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Non-TDI graph-optimization
with supermodular functions

(extended abstract)

Kristóf Bérczi∗ and András Frank†

Abstract

Total dual integrality (TDI-ness) is a major concept in attacking various

combinatorial optimization problems. Here we develop several new min-max

theorems and good characterizations in graph theory where the minimum cost

extension is already NP-complete, implying that such problems cannot be de-

scribed by TDI linear systems. The main device is a min-max theorem of Frank

and Jordán on covering a supermodular function by digraphs.

Keywords: supermodular functions, packing arborescences, graph-

ical degree sequences, term rank

1 Introduction

A graph optimization problem aims at developing an algorithm to �nd a speci�ed
object in a graph which is optimal with respect to an objective function. Along
the way, one also strives for �nding a min-max relationship. A typical example is
the Hungarian method to compute a maximum cardinality/weight matching in a
bipartite graph (or for short, a bigraph) along with the min-max theorems of K®nig
and Egerváry. In a feasibility problem, one is to decide if a graph includes a speci�ed
object. Here the goal is again to �nd an algorithm and a good characterization for the
existence. Feasibility problems can typically be reformulated as optimization problems
and hence we consider them as part of graph optimization.
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Section 1. Introduction 2

An essential part of polynomially tractable graph optimization problems can be be
solved via polyhedral approaches, and in particular, totally dual integral (TDI) linear
systems play a central role. For example, matching problems, network �ows, matroid
optimization problems belong to this class. A basic feature of a problem describable
by a TDI system is that not only the optimum cardinality version of the problem
is tractable but its weighted (or minimum cost) extension as well. One of the most
e�ective TDI frameworks is the one of submodular �ows introduced by Edmonds and
Giles [4].
There are however optimization problems where the cardinality case is nicely solv-

able but its min-cost extension is already NP-complete, and therefore a TDI-description
in such a case is out of question. One of the �rst of this kind of results is due to
Eswaran and Tarjan [5] who provided a min-max formula for the minimum number
of new arcs necessary to make a digraph strongly connected.
Recently, however, it turned out that non-TDI min-max results showed up much

earlier. In 1958, Ryser [21] solved the maximum term rank problem (which is equiva-
lent to �nding a a degree-speci�ed simple bigraph G in which the the matching number
ν(G) of G is as large as possible). The minimum cost version of this problem had not
been settled for a long time but recently Pálvölgyi [19] proved its NP-completeness.
Since these two early appearances, several other non-TDI min-max theorems have

been developed. For example, the second author of the present paper extended the
result of Eswaran and Tarjan in [10] to minimal k-edge-connected augmentation. The
paper [11] included an abstract generalization concerning the covering of a crossing
supermodular set-function by a minimal digraph. Frank and Jordán [12] generalized
the main result of [11] much further and proved a min-max theorem on optimally
covering a so-called supermodular bi-set function by digraphs.
It should be emphasized that this framework characteristically di�ers from previous

models such as submodular �ows, since it solves such cardinality optimization prob-
lems for which the corresponding weighted versions areNP-complete. One of the most
important applications was a solution to the minimum directed node-connectivity aug-
mentation problem, but several other problems could also be treated in this way.
The analogous arc-covering problems using simple digraphs have been open so far.

After pointing out that the problem of supermodular coverings with simple digraph
includes NP-complete special cases, we describe situations for the supermodular arc-
covering theorem when simplicity can successfully be treated. As a consequence,
several new non-TDI min-max theorems will be derived.
All notions and notation not mentioned explicitly in the paper can be found in the

book of the second author [8]. A set-function p is positively ST -crossing super-
modular if if the supermodular inequality

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

holds whenever both p(X) and p(Y ) are positive, X and Y are ST -crossing. A digraph
D = (V,A) covers a set-function p if %D(X) ≥ p(X) holds for every subset X ⊆ V .

Theorem 1.1 (Supermodular arc-covering, set-function version, [12]). A positively

ST -crossing supermodular function p can be covered by γ ST -edges if and only if

p̃(I) ≤ γ holds for every ST -independent family I of subsets of V .

EGRES Technical Report No. 2015-14



Section 1. Introduction 3

Several applications of this theorem have been found but the question remained
open if there is a min-max theorem on optimally covering p with a simple digraph.
Such a result would be important since in many possible application simplicity is a
natural requirement. However, based on a result of Dürr, Guinez, and Matamala [2],
we observed the following.

Theorem 1.2. Let S and T be two disjoint sets and p an ST -crossing supermodular

function. Then the decision problem whether p can be covered by a degree-speci�ed

simple digraph D consisting of ST -arcs includes NP-complete problems.

The main goal of the present paper is to exhibit special situations when simplicity
can be expected.
Let S and T be two disjoint sets and V := S ∪ T . We are given a non-negative

integer-valued function m : V → Z+ whose restrictions to S and to T are denoted
by mS and mT , respectively. We also use the notation m = (mS,mT ). It is assumed
throughout that m̃S(S) = m̃T (T ) and this common value will be denoted by γ. We
say that m or the pair (mS,mT ) is a degree-speci�cation and that a bigraph G =
(S, T ;E) �ts this degree-speci�cation if dG(v) = m(v) holds for every node v ∈ V .
Let gS : S → Z+ and gT : T → Z+ be upper bound functions while fS : S → Z+

and fT : T → Z+ lower bound functions. Let f = (fS, fT ) and g = (gS, gT ). Call a
bipartite graph G = (S, T ;E) (fT , gS)-feasible if

dG(s) ≤ gS(s) for every s ∈ S and dG(t) ≥ fT (t) for every t ∈ T

and call G (f, g)-feasible if fS(s) ≤ dG(s) ≤ gS(s) for every s ∈ S and fT (t) ≤
dG(t) ≤ gT (t) for every t ∈ T , or for short, f ≤ dG ≤ g.
Let G(mS,mT ) denote the set of simple bipartite graphs �tting (mS,mT ). Gale [13]

and Ryser [20] found, in an equivalent form, the following characterization.

Theorem 1.3 (Gale and Ryser). There is a simple bipartite graph G �tting the degree-

speci�cation m if and only if

m̃S(X) + m̃T (Z)− |X||Z| ≤ γ whenever X ⊆ S, Z ⊆ T. (1)

Moreover, (1) holds if the inequality is required only when X consists of elements with

the i largest values of mS and Z consists of elements with the j largest values of mT

(i = 1, . . . , |S|, j = 1, . . . , |T |).

The following linking property can be derived with network �ow techniques but is
is actually a special instance of a general linking property concerning g-polymatroids.

Theorem 1.4. If there is a simple (fT , gS)-feasible bipartite graph and there is a

simple (fS, gT )-feasible bipartite graph, then there is a simple (f, g)-feasible bipartite

graph.
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Section 2. Bipartite graphs covering supermodular functions 4

2 Bipartite graphs covering supermodular functions

2.1 Covering pT with simple degree-speci�ed bipartite graphs

Suppose now that we are given a set-function pT on T . We say that a bipartite graph
G = (S, T ;E) covers pT if

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T . (2)

We are interested in �nding simple bipartite graphs covering pT which meet some
degree constraints. If no such degree-constraints are imposed at all then the existence
of such a G is obviously equivalent to the requirement that

pT (Y ) ≤ |S| for every Y ⊆ T . (3)

Indeed this condition is clearly necessary and it is also su�cient since the com-
plete bipartite graph G∗ = (S, T ;E∗) covers a pT meeting (3). Therefore we suppose
throughout that (3) holds.

2.1.1 Degree-speci�cation on S

Our �rst goal is to characterize the situation when there is a degree-speci�cation only
on S.

Theorem 2.1. Let mS be a degree-speci�cation on S for which m̃S(S) = γ. Let pT
be a positively intersecting supermodular function on T with pT (∅) = 0. Suppose that

mS(s) ≤ |T | for every s ∈ S. (4)

The following statements are equivalent.

(A) There is a simple bipartite graph G = (S, T ;E) covering pT and �tting the

degree-speci�cation mS on S.

(B1)

m̃S(X) +

q∑
i=1

[pT (Ti)− |X|] ≤ γ (5)

holds for every X ⊆ S and subpartition T = {T1, . . . , Tq} of T .
(B2)

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q} (6)

holds for every subpartition T = {T1, . . . , Tq} of T .

Proof. (A) ⇒ (B1) Suppose that there is a simple bipartite graph G meeting (2).
We claim that the number dG(Ti, S −X) of edges between Ti and S −X is at least
pT (Ti)− |X|. Indeed,

pT (Ti) ≤ |ΓG(Ti)| = |X ∩ ΓG(Ti)|+ |ΓG(Ti)−X| ≤ |X|+ dG(Ti, S −X),
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2.1 Covering pT with simple degree-speci�ed bipartite graphs 5

that is, dG(Ti, S − X) ≥ pT (Ti) − |X|. Therefore the total number γ of edges is at
least m̃S(X) +

∑
i[pT (Ti)− |X|] from which (5) follows.

(B1) ⇒ (B2) Suppose that (B2) is violated and there is a subpartition T =
{T1, . . . , Tq} of T for which

∑q
i=1 pT (Ti) >

∑
s∈S min{mS(s), q}. Let X := {s ∈ S :

mS(s) > q}. Then
q∑

i=1

pT (Ti) >
∑
s∈S

min{mS(s), q} =
∑

[mS(s) : s ∈ S −X] + q|X| =

m̃S(S −X) + q|X| = γ − m̃S(X) + q|X|

from which

m̃S(X) +

q∑
i=1

[pT (Ti)− |X|] > γ,

that is, (B1) is violated.

(B2) ⇒ (B1) Suppose that X and T = {T1, . . . , Tq} violate (5), that is, m̃S(X) +∑q
i=1[pT (Ti)−|X|] > γ.We can assume that mS(s) > q for every s ∈ X for if mS(s) ≤

q for some s ∈ X, then X ′ := X − s and T would also violate (5). Furthermore, we
can assume that mS(s) ≤ q for every s ∈ S −X for if mS(s) > q for some s ∈ S −X,
then X ′ := X + s would also violate (5).
Therefore∑

s∈S

min{mS(s), q} = m̃S(S −X) + q|X| = γ − m̃S(X) + q|X|.

By combining this with m̃S(X) +
∑q

i=1 pT (Ti)− q|X| > γ we have

q∑
i=1

pT (Ti) > γ − m̃S(X) + q|X| =
∑
s∈S

min{mS(s), q},

that is, (B2) is violated.

(B1) ⇒ (A) The proof is presented in the Appendix.

We remark that Theorem 2.1 cannot be extended for the case when the graph G
is requested to be a subgraph of an initial bigraph since this formulation includes
NP-complete problems.

2.1.2 Covering pT with degree-speci�cation on S and T

In the next problem we have degree-speci�cation not only on S but on T as well.
When the degree-speci�cation was given only on S, we have observed that it su�ced
to concentrate on �nding a not-necessarily simple graph covering pT because such a
graph could easily be made simple. Based on this, it is tempting to conjecture that
if there is a simple bipartite graph �tting a degree-speci�cation m = (mS,mT ) and
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2.2 Upper and lower bounds 6

there is a (not-necessarily simple) one �tting m and covering pT , then there is a simple
bipartite graph �tting m and covering pT . This kind of linking property however can
be shown to fail. The next theorem includes the right answer.

Theorem 2.2. Let S and T be disjoint sets and let m = (mS,mT ) be a degree-

speci�cation for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting

supermodular function on T with pT (∅) = 0. There is a simple bipartite graph G =
(S, T ;E) �tting the degree-speci�cation m such that

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T (7)

if and only if

m̃S(X) + m̃T (Z)− |X||Z|+
q∑

i=1

[pT (Ti)− |X|] ≤ γ (8)

holds for every pair of subsets X ⊆ S and Z ⊆ T and for subpartition T = {T1, . . . , Tq}
of T − Z.
The proof consists of building mT into pT and applying Theorem 2.1.

Corollary 2.3. Let S and T be disjoint sets and let m = (mS,mT ) be a degree-

speci�cation for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting

supermodular function on T with pT (∅) = 0. There is a simple bipartite graph G =
(S, T ;E) �tting the degree-speci�cation m and covering pT if and only if

m̃T (Z) +

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), |Z|+ q} (9)

holds for every subset Z ⊆ T and subpartition {T1, . . . , Tq} of T − Z.

2.2 Upper and lower bounds

Instead of a degree-speci�cation m = (mS,mT ), one may impose more generally a
lower bound f = (fS, fT ) and an upper bound g = (gS, gT ) for the degrees of the
simple bipartite graph covering pT . We assume that f ≤ g. Also, since the graph G
is requested to be simple, we may assume in advance that gS(s) ≤ |T | for every s ∈ S
and gT (t) ≤ |S| for every t ∈ T .
Theorem 2.4. There is a simple bipartite graph G = (S, T ;E) covering pT for which

f(v) ≤ dG(v) ≤ g(v) holds for every v ∈ S ∪ T (10)

if and only if

f̃T (Z)− |X||Z|+
∑

[pT (Ti)− |X| : i = 1, . . . , q] ≤ g̃S(S −X) (11)

holds whenever X ⊆ S, Z ⊆ T , and {T1, . . . , Tq} is a subpartition of T − Z, and

f̃S(X)− |X||Z|+
∑

[pT (Ti)− |X| : i = 1, . . . , q] ≤ g̃S(T − Z) (12)

holds whenever X ⊆ S, Z ⊆ T , and {T1, . . . , Tq} is a subpartition of T − Z.
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2.3 Matroidal extension 7

Corollary 2.5. There is a simple bipartite graph G covering pT such that

(A) fT (t) ≤ dG(t) for every t ∈ T and dG(s) ≤ gS(s) for every s ∈ S if and only if

(11) holds,

(B) fS(s) ≤ dG(s) for every s ∈ S and dG(t) ≤ gT (t) for every t ∈ T if and only if

(12) holds,

(AB) f(v) ≤ dG(v) ≤ g(v) holds for every v ∈ S ∪ T if and only if both (11) and

(12) hold whenever X ⊆ S, Z ⊆ T , and {T1, . . . , Tq} is a subpartition of T .

The proof of Theorem 2.4 relies on Theorem 2.2 and it requires an additional,
rather di�cult reduction technique. It should be noted that the linking property
formulated in the Corollary does not seem to follow from the general linking property
of g-polymatroids.

2.3 Matroidal extension

By using a similar proof technique, we obtain a matroidal extension of Theorem 2.2.

Theorem 2.6. Let S and T be disjoint sets and let m = (mS,mT ) be a degree-

speci�cation for which m̃S(S) = m̃T (T ) = γ. Let pT be a positively intersecting

supermodular function on T with pT (∅) = 0. Let M = (S, r) be a matroid on S with

rank function r. There is a simple bipartite graph G = (S, T ;E) �tting the degree-

speci�cation m such that

r(ΓG(Y )) ≥ pT (Y ) for every subset Y ⊆ T (13)

if and only if

m̃S(X) + m̃T (Z)− |X||Z|+
q∑

i=1

[pT (Ti)− r(X)] ≤ γ (14)

holds for every pair of subsets X ⊆ S and Z ⊆ T and for subpartition T = {T1, . . . , Tq}
of T − Z.

3 Packing branchings and arborescences

The starting point is the classic result of Edmonds [3].

Theorem 3.1 (Edmonds). Let D = (V,A) be a digraph. (A: weak form) Let r0 be

a speci�ed root-node of D. There are k disjoint spanning arborescences of root r0 if

and only if %(X) ≥ k holds for every non-empty subset X ⊆ V − r0. (B: strong
form) Let R = {R1, . . . , Rk} be a family of non-empty subsets of V . There are k
disjoint branchings B1, B2, . . . , Bk with root-sets R1, . . . , Rk, respectively, if and only

if %(X) ≥ pR(X) holds for every non-empty subset X ⊆ V where pR(X) denotes the

number of root-sets disjoint from X.
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Section 4. Maximum term rank problems 8

There are several variations and extensions of Edmonds' theorem (for surveys, see
[8], [16]). For example, with the help of Lovász' proof [17] of Edmonds' theorem, one
can show that the k arborescences in the weak form can be chosen in such a way that
they have essentially the same number of root-edges. When this result is combined
with a min-max formula [9] on the minimum number of root-edges of a rooted k-edge-
connected subgraph of a digraph one arrives at the following consequence.

Theorem 3.2. Let µ ≤ |V |−1 be a positive integer. A digraph D = (V,A) comprises

k disjoint branchings of µ arcs if and only if∑
[%D(Vi) : i = 1, . . . , k] ≥ k[q − (|V | − µ)] (15)

holds for every subpartition {V1, . . . , Vq} of V .

Our new contribution is a generalization of this result when the prescribed sizes of
the k branchings may be di�erent.

Theorem 3.3. Let µi ≤ |V | − 1 be positive integers for i = 1, . . . , k. A digraph D =
(V,A) comprises k disjoint branchings B1, . . . , Bk for which |Bi| = µi for i = 1, . . . , k
of µ arcs if and only if∑

[%D(Vi) : i = 1, . . . , k] ≥
∑

[q − (|V | − µi) : i = 1, . . . , k] (16)

holds for every subpartition {V1, . . . , Vq} of V .

The proof follows immediately by combining the strong form of Edmonds' theorem
with Theorem 2.1. It is interesting to remark that a question on bipartite matchings
analogous to Theorem 3.2 was answered by Folkman and Fulkerson [7] who charac-
terized bipartite graphs comprising k disjoint matchings of size µ. On the other hand,
there is no hope to �nd a matching-counterpart of Theorem 3.3 since the problem of
packing k matchings with prescribed cardinalities in a bipartite graph was recently
shown, by Pálvölgyi [19], to be NP-complete even for k = 2.
By applying the more general result of Theorem 2.4, we derived characterizations

for digraphs including k disjoint branchings B1, . . . , Bk so that ϕi ≤ |Bi| ≤ γi, where
ϕi and γi (i = 1, . . . , k) are speci�ed lower and upper bounds, respectively, and so
that each node v ∈ V belongs to at least f(v) and at most g(v) root-sets of the k
branchings, where f and g are lower and upper bounds on V .

4 Maximum term rank problems

Let S and T be disjoint sets and m = (mS,mT ) a degree speci�cation with m̃S(S) =
m̃T (T ) = γ so that there is a simple bipartite graph �tting m. Let G(mS,mT ) denote
the set of all such graphs.
Members of G(mS,mT ) can be identi�ed with (0, 1)-matrices of size |S||T | with

row sum vector mS and column sum vector mT . Let M(mS,mT ) denote the set
of these matrices. Ryser [21] de�ned the term rank of a (0, 1)-matrix M by the
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4.1 Degree-constrained max term rank 9

maximum number of independent 1's which is the matching number of the bipartite
graph corresponding toM . Ryser developed a formula for the maximum term rank of
matrices inM(mS,mT ). The maximum term rank problem is equivalent to �nding a
bipartite graph G in G(mS,mT ) whose matching number ν(G) is as large as possible.
Ryser's theorem is equivalent to the following.

Theorem 4.1 (Ryser). Let ` ≤ |T | be an integer. Suppose that G(mS,mT ) is non-

empty, that is, (1) holds. Then G(mS,mT ) has a member G with matching number

ν(G) ≥ ` if and only if

m̃S(X) + m̃T (Z)− |X||Z|+ (`− |X| − |Z|) ≤ γ whenever X ⊆ S, Z ⊆ T. (17)

Moreover, (17) holds if the inequality is required only when X consists of the i largest
values of mS and Z consists of the j largest values of mT (i = 1, . . . , |S|, j =
1, . . . , |T |).

4.1 Degree-constrained max term rank

Our �rst goal is to extend Ryser's theorem for the case when upper or lower bounds are
given for the degrees rather than exact prescriptions. Let f = (fS, fT ) and g = (gS, gT )
be lower and upper bound functions respectively for which f ≤ g. Assume that
gS(s) ≤ |T | for every s ∈ S and gT (t) ≤ |S| for every t ∈ T .

Theorem 4.2. Let ` ≤ |T | be an integer. Let gS : S → Z+ be an upper bound function

on S for which gS(s) ≤ |T | holds for every s ∈ S, and let fT : T → Z+ be a lower

bound function on T . There is a simple bipartite graph G = (S, T ;E) with matching

number ν(G) ≥ ` so that dG(s) ≤ gS(s) for every s ∈ S and dG(t) ≥ fT (t) for every

t ∈ T if and only if

f̃T (Z)− |X||Z|+ (`− |X| − |Z|)+ ≤ g̃S(S −X) whenever X ⊆ S, Z ⊆ T. (18)

Theorem 4.3. Suppose that there is a simple (f, g)-feasible bipartite graph (as charac-
terized by a theorem of Gale and Ryser). If there is a simple (fT , gS)-feasible bipartite
graph with matching number at least ` and there is a simple (fS, gT )-feasible bipartite

graph with matching number at least `, then there is a simple (f, g)-feasible bipartite

graph with matching number at least `.

We have two independent proofs of these results. The �rst one is based on the ap-
plication of Theorem 2.4 to the special supermodular function pT de�ned by pT (Y ) =
|Y | − (|T | − `) (Y ⊆ T ). Since pT is fully supermodular and monotone increasing, the
conditions in Theorem 2.4 simplify signi�cantly and give rise to the condition in Theo-
rem 4.3. Our other proof is a direct algorithm to compute either a degree-constrained
bigraph with ν(G) ≥ ` or a pair of subsets violating the conditions described in the
theorem.
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4.2 Matroidal max term rank 10

4.2 Matroidal max term rank

Our next goal is to prove a matroidal extension of Ryser's theorem. We need the
following equivalent form of a theorem of Brualdi.

Theorem 4.4 (Brualdi, [1]). Let G = (S, T ;E) be a bipartite graph with a matroid

MS = (S, rS) on S and with a matroid MT = (T, tT ) on T for which rS(S) = rT (T ) =
`, where rS denotes the rank function of MS while tT is the co-rank function of MT

(that is, tT (Y ) = ` − rT (T − Y )). There is a matching of G with ` edges covering

bases of MS and MT if and only if

rS(X) ≥ tT (ΓG(X)) (19)

holds for every X ⊆ S.

Our matroidal extension of Ryser's max term rank theorem is as follows.

Theorem 4.5. Let S and T be two disjoint sets and m = (mS,mT ) a degree-

speci�cation on S ∪ T for which mS(S) = mT (T ) = γ and G(mS,mT ) is non-empty.

Let MS = (S, rS) and MT = (T, rT ) be matroids for which rS(S) = tT (T ) = `. There
is a simple graph �tting m that includes a matching covering bases of MS and MT if

and only if

m̃S(X) + m̃T (Z)− |X||Z|+ (`− rS(X)− rT (Z)) ≤ γ (20)

holds for every X ⊆ S and Z ⊆ T .

The proof consists of applying Theorem 2.6 to the matroid MS and to the super-
modular function pT determined by the co-rank function of MT . Since pT in this case
is fully supermodular and monotone increasing, the necessary condition in Theorem
2.6 simpli�es to the special case when q = 1 and T1 = T − Z. This form in turn is
equivalent to (20).

5 Degree-speci�ed higher connectivity of simple di-

graphs

We are given an out-degree speci�cation mo : V → Z and an in-degree speci�cation
mi : V → Z for which m̃o(V ) = m̃i(V ) = γ. A digraph D = (V, F ) �ts this degree-
speci�cation if %D(v) = mi(v) and δD(v) = mo(v) for every node v ∈ V . The following
characterization (in a simpler but equivalent form) is due to D.R. Fulkerson [6].

Theorem 5.1. Let mo : V → Z and mi : V → Z be out- and in-degree speci�cations.

There exists a simple digraph �tting (mo,mi) if and only if

m̃i(X) + m̃o(Z)− |X||Z|+ |X ∩ Z| ≤ γ for every X,Z ⊆ V. (21)
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The approach of [12] allows one to characterize degree sequences of digraphs D
whose addition to a starting digraph D0 results in a k-edge- or k-node-connected
digraph D0 + D. Jordán [15] pointed out that the problem becomes NP-complete
if the resulting D0 + D is requested to be simple. Therefore we only require the
simplicity of the augmenting digraph D.
Recently, Hong, Liu, and Lai [14] found a characterization for simple strongly con-

nected digraphs. For a convenient generalization, we formulate it in a slightly more
redundant though equivalent form.

Theorem 5.2 (Hong, Liu, and Lai). Suppose that there is a simple digraph �tting

the degree-speci�cation (mo,mi). There is a strongly connected simple digraph �tting

(mo,mi) if and only if

m̃o(Z) + m̃i(X) + 1− |X||Z| ≤ γ for every disjoint X,Z ⊂ V . (22)

We extend this result in two directions.

Theorem 5.3. Let K be a crossing family of non-empty proper subsets of V . Suppose
that there is a simple digraph �tting the degree speci�cation (mo,mi), that is, (21)
holds. There is a simple digraph �tting (mo,mi) which covers K if and only if

m̃o(Z) + m̃i(X)− |X||Z|+ 1 ≤ γ (23)

holds for every pair of disjoint subsets X,Z ⊆ V for which there is a member K ∈ K
with Z ⊆ K ⊆ V −X.

Corollary 5.4. Let D0 = (V,A0) be a (k−1)-edge-connected digraph (k ≥ 0). Suppose
that there is a simple digraph �tting the degree speci�cation (mo,mi), There is a simple

digraph �tting (mo,mi) for which D0 +D is k-edge-connected if and only if

m̃o(Z) + m̃i(X)− |X||Z|+ 1 ≤ γ (24)

holds for every pair of disjoint subsets X,Z ⊆ V for which there is a subset K with

Z ⊆ K ⊆ V −X and with %D0(K) = k − 1.

The more general degree-speci�ed edge-connectivity augmentation problem when
the starting digraph D0 is not supposed to be (k − 1)-edge-connected remains open.
As for node-connectivity is concerned, we have the following straight extension of
Theorem 5.3 to k-node-connected simple digraphs.

Theorem 5.5. Let V be a set with |V | ≥ k + 1 and let m = (mo,mi) be a degree-

speci�cation for which there is a simple digraph �tting it. There exists a simple k-
node-connected digraph �tting m if and only if

m̃i(X) + m̃o(Z)− |X||Z|+ k ≤ γ for X,Z ⊆ V with X 6= Z, X 6= V 6= Z. (25)

Let D0 = (V,A0) be a starting digraph on |V | ≥ k + 1 nodes and consider the
problem of �nding a simple digraph D = (V, F ) �tting a degree speci�cation (mo,mi)
for which D0 + D is k-node-connected. This problem can be embedded into the
framework of the supermodular arc-covering theorem which provides a rather complex
characterization of degree sequences of the augmenting simple digraphs. However, if
the starting digraph has no arc, then this characterization can be reduced (with rather
heavy work) to condition (25).
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Appendix

Proof of (B1) ⇒ (A) in Theorem 2.1

The following simple observation indicates that we need not concentrate on the
simplicity of G.

Lemma 5.6. If there is a not-necessarily simple bipartite graph G = (S, T ;E) cover-

ing pT for which dG(s) ≤ |T | for each s ∈ S, then there is a simple bipartite graph H
covering pT for which dG(s) = dH(s) for each s ∈ S.

Proof. Suppose G has two parallel edges e and e′ connecting s and t for some s ∈ S
and t ∈ T . Since dG(s) ≤ |T |, there is a node t′ ∈ T which is not adjacent with
s. By replacing e′ with an edge st′, we obtain another bipartite graph G′ for which
ΓG′(Y ) ⊇ ΓG(Y ) for each Y ⊆ T , dG′(s) = dG(s) for each s ∈ S, and the number
of parallel edges in G′ is smaller than in G. By repeating this procedure, �nally we
arrive at a requested simple graph.

A subset V ′ of V = S∪T is ST -trivial if no ST -arc enters it, which is equivalent to
requiring that T ∩V ′ = ∅ or S ⊆ V ′. We say that a subset V ′ ⊆ V is fat if V ′ = V −s
for some s ∈ S (that is, there are |S| fat sets). The non-fat subsets of V will be called
normal. An ST -independent family I of subsets is strongly ST -independent if
any two of its normal members are T -independent, that is, the intersections of the
normal members of I with T form a subpartition of T .
De�ne a set-function p0 on V by

p0(V
′) = pT (Y )− |X| where V ′ = X ∪ Y for X ⊆ S and Y ⊆ T . (26)

Note that p0 is positively T -intersecting since if p0(V
′) is positive, then so is pT (Y ).

Furthermore, when (5) is applied to X = S, q = 1 and T1 = Y , we obtain that
pT (Y ) ≤ |X| and hence p0(V

′) can be positive only if X 6= S and Y 6= ∅, that is,
when V ′ is not ST -trivial.

Claim 5.7. mS(s) ≥ p0(V − s) holds for every s ∈ S.

Proof. By applying (2) to X = S − s and T = {T}, we obtain that mS(s) ≥ pT (T )−
|S − s| = p0(V − s).

De�ne a set-function p1 on V by modifying p0 so as to lift to its value on fat subsets
V − s from p0(V − s) mS(s) (s ∈ S), that is,

p1(V
′) :=

{
mS(s) if V ′ = V − s for some s ∈ S,
p0(V

′) otherwise.
(27)

Note that the supermodular inequality

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) (28)

holds for T -intersecting normal sets with p1(V1) > 0 and p1(V2) > 0.
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By the Claim, p1 ≥ p0. As p0 is positively T -intersecting supermodular, p1 is
positively ST -crossing supermodular. Let ν1 denote the maximum total p1-value of
a family of ST -independent sets. Such a family I will be called a p1-optimizer if
p̃1(I) = ν1.

Claim 5.8. If I is a p1-optimizer of minimum cardinality, then I is strongly ST -
independent.

Proof. Clearly, p1(V
′) ≥ 0 for each V ′ ∈ I for otherwise I would not be a p1-optimizer.

Moreover, p1(V
′) > 0 also holds for if we had p1(V

′) = 0, then I − {V ′} would also
be a p1-optimizer contradicting the minimality of I.
Suppose indirectly that I has two properly T -intersecting normal members V1 and

V2. Then (28) holds and since I is ST -independent, we must have S ⊆ V1 ∪ V2 from
which p1(V1 ∪ V2) ≤ 0 follows. Then

p1(V1) + p1(V2) ≤ p1(V1 ∩ V2) + p1(V1 ∪ V2) ≤ p1(V1 ∩ V2).

Now I ′ = I − {V1, V2} + {V1 ∩ V2} is also ST -independent and p̃1(I ′) ≥ p̃1(I), but
we must have here equality by the optimality of I, that is I ′ is also a p1-minimizer,
contradicting the minimality of |I|.

Lemma 5.9. Let I be a strongly ST -independent p1-optimizer. Then there exists a

subset X and a subpartition T = {T1, . . . , Tq} of T such that

I = {V − s ∈ s ∈ X} ∪ {X ∪ Ti : i = 1, . . . , q}

for which

ν1 = p1(I) = m̃S(X) +
∑

[p1(Ti)− |X| : i = 1, . . . , q]. (29)

Proof. Let X := {s ∈ S : V − s ∈ I} and let I1 = {V − s : V − s ∈ I}. Let
I2 := I − I1 and let V1, . . . , Vq denote the members of I2. Furthermore, let Ti :=
T ∩ Vi and Xi = S ∩ Vi (i = 1, . . . , q). By the strong ST -independence, the family
T = {T1, . . . , Tq} is a subpartition of T , and we also have X ⊆ Xi for each i.
De�ne V ′i := Ti ∪X for i = 1, . . . , q and let I ′2 = {V ′1 , . . . , V ′q}. Then I ′ = I1 ∪ I ′2

is also ST -independent. Since p1(V
′
i ) = p1(Vi) + |Xi −X| and I is a p1-optimizer, we

must have Xi = X for each i = 1, . . . , q. The formula in (29) follows from

ν1 = p̃1(I) = p̃1(I1) + p̃1(I2) =∑
[mS(s) : V − s ∈ I1] +

∑
[pT (Ti)− |Xi| : i = 1, . . . , q] =

m̃S(X) +
∑

[pT (Ti)− |X| : i = 1, . . . , q].

Claim 5.10. ν1 = γ.

Proof. Since the family L = {V − s : s ∈ S} is ST -independent, ν1 ≥ p̃1(L) =
m̃S(S) = γ from which ν1 ≥ γ. Let I be a strongly ST -independent p1-optimizer for
which |I| is minimum. It follows from (29) in Lemma 5.9 and from the hypothesis
(5) that ν1 ≤ γ and hence ν1 = γ.
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By Theorem 1.1, there is a digraph D = (V,A) on V with ν1 = γ (possibly parallel)
ST -arcs that covers p1, that is, %D(V ′) ≥ p1(V

′) for every subset V ′ ⊆ V . Let
G = (S, T ;E) denote the underlying bipartite graph of D.

Claim 5.11. dG(s) = mS(s) for every s ∈ S.

Proof. Since dG(s) = δD(s) = %D(V − s) ≥ p1(V − s) = mS(s) for every s ∈ S, we
have γ = |E| =

∑
[dG(s) : s ∈ S] ≥ m̃S(S) = γ, from which dG(s) = mS(s) follows

for every s ∈ S.

Claim 5.12. |ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T .

Proof. Let X := ΓG(Y ) and V ′ := X ∪ Y . Then 0 = %D(V ′) ≥ p1(V
′) ≥ p0(V

′) =
pT (Y )− |X| = pT (Y )− |ΓG(Y )|, as required.

Therefore the bipartite graph G meets all the requirements of the theorem apart
possibly from simplicity. By Lemma 5.6, G can be chosen to be simple.
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