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Reachability of recurrent positions in the chip-firing
game

Bálint Hujter?, Viktor Kiss??, and Lilla Tóthmérész? ? ?

Abstract

In this paper, we investigate reachability questions in the chip-firing game.
For strongly connected digraphs we show that if a position is recurrent (i.e.
reachable from itself), then the question whether it is reachable from another
given position can be decided in polynomial time. We also prove a similar result
for weakly connected digraphs. We prove some basic properties of recurrent
positions on digraphs, and give a characterization of recurrent positions on
Eulerian digraphs.

Keywords: chip-firing game; computational complexity

1 Introduction

Chip-firing is a solitary game on a directed graph, defined by Björner, Lovász and
Shor [4]. Each vertex contains a pile of chips. A legal move is to choose a vertex with
at least as many chips as its outdegree and let it send a chip along each outgoing
edge. We analyze the complexity of the following reachability question: given two
chip-distributions x and y, decide whether y can be reached from x by playing a
legal game. This question was first considered by Björner and Lovász, who gave an
algorithm that decides this question and runs in polynomial time for simple Eulerian
digraphs [3]. For the general case, however, the complexity of the reachability question
remains open.

Our main result is the following: If G is a strongly connected directed graph and
the chip-distribution y is recurrent, i.e., it is reachable from itself by a legal game,
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versity, Budapest, Hungary. Supported by the Hungarian Scientic Research Fund - OTKA K109240.
Email: tmlilla@cs.elte.hu

July 2015



Section 2. Preliminaries 2

then the set of distributions from which y is reachable can be characterized in a
simple way. This characterization enables one to decide in polynomial time whether
a recurrent distribution y is reachable by a legal game from a given distribution x.
For weakly connected directed graphs, we generalize the characterization theorem for
distributions y that are recurrent restricted to each strongly connected component.
This theorem also gives rise to a polynomial algorithm.

Recurrent chip-distributions play an important role in the dynamics of non-termi-
nating chip-firing games. Their study originates in the work of Jeffs and Seager [6].
Prior to our paper, investigations were focusing on undirected graphs. In Section 4
we state some basic properties of recurrent chip-distributions on directed graphs and
examine the algorithmic decidability of recurrence. For the case of Eulerian directed
graphs we also give a combinatorial characterization of recurrent states, which is a
generalization of the former results of [6, 5] in the undirected case.

2 Preliminaries

Throughout this paper, digraph means a (weakly) connected directed graph that can
have multiple edges but no loops. A digraph is usually denoted by G. The vertex set
and edge set of a digraph G are denoted by V (G) and E(G) (or simply V and E),
respectively. For a vertex v, the indegree and the outdegree of v are denoted by d−(v)
and d+(v), respectively. We denote a directed edge leading from vertex u to vertex v

by −→uv. The multiplicity of a directed edge −→uv is denoted by
−→
d (u, v).

A digraph is simple, if
−→
d (u, v) ≤ 1 and

−→
d (v, u) ≤ 1 for each pair of vertices

u, v ∈ V . A digraph is Eulerian, if d+(v) = d−(v) for each v ∈ V . A digraph is strongly
connected, if for each pair of vertices u, v, there is a directed path from u to v, and
also from v to u. A connected Eulerian digraph is always strongly connected. Each
digraph has a unique decomposition to strongly connected components. A component
is called a sink component, if there is no edge leaving the component.

Many objects in this paper are integer vectors indexed by the vertices of a digraph
G. We denote the set of such vectors by ZV , whereas ZV

+ denotes the set of vectors
with non-negative coordinates. We denote by 0G (1G) the vector in ZV with each
coordinate equal to 0 (1). For a vertex v ∈ V , the characteristic vector of v is denoted
by 1v.

The Laplacian of a digraph G is the following matrix L ∈ ZV×V :

L(u, v) =

{
−d+(v) if u = v,
−→
d (v, u) if u 6= v.

A non-negative vector p ∈ ZV
+ is called a period vector for G if Lp = 0G. A non-zero

period vector is called primitive if its entries have no non-trivial common divisor. The
following proposition follows from [3, 3.1 and 4.1].

Proposition 2.1. For a strongly connected digraph G there exists a unique primitive
period vector pG, moreover, it is strictly positive. If G is connected Eulerian, then
pG = 1G. For a general digraph G, if G1, . . . , Gk are the sink components of G and a
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Section 3. Reachability of chip-distributions 3

vector z ∈ ZV satisfies Lz = 0G then z =
∑k

i=1 λipi, where for i ∈ {1, . . . , k}, λi ∈ Z
and pi is the primitive period vector of Gi restricted to V (Gi) and zero otherwise.

For a strongly connected digraph G, let us denote the sum of the coordinates of pG
by per(G). For a general digraph G let per(G) =

∑l
i=1 per(Gi) where G1, . . . , Gl are

the strongly connected components of G.
In a chip-firing game we consider a digraph G with a pile of chips on each of its

nodes. A position of the game, called a chip-distribution (or just distribution) is
described by a vector x ∈ ZV

+, where x(v) denotes the number of chips on vertex
v ∈ V . We denote the set of all chip-distributions on G by Chip(G).

The basic move of the game is firing a vertex. It means that this vertex passes a
chip to its neighbors along each outgoing edge, and so its number of chips decreases by
its outdegree. In other words, firing a vertex v means taking the new chip-distribution
x+ L1v instead of x.

The firing of a vertex v ∈ V (G) is legal, if v still has a non-negative amount of
chips after the firing (i.e. x(v) ≥ d+(v)). A legal game is a sequence of distributions
in which every distribution is obtained from the previous one by a legal firing. For
a legal game, let us call the vector z ∈ ZV , where z(v) equals the number of times
v has been fired, the firing vector of the game. A game terminates if no firing is
legal with respect to the last distribution. By a result of Björner, Lovász and Shor,
whether a chip-firing game terminates after finitely many steps or it can be continued
indefinitely depends only on the initial chip-distribution [4, Remark 2.4]. Based on
this fact, we call a distribution x terminating if a legal game (hence, all legal games)
started from x terminates, and we call x non-terminating otherwise.

We define the chip-firing game on an undirected graph as the game on the corre-
sponding bidirected graph.

Let us introduce an equivalence-relation on chip-distributions, motivated by the
theory of graph divisors [2].

Definition 2.2. For x, y ∈ ZV , let x ∼ y if there exists z ∈ ZV such that x = y+Lz.

One can easily check that ∼ defines an equivalence relation on ZV .

3 Reachability of chip-distributions

An interesting question about the chip-firing game is the following: given two chip-
distributions x, y ∈ Chip(G), is it possible to reach y from x by playing a legal game?
Let us denote by x y if such a legal game exists.

To the best of our knowledge, the only previous result in the reachability question
is an algorithm from [3], that decides for given x, y ∈ Chip(G) whether x  y
holds. This algorithm runs in O(|V |2D2per(G) log(|V |DNper(G))) time, where D =
max{d+(v) : v ∈ V } and N is the number of chips in x. Thus, for simple Eulerian
digraphs (which includes simple undirected graphs as a special case), reachability can
be decided in polynomial time. However, as per(G) can be exponentially large, for
general digraphs, this algorithm is not polynomial. Also, if we encode multigraphs so
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that we only write down edge-multiplicities, then D can also be exponentially large
in the size of the input. Hence the complexity of the reachability question remains
open for undirected multigraphs, too.

Problem 3.1. Is there a characterization for chip-distributions x, y ∈ Chip(G) such
that x y?
What is the complexity of deciding whether x y for given chip-distributions x, y ∈
Chip(G)?

In contrast with this, checking whether x ∼ y holds can be done in polynomial time
using Gaussian elimination.

The condition x ∼ y is clearly necessary for x y, as a legal game defines a vector
z ∈ ZV such that y = x + Lz. The following theorem, which is the main result of
our paper, shows a case where this necessary condition is also sufficient. Our theorem
uses the notion of recurrent chip-distributions. Here we only give the definition, while
Section 4.1 is dedicated to a detailed study of recurrent chip-distributions.

Definition 3.2. We call a chip-distribution x ∈ Chip(G) recurrent if there exists a
nonempty sequence of legal firings that transforms x to itself.

Theorem 3.3. Let G be strongly a connected digraph and x, y ∈ Chip(G). If y is
recurrent and x ∼ y, then x y.

Proof. First we claim that if x ∼ y then there exists z ∈ ZV
+ such that x = y + Lz.

Indeed, x ∼ y implies the existence of w ∈ ZV with x = y + Lw. From Proposition
2.1, for a sufficiently large k ∈ Z+, the vector z = w + kpG is non-negative, while
x = y + Lw = y + Lw + kLpG = y + Lz holds.

Fix such a z. We proceed by induction on
∑

v∈V (G) z(v). If
∑

v∈V (G) z(v) = 0, then

x = y, thus x  y. Now suppose
∑

v∈V (G) z(v) > 0. As y is recurrent, there exists

a sequence v1, v2, . . . , vk of vertices (a vertex may occur multiple times) such that
from initial distribution y, firing them in this order is a legal game that leads back to
y. Fix such a sequence. We claim that in this sequence, each vertex occurs at least
once. Indeed, for the firing vector w of the game, y = y + Lw thus w is a multiple of
the primitive period vector, and the primitive period vector of a strongly connected
digraph is strictly positive, as claimed in Proposition 2.1.

Let i be the smallest index such that z(vi) > 0. Such an index exists because
each vertex is listed at least once in v1, v2, . . . , vk. Starting from y, fire the vertices
v1, . . . , vi−1. This is a legal game by definition. Let the resulting distribution be y′.
We claim that the sequence of firings v1, . . . , vi−1 is also legal starting from x. To
prove this, it is enough to show that x(vj) ≥ y(vj) for all 1 ≤ j ≤ i − 1. This is
true, because x(vj) = y(vj) + (Lz)(vj), where (Lz)(vj) ≥ 0, since the only negative
element in the row corresponding to vj is L(vj, vj), but z(vj) = 0. Hence the firing of
the vertices v1, . . . , vi−1 from distribution x is legal. Let the distribution obtained by
this game be x′. Thus x x′.

For x′ and y′, we also have x′ = y′+Lz. At position y′, firing vi is legal, by definition
of the sequence v1, . . . , vk. Denote by y′′ the distribution we get by firing vi at y′. The
distribution y′′ is recurrent, since firing vi+1 . . . , vk, v1, . . . , vi is a legal game that leads
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back to y′′. Now for x′ and y′′ we have x′ = y′′+Lz′, where z′(vi) = z(vi)− 1, and for
each other vertex v 6= vi, z

′(v) = z(v). This way
∑

v∈V (G) z
′(v) =

∑
v∈V (G) z(v) − 1,

hence by the induction hypothesis, x′  y′′.
We claim that y′′  y. Indeed, firing vi+1, . . . , vk starting from y′′ is a legal game

that leads to y. We also have x x′. Summarizing, we have x y.

Our aim is now to generalize Theorem 3.3 for weakly connected digraphs. In Sec-
tion 4, after proving some basic properties of recurrent chip-distributions, we give an
example (Example 4.5) which shows that Theorem 3.3 does not remain true in its
original form for general digraphs. With a somewhat stronger condition, however, we
can generalize Theorem 3.3 to weakly connected digraphs.

Theorem 3.4. Let G be a weakly connected digraph, and x, y ∈ Chip(G) be two chip-
distributions such that there exists z ∈ ZV

+ with y = x + Lz. Suppose that for each
strongly connected component G′ = (V ′, E ′) of G, z|V ′ = 0G′ or y|V ′ ∈ Chip(G′) is
recurrent. Then x y.

Note that the existence of a non-negative z such that y = x + Lz is a necessary
condition for x  y. Indeed, the firing vector of a legal game realizing x  y is
such a vector. For strongly connected digraphs, x ∼ y also implies the existence of a
non-negative z ∈ ZV such that y = x+ Lz. However, for general digraphs this is not
the case.

Proof. Fix a non-negative vector z ∈ ZV
+ with y = x + Lz. Let V1, V2, . . . , Vk be a

topological ordering of the strongly connected components of G, i.e., V = V1∪· · ·∪Vk,
for each i the digraph Gi = (Vi, E|Vi×Vi

) is strongly connected, and there is no directed
edge from vi ∈ Vi to vj ∈ Vj if i > j.

Let x′ be the chip-distribution obtained from x by passing z(u) ·
−→
d (u, v) chips

from u to v for each pair of vertices u, v ∈ V where u and v are in different strongly
connected components. Note that x 6∼ x′ is possible. The proof of the theorem is
based on the following lemma.

Lemma 3.5. For each i, x′|Vi
∼ y|Vi

on the digraph Gi. Moreover, if y|Vi
is recurrent

on Gi, then there exists a legal game on Gi with firing vector z|Vi
that transforms x′|Vi

to y|Vi
.

Proof. Let Li be the Laplacian matrix of Gi. We first prove that x′|Vi
∼ y|Vi

(as
chip-distributions on Gi) by showing that x′|Vi

+ Liz|Vi
= y|Vi

. For this, let v ∈ Vi.
Then

x′(v) + (Liz|Vi
)(v) =

x(v) +
∑

v′∈V \Vi

(−→
d (v′, v) · z(v′)−

−→
d (v, v′) · z(v)

)
+ (Liz|Vi

)(v) =

x(v) + (Lz)(v) = y(v).

Now, if y|Vi
is recurrent, by Theorem 3.3, x′|Vi

 y|Vi
in Gi. Let wi ∈ ZVi be the

firing vector of a legal game transforming x′|Vi
to y|Vi

. Then Li(z|Vi
− wi) = 0, hence
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by Proposition 2.1, wi− z|Vi
= c · pGi

with c ∈ Z. If c = 0 then z|Vi
is the firing vector

of a legal game, proving the lemma. In the followings, we treat separately the case
c < 0 and c > 0. For both cases, the following lemma of Björner and Lovász is useful.

Lemma 3.6 ([3, 4.3]). Let w ∈ ZVi
+ be a firing vector of a legal game from some initial

distribution. If w ≥ pGi
, then w − pGi

is also the firing vector of a legal game from
the same initial distribution.

Suppose that c < 0. Since y|Vi
is recurrent, there is a legal game on Gi that

transforms y|Vi
back to itself. For the firing vector w of this game, Liw = 0, hence

w = λ · pGi
with λ ∈ Z, λ > 0. From Lemma 3.6, we can suppose that λ = 1. Now

starting from distribution x′|Vi
on Gi, after playing the legal game with firing vector

wi, we get to the distribution y|Vi
. Then iterate −c times the legal game with firing

vector pGi
. This gives us a legal game with firing vector z|Vi

, finishing the proof for
the c < 0 case.

Now suppose that c > 0. Then Lemma 3.6 guarantees that there is a legal game
from x′|Vi

with firing vector wi−c·pGi
= z|Vi

. This finishes the proof of the lemma.

For each 1 ≤ i ≤ k let zi be the vector with zi(v) = z(v) if v ∈ Vi, and zi(v) = 0
otherwise. Let si =

∑
j≤i zj, i.e., si(v) = z(v) if v ∈

⋃
j≤i Vj, and si(v) = 0 otherwise.

Let xi = x + Lsi and x0 = x. We show that for i = 1, . . . , k, starting from the
distribution xi−1, there is a legal game on G with firing vector zi. Since xi−1+Lzi = xi,
and xk = y, this is enough to finish the proof of the theorem.

So let i be fixed. It is easy to see that for each v ∈ Vi

x′(v) = xi−1(v)− z(v) ·
∑

v′∈V \Vi

−→
d (v, v′). (1)

If z|Vi
= 0Gi

, then zi = 0G, hence we have nothing to prove. If this is not the case,
then y|Vi

is recurrent by the assumptions. Using the lemma, from initial distribution
x′|Vi

there exists a legal game on Gi with firing vector z|Vi
. We claim that the same

sequence of firings on G, with initial distribution xi−1 remains a legal game. Indeed,
we can see from (1) that by playing the game on G from initial distribution xi−1, at
any moment we have a distribution that is greater or equal on Vi than the distribution
we get by playing the game on Gi with initial distribution x′|Vi

. Hence there exists a
legal game on G with initial distribution xi−1 and firing vector zi. This finishes the
proof of the theorem.

Note that for distributions y such that y is recurrent restricted to each strongly
connected component, Theorem 3.4 gives a necessary and sufficient condition for the
reachability of y. The condition of the theorem, i.e. whether there exists z ∈ ZV

+ with
y = x+Lz, can also be decided in polynomial time: One can compute a vector w with
y = x+Lw using Gaussian elimination. By Proposition 2.1, there exists z ∈ ZV

+ with
y = x+Lz if and only if w is integer, and non-negative on every non-sink component.
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4 Recurrent chip-distributions

Recurrent chip-distributions were first investigated by Jeffs and Seager [6] in the
special case of undirected cycle graphs. They gave a characterization of recurrent
distributions on undirected graphs using the notion of diffuse configurations. Con-
nections between recurrent distributions and acyclic orientations of undirected graphs
are demonstrated in [5, Section 14.11]

While former results considered undirected graphs, in this section we study recur-
rent distributions on digraphs. In the special case of Eulerian digraphs we also give a
characterization of recurrent distributions, which generalizes the characterization for
undirected graphs given in [6] and [5].

Recurrent distributions were also defined and studied in the Abelian sandpile model
(for more about this model, see e.g. [1]). Let us briefly describe the connection between
the two notions. If a chip-distribution x ∈ Chip(G) is recurrent, then for any choice
of sink v0 ∈ V , the stabilization of x|V−v0 is recurrent in the Abelian sandpile model.
Conversely, if a configuration y ∈ ZV−v0 is recurrent in the Abelian sandpile model,
then if a chip-configuration is non-terminating and agrees with y on V − v0, then it
is recurrent.

4.1 Properties of recurrent chip-distributions

Claim 4.1. If x is a recurrent chip-distribution and y ≥ x (coordinatewise), then y
is also recurrent.

Proof. By definition, there exists a nonempty legal game starting from x, that leads
back to x. This game remains legal if it is started from y, as y is coordinatewise
greater than or equal to x. Moreover, started from y, it leads back to y.

Proposition 4.2. A chip-distribution x ∈ Chip(G) on a digraph G is recurrent if
and only if there is a sink-component Gi of G such that x|V (Gi) is recurrent on Gi.

Proof. First we show the “if” direction. Suppose that there is a sink-component Gi

of G such that x|V (Gi) is recurrent on Gi. Then x is recurrent, since we can perform
on G the sequence of firings that transforms x|V (Gi) back to itself on Gi. These firings
have the same effect when they are performed on G, since Gi is a sink component. In
particular, the game remains legal on G, and the distribution is not modified outside
V (Gi). Hence the game leads us back to x.

Now we show the “only if” direction. If x is recurrent, there is a legal game that
transforms it back to itself. For the firing vector z 6= 0G of this game, x = x + Lz,
hence Lz = 0G. By Proposition 2.1, z is of the form z =

∑k
i=1 λipi, where λi ∈ Z for

i = 1, . . . , k, G1, . . . Gk are the sink components of G, and pi is the primitive period
vector of Gi restricted to V (Gi) and zero otherwise. In particular, z is zero outside
the sink-components, and there is at least one sink-component Gi such that λi > 0.
Hence the game consists of some firings in come sink components. A firing in a sink
component does not affect the chip-distribution on other sink components, thus if we
restrict the game to Gi (i.e., we only perform the firings where the vertex is in V (Gi)),

EGRES Technical Report No. 2015-10



4.1 Properties of recurrent chip-distributions 8

then we also get a legal game. Moreover, since in the original game, no vertex is fired
outside sink components, the effect of this game for the chip-distribution on Gi is the
same as the effect of the original game. Hence the resulting distribution on V (Gi) is
x|V (Gi). Also, since Gi is a sink component, it does not make a difference whether we
play this game on G or on Gi. Hence we have a legal game on Gi that transforms
x|V (Gi) back to itself.

Proposition 4.3. A recurrent chip-distribution is non-terminating. Moreover, a
legal game started from a recurrent chip-distribution takes only recurrent positions.

Proof. A recurrent chip-distribution x is non-terminating, since we can repeat the
nonempty legal game transforming x to itself infinitely.

Now we show that a legal game from a recurrent distribution takes only recurrent
positions. Let x be a recurrent distribution. It is enough to show that any legal
firing from x leads to a recurrent distribution. Let v1, . . . vk be a sequence of vertices
(one vertex can occur more than once) such that firing them in this order from initial
distribution x is a legal game that leads back to x (such a sequence exists because x
is recurrent). Suppose that v ∈ V is a vertex such that starting from x the firing of
v is legal. Fire v and let the obtained distribution be x′. We need to show that x′

is recurrent. If v does not occur in the sequence v1, v2, . . . , vk, then on any vertex in
{v1, v2, . . . , vk}, there are at least as many chips in x′ as in x, thus v1, v2, . . . , vk is still
a legal game from x′, and it leads back to x′. This shows that in this case x′ is indeed
recurrent.

On the other hand, if v occurs in the sequence v1, v2, . . . , vk, let vi be its first
occurrence. Then vi, v1, . . . , vi−1, vi+1, . . . , vk is a legal game from x, as the firing of
vi in x is legal, the vertices v1, v2, . . . , vi−1 have at least as many chips when they are
fired as in the original sequence, and the vertices vi+1, . . . , vk have the same number
of chips. But this means that v1, . . . , vi−1, vi+1, . . . vk, vi is a legal game from x′ that
leads back to x′, showing that x′ is recurrent also in this second case. This finishes
the proof.

Proposition 4.4. Every non-terminating chip-firing game takes a recurrent position
after a finite number of firing moves.

Proof. As there are only finitely many chip-distributions with a given number of
chips, after finitely many steps, a distribution appears for the second time, which
must therefore be recurrent.

Now we are able to give an example showing that Theorem 3.3 does not remain
true for general digraphs, i.e. for general digraphs, x ∼ y and y being recurrent is not
sufficient for x y.

Example 4.5. Let G1 and G2 be strongly connected digraphs, both of them with at
least two vertex-disjoint directed cycles. Let v1 ∈ V (G1), v2 ∈ V (G2). Let G be the
following graph: V (G) = {v} ∪ V (G1) ∪ V (G2), E(G) = {−→vv1,−→vv2} ∪E(G1) ∪E(G2).
Then the strongly connected components of G are {v}, G1 and G2, and the sink
components are G1 and G2.
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4.2 Characterization of recurrence 9

For i = 1, 2, let xi ∈ Chip(Gi) be a non-recurrent chip-distribution and yi ∼ xi a
recurrent chip-distribution. Such distributions exist: By the proof of [3, Theorem 2.2],
a recurrent chip-distribution has at least one chip on each directed cycle. Also, by [3],
if a distribution has at least |E(G)| − |V (G)| + 1 chips, then it is non-terminating.
Hence, if xi has |E(Gi)| chips on one vertex of Gi and zero elsewhere, then xi is non-
recurrent and non-terminating. By Proposition 4.4, after playing the chip-firing game
from xi on Gi for finitely many steps, we arrive at a recurrent distribution yi ∼ xi.

Let x ∈ Chip(G) be the chip-distribution that is zero on v, agrees with x1 on V (G1)
and agrees with y2 on V (G2). Let y ∈ Chip(G) be the chip-distribution that is zero
on v, agrees with y1 on V (G1) and agrees with x2 on V (G2). Then clearly x ∼ y.
Moreover both x and y are recurrent, since both of them are recurrent restricted to a
sink component.

Since x(v) = y(v) = 0, if y were reachable from x on G, then x1 were reachable
from y1 on G1. But this is impossible, since y1 is recurrent, while x1 is not, and by
Proposition 4.3, a legal game started from a recurrent distribution never leads to a
non-recurrent distribution.

4.2 Characterization of recurrence

The results of Section 3 suggest the problem of deciding whether a given chip-
distribution is recurrent. For Eulerian digraphs (this case includes undirected graphs
as a special case), it follows from results of Björner and Lovász, that a chip-distribution
x is recurrent if and only if one can play a legal game starting from x such that each
vertex fires exactly once. This can be decided in polynomial time. For general di-
graphs, the complexity of deciding whether a given chip-distribution is recurrent is
unknown.

Problem 4.6. Let G be a digraph. What is the complexity of deciding whether a
chip-distribution x ∈ Chip(G) is recurrent?

In this section, we give a combinatorial characterization of recurrent chip-distribu-
tions on Eulerian digraphs, that generalizes a result of [6, 5] for the case of undirected
graphs. For general graphs, we only obtain a necessary condition. Our characteriza-
tion is based on ideas of [8, 7].

Let us first recall the result concerning undirected graphs. For this, we need the
notion of diffuse distributions.

Definition 4.7 ([6]). Let G be an undirected graph. A chip-distribution x ∈ Chip(G)
is called diffuse if for any nonempty subset U of V there is a vertex v ∈ U such that
x(v) ≥ dG[U ](v), where G[U ] denotes the subgraph of G induced by U .

For undirected graphs, the equivalence of recurrent and diffuse distributions was
proved by Jeffs and Seager [6]. The following theorem in this form can be found in
[5].

Theorem 4.8. Let G be an undirected graph and x ∈ Chip(G) be a chip-distribution.
Then the following three statements are equivalent:

EGRES Technical Report No. 2015-10



4.2 Characterization of recurrence 10

(1) x is recurrent,

(2) there exists an acyclic orientation of G such that for each vertex v, x(v) is at
least the in-degree of v in the orientation,

(3) x is diffuse.

The notion of diffuse chip-distribution can be naturally generalized to directed
graphs:

Definition 4.9. Let G be a digraph. A chip-distribution x ∈ Chip(G) is called diffuse
if for any nonempty subset U ⊆ V there is a vertex v ∈ U such that x(v) ≥ d−G[U ](v),

where G[U ] denotes the subgraph of G induced by U .

In the directed case, acyclic orientations correspond to feedback arc sets.

Definition 4.10. A feedback arc set of a digraph D is a set of edges F ⊆ E(D) such
that the digraph D′ = (V (D), E(D) \ F ) is acyclic.

Definition 4.11. For a digraph G, let us say that a chip-distribution x ∈ Chip(G)
is above a feedback arc set, if there exists a feedback arc set of G such that for all
v ∈ V (G), x(v) is at least the indegree of v restricted to the feedback arc set.

Theorem 4.12. Let G be a digraph and x ∈ Chip(G) be a chip-distribution. Consider
the following three statements:

(1) x is recurrent,

(2) x is above a feedback arc set,

(3) x is diffuse.

Then (1) ⇒ (2) ⇔ (3). If G is Eulerian, then (2) ⇒ (1) also holds. Hence for
Eulerian digraphs, all three statements are equivalent.

For the case (1) ⇒ (2) and (2) ⇒ (1) in Eulerian digraphs, our proof is a slight
modification of ideas in [8, 7].

Proof. (1) ⇒ (2). Suppose that x ∈ Chip(G) is recurrent. Take a non-empty legal
game that transforms it back to itself. Let z be the firing vector of this game. Then
Lz = 0G, hence by Proposition 2.1, z = c · pG for some constant c. Thus, each vertex
fired at least once. Take the vertices in the order of their last firing. Then

F = {−→uv : the last firing of v precedes the last firing of u}

is a feedback arc set. Moreover, for the final distribution (which is also x by our
assumption), for each v ∈ V , x(v) ≥ d−F (v), since after its last firing, v had a non-
negative number of chips, and after that time, it received a chip through all of its
incoming F -arcs. Hence x is indeed above a feedback arc set.
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(2) ⇒ (3). Suppose that x is above a feedback arc set F of G. By the definition
of feedback arc set, G′ = (V,E \ F ) is an acyclic digraph, i.e. it has a topological
ordering O. Let U be any nonempty subset of V . Let v be the vertex of U which
occurs first in O. Then the indegree of v in G′[U ] is zero, so d−G[U ](v) = d−F (v) ≤ x(v),
proving that x is diffuse.

(3) ⇒ (2). Now suppose that x is diffuse. Then one can recursively find an
ordering (v1, v2, . . . , vn) of V such that x(vi) ≥ d−G[Vi]

, where Vi = {vi, vi+1, . . . , vn}.
Then F = {−−→vivj ∈ E(G) : i > j} is a feedback arc set with d−F (v) = d−G[Vi]

≤ x(v) for
all v ∈ V .

Finally, we show that (2) ⇒ (1) if G is an Eulerian digraph. Suppose that x ∈
Chip(G) is above a feedback arc set F of the Eulerian digraph G. By the definition
of feedback arc set, G′ = (V,E \F ) is an acyclic digraph. Take a topological ordering
of the vertices of G′. It is easy to check that firing the vertices in this order is a legal
game on G started from x. In this game each vertex is fired once, hence each vertex v
loses d+(v) chips, and receives d−(v) chips. Since G is Eulerian, this means that the
resulting chip-distribution is again x, showing that x is recurrent.

Example 4.13. We show that being above a feedback arc set is not sufficient for being
recurrent in general digraphs. Let G = (V,E) be the following strongly connected
digraph: V = {1, 2, 3} and E = {(2, 1), (1, 2), (2, 3), (3, 1)}. It is easy to see that
F = {(1, 2)} ⊂ E is a feedback arc set, hence the distribution x ∈ Chip(G) with
x(1) = x(3) = 0 and x(2) = 1 is above a feedback arc set. But no vertex can fire,
thus x cannot be recurrent.
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[7] V. Kiss and L. Tóthmérész. Chip-firing games on eulerian digraphs and NP-
hardness of computing the rank of a divisor on a graph. arXiv:1407.6958, 2014.

[8] K. Perrot and T. Van Pham. Feedback Arc Set Problem and NP-Hardness of Min-
imum Recurrent Configuration Problem of Chip-Firing Game on Directed Graphs.
Ann. Comb., 19(1):1–24, 2015.
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