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Blocking optimal k-arborescences

Attila Bernáth? and Tamás Király?

Abstract

Given a digraph D = (V,A) and a positive integer k, an arc set F ⊆ A
is called a k-arborescence if it is the disjoint union of k spanning arbores-
cences. The problem of �nding a minimum cost k-arborescence is known to be
polynomial-time solvable using matroid intersection. In this paper we study the
following problem: �nd a minimum cardinality subset of arcs that contains at
least one arc from every minimum cost k-arborescence. For k = 1, the prob-
lem was solved in [A. Bernáth, G. Pap , Blocking optimal arborescences, IPCO
2013]. In this paper we give an algorithm for general k that has polynomial
running time if k is �xed.

1 Introduction

The cuts of a matroid are the minimal transversals of the family of bases; in other
words, a subset of the elements is a cut if it is an inclusionwise minimal subset that
contains at least one element from each base. The problem of �nding minimum
cuts in matroids has been studied in several di�erent contexts (note the distinction
between minimal and minimum: minimal is shorthand for inclusionwise minimal,
while minimum means minimum size). Perhaps the best known special case is the
minimum cut problem in graphs, which can be solved using network �ows, and faster
algorithms have also been developed (e.g. the Nagamochi-Ibaraki algorithm [11]).
More generally, the minimum cut of kM , where M is a graphic matroid (or even a
hypergraphic matroid, see [9]), can be found in polynomial time. A notable open
question is the complexity of �nding a minimum cut in a rigidity matroid.
The minimum cut of a transversal matroid can also be found in polynomial time;

however, the problem of �nding a minimum circuit of a transversal matroid is NP-
complete [10], which implies that the minimum cut problem is NP-complete for gam-
moids. Another line of research considers the problem for binary matroids. NP-
completeness was proved by Vardy [14]; Geelen, Gerards, and Whittle [7] conjecture
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Section 1. Introduction 2

that the problem is in P for any minor-closed proper subclass of binary matroids.
Partial results in this direction have been achieved by Geelen and Kapadia [8].
If we consider minimum cost bases (or optimal bases for brevity) of a matroid M ,

then these form the bases of another matroid which can be obtained by taking the
direct sum of certain minors of M . Thus we can �nd a minimum transversal of the
family of optimal bases of M by solving minimum cut problems in some minors of
M . In particular, if the minimum cut problem is solvable in polynomial time in a
minor-closed class of matroids, then a minimum transversal of optimal bases can also
be found in polynomial time in this class. For example, since the class of graphic
matroids is minor-closed and the minimum cut problem can be solved e�ciently, we
can also e�ciently �nd a minimum transversal of optimal spanning trees in a graph
with edge costs.
Our paper belongs to a line of research that considers directed versions of this

problem. Let D = (V,A) be a digraph with node set V and arc set A. A spanning
arborescence is an arc set F ⊆ A that is a spanning tree in the undirected sense and
every node has in-degree at most one. Thus there is exactly one node, the root node,
with in-degree zero. If the node set is clear from the context, spanning arborescences
will be called arborescences for brevity. Arborescences can be considered as common
bases of two matroids, so the problem of �nding a minimum transversal of the family
of arborescences is a special case of the minimum transversal problem for common
bases of two matroids. This problem is NP-hard in general (as mentioned above,
it is NP-hard even when the two matroids coincide). However, the special case for
arborescences can be formulated as the minimization of the sum of the in-degrees of
two disjoint node sets of the digraph, which can be solved e�ciently using network
�ows. The problem of �nding a minimum transversal of the family of minimum cost
arborescences is considerably more di�cult. It can still be solved in polynomial time
as shown in [1], but the solution requires more sophisticated tools than network �ows.
The arc-disjoint union of k spanning arborescences is called a k-arborescence. If

F ⊆ A is a k-arborescence in a digraph D = (V,A), then its root vector is the vector
q ∈ ZV+ for which q(v) counts the number of arborescences in F that are rooted at
v ∈ V . Note that the root vector is determined by the in-degrees, as q(v) = k−%F (v)
for every v ∈ V , so it does not depend on the way a k-arborescence is decomposed
into arborescences. If every arborescence has the same root node s, then F is called
an s-rooted k-arborescence. Given D = (V,A), k and a cost function c : A→ R+,
a minimum cost k-arborescence or a minimum cost s-rooted k-arborescence can be
found e�ciently using the matroid intersection algorithm; see [12, Chapter 53.8] for
a reference, where several related problems are considered. The existence of an s-
rooted k-arborescence is characterized by Edmonds' disjoint arborescence theorem,
while the existence of a k-arborescence is characterized by a theorem of Frank [4].
Frank also gave a linear programming description of the convex hull of k-arbores-
cences, generalizing Edmonds' linear programming description of the convex hull of
s-rooted k-arborescences.
In this paper we consider the following two problems.

Problem 1 (Blocking optimal k-arborescences). Given a digraph D = (V,A),
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1.1 Notation 3

a positive integer k, and a cost function c : A → R+, �nd a minimum cardinality
transversal of the family of minimum cost k-arborescences.

Problem 2 (Blocking optimal s-rooted k-arborescences). Given a digraph
D = (V,A), a node s ∈ V , a positive integer k, and a cost function c : A→ R+, �nd
a minimum cardinality transversal of the family of minimum cost s-rooted k-arbores-
cences.

In Section 2 we show that the two problems are polynomial-time equivalent. For
k = 1, these problems have been solved in [1]. Moreover, Problem 1 is solved in
[2] in the special case when c ≡ 1 (note that Problem 2 is a minimum cut problem
when c ≡ 1). The papers [1, 2] also consider more general weighted versions of these
problems.
The main result of the present paper is an algorithm for Problems 1 and 2 that

has polynomial running time when k is constant. It remains open whether there is
a polynomial-time algorithm when k is not �xed, or indeed whether there is an FPT
algorithm where k is the parameter. Along the way we obtain the following result of
independent interest: the convex hull of root vectors of minimum cost k-arborescences
is a base polyhedron. This generalizes the result of Frank [4] stating that the root
vectors of k-arborescences form a base polyhedron.
The paper is organized as follows. After a brief section on notation, the relation-

ship between di�erent versions of the problem is discussed in Section 2, including
a dual characterization of optimal k-arborescences. The next section describes the
matroid-restricted k-arborescence problem, a generalization of k-arborescences
introduced by Frank [5] that is essential to the proof of the main result. In Section 4,
we describe the connection between matroid-restricted k-arborescences and the dual
characterization of optimal k-arborescences. A corollary of this connection is that
the convex hull of the root vectors of optimal k-arborescences is a base polyhedron
(Theorem 21).
The structure of minimal transversals is analyzed in Section 5. In the case when

the size of the minimum transversal is at least k, we derive that there is a minimum
transversal with a special structure (Theorem 31). This leads to the main result of
the paper, an algorithm that �nds a minimum transversal of optimal k-arborescences
in polynomial time if k is constant.

1.1 Notation

Let us overview some of the notation and de�nitions used in the paper. Given a
digraph D = (V,A) and a node set Z ⊆ V , let D[Z] be the subdigraph induced by
Z. If E ⊆ A is a subset of the arc set, then we will identify E and the subgraph
(V,E). Thus E[Z] is obtained from (V,E) by deleting the nodes of V − Z. The arc
set of the digraph D will also be denoted by A(D). The set of arcs of D entering a
node set Z is denoted δinD (Z), and %D(Z) = |δinD (Z)|. For an undirected or directed
graph G = (V,E) and a subset X ⊆ V , iG(X) denotes the number of edges with both
endpoints in X.
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Section 2. Relationship between di�erent versions of the problem 4

A subpartition of a subset X of V is a collection of pairwise disjoint non-empty
subsets of X. Note that ∅ cannot be a member of a subpartition, but ∅ is a valid
subpartition, having no members at all. A set family L ⊆ 2V is said to be laminar
if any two members of L are either disjoint, or one contains the other. For a vector
x : A→ R and subset Z ⊆ A we use the notation x(Z) =

∑
a∈Z xa.

In the paper we will use the − (minus) operator in many roles beyond subtraction
of numbers: for example we will use it for set-theoretical di�erence instead of \.
Furthermore, for a digraph D = (V,A) and E ⊆ A we will use the notation D−E to
mean the digraph (V,A− E). A one-element set {e} will be denoted without braces
by e in some contexts; for example, E − e means E − {e}, and this is used even if
e /∈ E, in which case E − e = E. Similarly, for a subpartition X and for a member
X ∈ X , we write X −X instead of X − {X}.
For general background on matroids and base polyhedra we refer the reader

to [6]. Given a matroid M = (S, r) (where S is the ground set and r is the rank
function) and a positive integer k, the k-shortening of M is the matroid (S, r′)
where r′(E) = min{r(E), k}.
Given a function p : 2S → R, a subset X ⊆ S is called separable if there exists

a partition X1, X2, . . . , Xt of X such that p(X) ≤
∑

i p(Xi). The function p is called
near supermodular if p(X)+p(Y ) ≤ p(X∩Y )+p(X∪Y ) holds for every intersecting
pair X, Y ⊆ V of non-separable sets. The (upper) truncation of a set function
p : 2S → R (satisfying p(∅) = 0) is a set function p∧ : 2S → R de�ned by

p∧(X) = max{
∑
{p(Z) : Z ∈ Z} : Z is a partition of X}.

Theorem 1. [6, Theorems 15.1.1 and 15.1.3] The truncation of a near supermodular
function is fully supermodular. The truncation of a nonnegative function is monotone
increasing. If p is near supermodular and the polyhedron B(p) = {x ∈ RS : x(S) =
p(S), x(Z) ≥ p(Z) ∀Z ⊆ S} is non-empty, then B(p) is a base polyhedron and
B(p) = B(p∧).

Given a digraph D = (V,A) and a positive integer α, we will often use an extended
digraph D+ = (V + s, A+), called the α-extension of D, that has a new node s /∈ V
and α parallel arcs from s to every node in V . If a cost function c : A → R is also
given, then we extend c to a function c+ : A+ → R so that c+(uv) = c(uv) for any
uv ∈ A and c+(sv) = β for any new arc sv ∈ A+ − A, where β is some nonnegative
real number. The weighted digraph (D+, c+) is then called the (α, β)-extension of
(D, c).

2 Relationship between di�erent versions of the prob-

lem

Theorem 2. Problem 1 (Blocking optimal k-arborescences) and Problem 2 (Blocking
optimal s-rooted k-arborescences) are polynomial-time equivalent.
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Proof. Problem 2 reduces to Probem 1 by deleting all arcs entering node s from the
input digraph. For the other direction, consider an instance D, k, c of Problem 1, and
let α = |A|+ k, β =

∑
a∈A c(a) + 1. Let (D+, c+) be the (α, β)-extension of (D, c). In

the instance of Problem 2 given by (D+, k, c+, s), the minimum cost s-rooted k-arbo-
rescences naturally correspond to minimum c-cost k-arborescences in D (since they
contain exactly k arcs leaving s because of the value of β). Moreover, the minimum
size of a transversal is at most |A| as A itself is a transversal. This shows that every
minimum transversal is a subset of A.

To describe the structure of minimum cost k-arborescences, we introduce the notion
of a k-arborescence being tight for some laminar family of node subsets. Given a
digraph D = (V,A) and a laminar family L ⊆ 2V , a k-arborescence F ⊆ A is called
L-tight if F [W ] is a k-arborescence in D[W ] for everyW ∈ L. Note that if L ⊆ 2V−s,
then an s-rooted k-arborescence F ⊆ A is L-tight if and only if %F (W ) = k for every
W ∈ L. The link between L-tight s-rooted k-arborescences and minimum cost s-
rooted k-arborescences is provided by the following theorem.

Theorem 3. [12, Corollary 53.6a] Given a digraph D = (V,A) and a node s ∈ V ,
the system (1)�(2) below is TDI, and it describes the convex hull of subsets of A
containing an s-rooted k-arborescence.

0 ≤ x(a) ≤ 1 for every a ∈ A (1)

%x(Z) ≥ k for ever non-empty Z ⊆ V − s. (2)

If a cost function c : A→ R is also given and we consider the problem of minimizing
cx under the conditions above, then there is an optimal dual solution where the dual
variables corresponding to (2) have laminar support.

Complementary slackness conditions imply the following.

Corollary 4. Given a digraph D = (V,A), a cost function c : A → R+, a node
s ∈ V and a positive integer k, one can �nd a laminar family L ⊆ 2V−s and two
disjoint arc-sets A0, A1 ⊆ A with the property that an s-rooted k-arborescence F ⊆ A
has minimum cost if and only if A1 ⊆ F ⊆ A− A0 and F is L-tight.

Proof. Consider the LP min{cx : x ∈ RA, 0 ≤ x ≤ 1, %x(Z) ≥ k for ever non-empty
Z ⊆ V −s}. By Theorem 3, this has an integer optimal solution, which is a minimum
cost s-rooted k-arborescence. Let y∗, z∗ be an optimal solution of the dual

max
∑

∅6=Z⊆V−s

kyZ −
∑
a∈A

za

y ∈ R2V−s−{∅}
+ , z ∈ RA

+∑
Z:a∈δin(Z)

yZ − za ≤ ca for every a ∈ A.

We can assume that the support of y∗ is a laminar family L ⊆ 2V by Theorem 3. The
complementary slackness conditions show that a feasible primal solution x∗ is optimal
if and only if the following three conditions hold.
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1. x∗a = 0 for every a ∈ A with
∑

Z:a∈δin(Z) y
∗
Z − z∗a < ca (forbidden arcs),

2. %x∗(W ) = k for every W ∈ L, and

3. x∗a = 1 for every a ∈ A with z∗a > 0 (mandatory arcs).

By denoting the forbidden arcs by A0 and the mandatory arcs by A1 we obtain the
required structure.

Theorem 5. Problem 2 can be reduced to the following Problem 3 in polynomial
time.

Problem 3. Given a digraph D = (V,A), a root s, and a laminar family L ⊆ 2V−s,
�nd a minimum cardinality transversal of the family of L-tight s-rooted k-arbores-
cences.

Proof. Given a digraph D = (V,A), a cost function c : A → R+, a node s ∈ V and
a positive integer k, we consider A0, A1, and L as in Corollary 4. If there exists a
mandatory arc, then it is a singleton transversal of the family of optimal s-rooted
k-arborescences. If A1 = ∅, then the problem is equivalent to �nding a minimum
transversal of the family of L-tight s-rooted k-arborescences in A− A0.

Note that we can decide in polynomial time whether an L-tight s-rooted k-arbores-
cence exists by �nding a minimum cost s-rooted k-arborescence for the cost function
c(e) = |{W ∈ L : e ∈ δinD (W )}|.

3 Matroid-restricted k-arborescences

In this section we introduce matroid-restricted k-arborescences, a notion that will be
useful in describing the structure of L-tight k-arborescences. Let D = (V,A) be a
digraph, and for every v ∈ V let Mv = (δinD (v), rv) be a matroid. Let furthermore
M = {Mv : v ∈ V } be the family of these matroids. A k-arborescence F ⊆ A is
said to be M-matroid-restricted (or matroid-restricted for short) if F ∩ δinD (v)
is independent in Mv for every v ∈ V . Similarly, an s-rooted k-arborescence F ⊆ A is
said to beM-matroid-restricted if F ∩ δinD (v) is independent for every v ∈ V − s (note
that the matroid Ms does not play a role here). The notion of matroid-restricted s-
rooted k-arborescence was introduced by Frank [5] in a slightly more general setting,
where there is an additional matroid on the set of arcs leaving s. Our de�nition
corresponds to the case where this is a free matroid. Some of the results of this
section could be derived from [5, Theorem 4.5]; however, since the context is di�erent,
it is easier to include self-contained proofs.
Let us de�ne the matroid M⊕ = (A, r⊕) as the direct sum of the matroids Mv

(v ∈ V ). The following theorem is an easy consequence of the matroid intersection
theorem.
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Theorem 6. Given a digraph D = (V,A) and matroids Mv = (δinD (v), rv) for every
v ∈ V , there exists a matroid-restricted k-arborescence in D if and only if the following
inequality holds for every subpartition X of V :∑

{r⊕(δinD (X)) : X ∈ X} ≥ k(|X | − 1). (3)

Proof of Theorem 6. The necessity of (3) is clear: if F ⊆ A is a matroid-restricted
k-arborescence and X is a subpartition of V , then k(|X | − 1) ≤

∑
X∈X %F (X) ≤∑

X∈X r
⊕(δinD (X)). In order to prove su�ciency, letM1 = (A, r1) be k times the circuit

matroid of the underlying undirected graph of D. Note that condition (3) implies that
D contains k edge-disjoint spanning trees, thus r1(A) = k(|V | − 1). For every v ∈ V ,
let M ′

v = (δinD (v), r′v) be the k-shortening of Mv, that is r
′
v(E) = min{rv(E), k} for

every E ⊆ δinD (v). Let furthermore M2 = (A, r2) be the direct sum of the matroids
M ′

v. Observe that F ⊆ A is a matroid-restricted k-arborescence in D if and only if F
is a common independent set of M1 and M2 and has size k(|V | − 1). By Edmonds'
matroid intersection theorem [3], such an F exists if and only if

r1(E) + r2(A− E) ≥ k(|V | − 1) for every E ⊆ A. (4)

We show that condition (3) implies (4). Suppose that (4) fails for some E. Clearly,
we can assume that E is closed in M1 and M1|E does not contain bridges (a bridge
in a matroid is an element that is contained in every base).

Claim 7. If E ⊆ A is closed in M1 and M1|E does not contain bridges, then there
exists a partition Y of V such that r1(D[Y ]) = k(|Y | − 1) for every Y ∈ Y and
E = ∪Y ∈YD[Y ].

Proof. We say that a non-empty Y ⊆ V is tight (with respect to E) if r1(E[Y ]) =
k(|Y | − 1). In other words, Y is tight if E[Y ] contains k edge-disjoint trees, each
spanning Y . For example, sets of size 1 are tight. If Y1, Y2 are both tight and Y1∩Y2 6=
∅ then Y1∪Y2 is tight, too. To prove this, let T1 ⊆ E be a tree spanning Y1 and T2 ⊆ E
be a tree spanning Y2, and observe that T1 can be extended to a tree spanning Y1∪Y2

using the edges of T2 − E[Y1]. Therefore let Y be the partition of V consisting of
the maximal tight sets. Since E is closed in M1, it contains every arc of D that
is induced in some Y ∈ Y . Let G′ = (V ′, E ′) be the graph obtained from (V,E)
after contracting every Y ∈ Y into a node y. We claim that iG′(Z) < k(|Z| − 1)
for every Z ⊆ V ′ with |Z| ≥ 2. Assume not and take an inclusionwise minimal
set Z with iG′(Z) ≥ k(|Z| − 1). Then G′[Z] contains k edge-disjoint spanning trees
by the theorem of Tutte and Nash-Williams [13], which contradicts the maximality
of the tight sets in Y . This implies that the bases of M1|E contain every arc of E
going between di�erent members of the partition Y . But sinceM1|E does not contain
bridges, E = ∪Y ∈YD[Y ], as claimed.

Consider the partition Y in the above claim and observe that r1(∪Y ∈YD[Y ]) +
r2(∪Y ∈YδinD (Y )) = k(|V |−|Y|)+

∑
Y ∈Y r2(δinD (Y )) < k(|V |−1), thus

∑
Y ∈Y r2(δinD (Y )) <

k(|Y|−1). Let X = {Y ∈ Y : r2(Y ) < k} and note that
∑

X∈X r2(δinD (X)) < k(|X |−1)
holds as well. But r2(δinD (X)) = r⊕(δinD (X)) for every X ∈ X , thus we get a contra-
diction with (3).
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Section 3. Matroid-restricted k-arborescences 8

Let us �x some s ∈ V . From now on we are interested in matroid-restricted s-rooted
k-arborescences, and we assume rv(δ

in
D (v)) = k for every v ∈ V − s. Let

Bs = {I ⊆ δoutD (s) : |I| = k and

∃ matroid-restricted s-rooted k-arborescence F ⊆ A s.t. I = F ∩ δoutD (s)}. (5)

Our aim below is to show that Bs is the family of bases of a matroid on ground set
δoutD (s). For an arc set I ⊆ δoutD (s), we use the notation I ∪D[V − s] for the digraph
obtained from D by deleting the edges of δoutD (s)− I.

Lemma 8. Let D = (V,A) be a digraph, let s ∈ V , and let Mv = (δinD (v), rv) be
matroids of rank k for every v ∈ V − s. The following properties are equivalent for
I ⊆ δout(s).

(i) I ∈ Bs,

(ii) |I| = k and I satis�es r⊕(δinI∪D[V−s](X)) ≥ k for every non-empty X ⊆ V − s,

(iii) |I| = k and I satis�es |I ∩ E| + r⊕(δinD−E(X)) ≥ k for every E ⊆ δoutD (s) and
non-empty X ⊆ V − s.

Proof. It is clear that (i) implies (ii). Let us prove that (ii) implies (i). Let D′ =
I ∪D[V − s]. We will prove that there exists a matroid-restricted k-arborescence in
D′ by applying Theorem 6. Suppose that

∑
{r⊕(δinD′(X)) : X ∈ X} < k(|X | − 1) for

some subpartition X . Note that we can assume r⊕(δinD′(X)) < k for every member X
of X , and clearly |X | > 1 has to hold. Therefore there must exist a member X ∈ X
with s /∈ X and r⊕(δinD′(X)) < k, contradicting (ii).
Next we show that (i) implies (iii). If F ⊆ A is a matroid-restricted s-rooted k-ar-

borescence with I = F ∩ δoutD (s), E ⊆ δoutD (s), and X ⊆ V − s, then k ≤ %F (X) =
%F∩E(X) + %F−E(X) ≤ |F ∩ E| + r⊕(δinD−E(X)) = |I ∩ E| + r⊕(δinD−E(X)). Finally,
we show that (iii) implies (ii). Take some non-empty X ⊆ V − s, let E = (δoutD (s) ∩
δinD (X))− I and apply the property in (iii) for X and E to obtain (ii).

Consider the following polyhedron.

P = {x ∈ Rδout(s) : x ≥ 0, (6)

x(E) ≥ k − r⊕(δinD−E(X)) for every E ⊆ δoutD (s) and ∅ 6= X ⊆ V − s}. (7)

Clearly, P is non-empty if and only if r⊕(δinD (X)) ≥ k for every non-empty X ⊆ V −s
(the condition is necessary because otherwise (7) does not hold for E = ∅; on the other
hand, if this condition holds, then k1 ∈ P ). Furthermore, it is enough to require (7)
for non-empty subsets X that contain the head of every arc of E. We can also observe
that non-negativity of x is implied by (7) in the de�nition of P . Indeed, let st ∈ A be
arbitrary and apply (7) for E = {st} andX = {t} to get x(st) ≥ k−rt(δin(t)−st) ≥ 0.
From now on we assume that P is non-empty. De�ne the set function p : 2δ

out
D (s) → R

as
p(E) = max{k − r⊕(δinD−E(X)) : ∅ 6= X ⊆ V − s}. (8)
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Section 3. Matroid-restricted k-arborescences 9

Note that p ≤ k and p(δoutD (s)) = k−r⊕(δin
D−δoutD (s)

(V −s)) = k. Furthermore, p(∅) = 0

(p(∅) ≤ 0 by the non-emptiness of P , and take any v ∈ V −s and use rv(δ
in
D (v)) = k to

obtain p(∅) ≥ k−r⊕(δinD (v)) = 0), and p is monotone increasing. With this de�nition,
P is described as

P = {x ∈ RδoutD (s) : x(E) ≥ p(E) for every E ⊆ δoutD (s)}.

Recall that a function p : 2S → R is near supermodular if p(X) + p(Y ) ≤
p(X ∩Y )+p(X ∪Y ) holds for every intersecting pair X, Y ⊆ V of non-separable sets,
where a set X is separable if there exists a partition X1, X2, . . . , Xt of X such that
p(X) ≤

∑
i p(Xi).

Theorem 9. The function p de�ned in (8) is near supermodular.

For the proof of Theorem 9 we need the following claims.

Claim 10. Let E1, E2 ⊆ δoutD (s) and X1, X2 ∈ V − s be arbitrary, then

r⊕(δinD−E1
(X1))+r⊕(δinD−E2

(X2)) ≥ r⊕(δinD−(E1∪E2)(X1∪X2))+r⊕(δinD−(E1∩E2)(X1∩X2)).
(9)

Proof. By the properties of the direct sum, it is enough to show the following for an
arbitrary v ∈ V , where ∆ denotes δinD (v).

rv(δ
in
∆−E1

(X1)) + rv(δ
in
∆−E2

(X2)) ≥ rv(δ
in
∆−(E1∪E2)(X1 ∪X2)) + rv(δ

in
∆−(E1∩E2)(X1 ∩X2)).

(10)
If v /∈ X1∪X2, then there is nothing to prove, every term is zero on both sides of (10).
If v ∈ X1−X2, then the second term is zero on both sides of (10), and the inequality
rv(δ

in
∆−E1

(X1)) ≥ rv(δ
in
∆−(E1∪E2)(X1 ∪X2)) is implied by the mononicity of rv. Clearly,

the case v ∈ X2 −X1 is analogous, therefore assume v ∈ X1 ∩X2. Observe that (11)
and (12) holds. For an illustration, see Figure 1.

δin∆−E1
(X1) ∩ δin∆−E2

(X2) = δin∆−(E1∪E2)(X1 ∪X2) (11)

δin∆−E1
(X1) ∪ δin∆−E2

(X2) = δin∆−(E1∩E2)(X1 ∩X2). (12)

This, together with the submodularity of rv, �nishes the proof.

Let us introduce the following notation. For a set E ⊆ δoutD (s), let XE ⊆ V − s be
an arbitrary subset that attains the maximum in the de�nition (8) of p(E) (that is,
XE 6= ∅ and p(E) = k − r⊕(δinD−E(XE))).

Claim 11. If E ⊆ δoutD (s) is non-separable, then XE contains the head of every arc
of E.

Proof. Suppose not and let E1 ( E be the subset of those arcs which have their head
in XE. Then p(E) = k − r⊕(δinD−E(XE)) = k − r⊕(δinD−E1

(XE)) ≤ p(E1). But then
p(E) ≤ p(E1)+p(E−E1) by the non-negativity of p, contradicting the non-separability
of E.
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X2X1

v

s

Figure 1: An illustration for proving (11) and (12). The arcs of (E1−E2)∩ δinD (v) are
coloured blue, those in (E2 −E1)∩ δinD (v) are red, and those in (E1 ∩E2)∩ δinD (v) are
magenta. That is, ∆ − E1 is the set of arcs in the �gure that are neither blue, nor
magenta, etc.

Proof of Theorem 9. Let E1, E2 ⊆ δoutD (s) be non-separable sets so that E1 ∩ E2 6= ∅.
By Claim 11, Xi = XEi

contains the head of each arc of Ei for both i = 1, 2. This
implies that X1 ∩X2 6= ∅, and Claim 10 gives

p(E1) + p(E2) =
∑
i=1,2

k − r⊕(δinD−Ei
(Xi)) ≤

2k −
(
r⊕(δinD−(E1∪E2)(X1 ∪X2)) + r⊕(δinD−(E1∩E2)(X1 ∩X2))

)
≤

p(E1 ∩ E2) + p(E1 ∪ E2).

Theorems 1 and 9 imply that P is an integer polyhedron. It is also easy to see the
following.

Corollary 12. The polyhedron B = {x ∈ P : x(δoutD (s)) = k} (if not empty) is a
base polyhedron of a matroid. It is the convex hull of incidence vectors of members of
Bs.

Proof. We show that x ∈ B implies x ≤ 1. This, together with Theorems 1 and 9
and Lemma 8, proves the corollary. Take x ∈ B and st ∈ A. Let E = δout(s)− st and
X = V − s. By (7), we have k− x(st) = x(E) ≥ k− r⊕(δinst (V − s)) = k− rt({st}) ≥
k − 1.
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The following claim describes the (fully supermodular) truncation of p.

Claim 13. For any E ⊆ δoutD (s),

p∧(E) = max

{∑
X∈X

(k − r⊕(δinD−E(X))) : X is a subpartition of V − s

}
. (13)

Proof. Let E ⊆ δoutD (s) and let H be a partition of E that gives p∧(E) =
∑
{p(H) :

H ∈ H} and, subject to this, |H| is minimal. Clearly, every H ∈ H is non-separable.
We claim that {XH : H ∈ H} is a subpartition of V − s. If there exist H1, H2 ∈ H so
that XH1 ∩XH2 6= ∅, then (by Claim 10) p(H1) + p(H2) ≤ 2k− (r⊕(δinD−(H1∩H2)(XH1 ∩
XH2)) + r⊕(δinD−(H1∪H2)(XH1 ∪ XH2))) ≤ p(H1 ∪ H2) + p(∅) = p(H1 ∪ H2), therefore

H′ = H−{H1, H2}+{H1∪H2} also gives p∧(E) =
∑
{p(H) : H ∈ H′}, contradicting

our choice of H.

Corollary 14. Let D = (V,A) be a digraph, let s ∈ V , and let Mv = (δinD (v), rv)
(v ∈ V −s) be matroids of rank k. The family Bs de�ned in (5), if non-empty, de�nes
the family of bases of a matroid M s on ground set δoutD (s). The family is not empty if
and only if

(a) r⊕(δinD (X) ≥ k for every non-empty X ⊆ V − s, and

(b)
∑
{k − r⊕(δinD[V−s](X)) : X ∈ X} ≤ k for every subpartition X of V − s.

The rank function of M s is given by the following formula for any E ⊆ δoutD (s):

rs(E) = min

{∑
X∈X

r⊕(δinE∪D[V−s](X))− k(|X | − 1) : X is a subpartition of V − s

}
.

Proof. Consider the function p∧ de�ned by (13). By Theorem 1, p∧ is monotone
increasing and supermodular, and P = {x ∈ Rδout(s) : x(E) ≥ p∧(E) for every E ⊆
δoutD (s)} if P is non-empty. Thus B = {x ∈ P : x(δoutD (s)) = k} is not empty if
and only if P 6= ∅ and p∧(δoutD (s)) = k, that is, if and only if both (a) and (b) hold.
Since the fully supermodular function describing the base polyhedron B is p∧, it is
the co-rank function of the matroid M s, and its rank function is given by the formula

rs(E) = p∧(δoutD (s))− p∧(δoutD (s)− E) = k − p∧(δoutD (s)− E)

= min{
∑
X∈X

r⊕(δinE∪D[V−s](X))− k(|X | − 1) : X is a subpartition of V − s}.

4 Matroidal description of L-tight k-arborescences
Let D = (V,A) be a digraph, let L ⊆ 2V be a laminar family, and assume that there
exists an L-tight k-arborescence in D. Without loss of generality, we also assume that
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V and all singletons are in L. Let furthermore D+ denote the (|A| + k)-extension of
D. The L-tight k-arborescences in D+ are all rooted at s and, since V ∈ L, there
is a natural (though not one-to-one) correspondence between L-tight k-arborescences
in D and those in D+. For W ∈ L, let DW denote the digraph obtained from D+ by
contracting V + s−W to a single node sW and removing the loops that arise. Note
that there is a natural bijection between δoutDW

(sW ) and δinD+(W ); we will basically
identify these two arc-sets in the discussion below. The main theorem of this section
is the following.

Theorem 15. The family BW = {I ⊆ δoutDW
(sW ) : |I| = k and I can be extended to an

L[W ]-tight sW -rooted k-arborescence in DW} forms the family of bases of a matroid
MW = (δoutDW

(sW ), rW ).

Proof. We recursively show that the family BW indeed de�nes a matroid MW for
every W ∈ L. For the singletons {v} ∈ L it is clear that M{v} is the uniform matroid
of rank k on ground set δinD+(v). Let W ∈ L be a non-singleton, and assume that
MW ′ has already been de�ned for every W ′ ∈ L that is a proper subset of W . Let
W1,W2, . . . ,Wl be the maximal members of L[W ] −W , and let us contract each Wi

into a single node wi (i = 1, 2, . . . , l). Let Ŵ = W/{W1,W2, . . . ,Wl} be the set
obtained from W by these contractions, and similarly, for a subgraph (W + sW , E) of
DW we use the notation Ê = E/{W1,W2, . . . ,Wl} to mean the graph obtained from
(W + sW , E) by the contractions (and deletion of the loops that arise). In particular,
let D̂ = DW/{W1,W2, . . . ,Wl}. The matroids MWi

naturally give rise to matroids
Mwi

= (δin
D̂

(wi), rwi
) for every i; letM = {Mw1 , . . . ,Mwl

}.

Claim 16. If F ⊆ A(DW ) is an L[W ]-tight sW -rooted k-arborescence, then F̂ is
M-matroid-restricted. Conversely, if F ′ ⊆ D̂ is an M-matroid-restricted sW -rooted
k-arborescence in D̂ and |δoutF ′ (sW )| = k, then there exists an L[W ]-tight sW -rooted

k-arborescence F ⊆ A(DW ) such that F̂ = F ′.

Proof. The �rst statement is clear from the de�nition of the matroids Mwi
. For the

other direction, let F ′ ⊆ D̂ be anM-matroid-restricted sW -rooted k-arborescence in
D̂, such that |δoutF ′ (sW )| = k. Consider F ′ as a subgraph of DW , and note that δinF ′(Wi)
is a base of MWi

for every i. By the de�nition of MWi
, δinF ′(Wi) can be extended to

an L[Wi]-tight arborescence Fi in DWi
for every i. The sW -rooted k-arborescence

F = F ′
⋃
∪iFi is L[W ]-tight and F̂ = F ′, as required.

The claim implies that BW consists of the arc sets of size k that can be obtained as
the arcs incident to sW of anM-matroid-restricted sW -rooted k-arborescence, so the
statement of the theorem follows from Corollary 14.

Corollary 17. The matroids de�ned in Theorem 15 have the property that a k-
arborescence F ⊆ A(D+) is L-tight if and only if F ∩ δinD+(W ) is a base of MW for
every W ∈ L.

A recursive formula for the rank function rW of the matroidMW de�ned in Theorem
15 can be deduced from Corollary 14. We state this recursive formula expicitly below
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Figure 2: An illustration for the mandatory arc transformation.

because it will be used extensively. Let W1, . . . ,Wl denote the maximal members
of L[W ] − W . For an arc set E ⊆

⋃l
i=1 δ

in
D+(Wi), we use the notation r⊕W (E) =∑l

i=1 rWi
(E ∩ δinD+(Wi)). A subset X of W is called L[W ]-compatible if it is the

union of some maximal members of L[W ] − W . A subpartition P of W is L[W ]-
compatible if every member of P is L[W ]-compatible.

Corollary 18. LetW ∈ L and E ⊆ δinD+(W ). If |W | = 1, then rW (E) = min{k, |E|};
otherwise

rW (E) = min{
∑
X∈X

r⊕W (δinE∪D[W ](X))− k(|X | − 1) :

X is an L[W ]-compatible subpartition of W}.

Theorem 15 for W = V gives the following corollary.

Corollary 19. The convex hull of root vectors of L-tight k-arborescences in D is a
base polyhedron.

Theorem 15 in itself does not imply that the root vectors of minimum-cost k-
arborescences also determine a base polyhedron, because we have to deal with manda-
tory arcs, i.e. the arcs of A1 in Corollary 4. The following transformation solves this
issue.

mandatory arc transformation Given a digraph D = (V,A), a node s ∈ V , an
arc a = uv (where u, v ∈ V−s), and a laminar family L ⊆ 2V−s, we construct a digraph
D′ = (V +xa, A−a+Ba), where Ba = {uxa, xav}∪{k−1 parallel copies of vxa}. Let
furthermore L′ ⊆ 2V+xa be de�ned as L′ = {W ∈ L : v 6∈ W}∪{W +xa : v ∈ W ∈ L}
(note that {v} ∈ L implies that {xa, v} ∈ L′). See Figure 2 for an illustration. It is
easy to check that L′ is laminar.

Claim 20. For an L-tight s-rooted k-arborescence F ⊆ A containing a = uv, let
φ(F ) = F − a + Ba. Then φ is a bijection between L-tight s-rooted k-arborescences
containing a in D and L′-tight s-rooted k-arborescences in D′.
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Proof. First we show that if F ⊆ A is an L-tight s-rooted k-arborescence containing
a, then φ(F ) is an L′-tight s-rooted k-arborescence in D′. Let F1, F2, . . . , Fk be a
decomposition of F into k s-rooted arborescences and assume that a ∈ F1. Let F

′
1 =

F1 − a+ {uxa, xav}, and let F ′i = Fi plus a copy of the arc vxa for every i = 2, . . . , k.
Then F ′1, F

′
2, . . . , F

′
k is a decomposition of φ(F ) into k s-rooted arborescences in D′,

so φ(F ) is indeed an s-rooted k-arborescence in D′. Furthermore, φ(F ) is L′-tight,
as φ(F )[{xa, v}] is a k-arborescence, and the indegree of any other set W ∈ L′ in the
subgraph φ(F ) is k.
For the other direction, let F ′ ⊆ A′ be an arbitrary L′-tight s-rooted k-arbores-

cence in D′. Since F ′[{xa, v}] is a k-arborescence and %F ′(xa) = k, Ba ⊆ F ′ must
hold. Let F = F ′ − Ba + a; we show that F is a L-tight s-rooted k-arborescence in
D � since a ∈ F and F ′ = φ(F ), this completes the proof. Let F ′1, F

′
2, . . . , F

′
k be a

decomposition of F ′ into k s-rooted arborescences in D′, and assume that uxa ∈ F ′1.
Then clearly xav is in F

′
1 too, so F

′
1−{uxa, xav}+ a, F ′2− vxa, F ′3− vxa, . . . , F ′k − vxa

is a decomposition of F into k s-rooted arborescences in D. The L-tightness of F can
be shown similarly.

Using this transformation we can now prove the following.

Theorem 21. The convex hull of the root vectors of optimal k-arborescences is a
base polyhedron.

Proof. Given a digraph D = (V,A) and a cost function c : A → R, let α = k + 1,
β =

∑
a∈A c(a) + 1, and let (D+, c+) be the (α, β)-extension of (D, c). By previous

remarks, optimal k-arborescences in D and optimal k-arborescences in D+ correspond
to each other in a natural way (and k-arborescences in D+ are rooted at s). By
Corollary 4, there exists a laminar family L ⊆ 2V and two disjoint sets A0, A1 ⊆ A+,
such that a k-arborescence F ⊆ A+ is optimal if and only if A1 ⊆ F ⊆ A+ − A0 and
F is L-tight. Due to symmetry, A1 contains either all or none of the parallel arcs
between s and a given node v ∈ V . Since there are k + 1 parallel arcs, the former is
impossible, so A1 ⊆ A.
Starting with D+−A0, repeat the mandatory arc transformation above for

every a ∈ A1, to obtainD
′ = (V +s+{xa : a ∈ A1}, A+−(A0∪A1)+∪a∈A1Ba)) and the

laminar family L′ ⊆ 2V+{xa:a∈A1}. For any L-tight s-rooted k-arborescence F ⊆ A+

with A1 ⊆ F ⊆ A+ − A0, let φ(F ) = F − A1 + ∪a∈A1Ba. By Claim 20, φ de�nes a
bijection between L-tight s-rooted k-arborescences in D+−A0 containing A1 and L′-
tight s-rooted k-arborescences inD′. By Corollary 17, the family {I ⊆ δoutD′ (s) : |I| = k
and I is contained in a L′-tight s-rooted k-arborescence of D′} is the family of bases of
a matroid. This implies that the convex hull of root vectors of optimal k-arborescences
in D is a base polyhedron.

5 Blocking L-tight k-arborescences
In this section we show that if k is �xed, then there is a polynomial-time algorithm that
�nds a minimum transversal of the family of L-tight k-arborescences. Let D = (V,A)
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be a digraph and let L ⊆ 2V be a laminar family. We assume that L contains V
and all the singletons, and that D contains an L-tight k-arborescence. Let D+ be
the α-extension of D, where α = |A| + k. The minimum transversals for D and D+

are the same because the arcs sv have |A|+ k copies each, so these arcs never appear
in a minimum transversal. Recall that for W ∈ L, the digraph DW is obtained by
contracting V + s−W in D+ to a single root node sW .
In what follows, we will often use the matroids MW = (δinD+(W ), rW ) for W ∈ L, as

de�ned in Theorem 15. Furthermore, we will often remove some subset of arcs H ⊆ A
from D+ and we will usually denote D+ −H by D′. Thus D′W for some W ∈ L will
denote the digraph obtained from D+ − H by contracting V + s −W into a single
node sW . If D′W contains an L[W ]-tight sW -rooted k-arborescence for some W ∈ L,
then we can consider the modi�ed matroid obtained by using D′W in place of DW in
Theorem 15. To emphasize the dependence of this matroid on D′, we denote it by
MD′,W , and its rank function by rD′,W . Likewise, we use the notation r⊕D′,W (E) in

place of r⊕W (E) if we refer to the direct sum de�ned using D′.
For a non-singleton W ∈ L and an arc set E ⊆ δinD+(W ), we say that an L[W ]-com-

patible subpartition X ofW determines rW (E) if rW (E) =
∑

X∈X r
⊕
W (δinE∪D[W ](X))−

k(|X | − 1). By Corollary 18, such a subpartition exists. Notice that if X determines
rW (E), then r⊕W (δinE∪D[W ](X)) ≤ k for every X ∈ X . Moreover, if r⊕W (δinE∪D[W ](X)) = k

for some X ∈ X , then X − X also determines rW (E). In particular, if rW (E) = k,
then rW (E) is determined by the empty subpartition.
Our �rst lemma shows that the rank of an arc set cannot decrease by more than

one if we remove only one arc from D.

Lemma 22. Let E ⊆ δinD+(W ), and let D′ = D+−e for an arbitrary arc e ∈ DW (not
necessarily in E). If D′W contains an L[W ]-tight sW -rooted k-arborescence, then

rW (E)− 1 ≤ rD′,W (E − e) ≤ rW (E).

Proof. Let E ′ = E − e. The inequalities rD′,W (E ′) ≤ rW (E ′) ≤ rW (E) follow from
the de�nition of the rank. We prove the remaining inequality by induction on the
size of L[W ]; it is clearly true if W is a singleton. Otherwise, by Corollary 18,
there is an L[W ]-compatible subpartition X of W that determines rD′,W (E ′), i.e.
rD′,W (E ′) =

∑
X∈X r

⊕
D′,W (δinE′∪D′[W ](X)) − k(|X | − 1). We know by induction that

r⊕D′,W (δinE′∪D′[W ](X)) ≥ r⊕W (δinE∪D[W ](X)) − 1 for every X ∈ X , and the ranks are
di�erent for at most one member of X , since e ∈ DWi

for at most one Wi. This proves
the inequality because rW (E) ≤

∑
X∈X r

⊕
W (δinE∪D[W ](X))− k(|X | − 1).

The next result is a characterization of inclusionwise minimal transversals lying
inside A.

Theorem 23. Let H ⊆ A be an inclusionwise minimal transversal of the family of
L-tight k-arborescences in D+. Let D′ = D+ −H and let W ∈ L be an inclusionwise
minimal member of L for which D′W does not contain an L[W ]-tight sW -rooted k-ar-
borescence. Then H ⊆ D[W ], and there is an L[W ]-compatible subpartition X of W
such that

∑
X∈X r

⊕
D′,W (δinD′[W ](X)) = k(|X | − 1)− 1.

EGRES Technical Report No. 2015-09



Section 5. Blocking L-tight k-arborescences 16

Proof. First note that |W | > 1, since H ⊆ A. As H ∩DW is a transversal of L[W ]-
tight sW -rooted k-arborescences (and hence of L-tight k-arborescences), minimality
of H implies that H ⊆ DW . Let W1, . . . ,Wl be the maximal members of L[W ]−W .
By the choice of W , D′Wi

contains an L[Wi]-tight sWi
-rooted k-arborescence for every

i, thus r⊕D′,W is well-de�ned.
Since D′W does not contain an L[W ]-tight sW -rooted k-arborescence, (a) or (b)

fails to hold in Corollary 14 for r⊕D′,W . Suppose that r⊕D′,W (δinD′W
(X)) < k for some

L[W ]-compatible subset X ⊆ W . Then there is a set Wi such that rD′,Wi
(δinD′(W ) ∩

δinD′(Wi)) < k. However, since we did not delete any arc leaving s, and already the
arcs going from s to Wi have rank k in MWi

, we get (by monotonicity of rWi
) that

rWi
(δinD′(W ) ∩ δinD′(Wi)) = k, a contradiction.
Thus (b) fails to hold in Corollary 14, that is,

∑
X∈X r

⊕
D′,W (δinD′[W ](X)) < k(|X |−1)

for some L[W ]-compatible subpartition X of W . As H is inclusionwise minimal and
the removal of an arc can decrease a rank by at most one according to Lemma 22, the
left hand side must be equal to k(|X | − 1) − 1. Since the formula involves only arcs
in D′[W ], minimality also implies that H ⊆ D[W ].

The characterization in the theorem does not lead automatically to an e�cient
algorithm for �nding a transversal of minimum size. In fact, for a given X with
r⊕W (δinD[W ](X)) = k, it is not clear how to compute the minimmum number of arcs
that have to be removed in order to decrease the rank by one. However, the following
lemma implies that if the rank is strictly smaller than k, then we can decrease it by
removing only one arc.

Lemma 24. Let W ∈ L and E ⊆ δinD+(W ) such that 0 < rW (E) < k. Then there
exists an arc e ∈ E ∪D[W ] such that either DW − e does not contain an L[W ]-tight
sW -rooted k-arborescence, or rD′,W (E − e) = rW (E)− 1, where D′ = D+ − e.

Proof. The proof is by induction on |W |; the claim is clearly true if W is a singleton.
Let W1, . . . ,Wl be the maximal members of L[W ]−W . By Corollary 18, there exists
an L[W ]-compatible subpartition X of W that determines rW (E). We can choose a
set X ∈ X and an index i for which Wi ⊆ X and

0 < rWi
(δinE∪D[W ](X) ∩ δinE∪D[W ](Wi)) < k.

Let ∆ denote δinE∪D[W ](X)∩ δinE∪D[W ](Wi). By induction, there is an arc e ∈ ∆∪D[Wi]

such that eitherD′Wi
does not contain an L[Wi]-tight sWi

-rooted k-arborescence (where
D′ is the digraph obtained by removing e), or rD′,Wi

(∆− e) = rWi
(∆)− 1. The latter

possibility means that rD′,W (E−e) < rW (E); on the other hand, the rank can decrease
by at most one by Lemma 22.

We can formulate a similar statement for an L[W ]-compatible subset of W , which
easily follows from the previous lemma.

Lemma 25. Let W ∈ L, let X ⊆ W be an L[W ]-compatible set, and let E ⊆ δinD+(X)
such that 0 < r⊕W (E) < k. Then there exists an arc e ∈ E ∪ D[X] such that either
DW − e does not contain an L[W ]-tight sW -rooted k-arborescence, or r⊕D′,W (E − e) =

r⊕W (E)− 1, where D′ = D+ − e.
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Let γ be the minimum size of a transversal of the family of L-tight k-arborescences.
Using the above lemma, we will show that if γ ≥ k, then there exists a minimum
transversal having a special structure. This will lead to a polynomial algorithm for
�xed k the following way: �rst we check every arc subset of size at most k−1; if none
of these is a transversal, then we look for a minimum transversal among those having
the special structure. As we will see, this can be done in polynomial time using the
results in [1].
We start with an easy corollary of Lemma 25 that describes a case that cannot

happen when γ ≥ k; the proof is left to the reader.

Corollary 26. If there exists W ∈ L and two nonempty disjoint L[W ]-compatible
sets X1, X2 ⊆ W with r⊕W (δinD[W ](Xj)) < k for both j = 1, 2, then γ < k.

To describe the special structure of the minimum transversal that we are looking
for, we use a set function that also played a crucial role in the k = 1 case that was
solved in [1]. For W ∈ L and Z ⊆ W , we de�ne

fW (Z) := |{e ∈ D[W ] : e ∈ δin(Z), e /∈ δout(W ′) if W ′ ∈ L[W ] and W ′ ∩ Z 6= ∅ }|.

If D′ is a digraph di�erent from D, then we use fD′,W (Z) to denote the analogous set
function for D′. The following claim was proved for k = 1 in [1, Lemma 3].

Claim 27. Let D = (V,A) be a digraph and L ⊆ 2V a laminar family. If there
exists an L-tight k-arborescence in D, then fW (Z1) + fW (Z2) ≥ k for any W ∈ L and
nonempty disjoint sets Z1, Z2 ⊆ W .

Proof. Suppose for contradiction that there exists an L-tight k-arborescence in D
and there exist W ∈ L and nonempty disjoint sets Z1, Z2 ⊆ W such that fW (Z1) +
fW (Z2) ≤ k − 1. Consider the digraph D′ obtained from D the following way: for
every arc e ∈ δinD[W ](Zj) for which there exists W ′ ∈ L[W ] such that W ′ ∩ Zj 6= ∅ and
e ∈ δoutD[W ](W

′), we change the tail of e to an arbitrary node in W ′ ∩ Zj (j = 1, 2).

This is the tail-relocation operation introduced in [1]. The following can be seen
easily:

• If F is an L[W ]-tight k-arborescence in D, then the corresponding arc set in D′

is also an L[W ]-tight k-arborescence;

• fW (Zj) = fD′,W (Zj) = %D′[W ](Zj) (j = 1, 2).

This contradicts fW (Z1) + fW (Z2) ≤ k − 1, because the existence of an L[W ]-tight
k-arborescence implies %D′[W ](Z1) + %D′[W ](Z2) ≥ k.

Note that in the case k = 1, [1, Lemmas 3, 4] state that there exists an L-tight
arborescence in D if and only if fW (Z1) + fW (Z2) ≥ 1 for any W ∈ L and nonempty
disjoint sets Z1, Z2 ⊆ W . Unfortunately, the analogous statement is not true for
k > 1, as illustrated in Figure 3.
The following upper bound on the rank can be proved similarly to Claim 27.
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s v

W

x1

x2

Figure 3: A digraph that does not admit an L-tight 2-arborescence. Bold arcs are
bidirected and have multiplicity 2, and L has 3 members, indicated by ellipses. There
is no L-tight 2-arborescence, although

∑
X∈X fW (X) ≥ k(|X | − 1) holds for every

W ∈ L and every L[W ]-compatible subpartition X of W . Note that the arc sv is a
loop in the matroidMW , and rW ({sv}) is determined by the subpartition {{x1}, {x2}}.

Lemma 28. If W ∈ L and E ⊆ δinD+(W ), then rW (E) ≤ fW (Z) + %E(Z) for every
non-empty Z ⊆ W .

Proof. By the de�nition of the rank, there is an L[W ]-tight sW -rooted k-arborescence
F such that |F ∩ E| = rW (E). We apply the tail-relocation operation described in
the proof of Claim 27; let D′ be the modi�ed digraph, and let F ′ be the L[W ]-tight
sW -rooted k-arborescence obtained from F . On one hand, fW (Z) = fD′,W (Z) =
%D′[W ](Z). On the other hand,

k ≤ %F ′(Z) ≤ %D′[W ](Z) + %E∩F (Z) + %F−E(W ) ≤ %D′[W ](Z) + %E(Z) + (k − rW (E)),

so rW (E) ≤ %D′[W ](Z) + %E(Z) = fW (Z) + %E(Z), as required.

Our next observation is that for some special arc sets the above formula is tight.
To describe these special arc sets, we use a recursive de�nition. For W ∈ L and
E ⊆ δinD+(W ), we say that E is W -elementary if rW (E) < k and

• either |W | = 1

• or there exists an L[W ]-compatible set X ⊆ W such that the subpartition {X}
determines rW (E), and δinE∪D[W ](X) ∩ δinE∪D[W ](W

′) is W ′-elementary for every

maximal member W ′ of L[W ]−W .

Intuitively, an arc set is elementary if only subpartitions of cardinality 1 occur in its
recursive rank formula. Note that E = ∅ is W -elementary for every W , since {W}
determines rW (E).

Lemma 29. Let W ∈ L and E ⊆ δinD+(W ). If E is W -elementary, then rW (E) =
min{fW (Z) + %E(Z) : ∅ 6= Z ⊆ W}.
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Proof. By Lemma 28, rW (E) ≤ min{fW (Z) + %E(Z) : ∅ 6= Z ⊆ W}. We prove the
other direction by induction on the size of W . If |W | = 1, then equality holds for
Z = W , because we assumed that rW (E) < k. If |W | > 1, then let W1, . . . ,Wl be the
maximal members of L[W ]−W . Since E isW -elementary, there is a L[W ]-compatible
set ∅ 6= X ⊆ W such that rW (E) = r⊕W (δinE∪D[W ](X)) and Ei := δinE∪D[W ](X) ∩ δin(Wi)

is Wi-elementary for every i. We may assume that X = ∪ti=1Wi for some 1 ≤ t ≤ l,
and thus rW (E) =

∑t
i=1 rWi

(Ei). By induction, there exist nonempty Zi ⊆ Wi

(i = 1, . . . , t) such that rWi
(Ei) = fWi

(Zi) + %Ei
(Zi). Let Z = ∪ti=1Zi. Observe that

an arc entering Wi but not entering X does not contribute to fW (Z) + %E(Z), thus
fW (Z) + %E(Z) =

∑t
i=1(fWi

(Zi) + %Ei
(Zi)) = rW (E).

If a digraph D′ is considered instead of D, then we speak of (D′,W )-elementary
arc sets. We also extend the notion to arc sets in D[W ] entering a speci�ed L[W ]-
compatible subset. ForW ∈ L and an L[W ]-compatible subset X ofW , we say that a
set E ⊆ δinD[W ](X) is X-elementary if r⊕W (E) < k and E ∩ δin(W ′) is W ′-elementary

for every maximal member W ′ of L[W ] −W . The following is an easy consequence
of Lemma 29.

Lemma 30. Let W ∈ L and let E ⊆ δinD[W ](X) for some nonempty L[W ]-compatible

subset X of W . If E is X-elementary, then r⊕W (E) = min{fW (Z) : ∅ 6= Z ⊆ X}.

Using this lemma, we can �nally prove our main result on the minimum size of
transversals.

Theorem 31. If the minimum size of a transversal is γ ≥ k, then γ equals

min
W∈L

min{fW (Z1) + fW (Z2)− k + 1 : Z1, Z2 are disjoint subsets of W}. (14)

Proof. By Claim 27, if W ∈ L and Z1, Z2 are nonempty disjoint subsets of W , then
there is a transversal of size fW (Z1) + fW (Z2)− k + 1, thus γ is at most (14) (this is
true even if γ < k).
To show that equality holds for some W ∈ L, let H be a minimum transver-

sal, and let D′ = D+ − H. By Theorem 23, there exists W ∈ L and an L[W ]-
compatible subpartition X of W such that H ⊆ D[W ] and

∑
X∈X r

⊕
D′,W (δinD′[W ](X)) =

k(|X | − 1)− 1. Let us choose a minimum transversal H for which W is the smallest
possible, and (subject to that) X has the smallest possible cardinality; this implies
that r⊕D′,W (δinD′[W ](X)) < k for every X ∈ X .

Claim 32. |X | = 2.

Proof. Suppose for contradiction that |X | ≥ 3. Then 0 < r⊕D′,W (δinD′[W ](X)) < k for
every X ∈ X ; furthermore, by the assumption γ ≥ k and Corollary 26, all of these
ranks except for at most one were originally k inD. LetX0 be one of the members of X
for which r⊕D,W (δinD[W ](X0)) = k, and let X1 be another member. Let E1 = δinD′[W ](X1),
and consider the following arc exchange operation.
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(X0, E1)-exchange By Lemma 24, there is an arc e ∈ D′[W ] such that r⊕D′−e,W (E1−
e) < r⊕D′,W (E1). Choose an arbitrary arc e0 ∈ H whose head is in X0 (such an arc

exists because r⊕D′,W (δinD′[W ](X0)) < r⊕D,W (δinD[W ](X0))). Let H1 = H − e0 + e.

By the choice of H, there is noW ′ ⊂ W such that H1 is a transversal of L[W ′]-tight
k-arborescences in D′W ′ . By the choice of e, H1 is still a transversal of L[W ]-tight
k-arborescences, so it is a minimum transversal. We can apply the exchange operation
repeatedly until we obtain a minimum transversal H ′′ for which r⊕D′′,W (δinD′′[W ](X0)) =

k, where D′′ = D+ −H ′′. At this point, X −X0 is a good subpartition for H ′′ that
has fewer members than X , in contradiction to the choice of H and X .

We obtained that X is a subpartition with two members, so X = {X1, X2} and
r⊕D′,W (δinD′[W ](X1)) + r⊕D′,W (δinD′[W ](X2)) = k − 1. The next claim shows that H can be
modi�ed so that the arc sets in the formula become elementary.

Claim 33. There is a minimum transversal H∗ of L[W ]-tight k-arborescences such
that δinD∗[W ](Xj) is (D∗, Xj)-elementary and r⊕D∗,W (δinD∗[W ](Xj)) = r⊕D′,W (δinD′[W ](Xj))

for j = 1, 2 (where D∗ denotes D+ −H∗).

Proof. If δinD′[W ](Xj) is (D′, Xj)-elementary for j = 1, 2, then H has the required

properties. Suppose that δinD′[W ](Xj) is not (D′, Xj)-elementary . This means that

if we recursively compute the rank of δinD′[W ](Xj), then at some point we have to

compute a rank rD′,W ′(E
′) for some W ′ ∈ L[W ] −W and some E ′ ⊆ δinD′(W

′), but
the smallest L[W ′]-compatible subpartition Y that determines rD′,W ′(E

′) has at least
two members.
Since 0 < rD′,W ′(E

′) < k, we have 0 < r⊕D′,W ′(δ
in
E′∪D′[W ′](Y )) < k for every Y ⊆ Y .

Let E = E ′ ∪ (H ∩ δinD (W ′)). By the assumption γ ≥ k and Corollary 26, we know
that r⊕W ′(δ

in
E∪D[W ′](Y )) = k for all but at most one member of Y ; let Y0 be a member

for which it is k, and let Y1 be another member. Let E1 = δinE′∪D′[W ′](Y1). By the

same argument as in the proof of Claim 32, a (Y0, E1)-exchange operation results in
a transversal of the same size as H, for which r⊕D′,W ′(δ

in
E′∪D[W ′](Y0)) increases by one.

By applying the exchange operation repeatedly, we eventually obtain a transversal
H ′′ such that |H ′′| = |H| and r⊕D′′,W ′(δinE′′∪D′′[W ′](Y0)) = k, where E ′′ = E − H ′′ and
D′′ = D+−H ′′. At this point, Y−Y0 also determines the rank rD′′,W ′(E

′′) = rD′,W ′(E
′),

and has fewer members than Y .
By repeating this procedure, we eventually obtain a transversal H∗ which satis�es

the claimed properties.

Let H∗ be the minimum transversal given by Claim 33. By Lemma 30, there is a
nonempty set Zj ⊆ Xj such that r⊕D∗,W (δinD∗[W ](Xj)) = fD∗,W (Zj), for both j = 1, 2.

Thus fD∗,W (Z1)+fD∗,W (Z2) = k−1. Since the removal of an arc from D can decrease
fW (Z1) + fW (Z2) by at most one, we have γ = |H∗| ≥ fW (Z1) + fW (Z2) − k + 1.
As the reverse inequality has already been proved, this completes the proof of the
theorem.
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The theorem not only characterizes the minimum size of transversals if γ ≥ k, but
also guarantees the existence of minimum transversals that have a special structure.

Corollary 34. Suppose that γ ≥ k, and let (W,Z1, Z2) be minimizers of (14). For
j = 1, 2, let

Ej = {e ∈ D[W ] : e ∈ δin(Zj), e /∈ δout(W ′) if W ′ ∈ L[W ] and W ′ ∩ Zj 6= ∅}.

Then every arc set H ⊆ E1 ∪ E2 of size |E1 ∪ E2| − k + 1 is a minimum transversal
of the family of L-tight k-arborescences.

Proof. By Theorem 31, γ = fW (Z1) + fW (Z2)− k + 1, so |H| = γ. Let D′ = D −H;
by de�nition, fD′,W (Z1) + fD′,W (Z2) = fW (Z1) + fW (Z2) − |H|, thus fD′,W (Z1) +
fD′,W (Z2) = k− 1. According to Claim 27, no L-tight k-arborescence exists in D′, so
H is a transversal.

Using this, we can give a polynomial time algorithm if k is �xed. We check if
there is a transversal of size at most k − 1 by brute force search. If there is none,
then we can use the algorithm covering_tight_arborescences in [1] to compute
minW∈L(min{fW (Z1) + fW (Z2) : Z1, Z2 are nonempty, disjoint subsets of W}) and
minimizers (W,Z1, Z2) in polynomial time. We can also determine the arc sets E1, E2

as in Corollary 34, so we can �nd a transversal of minimum size.

6 Conclusion

As the example in Figure 3 shows, the minimum size of a transversal can be smaller
than (14). To make further progress on the problem, this case should be better
understood. As mentioned at the end of Section 2, it can be decided in polynomial
time using a weighted matroid intersection algorithm whether there is an L-tight k-ar-
borescence; in this sense, the case γ = 0 is well-understood in terms of general matroid
techniques. However, such techniques do not su�ce for higher γ, as the transversal
problem for general matroid intersection (and even for general matroids) is NP-hard.
The algorithm presented in Section 5 sidesteps this problem by simply checking for
every arc subset of size at most k whether it is a transversal; this of course means that
the algorithm is not even �xed-parameter tractable for the parameter k. One possible
approach to improve this would be to generalize the subpartition-�nding algorithms
of [2] to laminar families.
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