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On the complexity of the chip-firing reachability
problem

Bálint Hujter?, Viktor Kiss??, and Lilla Tóthmérész? ? ?

Abstract

In this paper, we study the complexity of the chip-firing reachability prob-
lem. We show that for Eulerian digraphs, the reachability problem can be
decided in polynomial time, even if the digraph has multiple edges. We also
show a special case when the reachability problem can be decided in polyno-
mial time for general digraphs: if the target distribution is recurrent restricted
to each strongly connected component. Both of these algorithms are strongly
polynomial. As a further positive result, we show that the chip-firing reachabil-
ity problem is in co-NP for general digraphs. We also show that the chip-firing
halting problem is in co-NP for Eulerian digraphs.

Keywords: chip-firing game; computational complexity

1 Introduction

Chip-firing is a solitary game on a directed graph, defined by Björner, Lovász and
Shor [3]. Each vertex contains a pile of chips. A legal move is to choose a vertex with
at least as many chips as its out-degree and let it send a chip along each outgoing
edge. We analyze the complexity of the following reachability question: given two
chip-distributions x and y, decide whether y can be reached from x by playing a legal
game. This question is a special case of the reachability problem for integral vector
addition systems [2]. It was first considered by Björner and Lovász, who gave an
algorithm that decides the reachability question and runs in weakly polynomial time
for simple Eulerian digraphs [2]. The complexity of the reachability problem was left
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??Department of Analysis, Eötvös Loránd University, Budapest, Hungary. Supported by the Hun-
garian Scientic Research Fund - OTKA 104178, 113047. Email: kivi@cs.elte.hu
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Section 2. Preliminaries 2

open for Eulerian digraphs with multiple edges, and for non-Eulerian digraphs. The
question whether the reachability problem is in NP or in co-NP was also left open.

In this paper, we show that the chip-firing reachability problem can be decided in
polynomial time for Eulerian digraphs with multiple edges. Our algorithm is strongly
polynomial. The main ingredient of the algorithm is a lemma ensuring that if one chip-
distribution is reachable from another, then it can be reached by firing an “ascending
chain of sets of vertices”.

For general digraphs, we show that the chip-firing reachability problem is in co-NP.
Also, we show a special case when the chip-firing reachability problem is polynomial
time solvable even on non-Eulerian digraphs. If G is a strongly connected digraph and
the chip-distribution y is recurrent, i.e., it is reachable from itself by a non-empty le-
gal game, then we characterize the set of chip-distributions from which y is reachable.
This characterization enables one to decide in strongly polynomial time whether a re-
current chip-distribution y is reachable by a legal game from a given chip-distribution
x. For weakly connected directed graphs, we generalize the characterization theo-
rem for chip-distributions y that are recurrent restricted to each strongly connected
component. This theorem also gives rise to a strongly polynomial algorithm.

Finally, in Section 5, we collect some open problems related to the reachability
problem. In this last section, we show that the chip-firing halting problem (which is a
problem similar to the chip-firing reachability problem) is in NP∩co-NP for Eulerian
digraphs, which makes it a good candidate for the search of a polynomial algorithm.

2 Preliminaries

2.1 Digraphs

Throughout this paper, digraph means a (weakly) connected directed graph that can
have multiple edges but no loops. A digraph is usually denoted by G. The vertex
set and edge set of a digraph G are denoted by V (G) and E(G) (or simply V and
E), respectively. For a vertex v, the in-degree and the out-degree of v are denoted
by d−(v) and d+(v), respectively. We denote a directed edge leading from vertex u to

vertex v by −→uv. The multiplicity of a directed edge −→uv is denoted by
−→
d (u, v).

A digraph is simple, if
−→
d (u, v) ≤ 1 and

−→
d (v, u) ≤ 1 for each pair of vertices

u, v ∈ V . A digraph is Eulerian, if d+(v) = d−(v) for each v ∈ V . A digraph is strongly
connected, if for each pair of vertices u, v, there is a directed path from u to v, and
also from v to u. A connected Eulerian digraph is always strongly connected. Each
digraph has a unique decomposition to strongly connected components. A component
is called a sink component, if there is no edge leaving the component.

Throughout this paper, we identify undirected graphs with the digraph obtained
by replacing each edge with a pair of oppositely directed edges. This way, undirected
graphs become special Eulerian digraphs.

If we give a digraph as an input to an algorithm, we always encode it by its adja-
cency matrix. Hence the size of the input is not increased by the values of the edge
multiplicities, just the logarithms of it.
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2.2 Chip-firing 3

We denote by ZV the set of integer vectors indexed by the vertices of a digraph G.
ZV+ denotes the set of vectors with non-negative integer coordinates. For S ⊆ V , we
denote the characteristic vector of S by 1S. If S = {v}, we use the notation 1v. We
denote the vector with each coordinate equal to zero by 0.

The Laplacian of a digraph G is the following matrix L ∈ ZV×V :

L(u, v) =

{
−d+(v) if u = v,
−→
d (v, u) if u 6= v.

2.2 Chip-firing

In a chip-firing game we consider a digraph G with a pile of chips on each of its nodes.
A position of the game, called a chip-distribution (or just distribution) is described
by a vector x ∈ ZV+, where x(v) is interpreted as the number of chips on vertex v ∈ V .
We denote the set of all chip-distributions on G by Chip(G).

The basic move of the game is firing a vertex. It means that this vertex passes a chip
to its neighbors along each outgoing edge, and so its number of chips decreases by its
out-degree. In other words, firing a vertex v means taking the new chip-distribution
x+ L1v instead of x.

The firing of a vertex v ∈ V is legal with respect to a distribution x, if v has a
non-negative amount of chips after the firing (i.e. x(v) ≥ d+(v)). A legal game is a
sequence of distributions in which every distribution is obtained from the previous
one by a legal firing. For a legal game, let us call the vector f ∈ ZV+, where f(v)
equals the number of times v has been fired, the firing vector of the game. A game
terminates if no firing is legal with respect to the last distribution. The following
theorem of Björner, Lovász and Shor describes a very important “Abelian” property
of the chip-firing game.

Theorem 2.1. [3, Remark 2.4] From a given initial chip-distribution, either every
legal game can be continued indefinitely, or every legal game terminates after finitely
many steps. The firing vector of every maximal legal game is the same.

Based on this fact, we call a distribution x terminating if a legal game (hence, all
legal games) started from x terminates, and we call x non-terminating otherwise.

For a given vector b ∈ ZV+, let us call the following game chip-firing game with upper
bound b: We are only allowed to make legal firings, and each vertex v can be fired
at most b(v) times during the whole game. Björner and Lovász show the “Abelian”
property for the bounded chip-firing game as well.

Lemma 2.2. [2, Lemma 1.4] For a given bound b ∈ ZV+ and initial distribution x,
each maximal bounded game with upper bound b and initial distribution x has the same
firing vector.

A non-negative vector p ∈ ZV+ is called a period vector for G if Lp = 0. A non-zero
period vector is called primitive if its entries have no non-trivial common divisor. The
following proposition follows from [2, 3.1 and 4.1].

EGRES Technical Report No. 2015-10



2.2 Chip-firing 4

Proposition 2.3. For a strongly connected digraph G there exists a unique primitive
period vector pG, moreover, it is strictly positive. If G is connected Eulerian, then
pG = 1V . For a general digraph G, if G1, . . . , Gk are the sink components of G and a
vector z ∈ ZV satisfies Lz = 0 then z =

∑k
i=1 λipi, where for i ∈ {1, . . . , k}, λi ∈ Z

and pi is the primitive period vector of Gi restricted to V (Gi) and zero elsewhere.

For a strongly connected digraph G, let us denote the sum of the coordinates of pG
by per(G). For a general digraph G let per(G) =

∑`
i=1 per(Gi) where G1, . . . , G` are

the strongly connected components of G.

2.2.1 Reachability

A basic question about the chip-firing game is the so-called reachability question:
Given two chip-distributions x, y ∈ Chip(G), is it possible to reach y from x by
playing a legal game? Let us denote by x y if such a legal game exists.

Our main goal in this paper is to investigate the computational complexity of the
reachability question. Let us sum up the previous results about the problem. To do
so, we state an important lemma of Björner and Lovász.

Lemma 2.4. [2, Lemma 4.3] Let p be a period vector of a digraph G, and suppose that
α = (v1, v2, . . . , vs) is a legal sequence of firings on G from some initial distribution.
Let α′ be the sequence obtained from α by deleting the first p(v) occurrence of each
vertex v (if v occurs less than p(v) times in α, then we delete all of its occurrences).
Then α′ is also a legal sequence of firings from the same initial distribution.

A vector f ∈ ZV+ is called reduced if f 6≥ p for every non-zero period vector p. The
following phenomenon is a direct consequence of the previous lemma:

Lemma 2.5. [2, Lemma 5.2] If x y, then there exists a legal game transforming x
to y with a reduced firing vector.

Note that if x y then for the firing vector f of a legal game transforming x to y,
y = x + Lf . Among the vectors g ∈ ZV+ satisfying y = x + Lg, there is a unique one
that is reduced.

The previous lemmas imply, that the reachability question can be decided “greed-
ily”: For given x, y ∈ Chip(G) one can decide if there exists a reduced vector f with
y = x + Lf . If no such vector exists then x 6 y. If such a vector f exists, it can
be computed. By Lemma 2.5, x  y if and only if there is a legal game from x to y
with firing vector f . By Lemma 2.2, we can find greedily a maximal chip-firing game
from x with upper bound f . We have x  y if and only if this maximal bounded
chip-firing game has firing vector f .

This reasoning gives an algorithm for deciding the reachability problem, however,
this algorithm is in general not polynomial, as the firing vector f may have exponen-
tially large elements.

Björner and Lovász improve this naive algorithm, and obtain the following:
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Section 3. A polynomial algorithm for Eulerian digraphs 5

Theorem 2.6 ([2]). There is an algorithm that for given x, y ∈ Chip(G) on a digraph
G decides whether x y holds, and runs in

O(|V |2D2per(G) log(|V |DNper(G)))

time, where D = max{d+(v) : v ∈ V } and N is the number of chips in x.

This algorithm is not polynomial in general, as per(G) and D may be exponentially
large. However, as for simple Eulerian digraphs, per(G) = |V | and D ≤ |V |, the
algorithm is weakly polynomial for simple Eulerian digraphs.

In this paper, we show that the reachability problem can be decided in polynomial
time also for general Eulerian digraphs (i.e. also for Eulerian digraphs with multiple
edges). In addition, our algorithm is strongly polynomial. For general digraphs, we
show that the reachability problem is in co-NP. We also show that in the special case
if y is recurrent restricted to each strongly connected component, whether x  y
holds can be decided in polynomial time for general digraphs.

Before presenting our results, let us describe two simple, polynomial-time com-
putable necessary conditions for the reachability problem:

The first necessary condition is the linear equivalence of x and y:

Definition 2.7 (Linear equivalence [1]). For x, y ∈ ZV , let x ∼ y if there exists
z ∈ ZV such that x = y+Lz. In this case we say that x and y are linearly equivalent.

One can easily check that ∼ defines an equivalence relation on ZV . This equivalence
relation has been defined by Baker and Norine [1], and it plays an important role in
the theory of graph divisors.

It is easy to see, that x ∼ y is a necessary condition for x  y. Indeed, if there is
a legal game leading from x to y, let its firing vector be f . Then y = x + Lf . Note
that checking whether x ∼ y holds can be done in strongly polynomial time using
Gaussian elimination.

A slightly stronger necessary condition for x  y is the existence of f ∈ ZV+ such
that y = x+ Lf . (This condition is stronger than the linear equivalence only in that
we require f to be non-negative.) As the firing vector of a legal game from x to y gives
a non-negative f such that y = x+ Lf , this condition is also necessary. For strongly
connected digraphs, the two conditions are equivalent, since a strong digraph has a
period vector that is positive on every coordinate. In that case it is more convenient
to work with the notion of linear equivalence, as that defines an equivalence relation,
while the later condition does not. Note, however, that the existence of f ∈ ZV+ such
that y = x + Lf can also be decided in strongly polynomial time. Indeed, we can
decide using Gaussian elimination whether x ∼ y, and if so, compute a g ∈ ZV such
that y = x+Lg. By Proposition 2.3, there exists f ∈ ZV+ such that y = x+Lf if and
only if g is non-negative on every non-sink strongly connected component.

3 A polynomial algorithm for Eulerian digraphs

In this section, we describe our algorithm deciding the reachability problem on Eule-
rian digraphs, which is polynomial even for graphs with multiple edges. The following
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Section 3. A polynomial algorithm for Eulerian digraphs 6

lemma is the heart of our algorithm. Informally, it says, that if one chip-distribution
is reachable from another, then it can be reached so that we fire an ascending chain
of subsets of vertices.

Lemma 3.1. Let G be an Eulerian digraph. Suppose that we have two chip-distributions
x and y such that x y. Then there exists a sequence of legal firings (v1, v2, . . . , vs)
that transforms x to y, and there exist indices i0 = 0, i1, i2, . . . it = s such that for each
j = 1, . . . , t, no vertex appears twice in the sequence vij−1+1, . . . , vij , and by setting
Sj = {vij−1+1, . . . , vij}, we have S1 ⊆ S2 ⊆ · · · ⊆ St ( V .

Proof. Lemma 2.4 plays a key role in this proof. Note that for Eulerian digraphs,
Lemma 2.4 says, that if for a legal sequence of firings, we leave out the first occurrence
of each vertex that occurs in the sequence, we still get a legal game.

Since x  y, there exists a sequence of firings α = (w1, . . . ws) that is legal, and
transforms x to y. Let fα ∈ ZV+ be the firing vector of α, and Sα be the set of vertices
that occur at least once in α. Notice that we can suppose that Sα 6= V . Indeed, if
Sα = V that means that each vertex occurs in α. Then by Lemma 2.4, leaving out the
first occurrence of each vertex, we still get a legal game α′ with firing vector fα− 1V .
As Lfα = L(fα − 1V ), this game still transforms x to y. We can continue this until
there is a vertex that does not occur in our legal sequence of firings, hence we can
suppose Sα 6= V .

We use induction for the largest coordinate of fα. If the largest coordinate of fα is
one, then we have t = 1 and S1 = Sα 6= V , and we are ready.

Suppose that the largest coordinate of fα is larger than one. We prove that from
initial distribution x, there exists a legal sequence of firings α′ with firing vector
fα′ = fα − 1Sα that can be extended legally by a sequence β of firings with firing
vector 1Sα . Indeed, by Lemma 2.4, the sequence of firings α′ that we get from α
by deleting the first occurrence of each vertex is still legal. The firing vector of this
sequence is fα − 1Sα . Play the bounded chip-firing game with upper bound fα from
initial distribution x. Then α′ is a valid beginning. As α is a legal chip-firing game
with upper bound fα, and its firing vector is fα, by Lemma 2.2, each maximal bounded
chip-firing game with upper bound fα has firing vector fα. Hence α′ can be extended
to a legal game with firing vector fα. Let us call the sequence of the last |Sα| firings
β.

The largest coordinate of fα′ is strictly smaller than the largest coordinate of fα,
hence by the induction hypothesis, there is a legal sequence γ = (v1, . . . , vs′) of firings
with firing vector fα′ such that there exist indices i0 = 0, i1, i2, . . . it = s′ such that
for each j = 1, . . . , t, no vertex appears twice in the sequence vij−1+1, . . . vij , and after
setting Sj = {vij−1+1, . . . vij}, we have S1 ⊆ S2 ⊆ · · · ⊆ St. As α′ can be legally
extended by β, γ can also be legally extended by β, since the chip-distribution after
a sequence of firings only depends on the firing vector, which is the same for γ and
for α′. Now let it+1 = s, thus St+1 = Sα. As St ⊆ Sα′ ⊆ Sα 6= V , we proved the
statement for α.

Remark 3.2. ’Ascending chains’ also play a role in the related field of graph divisor
theory, see for example [6, Lemma 1.3.] or the notion of ’level sets’ in [7].
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Section 3. A polynomial algorithm for Eulerian digraphs 7

Theorem 3.3. There is a polynomial algorithm that decides whether x  y for two
chip-distributions x and y on an Eulerian digraph G.

Proof. The idea of the proof is to use Lemma 3.1: x y if and only if y can be reached
from x by firing an “ascending chain of vertex sets”. Since the chain is ascending, the
number of distinct sets is at most |V | (but one may occur in the sequence exponentially
many times). By Gaussian elimination, we can compute whether x ∼ y, and if so,
we can compute what these ever growing sets should be. The main idea is that it is
enough to check for each set, whether it can be fired at its last occurrence.

Let us write this formally. The algorithm is the following:
Using Gaussian elimination, we first decide whether x ∼ y, that is, whether there

exists an integer vector g ∈ ZV such that y = x + Lg. If no such vector exists then
x 6∼ y, hence x 6 y. If such a g exists, then let k = minv∈V g(v) and f = g − k · 1V .
Since L1V = 0, y = x + Lf . Moreover, the coordinates of f are non-negative,
and it has a coordinate that is zero. Let t = maxv∈V f(v) and for 1 ≤ j ≤ t, let
Sj = {v ∈ V : f(v) ≥ t− j + 1}. It is easy to see that S1 ⊆ S2 ⊆ · · · ⊆ St ( V . Let
k be the number of distinct Sj’s, and for 1 ≤ i ≤ k let ai be the index of the first
occurrence of the i’th smallest set among the Sj’s. Also, set ak+1 = t+ 1. With these
notations, Sj = Sai if ai ≤ j < ai+1.

Now let x1 = x and define xj = x +
∑j−1

`=1 L1S` for j = 1, . . . , t + 1. We do not
compute all of these chip-distributions (as there can be exponentially many), but note
that for a fixed j, xj can be computed in polynomial time: If ai ≤ j < ai+1 then

xj = x1 + L

(
(j − ai)1Sai +

i−1∑
`=1

(a`+1 − a`)1Sa`

)
.

Now the algorithm proceeds as follows: For each 1 ≤ i ≤ k compute xai+1−1 and xai+1

and check whether xai+1−1  xai+1
. This can also be done in polynomial time, since

by Lemma 2.2 and Lemma 2.5 for each i we only need to check greedily whether the
firing vector 1Sai can be fired from initial distribution xai+1−1. If xai+1−1  xai+1

for
each 1 ≤ i ≤ k, then the algorithm returns x  y, otherwise the algorithm returns
x 6 y.

Now we prove the correctness of the algorithm. First we prove that if the algorithm
returns x y then x y.

Note that f =
∑t

j=1 1Sj , hence xt+1 = x +
∑t

j=1 L1Sj = x + Lf = y. Thus for
proving x  y, it is enough to prove for each 1 ≤ j ≤ t that xj  xj+1. So let
1 ≤ j ≤ t, then for some i ≤ k, ai ≤ j < ai+1. Hence xj+1 = xj + L1Sai .

Since the algorithm returned x  y, we have xai+1−1  xai+1
. Let β be a legal

game witnessing this. By Lemma 2.4, we can suppose that β has firing vector 1Sai .
We prove that β is also a legal game starting from the distribution xj. For this, it is
enough to show that xj(v) ≥ xai+1−1(v) for each v ∈ Sj = Sai . But this is true, since
G is Eulerian, and xai+1−1 = xj +L · (ai+1− 1− j)1Sj . Hence each vertex v ∈ Sj fires
(ai+1 − 1− j) · d+(v) chips and gains

(ai+1 − 1− j) ·
∑
u∈Sj

−→
d (u, v) ≤ (ai+1 − 1− j) · d−(v) = (ai+1 − 1− j) · d+(v)
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Section 4. General digraphs 8

chips as we change from xj to xai+1−1. Thus xj  xj+1 for every j ≤ t, hence x y.
Now it remains to show that if x y then the algorithm returns x y. Let f ′ be

the firing vector of the legal game (v1, v2, . . . , vs) from x to y provided by Lemma 3.1.
One can easily see that f ′ = f , hence the sets S1, . . . , St coincide with those given
by the lemma. Consequently, after firing (v1, . . . vij−1

) from initial distribution x, we
arrive at xj. If we continue the firing of the legal sequence and fire (vij−1+1, . . . vij),
then we arrive at xj+1. Hence (vij−1+1, . . . vij) is a legal game from initial distribution
xj, showing xj  xj+1. In particular, xai+1−1  xai+1

for each 1 ≤ i ≤ k, hence the
algorithm returns x y.

The algorithm needs O(|V |3) basic arithmetical operations:

1. Preprocessing: computing the (diagonal elements d+i of the) Laplacian: O(|V |2).

2. The firing vector g ∈ ZV can be determined by Gaussian elimination in O(|V |3)
time.

3. Having g, numbers ai and characteristic vectors of the sets Sai can be determined
in O(|V |2). (Note that k ≤ |V | as ∅ ( Sa1 ( Sa2 ( · · · ( Sak ( V is a strictly
ascending chain.)

4. Any xj can be computed in O(|V |2). We need the vector xj for at most 2|V |
instances of j.

5. Checking whether xai+1−1  xai+1
needs at most |Saj | ≤ |V | firings. Checking

whether a vertex can fire can be done in 1 step, since the out-degree of every
vertex is already computed. Hence we can find in |V | steps a vertex that can
legally fire (if there is any). The effect of a firing can be computed in O(|V |)
time.

4 General digraphs

Unfortunately, the algorithm of Section 3 is not valid for non-Eulerian digraphs. It
is conjectured by Björner and Lovász in [2] that the reachability problem is NP-hard
for general digraphs. In this section, we give two positive results: We show that the
reachability problem is in co-NP, and we show a special case when it is decidable in
polynomial time for general digraphs.

Theorem 4.1. Let G be a digraph (with possibly multiple edges) and x, y ∈ Chip(G).
Then deciding whether x y is in co-NP.

Proof. As we noted in Section 2, the existence of f ∈ ZV+ such that y = x + Lf is
a necessary condition for x  y, that can be checked in strongly polynomial time.
Hence in case there exists no f ∈ ZV+ such that y = x+ Lf , our certificate for x 6 y
is simply the statement that there exists no f ∈ ZV+ such that y = x+ Lf .

In case there exists f ∈ ZV+ such that y = x+Lf , our certificate is a pair of vectors
f, g ∈ ZV satisfying the following properties.

EGRES Technical Report No. 2015-10



4.1 Reachability of recurrent distributions 9

1. x+ Lf = y, f ≥ 0 and f 6≥ p for any non-zero period vector p of G;

2. 0 ≤ g ≤ f , and there exists v ∈ V such that g(v) < f(v);

3. For any v ∈ V , g(v) = f(v) or xg(v) < d+(v), where xg = x+ Lg.

All three conditions can be checked in polynomial time.
We claim that if x 6 y and there exists f ∈ ZV+ such that y = x+ Lf then such f

and g exist. Firstly, by subtracting an appropriate period vector of G from the vector
f ∈ ZV+ with y = x+Lf , we can ensure that f ≥ 0 and f 6≥ p for any non-zero period
vector p of G.

Let g be the firing vector of the maximal bounded chip-firing game from initial
distribution x with upper bound f . By Lemma 2.2, g is well defined. By the definition
of the bounded game, 0 ≤ g ≤ f . If g = f then x y, hence if x 6 y, then necessarily
there exists v ∈ V such that g(v) < f(v). The third condition follows because g is
the firing vector of a maximal game with upper bound f .

Now we prove that if such an f and g exist then x 6 y. Suppose for a contradiction
that x y. By Lemma 2.5, there exists a legal sequence (v1, v2, . . . , vt) of firings with
firing vector f that leads from x to y. Let j be the largest index such that

∑j
i=1 1vi ≤ g.

Let h be the firing vector of the sequence (v1, v2, . . . , vj) and let xh = x+Lh. By the
choice of j, g ≥ h and g(vj+1) = h(vj+1) < f(vj+1), hence

xg(vj+1)− xh(vj+1) ≥ L(g − h)(vj+1) ≥ 0.

Since (v1, v2, . . . , vj, vj+1) is a legal sequence of firings, we get

d+(vj+1) ≤ xh(vj+1) ≤ xg(vj+1),

contradicting Condition 3.

4.1 Reachability of recurrent distributions

In this section, we show a case when the reachability problem can be decided in
polynomial time also for general digraphs. More exactly, we give a case where the
necessary condition of x ∼ y is also sufficient for x y. Our theorem uses the notion
of recurrent chip-distributions.

Definition 4.2. We call a chip-distribution x ∈ Chip(G) recurrent if there exists a
non-empty sequence of legal firings that transforms x to itself.

Theorem 4.3. Let G be strongly a connected digraph and x, y ∈ Chip(G). If y is
recurrent and x ∼ y, then x y.

Proof. First we claim that if x ∼ y then there exists f ∈ ZV+ such that x = y + Lf .
Indeed, x ∼ y implies the existence of g ∈ ZV with x = y + Lg. From Proposition
2.3, for a sufficiently large k ∈ Z+, the vector f = g + kpG is non-negative, while
x = y + Lg = y + Lg + kLpG = y + Lf holds.
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4.1 Reachability of recurrent distributions 10

Fix such an f . We proceed by induction on
∑

v∈V (G) f(v). If
∑

v∈V (G) f(v) = 0,

then x = y, thus x  y. Now suppose
∑

v∈V (G) f(v) > 0. As y is recurrent, there

exists a sequence (v1, v2, . . . , vk) of legal firings from initial distribution y (a vertex
may occur multiple times), that leads back to y. Fix such a sequence. We claim that
in this sequence, each vertex occurs at least once. Indeed, for the firing vector g of
the game, y = y + Lg thus g is a multiple of the primitive period vector, and the
primitive period vector of a strongly connected digraph is strictly positive, as claimed
in Proposition 2.3.

Let i be the smallest index such that f(vi) > 0. Such an index exists because
each vertex is listed at least once in v1, v2, . . . , vk. Starting from y, fire the vertices
v1, . . . , vi−1. This is a legal game by definition. Let the resulting distribution be y′.
We claim that the sequence of firings v1, . . . , vi−1 is also legal starting from x. To
prove this, it is enough to show that x(vj) ≥ y(vj) for all 1 ≤ j ≤ i − 1. This is
true, because x(vj) = y(vj) + (Lf)(vj), where (Lf)(vj) ≥ 0, since the only negative
element in the row corresponding to vj is L(vj, vj), but f(vj) = 0. Hence the firing of
the vertices v1, . . . , vi−1 from distribution x is legal. Let the distribution obtained by
this game be x′. Thus x x′.

For x′ and y′, we also have x′ = y′+Lf . At position y′, firing vi is legal, by definition
of the sequence v1, . . . , vk. Denote by y′′ the distribution we get by firing vi at y′. The
distribution y′′ is recurrent, since firing vi+1 . . . , vk, v1, . . . , vi is a legal game that leads
back to y′′. Now for x′ and y′′ we have x′ = y′′ + Lf ′, where f ′ = f − 1vi . This way∑

v∈V (G) f
′(v) =

∑
v∈V (G) f(v)− 1, hence by the induction hypothesis, x′  y′′.

We claim that y′′  y. Indeed, firing vi+1, . . . , vk starting from y′′ is a legal game
that leads to y. We also have x x′. By transitivity, we have x y.

This theorem raises the question of the complexity of deciding whether a given
chip-distribution is recurrent. By results of Björner and Lovász (Lemmas 2.2 and
2.4), a chip-distribution x is recurrent if and only if there exists a nonzero primitive
period vector p, such that started from x, the maximal chip-firing game with upper
bound p has firing vector p. For Eulerian digraphs, this can be checked in polynomial
time (even if the digraph has multiple edges). However, for general digraphs, the
complexity of deciding recurrence is open.

Our aim is now to generalize Theorem 4.3 for weakly connected digraphs. Here, we
need to use the stronger necessary condition of the existence of a non-negative f such
that y = x+ Lf . However, the condition of y being recurrent is not enough to make
this condition sufficient on general digraphs. We show this by an example at the end
of this section (Example 4.7). With a somewhat stronger condition, however, we can
generalize Theorem 4.3 to weakly connected digraphs.

Theorem 4.4. Let G be a weakly connected digraph, and x, y ∈ Chip(G) be two chip-
distributions such that there exists f ∈ ZV+ with y = x + Lf . Suppose that for each
strongly connected component G′ = (V ′, E ′) of G, f |V ′ = 0 or y|V ′ ∈ Chip(G′) is
recurrent. Then x y.

Proof. Fix a non-negative vector f ∈ ZV+ with y = x + Lf . Let V1, V2, . . . , Vk be a
topological ordering of the strongly connected components of G, i.e., V = V1∪· · ·∪Vk,
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4.1 Reachability of recurrent distributions 11

for each i the digraph Gi = (Vi, E|Vi×Vi) is strongly connected, and there is no directed
edge from vi ∈ Vi to vj ∈ Vj if i > j.

Let x′ be the chip-distribution obtained from x by passing f(u) ·
−→
d (u, v) chips

from u to v for each pair of vertices u, v ∈ V where u and v are in different strongly
connected components. Note that x 6∼ x′ is possible. The proof of the theorem is
based on the following lemma.

Lemma 4.5. For each i, x′|Vi ∼ y|Vi on the digraph Gi. Moreover, if y|Vi is recurrent
on Gi, then there exists a legal game on Gi with firing vector f |Vi that transforms x′|Vi
to y|Vi.

Proof. Let Li be the Laplacian matrix of Gi. We first prove that x′|Vi ∼ y|Vi (as
chip-distributions on Gi) by showing that x′|Vi + Lif |Vi = y|Vi . For this, let v ∈ Vi.
Then

x′(v) + (Lif |Vi)(v) =

x(v) +
∑

v′∈V \Vi

(−→
d (v′, v) · f(v′)−

−→
d (v, v′) · f(v)

)
+ (Lif |Vi)(v) =

x(v) + (Lf)(v) = y(v).

Now, if y|Vi is recurrent, by Theorem 4.3, x′|Vi  y|Vi in Gi. Let gi ∈ ZVi be the
firing vector of a legal game transforming x′|Vi to y|Vi . Then Li(f |Vi − gi) = 0, hence
by Proposition 2.3, gi− f |Vi = c · pGi with c ∈ Z. If c = 0 then f |Vi is the firing vector
of a legal game, proving the lemma. In the followings, we treat separately the cases
c < 0 and c > 0.

Suppose that c < 0. Since y|Vi is recurrent, there is a legal game on Gi that
transforms y|Vi back to itself. For the firing vector g of this game, Lig = 0, hence
g = λ · pGi with λ ∈ Z, λ > 0. By Lemma 2.4, we can suppose that λ = 1. Now
starting from distribution x′|Vi on Gi, after playing the legal game with firing vector
gi, we get to the distribution y|Vi . Then iterate −c times the legal game with firing
vector pGi . This gives us a legal game with firing vector f |Vi , finishing the proof for
the c < 0 case.

Now suppose that c > 0. Then Lemma 2.4 guarantees that there is a legal game
from x′|Vi with firing vector gi−c·pGi = f |Vi . This finishes the proof of the lemma.

For each 1 ≤ i ≤ k let fi be the vector with fi(v) = f(v) if v ∈ Vi, and fi(v) = 0
otherwise. Let si =

∑
j≤i fj, i.e., si(v) = f(v) if v ∈

⋃
j≤i Vj, and si(v) = 0 otherwise.

Let xi = x + Lsi and x0 = x. We show that for i = 1, . . . , k, starting from the
distribution xi−1, there is a legal game on G with firing vector fi. Since xi−1+Lfi = xi,
and xk = y, this is enough to finish the proof of the theorem.

So let i be fixed. It is easy to see that for each ∈ Vi

x′(v) = xi−1(v)− f(v) ·
∑

v′∈V \Vi

−→
d (v, v′). (1)

If f |Vi = 0Vi , then fi = 0, hence we have nothing to prove. If this is not the case,
then y|Vi is recurrent by the assumptions. Using the lemma, from initial distribution
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4.1 Reachability of recurrent distributions 12

x′|Vi there exists a legal game on Gi with firing vector f |Vi . We claim that the same
sequence of firings on G, with initial distribution xi−1 remains a legal game. Indeed,
we can see from (1) that by playing the game on G from initial distribution xi−1, at
any moment we have a distribution that is greater or equal on Vi than the distribution
we get by playing the game on Gi with initial distribution x′|Vi . Hence there exists a
legal game on G with initial distribution xi−1 and firing vector fi. This finishes the
proof of the theorem.

Note that for distributions y such that y is recurrent restricted to each strongly
connected component, Theorem 4.4 gives a necessary and sufficient condition for the
reachability of y. The condition of the theorem, i.e. whether there exists f ∈ ZV+ with
y = x+ Lf , can also be decided in strongly polynomial time, as discussed in Section
2.

Now we give an example showing that Theorem 4.3 does not remain true for general
digraphs, i.e. for general digraphs, the existence of f ∈ ZV+ such that y = x+ Lf and
y being recurrent is not sufficient for x  y. First let us state some basic properties
of recurrent chip-distributions.

Proposition 4.6. Let G be a digraph.

(a) If G is strongly connected and x ∈ Chip(G) is recurrent, then x has at least one
chip on some vertex of each directed cycle.

(b) A chip-distribution x ∈ Chip(G) is recurrent if and only if there is a sink-
component Gi of G such that x|V (Gi) is recurrent on Gi.

(c) A recurrent chip-distribution is non-terminating.

(d) A chip-firing game started from a recurrent chip-distribution takes only recurrent
positions.

(e) A chip-firing game started from a non-terminating chip-distribution reaches a
recurrent chip-distribution after finitely many steps.

Proof. Part (a) follows from the proof of [2, Theorem 2.2]. The other four statements
can be proved by straightforward application of the definition of recurrence and of
Proposition 2.3.

Example 4.7. Let G1 and G2 be strongly connected digraphs, both of them with at
least two vertex-disjoint directed cycles. Let v1 ∈ V (G1), v2 ∈ V (G2). Let G be the
following graph: V (G) = {v} ∪ V (G1) ∪ V (G2), E(G) = {−→vv1,−→vv2} ∪E(G1) ∪E(G2).
Then the strongly connected components of G are {v}, G1 and G2, and the sink
components are G1 and G2.

For i = 1, 2, let xi ∈ Chip(Gi) be a non-recurrent chip-distribution and yi ∼ xi
a recurrent chip-distribution. Such distributions exist: By part (a) of Proposition
4.6, a recurrent chip-distribution on Gi has at least one chip on each directed cycle.
Also, by [2], if a distribution has at least |E(G)| − |V (G)| + 1 chips, then it is non-
terminating. Hence, if xi has |E(Gi)| chips on one vertex of Gi and zero elsewhere,
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then xi is non-recurrent and non-terminating. By part (e) of Proposition 4.6, after
playing the chip-firing game from xi on Gi for finitely many steps, we arrive at a
recurrent distribution yi ∼ xi.

Let x ∈ Chip(G) be the chip-distribution that is zero on v, agrees with x1 on V (G1)
and agrees with y2 on V (G2). Let y ∈ Chip(G) be the chip-distribution that is zero
on v, agrees with y1 on V (G1) and agrees with x2 on V (G2). Then clearly there exists
f ∈ ZV+ such that y = x + Lf . Moreover both x and y are recurrent, since both of
them are recurrent restricted to a sink component.

Since x(v) = y(v) = 0, if y were reachable from x on G, then x1 were reachable
from y1 on G1. But this is impossible, since y1 is recurrent, while x1 is not, and by
part (d) of Proposition 4.6, a legal game started from a recurrent distribution never
leads to a non-recurrent distribution.

5 Open questions and related problems

The most intriguing open question in the area is the complexity of the reachability
problem on general digraphs. An interesting special case of this problem is deciding
whether a chip-distribution on a general digraph is recurrent.

Problem 5.1. Let G be a digraph and x, y ∈ Chip(G). What is the complexity of
deciding whether x y?

Problem 5.2. Let G be a digraph. What is the complexity of deciding whether a
chip-distribution x ∈ Chip(G) is recurrent?

We conjecture that both of these questions are co-NP-hard.
A related problem to the chip-firing reachability problem is the so-called chip-firing

halting problem.

Chip-firing halting problem Given a digraph G and a chip-distribution x ∈
Chip(G), decide if x is terminating.

Informally, the halting problem and the reachability problem are both about deter-
mining the firing vector of a maximal game, only this game is a chip-firing game for
the halting problem, and a bounded chip-firing game for the reachability problem.

The halting problem is known to be in P for simple Eulerian digraphs [2], and it is
known to be NP-complete for general digraphs [5]. The complexity of the problem is
open both for simple digraphs, and for Eulerian digraphs. We point out the following:

Proposition 5.3. The chip-firing halting problem is in co-NP for Eulerian digraphs.

Proof. Our certificate for “x is non-terminating” is a recurrent chip-distribution y
such that x ∼ y. Since the graph is Eulerian, both the fact that y is recurrent, and
that x ∼ y, can be checked in polynomial time.

We show that x is non-terminating if and only if such a y exists. If x is non-
terminating, then by part (e) of Proposition 4.6, starting a legal chip-firing game
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from x, we arrive at a recurrent chip-distribution y in finitely many steps. Moreover,
then y ∼ x, since y = x+ Lf for the firing vector of the game.

For the other direction, we use a lemma of Bond and Levine [4, Lemma 4.3.]: if for
two chip-distributions x and y on a strongly connected digraph G, x ∼ y, then x is
terminating if and only if y is terminating. Note that now G is strongly connected
since it is connected and Eulerian. If a recurrent y exists such that x ∼ y, then y is
non-terminating by part (c) of Proposition 4.6, therefore x is also non-terminating.

This means, that for Eulerian digraphs, the chip-firing halting problem is in NP ∩
co-NP.

Problem 5.4. Is there a polynomial time algorithm that decides the chip-firing halt-
ing problem for Eulerian digraphs (with multiple edges possible)?
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