an instance of a stable exchange problem, every v ∈ V has a strictly
ordered preference list containing the nodes to which there is an arc from v. We
say that u gets v in the exchange if uv is an arc of one of the directed cycles in the
exchange. We say that v ∈ V is covered by the exchange E if v belongs to a cycle in
E. An exchange is called stable if there is no directed cycle C such that for each arc
e = uv of C, u is not covered by the exchange or u prefers v over what he got in the
exchange. An exchange is called strongly stable if there is no directed cycle C not
in the exchange such that for each arc e = uv of C, u is not covered by the exchange
or e is in the exchange or u prefers v over what he got in the exchange. In both cases
the node set of a violating cycle C is called a blocking coalition.

An important motivation of this model is kidney exchange. (This was first described
in [14].) Currently the best known treatment for kidney failure is transplantation.
Since there are a large number of people on the deceased donor waiting list, the more
efficient solution is living donation. However, a kidney of a willing living donor is
often not suitable for the patient for immunological reasons. Therefore incompatible
patient-donor pairs might want to exchange kidneys with other pairs in the same
situation. Kidney exchanges have been organized in several countries, for an overview
of the different approaches see [14, 4]. In the model described above, the nodes of the
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1.1 Related work 2

digraph correspond to the incompatible patient-donor pairs and uv ∈ A if and only if
the kidney of the donor corresponding to v is suitable for the patient corresponding
to u. Each patient has a strict preference order over the kidneys suitable for him. In
an exchange the patient-donor pairs exchange kidneys backwards along the cycles.

Shapley and Scarf [16] showed that the stable exchange problem (SE) is always
solvable, and a stable exchange can be found by the Top Trading Cycles (TTC)
algorithm proposed by Gale.

In case of kidney exchanges the cycles in the exchange should be short, since all
operations along a cycle have to be carried out at the same time (to avoid someone
backing out). If all the cycles in the exchange have length at most l, we call it
an l-way exchange. An exchange is called b-way stable if there is no blocking
coalition of size at most b. The definition is analogous for strong stability. Biró
and McDermid [1] proved that the decision problem of finding a 3-way stable 3-way
exchange is NP-complete, and asked whether a polynomial time algorithm exists for
the decision problem of finding a 2-way stable 3-way exchange. In section 2 we prove
that the problem is NP-complete and it is W[1]-hard with the number of 3-cycles
in the exchange as a parameter, even in complete digraphs. We also prove that the
decision problem of finding a b-way strongly stable l-way exchange is NP-complete
for any b ≥ 2, l ≥ 3 and the same result holds for b-way stable l-way exchanges and
stable l-way exchanges.

An instance might admit more than one stable exchanges, therefore it is a natural
goal to maximize the number of covered nodes in the exchange. The complexity of
this problem was mentioned as an open problem in [2] as well as the same question
for 2-way stable exchanges. An exchange is called complete if it covers every node.
In section 3 we show that deciding if an instance admits a complete stable exchange is
NP-complete and the same holds for b-way stable exchanges for any b ≥ 2. Roth and
Postlewaite [15] proved that the exchange found by the TTC algorithm is strongly
stable and it is the only strongly stable solution. However, there might be more than
one b-way strongly stable exchanges. We prove that deciding if an instance admits
a complete b-way strongly stable exchange is NP-complete for any b ≥ 2. We show
that if the digraph is symmetric, then TTC is a 1

2
-approximation algorithm, while

the stable partition algorithm is a 2
3
-approximation algorithm for maximizing the

number of covered nodes in a 2-way (strongly) stable exchange. All the NP-hardness
reductions are from the k-clique in k-partite graph problem, which is specified as
follows:
Instance: An integer k, and a k-partite graph G = (V1 ∪ V2 ∪ ... ∪ Vk, E).
Question: Is there a clique of size k in G?
The NP-completeness of this problem was implicitly proved in [9], and the W[1]-
completeness of the problem was proved in [7].

1.1 Related work

An instance of the stable marriage problem (SM) consists of nmen and n women. Each
person has a strictly ordered preference list containing all members of the opposite
sex. The problem is to find a matching which is stable in a sense that there is no

EGRES Technical Report No. 2015-15



1.1 Related work 3

blocking pair, i.e. a man and a woman who prefer each other over their partners in
the matching. The Gale-Shapley algorithm [8] always finds a stable matching in an
instance of SM.

In the stable roommates problem (SR) there are 2n persons, each of whom ranks all
the others in strict order of preference. The goal is to find a complete stable matching.
Gale and Shapley [8] gave an instance of SR for which no stable matching is possible.
Irving [10] proposed an O(n2) time algorithm which finds a complete stable matching
if there is one, or reports that none exists.

The stable roommates with incomplete lists problem (SRI) is a generalization of
SR, where each person’s preference list only contains his acceptable partners. The
problem can be represented by a graph, where there is an edge between two persons
if and only if they are acceptable to each other. Here the number of people is not
necessarily even, and the stable matching does not need to be complete. However,
the same persons are matched in every stable matching and Irving’s algorithm can be
extended to SRI [11].

The stable exchange problem and the definition of b-way stable l-way exchanges
have already been described above. We may assume that if uv ∈ A in an instance
of the 2-way stable 2-way exchange problem, then vu ∈ A, since otherwise uv does
not belong to any 2-cycle or blocking coalition. A digraph satisfying this property is
called a symmetric digraph. We call two arcs in opposite directions between the
same two nodes a bidirected edge. The 2-way stable 2-way exchange problem is
equivalent to SRI hence solvable in polynomial time. (We can replace the bidirected
edges with edges and vice versa.) Irving [12] proved that it is NP-complete to decide
if an instance admits a stable 2-way exchange, and the same holds for 3-way stable
2-way exchanges.

Cechlárová et al. [5] defined another version of the stable exchange problem, where
ties are allowed in the preference lists and a node prefers an exchange E to another
exchange E ′ if he prefers what he got in E over what he got in E ′ or if he is indifferent
between them, but he belongs to a shorter cycle in E than in E ′. The notion of stable
exchange can be defined analogously. Cechlárová and Lacko [6] proved that it is NP-
complete to decide if an instance admits a complete stable exchange in this sense.
It was proved in [3] that the problem of finding a stable exchange that covers the
maximum number of nodes in this model is not approximable within n1−ε for any
ε > 0 unless P = NP.

Another generalization of SM is the so-called 3-dimensional stable marriage problem
(3DSM). Here there are three sets: men, women and dogs. The sets have cardinality n.
Each man has a strict preference order over all the woman-dog pairs. The preference
lists of the women and dogs are defined analogously. A matching is a set of n disjoint
families, that is triples of the form (man, woman, dog). A matching is stable if there
is no blocking family, i.e. a family such that all of its members prefer this family over
their current family in the matching. Ng and Hirschberg [13] proved that the problem
of deciding whether a stable matching exists is NP-complete. They mentioned the
cyclic 3DSM as an open problem, where men only care about women, woman only
care about dogs and dogs only care about men. In case of strong stability the cyclic
3DSM problem is NP-complete [1]. If the preference lists may be incomplete we refer
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to the problem as cyclic 3DSMI. Here the cardinality of the sets are not necessarily
equal, and the matching does not need to cover everyone. Biró and McDermid [1]
showed that it is NP-complete to decide if an instance of cyclic 3DSMI admits a stable
matching. Cyclic 3DSMI is equivalent to the 3-way stable 3-way exchange problem
in tripartite graphs, therefore the NP-completeness result applies to this problem as
well.

2 Stable exchanges with restrictions

First we state a few straightforward observations that can be found in [2].

• If an exchange is strongly stable, then it is also stable.

• An l-way exchange is also an (l + 1)-way exchange.

• A b-way (strongly) stable (l-way) exchange is also a (b−1)-way (strongly) stable
(l-way) exchange.

We will prove that the b-way stable l-way exchange problem is NP-complete for any
b ≥ 2, l ≥ 3. (For b = l = 3, this was proved in [1].) For sake of simplicity first we
prove the special case where b = 2 and l = 3.

Theorem 1. The decision problem of finding a 2-way stable 3-way exchange is NP-
complete.

Proof. We reduce from the k-clique in k-partite graph problem. Given an instance
G = (X1 ∪X2 ∪ ... ∪Xk, E) of the k-clique in k-partite graph problem, we create an
instance of the 2-way stable 3-way exchange problem. By adding isolated nodes we
may assume that |Xi| = ni is odd and ni ≥ 5 for i = 1, ..., k.

First we define an undirected graph, which then we transform into a digraph by
replacing each edge with a bidirected edge. For every i = 1, ..., k we define a circuit
Ui = (ui,1, ui,2, ..., ui,ni

), and for each ui,j we add a new edge ui,jvi,j. Let (vi,j, wi,j, zi,j)
be a circuit with two new nodes, wi,j and zi,j. For every x ∈ Xi there is a distinct
corresponding node in Vi = {vi,1, ..., vi,ni

}. For x ∈ Xi, y ∈ Xj, i 6= j, there is an edge
between the corresponding nodes if and only if xy 6∈ E.

The preference lists are shown in the following table. Let the neighbours of vi,j in
∪l 6=iVl be denoted by Ni,j. A set in the preference list means the nodes of the set in
arbitrary order.

node preference list
ui,j, i ∈ [k], j ∈ [ni] ui,j+1 vi,j ui,j−1
vi,j, i ∈ [k], j ∈ [ni] wi,j Ni,j ui,j zi,j
wi,j, i ∈ [k], j ∈ [ni] zi,j vi,j
zi,j, i ∈ [k], j ∈ [ni] vi,j wi,j

See Figure 1. We will prove that the constructed instance admits a 2-way stable
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Figure 1: All the edges of the graph are bidirected edges. L:=last, NL:=next to last.

3-way exchange if and only if there is a k-clique in G. First suppose that the con-
structed instance admits a 2-way stable 3-way exchange.

Lemma 1. For every i, if the arcs ui,j−1ui,j and ui,jui,j+1 are not in the exchange,
then ui,jvi,j must be in the exchange for every j = 1, ..., ni (subscripts modulo ni).

Proof. Suppose that ui,j−1ui,j and ui,jui,j+1 are not in the exchange. Notice that
ui,jui,j−1 cannot be in the exchange either, because the arcs of Ui are not in any cycle
of length 3. ui,j is first on ui,j−1’s preference list and ui,j does not get the first item
on his list, therefore if ui,jvi,j would not be in the exchange, that is ui,j would not get
the second item on his list either, then {ui,j−1, ui,j} would be a blocking pair.

|Ui| = ni is odd, and it is not possible to have two consecutive arcs of Ui in the
exchange (because the arcs of Ui are not in any cycle of length 3). Therefore it follows
from the above lemma, that for every i there is a node ui,ji in Ui such that ui,jivi,ji is
in the exchange. Since this arc is not in any cycle of length 3, vi,jiui,ji has to be in
the exchange as well.

Now we prove that the nodes corresponding to vi,ji for i = 1, ..., k form a k-clique.
Suppose there are two which are not connected. Then there is a bidirected edge
between the nodes corresponding to them. But then these two nodes form a blocking
pair, because they prefer each other to their current partner.

Now suppose there is a k-clique in G. Without loss of generality, we may assume
that the nodes corresponding to the nodes of the k-clique are v1,1, v2,1, ..., vk,1.
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Lemma 2. The 3-way exchange defined by the 2-cycles (ui,ji , ui,ji+1),
ji = 2, 4, ..., ni − 1, (ui,1, vi,1), (wi,1, zi,1) and the 3-cycles: (vi,ji , wi,ji , zi,ji), ji =
2, 3, .., ni is stable (thus 2-way stable).

Proof. In the 3-cycles everyone gets his first choice, so none of them can belong to
a blocking coalition. The same applies to the nodes ui,2, ui,4, ..., ui,ni−1 and wi,1. ui,1
gets the second item on his list, therefore he would get his first item ui,2 in a blocking
coalition, but ui,2 cannot belong to a blocking coalition. ui,3, ui,5, ..., ui,ni

get their
third choice, so in a blocking coalition they would get the first or second item on
their list, but we have seen that these nodes cannot belong to a blocking coalition,
therefore they cannot either. zi,1 gets his second choice, therefore he would get his
first choice vi,1 in a blocking coalition. However {zi,1, vi,1} is not a blocking pair, and
in a bigger coalition only wi,1 could get zi,1, but he does not belong to a blocking
coalition. Therefore the nodes that could belong to a blocking coalition are only vi,1
for i = 1, ..., k, but these correspond to the nodes of a k-clique in G, thus they are not
even connected.

We used in the proof that the exchange we are looking for only contains cycles of
length at most three when we showed that certain arcs cannot belong to a cycle of
length at least three. If we wish to extend this proof to l-way exchanges, where l > 3,
we need to modify the construction.

Theorem 2. The decision problem of finding a stable l-way exchange is NP -complete
for any l ≥ 3. The same holds for b-way stable l-way exchanges for any b ≥ 2.

Proof. For the first part of the theorem, we must show that the problem is in NP.
Suppose we are given an l-way exchange. To check that it is stable, first we delete
every arc uv such that u does not prefer v over what he got in the exchange. These
arcs cannot belong to a blocking coalition. (Note that we deleted all the arcs of the
exchange). The exchange was stable if and only if the remaining digraph does not
contain a directed cycle.

For the NP-hardness proof, we modify the construction of the previous theorem.
Let t = l−2 if l is odd, t = l−1 if l is even. We replace the bidirected edges ui,jui,j+1

for i = 1, ..., k, j = 1, ..., ni subscripts modulo ni with a bidirected ui,jui,j+1 path of
length t. The new nodes prefer the node succeeding them in the cycle over the one
preceding them.

Lemma 3. If there are two consecutive arcs of the cycle
(ui,1, ..., ui,2, ..., ui,ni−1, ..., ui,ni

) which are not in the exchange, then there is a sub-
script j for which (ui,j, vi,j) is a 2-cycle in the exchange.

Proof. The proof is very similar to the proof of Lemma 1. We suppose there are two
consecutive arcs not in the exchange. The endpoints of the first arc form a blocking
pair, unless the common endpoint of the arcs gets his second choice. Since the length
of the cycle (ui,1, ..., ui,2, ..., ui,ni−1, ..., ui,ni

) is odd and the nodes of the cycle are not
in any cycle of length at most l and at least 3, there must be two consecutive arcs of
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the cycle not in the exchange, hence ui,jvi,j is in the exchange for some j. This arc
does not belong to a cycle of length at most l and at least 3, therefore (ui,j, vi,j) is a
2-cycle in the exchange.

From the above lemma, there is a node vi,ji for every i, who gets his next to last
item in the exchange. The nodes corresponding to these form a k-clique in G, from
the same proof as in Theorem 1.

Now we prove that if there is a k-clique in G, the instance of SE admits a stable
3-way (and thus l-way) exchange. Without loss of generality, we may assume that the
nodes corresponding to the nodes of the k-clique are v1,1, v2,1, ..., vk,1. We modify the 3-
way exchange defined in Lemma 2, such that in the cycle (ui,1, ..., ui,2, ..., ui,ni−1, ..., ui,ni

)
every second arc from ui,2 should belong to a 2-cycle. This 3-way exchange is still
stable. (The proof is very similar to the proof of Lemma 2.)

Remark 1. This construction does not work for b-way strongly stable l-way ex-
changes, because the cycles (vi,1, wi,1, zi,1) are blocking in the strongly stable sense.

Theorem 3. The decision problem of finding a b-way strongly stable l-way exchange
is NP-complete for any b ≥ 2, l ≥ 3.

Proof. Given an instance of the k-clique in k-partite graph problem, we create an
instance of the b-way strongly stable l-way exchange problem by modifying the con-
struction of Theorem 1. First we make the modifications we made in the proof of
Theorem 2 but with t being the smallest odd number at least max{b− 2, l − 2}. Let
b′ = b − 1 if b is odd, and b′ = b if b is even. We add new bidirected paths of length
b′ + 1: wi,jy

1
i,j..., y

b′
i,jzi,j for i = 1, ..., k, j = 1, ..., ni. The new nodes prefer the node

succeeding them over the one preceding them. We modify wi,j and zi,j’s preference
list:

wi,j : y1i,j, zi,j, vi,j

zi,j : vi,j, y
b′

i,j, wi,j

We prove that this instance of SE admits a b-way strongly stable l-way exchange
if and only if there is a k-clique in G. Suppose the instance admits a b-way strongly
stable l-way exchange. Then it is also a b-way stable l-way exchange, and Lemma 3
clearly holds in this case too. Just like before, it follows from the lemma that there is
a k-clique in G.

Now suppose there is a k-clique in G. Without loss of generality, we may assume
that the nodes corresponding to the nodes of the k-clique are v1,1, v2,1, ..., vk,1. We
prove that the 3-way (and thus l-way) exchange defined by the following 2-cycles and
3-cycles is b-way strongly stable.

• (ui,1, vi,1)

• the 2-cycles defined by every second arc of the cycle
(ui,1, ..., ui,2, ..., ui,ni−1, ..., ui,ni

) starting from ui,2

• (wi,1, y
1
i,1), (y2i,1, y

3
i,1) (y4i,1, y

5
i,1), ..., (y

b′−2
i,1 , yb

′−1
i,1 ), (yb

′
i,1, zi,1)
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• (y1i,j, y
2
i,j), (y

3
i,j, y

4
i,j), ..., (y

b′−1
i,j , yb

′
i,j)

• (vi,j, wi,j, zi,j) i = 1, ..., k, j = 2, ..., ni

Those nodes of the new paths added to the construction who got their first choice in
the exchange (namely ymi,j for i = 1, ..., k, j = 2, ..., ni,m = 1, 3, ..., b′ − 1 and ymi,1 for
i = 1, ..., k, m = 2, 4, ..., b′), cannot belong to a blocking coalition of size at most b,
because they are in a 2-cycle with their first choice in the exchange and they do not
belong to any longer cycle of length at most b. For j ≥ 2, zi,j gets his first choice,
vi,j, therefore he must get it in every blocking coalition he might belong to. (zi,j, vi,j)
and (zi,j, vi,j, wi,j) are the only cycles of length at most b which contain the arc zi,jvi,j,
but these are not blocking, therefore zi,j cannot belong to a blocking coalition of size
at most b. Those nodes of the new paths added to the construction who got their
second choice in the exchange (namely ymi,j for i = 1, ..., k, j = 2, ..., ni,m = 2, 4, ..., b′

and ymi,1 for i = 1, ..., k, m = 1, 3, ..., b′ − 1), cannot belong to a blocking coalition of
size at most b. This is because they are in a 2-cycle with their second choice in the
exchange, we have seen that their first choice cannot belong to a blocking coalition,
and they do not belong to any longer cycle of length at most b. For j ≥ 2, wi,j
gets his second choice. He cannot belong to a blocking coalition of size at most b,
since his first choice y1i,j, and his second choice zi,j cannot either. For j ≥ 2, vi,j
gets his first choice, wi,j in the exchange, who cannot belong to a blocking coalition
of size at most b, therefore vi,j cannot either. Now we show that the nodes of the
cycle (ui,1, ..., ui,2, ..., ui,ni−1, ..., ui,ni

) cannot belong to a blocking coalition of size at
most b. These nodes are in 2-cycles in the exchange, and they do not belong to any
longer cycle of length at most b. It follows from this, that the nodes of the cycle
that get their first choice cannot belong to a blocking coalition. The ones who get
their second choice cannot belong to a blocking coalition either, because they would
get their first choice in it, but we have just seen that these nodes cannot belong to
a blocking coalition. wi,1 is in a 2-cycle with his first choice, and this arc does not
belong to any longer cycle of length at most b, which means that wi,1 cannot belong
to a blocking coalition of size at most b. This also holds for zi,1, because he is in a
2-cycle with his second choice thus he would get his first choice vi,1 in any blocking
coalition he might be in, but the only cycles of length at most b which contain this
arc are (zi,1, vi,1) and (zi,1, vi,1, wi,1), and these are not blocking. We have shown for
every node that it does not belong to a blocking coalition of size at most b except for
vi,1, i = 1, ..., k. But these nodes correspond to the nodes of a k-clique thus they are
not connected, therefore they cannot belong to a blocking coalition either.

Now we return to 2-way stable 3-way exchanges, and prove that the problem remains
NP-complete even in complete digraphs. If we added the missing arcs to the end of
the preference lists in our construction in Theorem 1, this would not work for proving
this, because we used that certain arcs do not belong to a cycle of length 3, which
would not be true in the modified version. Therefore we need a new construction.

Theorem 4. The decision problem of finding a 2-way stable 3-way exchange in a
complete digraph is NP-complete.
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Proof. The reduction is from the k-clique in k-partite graph problem. Given an in-
stance G = (X1 ∪ X2 ∪ ... ∪ Xk, E) of the k-clique in k-partite graph problem, we
create an instance of the 2-way stable 3-way exchange problem. By adding isolated
nodes we may assume that |Xi| = ni is odd for i = 1, ..., k, and ni ≥ 5. For every i, we
create a set of nodes Ci = {vi,1, vi,2, ..., vi,ni

}. The digraph of the 2-way stable 3-way
exchange problem is the complete digraph defined on these nodes. For every node in
Xi, there is a distinct corresponding node in Ci. For vi,j we denote the set of nodes
in ∪t6=iCt for which the corresponding node in ∪t6=iXt and the node corresponding to
vi,j are not connected with Ni,j. Let Ti,j = (∪t6=iCt)−Ni,j. (These are the nodes for
which the corresponding node in G is connected with the node corresponding to vi,j
in G.)

Now we describe the preference lists. A set in the preference list means the nodes
of the set in arbitrary order. For i ∈ [k], j ∈ [ni] the preference list of vi,j is shown in
the following table. (subscripts modulo ni).

node preference list
vi,j vi,j+1 vi,j−1 Ni,j Ci − vi,j Ti,j

We prove that there is a k-clique in G if and only if the constructed instance ad-
mits a 2-way stable 3-way exchange.

First suppose that there is a k-clique in G. Without loss of generality we may
assume that the nodes corresponding to the nodes of the k-clique are v1,3, v2,3, ..., vk,3.

Lemma 4. The 3-way exchange defined by the directed 3-cycles (vi,1, vi,2, vi,3) and
2-cycles (vi,j, vi,j+1) for i = 1, 2, ..., k; j = 4, 6, ..., ni − 1 is 2-way stable.

Proof. The nodes vi,j for j = 1, 2, 4, 6, ..., ni − 1 get the first item on their preference
list, therefore they cannot belong to a blocking pair. For 5 ≤ 2t + 1 ≤ ni, vi,2t+1

cannot belong to a blocking pair either, because he gets the second item on his list,
so the only way he could belong to a blocking pair is if {vi,2t+1, vi,2t+2} would be
blocking, but v2t+2 cannot belong to a blocking pair. Finally a pair {vi,3, vj,3} cannot
be blocking because vi,3 and vj,3 correspond to two nodes of a k-clique in G so they
prefer what they got in the exchange over each other.

Now suppose that the constructed instance admits a 2-way stable 3-way exchange.

Lemma 5. Suppose we have an odd bidirected cycle C = (c1, c2, ..., ct) in the digraph,
such that each node of the cycle has the successive node in the cycle as his first choice
and the preceding node as his second choice. If there is a 2-way stable exchange, then
either there are two consecutive arcs of C in that exchange, or the whole backwards
cycle is in the exchange.

Proof. Suppose that there are two consecutive arcs of C: cici+1 and ci+1ci+2 so that
neither of them is in the exchange. If ci+1ci is not in the exchange, then {ci, ci+1}
is a blocking pair, because ci+1 is first on ci’s preference list, ci is second on ci+1’s
preference list, and ci+1ci+2 and ci+1ci are not in the exchange, which means that
ci+1 cannot get the first or the second item on his list in the exchange. If ci+1ci is
in the exchange, then ci−1ci cannot be in the exchange, because there is only one arc
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Section 3. Maximizing the number of covered nodes 10

entering ci in the exchange. Therefore if cici−1 is not in the exchange, then it follows
from the same argument, that {ci−1, ci} is a blocking pair, so cici−1 has to belong to
the exchange. Repeating the same argument yields that the whole backwards cycle
has to be in the exchange.

If there are no two consecutive arcs of C such that neither of them is in the exchange,
there have to be two consecutive arcs of C which are in the exchange, since C is
odd.

The cycles Ci = (vi,1, vi,2, ..., vi,ni
) meet the conditions of the above lemma for every

i ∈ [k], j ∈ [ni], and since ni ≥ 5, the backwards cycles cannot belong to the 3-way
exchange. Therefore there exist two consecutive arcs vi,jivi,ji+1 and vi,ji+1vi,ji+2 in
each Ci, which are in the exchange. Thus the cycles (vi,ji , vi,ji+1, vi,ji+2) are in the
exchange.

Now we prove that the nodes corresponding to vi,ji+2 for i = 1, ..., k form a k-
clique. Suppose there are two, which are not connected in G. Then there exist i, l
such that vi,ji+2 ∈ Nl,jl+2 and vl,jl+2 ∈ Ni,ji+2. For t = i, l, vt,jt+2 gets vt,jt in the
exchange over which he prefers the nodes of Nt,jt+2, therefore vi,ji+2 and vl,jl+2 prefer
each other, which means that {vi,ji+2, vl,jl+2} is a blocking pair, thus we have reached
a contradiction.

Remark 2. It follows from the same proof, that the decision problem of finding a
(b-way) stable 3-way exchange in a complete digraph is NP-complete for any b ≥ 2.

Remark 3. It can be proved in a similar way that the decision problem of finding a (b-
way) stable 4-way exchange in a complete digraph is NP-complete for any b ≥ 2. The
same proof does not work for l-way exchanges if l ≥ 5 (because we cannot guarantee
that the cycle containing the two consecutive arcs from Ci does not contain nodes
from other Cj’s).

Theorem 5. The 2-way stable 3-way exchange problem with the number of 3-cycles
in the exchange as a parameter is W [1]-hard even in complete digraphs.

Proof. The reduction described in the NP-hardness proof the 2-way stable 3-way
exchange problem (Theorem 4) is a parameterized reduction from the W[1]-complete
k-clique in k-partite graph problem since the number of 3-cycles in the constructed
2-way stable 3-way exchange is k.

Remark 4. We can decide in polynomial time whether an instance admits a 2-way
stable 3-way exchange, where the number of 3-cycles in the exchange is at most a
given constant. (We can reduce the problem of deciding whether an exchange with
given 3-cycles can be extended to a 2-way stable 3-way exchange to SRI).

3 Maximizing the number of covered nodes

3.1 NP-hardness

An instance might admit more than one stable exchanges, therefore it is a natural
goal to maximize the number of covered nodes in the exchange. It follows from the
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theorem below that this problem is NP-hard.

Theorem 6. It is NP-complete to decide if an instance of the stable exchange problem
admits a complete stable exchange.

Proof. We reduce from the k-clique in k-partite graph problem. For every k-partite
graph G = (V1, ..., Vk, E), we define an instance of the stable exchange problem. First
we describe an undirected graph, which we then transform into a digraph, by replac-
ing each edge with a bidirected edge. For every i = 1, ..., k we define a node wi, and
ni circuits: (wi, xi,j, yi,j, zi,j) j = 1, ..., ni. Let xi,jzi,j be an edge for every i ∈ [k],
j ∈ [ni]. Let Xi = {xi,1, ..., xi,ni

}. For every v ∈ Vi there is a distinct corresponding
node in Xi. For v ∈ Vi, v′ ∈ Vj there is an edge between the corresponding nodes if
and only if vv′ 6∈ E. Let the neighbours of xi,j in ∪l 6=iXl be denoted by Ni,j. The
preference lists are shown in the following table. A set in the preference list means
the nodes of the set in arbitrary order.

node preference list
zi,j, i ∈ [k], j ∈ [ni] yi,j wi
yi,j, i ∈ [k], j ∈ [ni] xi,j zi,j
xi,j, i ∈ [k], j ∈ [ni] zi,j Ni,j wi yi,j
wi, i ∈ [k] arbitrary Xi

See Figure 2.

Lemma 6. In every complete exchange there is a node in every Xi who gets one of
the last two items on his list.

Proof. If there is a complete stable exchange, then someone gets wi in the exchange,
for every i. If someone from Xi gets wi, then this person gets the next to last item on
his list. Otherwise someone from Zi must get wi, suppose zi,j does. Then zi,j cannot
get yi,j and yi,j must be covered, therefore xi,j must get him, which means that xi,j
gets the last item on his list.

Take a node form every Xi who gets his last or next to last choice. These nodes
prefer each other to what they get in the exchange, therefore no two of them are
connected in the digraph, therefore the corresponding nodes form a k-clique in G.

Suppose there is a k-clique in G. We may assume that the nodes corresponding to
the nodes of the k-clique are x1,1, x2,1, ..., xk,1. We prove that the complete exchange
defined by the following directed cycles is stable:

(xi,1, wi, zi,1, yi,1), (xi,j, zi,j, yi,j), i = 1, ..., k, j = 2, ..., ni.

The nodes of the cycles (xi,j, zi,j, yi,j), i = 1, ..., k, j = 2, ..., ni get their first choice
thus cannot belong to a blocking coalition. The same holds for zi,1 and yi,1 for i =
1, ..., k. We have seen that all the nodes other then xi,1 connected to wi cannot
belong to a blocking coalition, therefore wi cannot either. This leaves us only with
x1,1, ..., xk,1. But these correspond to the nodes of a k-clique, meaning that they are
not connected in the digraph, thus no subset of them forms a blocking coalition.
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Figure 2: All the edges of the graph are bidirected edges. L:=last, NL:=next to last.

For proving that there is a k-clique in G, we only used that the instance admits a
2-way stable exchange. Therefore the same proof applies to the following theorem.

Theorem 7. It is NP-complete to decide if an instance of the stable exchange problem
admits a complete b-way stable exchange for any b ≥ 2.

Roth and Postlewaite [15] proved that the exchange found by the TTC algorithm
is the only strongly stable solution. However, there might be more then one b-way
stable exchanges.

Theorem 8. It is NP-complete to decide if an instance of the stable exchange problem
admits a complete b-way strongly stable exchange for any b ≥ 2.

Proof. We modify our previous construction. Let us replace the bidirected xi,jzi,j
path of length 2 with a bidirected path of length t, where t = b if b is even, and
t = b+ 1 otherwise. The new nodes prefer the neighbour which is closer to xi,j. Now
we show that Lemma 6 remains true for this construction too. If there is a complete
stable exchange, then someone gets wi in the exchange. If it is xi,j for some j ∈ [ni],
then he gets his next to last choice, so we are done. Otherwise zi,j gets wi for some
j ∈ [ni]. This zi,j does not get the next node on the path from zi,j to xi,j, so its other
neighbour has to get it. If this arc is in a cycle of length at least 3, then, since zi,j gets
wi, it could only be in the cycle (wi, xi,j, ...., zi,j). Therefore in that case xi,j gets his
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last choice. So we only need to cover the case when the first and second nodes after
zi,j on the path from zi,j to xi,j are switched in the exchange. In that case, the nodes
of the zi,jxi,j path cannot belong to a cycle of length at least 3 and every one of them
is covered in the exchange, therefore every second arc of the zi,jxi,j path belongs to a
2-cycle. Since the length of the path is even xi,j is paired with the previous node of
the zi,jxi,j path, thus gets his last choice. Just like in Theorem 6, the lemma implies
that there is a k-clique in G.

If there is a k-clique in G, without loss of generality, we may assume that the nodes
corresponding to the nodes of the k-clique are x1,1, x2,1, ..., xk,1. We prove that the
complete exchange defined by the following directed cycles is strongly stable:

(wi, zi,1, ..., xi,1), (zi,j, ..., xi,j), i = 1, ..., k, j = 2, ..., ni.

The nodes of the following cycles of length at least b get their first choice thus cannot
belong to a blocking coalition: (zi,j, ..., xi,j), i = 1, ..., k, j = 2, ..., ni. The nodes
of the cycles (wi, zi,1, ..., xi,1) except for the xi,1’s and wi’s get their first choice in
the exchange, therefore they get the same item in any blocking coalition which they
belong to. The only cycles of length at most b which contain one of these nodes are
2-cycles, but the nodes of the cycles (wi, zi,1, ..., xi,1) prefer the item succeeding them
to the one preceding them, therefore these pairs are not blocking. This implies that
the nodes of the cycles (wi, zi,1, ..., xi,1) except for the xi,1’s and wi’s cannot belong
to a blocking pair. We have seen that all the nodes other than xi,1 connected to wi
cannot belong to a blocking coalition, and {wi, xi,1} is not a blocking pair, therefore
wi cannot belong to a blocking coalition either. This leaves us with only x1,1, ..., xk,1.
But these correspond to nodes of a k-clique, meaning that they are not connected in
the digraph, and thus no subset of them forms a blocking coalition.

Remark 5. All the NP-completeness theorems in this subsection apply for the special
case when the digraph is symmetric.

3.2 Approximation algorithms

We have seen that it is NP-hard to maximize the number of covered nodes in a 2-way
(strongly) stable exchange. Now we will check how well the known algorithms for
finding a 2-way (strongly) stable exchange approximate the problem. First we do not
assume that the digraph is symmetric.

Claim 1. There does not exist an α < 1 for which the Top Trading Cycles algorithm
is an α-approximation algorithm for finding a 2-way (strongly) stable exchange which
covers the maximum number of nodes.

Proof. Suppose there is such an α. Take an integer k, such that 2
k
< α. Take two

directed cycles of length k: (u1, u2, ..., uk) and (v1, v2, ..., vk) and two additional arcs
u2v1 and v2u1. u2 prefers v1 over u3 and v2 prefers u1 over v3, all the other nodes
have only one acceptable node on their lists. TTC takes the cycle (v1, v2, u1, u2) in the
exchange in the first step and then terminates. Therefore it finds a 2-way (strongly)
stable exchange which covers 4 nodes. However, the 2-way (strongly) stable exchange

EGRES Technical Report No. 2015-15



3.2 Approximation algorithms 14

defined by the cycles (u1, u2, ..., uk) and (v1, v2, ..., vk) covers all the 2k nodes. Since
α > 2

k
, 4 < α(2k) thus TTC is not an α-approximation.

However, if we do assume that the digraph is symmetric, the following theorem
holds.

Theorem 9. If the digraph is symmetric, TTC is a 1
2
-approximation algorithm, and

the approximation ratio is sharp.

Proof. Let U be the set of nodes that are not covered in a 2-way (strongly) stable
exchange ETTC given by TTC. The nodes of U are independent in the digraph, because
if any two were connected the pair would block ETTC . Let EOPT be the optimal 2-way
(strongly) stable exchange. Suppose that some nodes from U are covered by EOPT .
Since U is an independent set, these nodes are given to some nodes outside of U in
EOPT and each of them is given to a different node. Therefore EOPT covers at most
twice as many nodes as ETTC which means that TTC is a 1

2
-approximation algorithm.

Now we present a sharp example. Take a bidirected circuit (u1, ..., uk) and additional
bidirected edges uivi for i = 1, ..., k. The first item on ui’s preference list is ui+1, the
second is vi and the third is ui−1 for i = 1, ..., k subscripts modulo k. TTC takes
the cycle (u1, u2, ..., uk) in the exchange in the first step, and then terminates, so the
exchange covers half of the nodes. However, the 2-way (strongly) stable exchange
defined by the 2-cycles (ui, vi) i = 1, ..., k covers all the nodes.

We still assume that the digraph is symmetric. In this case, another way of finding
a 2-way (strongly) stable exchange is by finding a stable partition. In an instance of
SRI, we are given a graph G = (V,E), and each node has strict preferences over its
neighbours. Now we are interested in finding a complete stable matching. We have
already mentioned is Section 1.1 that a modified version of Irving’s algorithm finds a
(not necessarily complete) stable matching if there is one, or reports that none exists.
The covered nodes are the same in any stable matching, therefore this algorithm can
also decide whether an instance of SRI admits a complete stable matching. However,
if the instance does not admit a complete stable matching, Irving’s algorithm does not
provide a simple evidence for why not. Tan gave a necessary and sufficient condition
for the existence of a complete stable matching which we will describe later on. He
defined a new structure called stable partition, and proved that an instance of the
stable roommates problem always admits one.

Definition 1. For A ⊆ V a cyclic permutation π(A) = 〈a1, a2, ...ak〉 of the nodes in
A is called a semi-party permutation if
|A| = 1, or
|A| = 2 and a1a2 ∈ E , or
|A| ≥ 3 and aiai+1 ∈ E and ai prefers ai+1 over ai−1 for i = 1, ..., k, subscripts

modulo k.

Definition 2. A stable partition π consists of a partition of V , and a specified semi-
party permutation for each set in the partition, such that the following stability con-
dition holds:
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Let A and B be two (not necessarily distinct) sets of the partition with specified
semi-party permutations π(A) = 〈a1, ...〉 and π(B) = 〈b1, ...〉. Let ai ∈ A, bj ∈ B. If
|A| = 1 or ai prefers bj over ai−1, then, (unless A = B and |A| = 1), |B| 6= 1 and bj
prefers bj−1 over ai (if |B| ≥ 3, bj−1 = ai is also possible).

A set A of the partition is called a party in π, and the associated semi-party
permutation π(A) is called a party permutation for A.

Definition 3. A subset A of V is called a party, if there exists a stable partition π,
such that A is a party in π. A party with odd cardinality is called an odd party.

Another modified version of Irving’s algorithm proposed by Tan always finds a
stable partition in an instance of SRI. Moreover, Tan proved that the odd parties and
the corresponding party permutations are the same in any two stable partitions. This
provides a necessary and sufficient condition for the existence of a complete stable
matching, namely the nonexistence of odd parties. These results can be found in [17].

Let π be a stable partition in G, with party permutations π(Ai) = 〈a1, ...aki〉. If
we replace the edges of G with bidirected edges, the exchange defined by the directed
cycles (a1, ..., aki) is 2-way stable in the arising digraph. (This is straightforward
from the definitions.) Therefore the above mentioned algorithm for finding a stable
partition also gives an algorithm for finding a 2-way (strongly) stable exchange, which
will be referred to as stable partition algorithm.

Theorem 10. The stable partition algorithm is a 2
3
-approximation for finding a 2-way

(strongly) stable exchange and the approximation ratio is sharp.

Proof. We denote the optimal 2-way (strongly) stable exchange by EOPT . Let U be
the set of nodes that are not covered in the 2-way stable exchange given by the stable
partition algorithm. The nodes of U are the parties of size 1 in the stable partition,
therefore they are not connected. Suppose the nodes in U ′ ⊆ U are covered by EOPT .
Just like in Theorem 9, the set of nodes X that get a node from U ′ in EOPT are such
that X ∩ U = ∅ and each node from U ′ is given to a different node from X. (Thus
|X| = |U ′|.) We will show that the set of nodes Y that get a node from X in the
stable partition algorithm are such that Y ∩X = ∅ (clearly Y ∩U = ∅ and |X| = |Y |).
Suppose x′ ∈ Y ∩X and x′ gets x ∈ X in the stable partition algorithm. In EOPT , x
gets u and x′ gets u′, u, u′ ∈ U . u and u′ are parties of size one in the stable partition,
therefore x prefers x′ over u and x′ prefers x over u′. But this means that {x, x′}
blocks EOPT which is a contradiction. We proved that Y ∩ X = ∅, from which it
follows that the optimal solution covers at most 3

2
times the number of nodes covered

by the 2-way (strongly) stable exchange found by the stable partition algorithm.
Now we present a sharp example. The digraph consists of 2k distinct bidirected cir-

cuits of length three: (vi, ui, wi+1), (vi+1, ui+1, wi), i = 1, 3, ..., 2k − 1, and bidirected
edges: viwi, i = 1, ..., 2k. The preference lists are shown in the table below.
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node preference list
ui, i ∈ [2k], i is odd wi+1 vi
ui, i ∈ [2k], i is even wi−1 vi
vi, i ∈ [2k], i is odd wi ui wi+1

vi, i ∈ [2k], i is even wi ui wi−1
wi, i ∈ [2k], i is odd vi+1 vi ui+1

wi, i ∈ [2k], i is even vi−1 wi ui−1

The stable partition algorithm finds the 2-way (strongly) stable exchange defined
by the 2-cycles (wi, vi), i = 1, ..., 2k, which covers 4k nodes. However, the optimal
solution covers all the 6k nodes: the exchange defined by the cycles (vi, ui, wi+1),
(vi+1, ui+1, wi), i = 1, 3..., 2k − 1 is 2-way (strongly) stable.

Acknowledgement

The author would like to thank Tamás Király for his helpful suggestions and com-
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